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ON THE INTERFACE INSTABILITY DURING RAPID EVAPORATION
IN MICROGRAVITY

Damir Juric
Theoretical Division
Los Alamos National Laboratory
Los Alamos, New Mexico

ABSTRACT

The rapid evaporation of a superheated liquid (va-
por explosion) under microgravity conditions is studied
by direct mumerical simmulation. The time-dependent
Navier-Stokes and energy equations coupled o the in-
terface dynamics are solved using a fwo-dimensiomnal
Hnite-difference/front-tracking method. Large interface
deformations, topology charge, latent heat, surface ten-
sion and unegual material properties between the lig-
uid and vapor phases are included in the simmulations.
A comparison of numerical results fo the exact solu-
tion of a one-dimensional fest problem shows excellent
agreement. For the fwo-dimensional rapid evaporation
problem, the vapor volume growth rate and unstable
interface dynamics are studied for increasing levels of
initial liquid superheat. As the superheat is increased
the liquid-vapor interface experiences increasingly un-
stable energetic growth. These results indicate that
heat transfer plays a very important role in the insta-
bility mechanism leading fo vapor explosions. If is sug-
gested that the Mullins-Sekerka instability could play a
role in the instability initiation mechamnism.

INTRODUCTION

In vapor explosions, extremely rapid evaporation of
a liquid af the superheat limit due fo sudden depres-
surization or confact with a hotfer surface can lead to
destructive accidents (Reid, 1983). Vapor explosions
within Huid filled tanks or piping are a particularly se-
rious safefy concern in the space environment where
energy generation systems for spacecraft depend on the
storage and How of low boiling point cryogenic fluids.
Understanding the basic behavior of the liguid-vapor
interface during rapid evaporation is the key to address-
ing this concerm.

A basic understanding of explosive bubble growth is
hindered by the small spatial scales and the rapidity of
the phase change process both of which make it very
difficult to obtain the necessary experimental measure-
ments. Furthermore, opportunities for experimental in-
vestigation of vapor explosions under microgravity con-
ditions are limited to shorf duration experiments on
Earth or fo expensive space Hights. Analytical and nu-
merical efforts fo understand the processes involved in
boilinig have focused mainly on simple models of vapor
bubble dynamics. An assumed inferface shape along
with various assumptions concerning surface tensiomn,
Huid viscosity and vapor phase velocity and fempera-
ture are usually incorporated (Rayleigh, 1917, Plesset
and Zwick, 1952, 1954, Mikic, et al, 1970, Dalle Donne
and Ferranti, 1975, Lee, 1996, Lee and Nydahl, 1989,
Patil and Prusa, 1991).

Several experimental studies involving the superheat-
ing of liquid drops in bubble columms have been under-
taken to characterize the vapor explosion phenomenon
(Shepherd and Sturfevant, 1982, Frost and Sturtevant,
1986, Frost, 1988). The Landau (1944) instability has
been proposed as a hydrodynamiic mechanism for unsta-
ble growth. However, growth rates calculated with this
model disagree with the experimental measurements of
Shepherd and Sturtevant (1982). Ervin ef al. (1992)
have observed an interfacial instability on the surface
of bubbles in microgravity boiling experiments. They
were the first to report observations of this fype of inter-
facial instability in a bulk ligquid heafed from a solid sur-
face. They believe that the small scale protuberances
on the growing bubble’s surface greafly increase the
liquid-vapor inferface surface area which then resulfs
in rapid evaporation and the creation of more protu-
berances. Considering these experimental observations,
Lee and Merte (1996), propose that the interfacial in-



stability includes a combination of thermal and hydro-
dynamic mechanisms. They present a planar instability
model including heat fransfer thaf reasonably predicts
the occurrernce of the explosive bubble growth as well
as the instability wavelenigth. Other studies have been
conducted on plane surfaces (Prosperetti and Plesset,
1984, Higuera, 1987), however, the exact nature of the
instability mechanism is still an unsettled issue.

