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Abstract. New high-precision measurements of p(¥, ) and p(¥,7) cross sections
and beam asymmetries have been combined with other polarization ratios in a
simultaneous analysis of both reactions. The E2 /M1 mixing ratio for the N — A
transition extracted from this analysis is EMR = -3.0% = 0.3 (stat-+sys) = 0.2
(model).

The well-isolated N — A resonance serves as a sensitive test for models of
nucleon structure [1-4]. To lowest order, N — A is a simple M1 quark spin-flip
transition. Small L=2 components in the N and A wavefunctions allow this
excitation to proceed via an electric quadrupole transition. The most sensitive
observable to E2 strength is the beam asymmetry in p(7,7°) [5]. In a recent
Mainz measurement of p(¥,7) an EMR of -2.5% was extracted using the m°
channel alone [6]. As will be shown, this value is artificifially inflated by a
factor of 2 due to multipole ambiguities. We report an improved value for the
EMR that is constrained by new measurements and two new observables.




At any energy, a minimum of 8 independent observables are required to
specify the photo-pion amplitude [7]. Such complete information has never
been available and previous analyses have relied on at most four observables,
usually measured separately with independent systematic errors. Although
the 7 = 3/2 M1 and E2 components can extracted from a multipole fit, many
observables are needed to avoid multipole ambiguities [8]. In the present
work, p(¥,7°), p(7,7*) and p(,+) cross sections and beam asymmetries were
all measured simultaneously to provide new constraints on the photo-pion
multipoles.

At LEGS, polarized tagged v-ray beams between 209 and 333 MeV were
produced by backscattering laser light from 2.6 GeV electrons at the National
Synchrotron Light Source. Beams, with linear polarizations greater than 80%
and known to £1%, were flipped between orthogonal states at random inter-
vals between 150 and 450 seconds.

One goal of this experiment was the first complete separation of Comp-
ton scattering and w°-production. The two reactions were distinguished by
comparing their 4-ray and proton-recoil energies. High energy y-rays were "
detected in a large NaI(Tl) crystal, while recoil protons were tracked through
wire chambers and stopped in an array of plastic scintillators. A schematic
of this arrangement and a spectrum showing the separation of the two chan-
nels is given in [9]. All detector efficiencies were determined directly from the
data itself, an important advantage. Charged pions were detected in 6 Nal
detectors, including the large crystal used for the Compton and 7° channels.
The high resolution of the Nal detectors was essential in determining 7+ ef-
ficiencies, which were simulated with GEANT [10] using GCALOR to model
hadronic interactions [11]. Systematic effects were combined in quadrature
with statistical errors (~ 1%) for a net measurement error.

In the vicinity of the A peak, the spin-averaged =°, v+, and Compton cross
sections determined in this experiment are all consistently higher than earlier
measurements from Bonn [12-15] while for energies lower than ~270 MeV
substantial agreement is observed. Of the previous 7+ cross section measure-
ments, those from Tokyo [16] are in closest agreement to the present work.
The present work is also in very good agreement with two recent Compton
measurements from Mainz at 90° and 75° [17,18]. All LEGS cross sections are
locked together with a common systematic scale uncertainty, due to possible
flux and target thickness variations, of 2%.

To obtain a consistent description of these results we have performed an
energy-dependent analysis, expanding the m-production amplitude into elec-
tric and magnetic partial waves, Ej, and M;, , with relative #N angular
momentum £, and intermediate-state spin j = £+ 7 and isospin 7 = % or3.In
order to reproduce our angular distributions in the region of the A, we must
vary the D wave contributions. To reduce ambiguities [8], we truncate our fit
at F waves, while keeping the Born terms up to order £ = 19.

The (y,7) multipoles were parameterized with a K-matrix-like unitariza-
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tion,

e = (AE(Eq) + 1€ + g€l + 23O (B, — Ez’t)z)
x (1+4T%) + 8- Tiy. ‘ 1)

Here, E, and e, are the beam and corresponding =+ kinetic energies, and A%
is the full pseudo-vector Born multipole, including p and w t-channel exchange
[19]. The VPI[SM95] values are used for the N scattering T-matrix elements
[20]. Below 2 threshold, E2* = 309 MeV, T%y reduces to sin(§;)e"t, §,{E.)
being the elastic #N phase shift. Thus, eqn. 1 explicitly satisfies Watson’s
theorem [21] below E2™ and provides a consistent, albeit model-dependent,
procedure for maintaining unitarity at higher energies. The 8 term was fixed at
zero for all multipoles except Mf_{_z, Ef_{_z, and Ml1 £2, the first two describing M1
and E2 N — P33 excitation and the latter allowing for a possible tail from the
P;; resonance. The other terms describe the non-resonant background, with
the a; included to account for non-Born contributions. Each fitted multipole .

contains a term in oy, while the additional a; term is used only in Eéf,

Mf_,/,z and Eff The a3 term containing the unit Heavyside step function @,
(=1 for E, > 309 MeV) is used only in the Eo, amplitudes to accommodate
possible effects from S-wave 27 production.

