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ABSTRACT:

We present new developments in nonadiabatic geometric phases along
two lines for systems undergeing changes of quantum state in intense
fields. We first present a geometric representation of the non-
Hermitian Schrodinger equation and introduce the notién of a complex
multiphoton Aharonov-Anandan (AA) phase associated with dissipati?e
twvo-level systems driven by periodic fields. The concept is further
extended to include field modulation effects. We then develop the AA
phase for spin-j systems in periodic fields and find conditions for
cyclic evolution for general multi-level systems. In both cases,
generalizations of the Floguet formalism lead to general analytical

expressions for geometric phases that can be tested by experiments.
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I. INTRODUCTION

The study of the geometric factor accompanied by an adiabatic or
cyclic change in classical or quantum systems has received
considerable attention in recent times{[1-6). The adiabatic quantum
phase discovered by Berry [1] is associated wifh the adiabatic
evolution of a Hamiltonian H(R) along a closed curve T in the
parameter (R) space. When the quantum system remains in an eigenstate
of ﬁ(R) during this cyclic evolution, a geometric phase, the Berry
phase, is resultant. This phase depends only on I'. More recently,
Aharonov and Anandan [3] have introduced a new geometric phase, the AA
phase, which is the nonadiabatic generalization of Berry's phase and
is associated with the c¢yeclic evolution of a quantum system, i.e., a
system with state described by |[¢(t)> which returns to itself, apart
from a phase factor ¢: [y(T)> = exp(is¢)|y(0)>. Both Berry and AA
phases have been detected experimentally [7].

The AA phase is of fundamental interest for systems being driven
by strong fields and so are undergoing changes of guantum state. The
cyclic evolution associated with the AA phise may be inferest for
éecurring system behavior as well as general phenomenology. Here we
present new concepts and methods in AA geometric phases in two direc-
tions. We present first in section II a generalized non-Hermitian
density matrix formalism for the treatment of dissipative quantum
systems in periodic fields in which we introduce the notion of a
complex AA geometric phase. This concept is further extended to em-
brace multiphoton transitions, the complex multjphotonAAA phase. 1In
section III, we generalize the theory to include the effects of field

modulation. The second direction is a Flogquet formalism for the AA



phase in any spin-j system subject to intense periodic fields which is

presented in section IV.
II. COMPLEX GEOMETRIC PHASE IN DISSIPATIVE TWO-LEVEL SYSTEMS

A. Generalized Density Matrix Formulation for Complex
Geometric Phase

The AA phase is assocliated with the cyclic evolution of the
guantum system in which the initial state recurs, apart from a phase
factor: The associated density matrix therefore is cyclic:S'(T)=3'(0)*
as is the Eloch vector of a two-level system: g(T) = §(o), S;(t)
= Tr(GiB(t)}, 31 a Pauli matrix. Consider a two-level system with
Hamiltonian operator which includes T,-type damping.

Ay = iy, + ¥(t) - i8 (1)
ﬁo represents the unperturbed two-level Hamiltonian with diagonal
energies E, and Eg, ¥(t) the electric dipole coupling to the time~
dependent field and G is the diagonal damping gy &% 9 representing,
for example, the spontaneous decay of these levels. Due to the
dissipation, Tr{p'(t)) and <y(t)ly(t)> are decreasing functions. This
ieads to difficulties in meeting the conditions of cyclic evolution
and the geometric representation of the AA phase. To overccme these
difficulties, we consider the following generalized density matrix:

p(t) = ly(t)><x(t)l, (2)
defined in the biorthonormal Hilbert space [8] with [x(t)> the

solution of the Schrodinger equation with the adjoint Hamiltonian

ﬁ+(t) { in atomic units }

d ~
i3 [x(t)> = HY(t) |x(t)>. (3)



Al

The generalized Liouville and Bloch equations based upon (2) have the
respective symplectic forms which are identical to their non-

dissipative cases

A

dD(t) _ A A
i T = [H(t),p(t)] (4a)
d3(t) o= -
It = 2 x S(t). (4b)

A >
Therefore, the trace of p(t), the norm of S(t) and <x(t)ly(t)> remain

constant throughout.