The complete phase change problem is highly de-
pendent on the simultaneous coupling of many effects
none of which can typically be ignored. The model-
ing of mass, momentum and energy fransporf mrust
include surface temsion, latent heaf, inferphase mass
transfer, discontiruous material properties and compli-
cated liquid-vapor inferface dynamics. Only recently
have mumerical methods begun fo offer the promiise of
helping to provide accurafe predictions of the defailed
small scale physical processes involved in phase change.
Welch (1995) has made significant progress in using a
two-dimensional, moving mesh, finife volunie method
to solve the mass, momentum and energy eguations
for liguid-vapor Hows with phase change. However, his
method is restricted to Hows with only small distortion
of the liquid-vapor inferface. Son (1996) and Son and
Dhir (1995) use a moving mesh finite difference method
for two-dimensional simulations of phase change. Using
grid generation techniques they study the heat fransfer
and interface behavior in film boiling up to the point of
bubble departure.

In a previous paper, Juric and Tryggvason (1995)
developed a general fwo-dimensional front-tracking
method for liguid-vapor Hows with phase change that
can handle large interface deformations and fopology
change. This method was used for studying a variefy of
phase change problems (Juric and Tryggvason, 1996a,
Juric, 1996) including film boiling from a Hat heated
surface with vapor bubble pinch off (Juric and Tryggva-
sor, 1996b, 1996¢c) We use this method here fo present
calculations of explosive boiling of a superheated lig-
uid in microgravify. The front-tracking fechnique en-
ables the simmlation of problems with complex motion
of the liquid-vapor interface including large interface
deformations and topology change. The effects of in-
terphase mass fransfer, latent heat, surface tension and
unequal maferial properties between liquid and vapor
phases are also included. The method is based on a fi-
nite difference approximation of the Navier-Stokes and
energy equations and an explicit tracking of the phase
boundary. The method is an extension of fechmitues
developed for multifluid Hows without phase change in
both two- and three-dimensions by Unverdi and Tryg-
gvason (1992a, 1992b). The mmuitifluid code has been

used o investigate the collision of drops (Nobari et al,
1996, Nobari and Tryggvason, 1996), thermal migra-
tion of drops (Nas and Tryggvason, 1993), the collapse
of cavitation bubbles (Yu et al, 1995) and the motion
of hundreds of interacting bubbles (Esmaeeli and Tryg-
gvasor, 1996).

The niext section of this paper is devoted to the math-
ematical formulation of the liquid-vapor phase change
problem and a brief description of the front-tracking
method presented in Juric and Tryggvason (1995) and
Juric (1996). In the third section we present resulis
from a validation fest of the method. We also focus
on two-dimensional sirmulations of rapid evaporation in
superheated liquids and study the effect of increasing
levels of initial superheat. In the fourth section we dis-
cuss somie conclusions from this study.

FORMULATION

The liquid-vapor phase change problem involves cormn-
bined fuid How and heaf transfer and thus requires
the solution of the Navier-Stokes and energy equations.
Note that in two-phase How, addifional ferms appear
in these equations due fo the phase change and the fact
that the interface is no longer a maferial inferface. The
fluid velocity at the inferface and the interface velocity
are unegual.

A single set of governing equations is written for both
phases. This local, single feld formmulation incorporates
the effect of the interface on the governing equations as
sources which act only at the inferface. Mass fransfer
across the inferface and momentum as well as energy
sources af the interface are faken info account. Kataoka
(1985) shows that this local, single field representation
is equivalent fo the local, separate phase formmlations
of Ishii (1975) and Delhaye (1974). They formmulate the
phase change problem in terms of variables for each
phase with appropriate jump conditions at the moving
phase inferface. Those local, separate phase formula-
tions form a fundamental basis for all averaged models
of two-phase mixtures.

Here the single feld, local formmulation is used. The
material properties are considered fo be constant but
not generally equal for each phase. They can be written
for the entire domain and advected using an indicator
function, I(x,t). This function is determined from the
known position of the inferface and has the value 1 in
the vapor phase and 0 in the liquid phase. The values of
the material property fields af every location are then
given by:

b(x,t) = b + (by — b) I(x,1) , (1)

where the subscripts v and [ refer here o the vapor and



liquid phases respectively and b stands for density, p,
specific volume, 4 = 1/p, viscosity, 1, specific heat, ¢ or
thermal conductivity, k. To simplify the presentation of
the formmulation that follows we will assume that ¢ =
¢y. The formmulation for ¢; # ¢, is only slightly more
involved and is given in Juric (1996).