Once the (,7) multipoles are specified, the imaginary parts of the six
Compton helicity amplitudes are completely determined by unitarity, and dis-
persion integrals can be used to calculate their real parts, where we have
implemented the computation of L’vov and co-workers [22]. This requires
the evaluation of the dispersion integrals at energies outside the range of the
present work. For this we have used the VPI-SM95 solution up to 1.5 GeV
[20], and estimates from Regge theory for higher energies. The polarizabilities
can also be extracted from this analysis, but they have only small effects on
the N — A amplitudes.

We report here a summary of the results of a fit to the parameters of the
(9,7) multipoles, minimizing x? for both predicted (v,7)-and (7,<v) observ-
ables. In this fit we have used p(¥,7°), p(¥,n*) and p(¥,7) cross sections
only from the present experiment, since these are locked together with a small
common scale uncertainty, and augmented our beam asymmetry data with
other published polarization ratios (in which systematic errors tend to cancel).
These include our earlier 3(7°) data [5],{T(#°), T(x*)} data from Bonn [23],
{T(=°), P(x°), T(xt), P(x*)} data from Khar’kov [24,25], and the few beam-
target asymmetry points {G(7*), H(x*)} from Khar’kov [26]. Systematic
scale corrections were fitted following the procedure of ref. [27]. To minimize
the effect of 27-production we have limited the fitting interval from 200 MeV
to 350 MeV. The reduced x? for this analysis is x% = 997/(644 — 34) = 1.63.

~ The EMR for N — A is just the ratio of fitted 8 coefficients in eqn. 1 for
the Ef./,_z and Mff multipoles, -0.0296 + 0.0021. The fitting errors reflect

e
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TABLE 1. Dependence of the EMR on p(y, ) cross
sections. Rows 1 and 2 summarize our multipole fit to
P(7, =) and p(v, ) using unpolarized p(y, x) results from
this work in row 1, and substituting only the Bonn cross
sections from [12,13] in row 3.

Source 22 (7, %) EMR(%) X%
(7,%)+(v,7) it LEGS -3.0+0.3 1.63
fit to DMW LEGS -3.0+0.2/-0.3

(7s%) + (7,7) it  Bonn —-1.34+0.2 1.89
Sato-Lee [3] Bonn —1.8+0.9

all statistical and systematic uncertainties. The full unbiased estimate of the
uncertainty is 1/x? larger [28]. We have studied the variations that result from
truncating the multipoles at D waves, using a different 7N phase shift solution
[29], allowing for differences in energy calibration between photoproduction
and wN scattering, and varying the assumptions used to compute the Compten -
dispersion integrals [22]. The EMR is most sensitive to the multipole order
and to the energy scale. Combining these model uncertainties in quadrature
leads to our final result:

EMR = -3.0% =+ 0.3 (stat-+sys) £ 0.2 (model) .

To investigate the effect of the difference in the p(q, =) cross sections be-
tween our results and the Bonn data, we have repeated this analysis substitut-
ing the values from [12,24] for our own. This reduces the EMR substantially
(Table 1, row 3).

In ref. [6], a fit to the recent Mainz 7° cross section and X(7°) data, ne-
glecting non-Born contributions beyond S and P waves, was used to extract
an EMR of -2.5% + 0.2 (stat) & 0.2 (sys). The Mainz data agrees with Bonn
cross sections [12] and LEGS X(#°) data, and thus should correspond to row
3 of table I, and the factor of 2 difference between this value and their re-
ported results reflect the ambiguities in the multipoles constrained by only 2
observables.

Various theoretical techniques have been used to separate the N — A com-
ponent. Our result can be directly compared with models, such as DMW
[30] and Sato & Lee [3], that report ratios of yNA couplings deduced with a
K-matrix type unitarization equivalent to eqn. 1. We have refit the DMW pa-
rameters to our multipoles, with the result EMR = —3.0% + 0.2/ — 0.3. This,
and the result of Sato & Lee who fitted their parameters to the Bonn cross
sections and our {X(7°), Z(w*)} data, are listed in table I and are consistent
with the set of (y,7) cross sections that were used to fix their parameters.

To summarize recent data and analyses, there are two new sets of measure-
ments of p(y, ) and p(%,7), the Mainz experiments reported in [6,17,18] and
the LEGS experiment reported here and in [9]. While Compton cross sections



measured in the two labs agree, p(«,7) cross sections do not. A consistent
analysis applied to both groups of data yields EMR values different by more
than a factor of 2. The source of this difference is the p(y,=) cross section
scale, and the advantage of the LEGS data lies in the fact that both p(y, )
and p(v,) channels are locked together with a small common systematic scale
uncertainty.

LEGS is supported by the U.S. Dept. of Energy under Contract No. DE-
AC02-76-CHO00016, by the Istituto Nazionale di Fisica Nucleare, Italy, and by
the U.S. Nat. Science Foundation.
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