Under a cyclic quantum evolution, % (t+T) = 2ty gkt+T) = gktf
and
[W(t+T)> = exp(i®) [v{t)> , Ix(t+T)> = exp(ie™) Ix(t)>. (5)
where ¢ is the now complex total phase and is the sum of the dynamical

phase (ap) and AA geometric phase (Bg): é=ap + Bg» Where

T T
ap = - f <x| A ly> dt , Bg = [ <x'| 13/3t {p'> dt. (6)
0 0

We have shown the following theorem to be true concerning the
geometric representation of this complex AA phase [91]:

Theorem: The complex geometric phase Bg is equal to one-half the
complex solid angle 2(C) enclosed by the complex trajectory C of the
vector g(t).

In the case the dissipative terms vanish, [y(t)> = [y(t)> and 9, “n

and By are real quantities.

B. Complex Multiphoton Geometric Phases
Consider a dissipative two-level gquantum system undergoing
multiphoton Rabi floppings in an intense periodic field. The

perturbation is given by



V(t) = =+ ¥ 5 cos(ut+y), - (7)
where 3 is the electric dipole moment of the system, rf o* @ & ¢ are the
electric field amplitude, frequency and phase, respectively. In terms
of the unperturbed {( |[a>, |[B8> } basis, the total Hamiltonian is

ooy = | T8 Veal®) (8)

qu(t) E,-igy
with VaB{t) = <a|0(t)ls>. The non-Hermitian time-dependent Schrodinger
equation with perjodic Hamiltonian (8) may be transformed into an

equivalent infinite-dimensional non-Hermitian Floguet matrix ( ﬁF }

eigenvalue problem [8,10]

A —

Ap IATn> = lrn IATn>, (9)
where ATn and IAYn> are the complex quasi-energy eigenvalues and
eigenvectors, with y = o« or 8 and n = -= to = ,

For nearly resonant multiphoton processes, EB - Ey, = wgy =

(2n+1)w, KF can be reduced to a two-dimensional effective Floquet

Hamiltonian (ﬁeff) by extension of appropriate nearly-degenerate

perturbation theory [11].

A

_ eB—(2n+1)w+56(C) Ugy ]
Aeff = l

Sas Ea+5a(c) | (10)
here Géc)and séc)are the complex AC Stark shifts for states o and (B).
uyg and ug, represent the effective (2n+1) photon coupling.

The bilorthogonal eigenvalues and eigenvectors are found following
the method described by Faisal [12]. ﬁeff is diagonal in the basis
IA,> and its adjoint the basis |e,>

A

L _ +
Ageelde> = A 1> , ATgrs ley> = e4le,>. (11)



The eigenvalues A, are found to be
Ay = kK £ q - (12)
where «x = 1/2 Tr(ﬁeff), Tr(ﬁeff) indicating the trace of the matrix,
and g = 1/2/(A2+4uu8u6a) with A the detuning parameter, A =Tr(ﬁeff32).
Note biorthonormality and closure are satisfied
<e lAy> =1, <eglay> =0 , Fey><a ]l + le_><a_| =1 . (13)

These properties are useful in computing the time evolution operator

O(t.tg) = expl=iA ¢e(t-ty) 1. (14)
Therefore, given an initial state of the system at tgs, the
wavefunction at time t is approximated, using the eigenvalue
properties and biorthonormal closure from above. Note that elements of
the complex Bloch vector 8(t)=(u,v,w) may be computed by
substitution of the wavefunction into the component expressions .