The momenturm equation is written for the entire How
field and the forces due to surface tension are inserted
at the interface as body forces which act only at the
interface. In conservative form this equation is

¥ V- (w0) = ~VP pg+ V- (Var + V)

+-[A-a—g1i)6(x—>:y)dA. (2)

Here u is the fuid velocity field, w = pu is the mass
Hux and P is the pressure. The last term on the right
side accounts for surface fension acting on the interface
A. 6 (x — xy) is a three-dimensional delta function that
is mon-zero only at the interface where x = xy. 7y is
the surface tension coefficient and & is twice the mean
curvature. Thermocapillary forces acting in a direction,
t, tangential fo the interface could arise from variation
of the surface tension with temperature, but this effect
is meglected here.

The conservation of mass equation is also written for
the entire How field:

op
5t +V-w=0. (3)
The time derivative of the densify can be rewritien in a
more useful form since the demnsity af each point in the
domain, Eq. (1), depends only on the indicator function
which is determined by the kmown interface location.
Using the indicator function, I(x,t), fo represent the
interface, the kinematic equation for a surface moving
with velocity, V, is

o1 .

—— e . I . 4

5 v.-v @
Since T is constant except in a local region near the
interface, the gradient of 7 can be writfen as a local
surface integral:

VI:/An&(x—xy)d.A. (5)

Using Egs. (4), (5) and Eq. (1) for the density, the
conservation of mass, Eq. (3), can be rewritfen as:

V-w=/A(pu—m>v'na(x—x-f)dA ©)

The thermal energy equation is (Bird, 1960)

4 7P\ Dp
5; (PCD)+V-(wel) = V-KVT - pT ('57")” 5 O

where T is the femperature and viscous dissipation has
been neglected. Using Eqgs. (1) and (4) the material
derivative, D9/ Dt, can be written as (Aris, 1962):

Dy
Dt

In addition, the Clausius-Clapeyron relation along the
pressure-temperature saturation curve gives:

BN,
T, dT' ) oy (00 —01) Ty

where Ty = T'(xj(t)) is the interface femperature and L
is the latent heat measured at the reference equilibriom
vaporization femperature, T,.

Using Egs. (8), (9) and (5), the thermal energy equa-
tion, Eg. (7), can be rewritten as:

=0y —~0)(u—~V)-VI. 8

g—t(ch)-{-V-(wcT):V-KVT

+/ L(pV-w)nd(x—xs)dA. (10)
A

The last ferm on the right accounts for liberation or
absorption of latent heat at the inferface.

It is important o recognize that the single feld for-
mmulation (Egs. (2), (6) and (10)) naturally incorpo-
rafes the correct mass, momentun and energy balances
across the interface sinice infegration of these equations
across the inferface directly yields the jump conditions
derived in the local instant formmulation for two-phase
systems given by Delhaye (1974) and Ishii (1975). We
assume that the interface is thin and massless and that
the bulk Huids are incompressible. In the energy equa-
tion, viscous dissipation and kinefic energy contribu-
tions from the product of the Huid velocity af the in-
terface and the interface velocity are neglected. Contri-
butions to the source ferm in the energy equation from
interface stretching are usually small compared with the
latent heat and are neglected.

To complete the formulation a condition on the tem-
perature af the phase change inferface must be spec-
ified. Im recent studies on inferface instability during
phase change, Huang and Joseph (1992, 1993) point
out that the correct condition for the temperature at a
phase change boundary is not known and is still an un-
resolved physical issue. They note that thermodynamic
equilibrium (the Tlausius-Clapeyron relation, Eq. (9))



excludes thermal equilibrium (continuity of tempera-
ture at the interface, [T'] = 0). Typically it is assumed
that the vapor and liquid temperatures at the inter-
face are equal and the value of this interface tempera-
ture determined by the Clausius-Clapeyron relation for
the saturation value appropriate to the pressure in the
vapor. But since the pressures om either side of the
inferface are gemerally not equal the liquid tempera-
ture at the inferface is then not given by the Clausius-
Clapeyron relation. Thus the liquid at the interface is
niot in thermodynamic equilibriam.

For the mumerical calculations in this work, thermal
equilibrium at the interface, [T] = 0 is assumed, but
not thermodynamic equilibrium. The value of the infer-
face temperature, Ty, is found using a slight variation
of the interface temperature condition derived by Alex-
iades (1993) fromr a careful consideration of the equilib-
rium Clausius-Clapeyron relation for a curved interface:

T, Tv(l 1)
Ty—T,- L2r+ 22—~ —) (P, -P
A A 7 7 Pu( )

+ET=ME (1)

where P, and P, are the ambient pressure and the
pressure at the inferface in the vapor respectively. The
last term on the left side of this equation is infended
to model the thermodynamic nonequilibrium nature of
the phase change process through a molecular kinetic
parameter, . It represents a slight deviation from
the equilibrium Clausius-Clapeyron relation. (This
nonequilibrium term is nof included in Alexiades and
Solomon (1993).) Here the molecular kinetic effects
are assumed to be linearly proportional to the interface
temperature.

The set of eguations (1), (2), (6), (10) along with
the interface temperature condition, Eq.(11) are solved
using the finite differenice/front fracking method de-
scribed in Juric and Tryggvason (1995) and Juric
(1996). Briefly, these equations are solved iteratively
for the correct inferface velocify, V, that will satisfy
the inferface temperature condition, Eq.(11). For the
spatial discretization, we use the MAC method of Har-
low and Welch (1965) with a staggered mesh. Chorin’s
(1968) projection algorithm with a modification fo ac-
count for phase change is used for the fime infegra-
tion. The interface is explicitly represented by sepa-
rafe, non-stationary computational points conmected to
form a one-dimensional front which lies within the two-
dimensional stationary mesh. These points are used fo
calculate interface normals, curvature and in the con-
struction of the indicafor function.

RESULTS

Comparison with an Exact Solution

We tested the mumerical method by comparing nu-
mrerical results with the exact solution of a simple ome-
dimensional problem. The one-dimensional problem
consists of a heat Hux, g,, applied to the bottom of
a rigid wall at y = 0. The domain confains a liquid
0 X y X 0.5 below its vapor 0.5 ¥ y ¥ 1. The top of
the domain at y = 1 remains open to allow for the va-
por to exit due to Huid expansion at the interface. The
demnsity ratio is set o p;/py, = 2. All ofther material
properties are equal. To make the problem dimension-
less we scale lengths by a reference length, [, velocities
by a reference velocity, U,, the heat fux by p;L and the
pressure (measured from ambient, Py, = 0) by nU2.
For this calculation g,, = 0.05 and there is no gravity.

For slow inferface motion the heat Hux in the lig-
uid remains approximately constant and the interface
moves at a steady velocity. Then exact sfeady-state so-
lutions for the interface velocity, vertical Huid velocity
and pressure are:

V=-gy, wm=0, uu=( —E)V,

Py
P=(ﬂ-1)v2.
Py

After a short inifial transient, the calculated inter-
face velocity smoothly asymptotes to the correct steady
state value of the exact solution, V = —0.05. (Negative
since the interface moves downward.)

Results for the vertical fluid velocity, Fig. (1), and
pressure, Fig. (2), are shown at ¢t = 1.4 for three grid
resolutions, 10 X 10, 20 X 20 and 40 x 40. Even at
crude resolutions the mumerical results in the bulk lig-
uid and vapor are in excellent agreement with the ex-
act solution. However the results at the interface are of
greater inferest. The exact solufion is perfectly discomn-
timuous while the mumerical inferface has a finite thick-
niess which decreases as the resolution increases. This
behavior nicely demonstrates the convergence with in-
creasing grid resolution of the front tracking approach
to modeling discontinuities across an interface. The
front tracking method inherently distributes the effects
of the interface smoothly fo mesh points in a localized
region near the interface. Thus as the resolution in-
creases these effects become sharper and more local-
ized mear the interface. Higher demsify ratios, up fo
71/py = 1000 were also fested and the results were
equally as good.
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Figure 1: Comparison of exact and mumerical Auid ve-
locity for one-dimensional boiling. The mumerical re-
sults in the bulk liquid and vapor are in excellent agree-
ment with the exact solution. The exact solution is per-
fectly discontinuous at the interface while the mumer-
ical interface has a finife thickness which decreases as
the resolution increases. This behavior micely demon-
strafes the convergence with increasing grid resolution
of the front tracking approach to modeling discontimu-
ities across an interface.

Vapor Explosion

Here we present the results of two-dimensional simm-
lations of evaporation from a superheated liquid un-
der microgravity (g = 0) conditions. The gov-
erning equations and boundary conditions can be
made dimensionless by scaling length by a suitable
length scale, !, time by pcii?/K; and velocity by,
Ki/mal. The resulting nondimensional parameters
are the Prandtl mumber, Pr = y¢/K;, the Jakob
number, Ja = piog (Too — Ty) [PvL, a “Weber” num-
ber, We = K}?/piciyl, a capillary parameter, 0 =
aTyy/pyL?l and a dimensionless monequilibrium pa-
rameter, 4 = K /p,Lypl. In addition o these we mmst
specify the 4 rafios of the material properties between
the liquid and the vapor.

In the simmulations shown in figare (3) we follow the
evolution of an initially nearly circular interface im a
box of dimensions 1 X 1. The domain is periodic in the
horizontal direction and the bottom wall is rigid. To al-
low for expansion due o evaporation we let the ambient
Huid exit at the ftop boundary. We specify a pressure
condition at the top boundary of P = 0. The tempera-
ture Held is initially set to a uniform initial superheat,
Ja = 0, in the vapor and Ja = 1,2,3 in the liquid for
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Figure 2: Comparison of exact and mumerical pressure
for one-dimensional boiling. Again the agreement is
excellent at the highest resolution.

Figs. (3)a, b and c respectively. The grid resolution
is 200 x 200 for Fig. (3)a and b while we have used a
higher resolution of 300 x 300 for Fig. (3)c in order to
resolve the details of the vapor bubble microstructure.
The following nondimensional parameters were used:

ﬂ:]_o, ﬂ=40, &=20, ﬂ=1,
Py Hy Kv Cy

Pr=1, We=20, ¢=0.001, ¥ =0.002

Depending on the particular Auid and conditions
these values are realistic. For comparison, the prop-
erties of saturated fluids are given by Maddox (1983).
For cryogenic Huids such as hydrogen and oxygen, the
values of the liquid to vapor densify ratios are roughly
54 and 253 respectively at a pressure of 1 atm. While
at about 9 atm these ratios are approximately 4 and
28 for hydrogen and oxygen respectively. These values
are typical of cryogenic Huids and refrigerants while for
water the ratio is roughly an order of magnitude higher,
1600 and 147 at 1 atm and 12 atm respectively.

At 1 atm the viscosity ratio of liquid to vapor for
these substances is in the range of 20 to 30, the thermal
conductivity ratio in the range 7 to 30 and the specific
heat ratio in the range 0.8 to 2. The Prandtl number,
Pr, ranges from about 1 o 2 and for a Weber mumber of
We = 20 the length scale for the calculations is roughly
10~%m. At Ja = 1 and p;/p, = 10, the dimensional
superheat is about 2, 6 and 18 Kelvin for hydrogen,
oxygen and water respectively.

The initial interface at ¢ = 0 is shown in the cen-
ter of each frame of Fig. (3). Im order fo trigger



unstable growth, this inifial inferface is specified as
a slightly perturbed circle with eight symmetric lobes.
Each frame also shows the interface at a later time: ¢t =
0.016,0.004,0.00032 respectively for Figs. (3)a, b and c.
As the superheat is increased the interface grows more
rapidly and with more convolutions while the wave-
length of the surface instability decreases. As we would
expect the most rapid and unstable growth occurs in
Fig. (3)c, at the largest of the three superheats, Ja = 3.
There we see a similar fine scale wrinkling of the bubble
surface as observed in the microgravity experiments of
Ervin et al (1992) and the bubble column experiments
of Shepherd and Sturfevant (1982).

Figs. (4) and (5) show the growth in interface length
and vapor volume fraction with fime respectively for
the three superheats in Fig. (3). The vapor volume
growth rate for Ja = 3 is about an order of magnitude
greater than that of Ja = 1. The interface length for
the smoothest bubble at Ja = 1 grows nearly according
to the v/t growth expected of a circular bubble. Tonsis-
tent with this, the vapor volume (area in 2d) fraction
grows linearly with time. However, for higher super-
heats both the interface length and the vapor volume
fraction grow linearly with time indicating that during
unstable growth the average radius of the bubble grows
linearly. This resulf is inn agreement with the measure-
ments of Shepherd and Sturtevant (1982), Ervin et al
(1992) and Lee and Merte (1996). For unstable bubble
growth they measured a nearly linear increase in the ef-
fective bubble radius with time. This result also lends
support to the theory that convolutions or wrinkles of
the surface increase ifs area and enhance the rate of
heat transfer and evaporation thus leading to explosive
growth.

In figure (6) temperature and velocity Helds are plot-
ted for the Ja = 2 calculation of Fig. (3). The shades of
gray indicate the temperature with black corresponding
to a mondimensional temperatuare of -0.5 and white 2.0.
The thicker black linie is the liquid/vapor interface. The
velocity vectors indicate that there is a general How of
liquid outward, away from the expanding bubble. The
How in the vapor bubble is more complex due o the in-
How of vapor from the interface. The velocity vectors in
the core of the bubble show a general upward motion
of the entire bubble. This upward motion is consis-
tent with the constraints of the rigid bottom wall and
the outward How of ambient liquid at the fop bound-
ary. Note the discontinuify of the Huid velocity at the
liquid-vapor interface due to the transfer of mass across
the interface.

We observe that the process of evaporation from a su-
perheated liquid is analogous fo the well studied prob-
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Figure 3: The growth of inferface instabilities on a bub-
ble growing in a superheated liquid in microgravify. As
the superheat is increased the inferface growth is more
rapid and more unstable. The initial inferface is shown
as the nearly circular shape in the center of the figure.
Also shown the are the inferfaces af times ¢ = 0.016
,0.004 and 0.00032 for Ja = 1, 2 and 3 respectively.
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Figure 4: The interface length vs. time for the three
superheats shown in Fig. (3).

lem of unstable solidification from a supercooled melf
which results in the growth of dendritic structures in
the solid. (See Juric, 19962 for a brief review of this
literature.) In unstable solidification heat is conducted
away from the solid-liquid interface through the liquid.
Any local protrusion of the inferface that extends info
the liquid will be enhanced since the magnitude of the
temperature gradient at the protrusion is greater than
that at adjacent portions of the interface. The process
is inherently unstable and the protrusion will grow until
constrained by surface fension effects. In solidification,
the onset of growth of these protrusions is described
by the Mullins-Sekerka instability mechanism (Mullins
and Sekerka, 1964). Eventually this instability results
int the formation of dendrites which are observed o grow
in length at a constant speed.

This analogy suggests that the Mullins-Sekerka mech-
anism is responsible for af least part of the observed
small scale interfacial instabilify in vapor explosions.
This type of instability would be present regardless of
the density ratio and would depend primarily on the
liquid superheat and surface fension. Certainly, other
instability mechanisms are also present in vapor explo-
sions due to the hydrodynarmic effect of vapor expansion
upon evaporation. Inferestingly both radially growing
dendritic structures and unstably growing vapor bub-
bles are observed to increase their effective radii linearly
with time.

CONCLUSIONS
We have shown results from two-dimensional direct
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Figure 5: The vapor volume fraction vs. time for the
three superheats shown in Fig. (3).

numerical simmulations of rapid evaporation in a super-
heated liquid under microgravity conditions. The sinmu-
lations of rapid evaporation in sufficiently superheated
liquids demonstrate the formation of highly convoluted
unstable interfaces. These convolutions or wrinkles of
the surface increase ifs area and emhance the rate of
heat fransfer and evaporation thus leading to explo-
sive growth. Thus it is clear that heatf ransfer plays a
very important role in the instability mechanism lead-
ing to vapor explosions and future work will investigate
this effect im greater deail. We propose that the on-
set of instability in rapid bubble growth can in part be
explained by the well known Mullins-Sekerka interface
instability mechanism in unstable solidification.

The simmulations in this paper were mofivated by
the observations of inferface instabilify in micrograv-
ity boiling experiments (Ervin et al, 1992). Although
the conditions are not exactly the same, our prelimi-
nary simmulations show the qualitatively correct features
of interface instability in microgravity boiling. Further
work is underway fo develop a guantifative fully three-
dimensional comparison with the microgravity boiling
experimernts.
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Figure 6: The temperature and velocity fields for the Ja = 2 calculation of Fig. (3). The shades of gray indicate
the temperature with black corresponding fo a nondimensional femperature of -0.5 and white 2.0. The thicker black
line is the liquid/vapor interface. The velocity vectors indicate that there is a general How of liquid outward, away
from the expanding bubble. The velocity vectors in the core of the bubble show a general upward motion of the
entire bubble. This upward motion is consistent with the constraints of the rigid bottom wall and the outward How
of ambient liquid at the top boundary. Note the discontimuify of the Huid velocity af the liquid-vapor interface due
to the transfer of mass across the interface.