The AA phase may now be calculated using the wavefunction method
as previously discussed. After an intervél of time T = un/q , the
wavefunction completes a cycle

l4(T)> = expf(n+KT)]l¥(0)>. (15)

The total phase ¢ and dynamical phase ap are, respectively

$ =—-1 ~ «T (16.2)

ap = —(kT+nl<x(0) [Ag><e 19 (0)>-<x(0)ir_><e_ly(0)>]}. (16.b)

The general formula for the complex AA phase for multiphoton Rabi

floppings and period T = n/q is

BéC)= —m{1-[<x(0) | A ><e 19 (0)>=-<x(0) | A_><e_ly(0)>1). (17)
The corresponding formula for non-dissipative systems is -

Bg ==m{1-[1<y(0)1r,>i2-1<y(0)|r_>1%]1;. (18)



From inspection of the effective Hamiltonian ﬁeff it is evident that
the AA phase is calculable in terms of important = experimental
parameters such as initial state, detuning, field strength and phase
and so on. This method is thus of great practical importance as well
as theoretical importance; the remarkable simplicity of (17) and (18)

underscores their generality.

C. Examples
The purpose of this section 1s to demonstrate graphically the

behavior of the Aharonov—-Anandan geometric phase as a function of
various parameters which may be of interest for experimental study. In
wvhat follows, it is assumed the difference in energies of the two-
level system, uwgy = Eg = Eg =1 in arbitrary units. The « and
couplings b in these diagrahs are reported in units of uw,.

In figure 1 we show the Aharonov-Anandan geometric phase B8g; as
a function of the coupling parameter b, where b = -1/2 <arﬁ 18> - ?’o.
This is a one photon transition. Three frequencies are shown, a
resonant and detuned (& 0.05 mo) cases. The detuned cases are nearly,
but not quite, symmetrical , on account of the complex Stark shifting
which effects both real and imaginary parts of the geometric phase

In figure 2 we show oscillations in the Aharonov-Anandan phase as

a function of laser phase ¢ for a three-photon transition. The

interference effect 1is sensitive to the initial conditions, requiring
a superposition of both states. An interesting feature is that the

number of oscillations 1is characteristic of the particular order of

photon process.



ITI. THE COMPLEX AA GEOMETRIC PHASE IN MODULATED FIELDS

The method described in the previous sections works well provided
the parameters of the external field such as amplitude, frequency
and phase remain constant. If parameters are modulated, however the
formulation involving a time-independent effective Hamiltonian fails
to be adequate for the construction of the time evolution operator.

The Hamiltonian operator is written in a more general form

Att) = fig - 18 -8+ F 4 (t) cos(u(t)t+s(t)) . (19)
Although this form is similar to that previcusly studied, and while ﬁo
and G have their original meaning , the external field interaction may
involve time-dependent field amplitude, frequency, phase or any
combination thereof. Let X(t) =(w(t),eé(t), ?'o(t)). In the nearly
diabatic basis [13], the matrix form of the Schrodinger equation is
cg(t) cg(t)
c, (t) c,(t)

d
i —

= Agee(R(E))
dt eff

(20)
which is similar to the differential equation equation in the original
{ la>,1B8>) basis but, using the Floquet-nearly degenerate pérturbation
method, involves an operator varying slowly in time.

A very general method for solving (20) is the Magnus
approximation [14] which, as implemented here, is similar to the
previous method involving a time-independent effective Floquet
Hamiltonian, and in fact the eigenvalues and eigenvectors have a

similar form as before. Let be defined as

et 2>

f Agpe(t)dt.

+71
o

/
tO

There is a basis in which M is diagonal.



.
Mide> = Aalde>, <e, |M=<e, e,

The eigenvalues are:

Ay(1) = x(1)2q(), £y = A: ' (21)
vhere
T+to R
k(1) = 1/2 [ “tr{ Agee(t)) dt (22)
t
and © '
T+to R ~
CI(T) = 1/2 J‘ { [tr(Aeff(t)Gz]z + 4uu8(t)uﬂa(t) )1/2 dt.
to (23)

If g(t) is found such that

g(t) =1 ’ (24)
then the condition for cyclic evolution is realized. The total phase
is

¢ = -1 - x{1) (25)
the dynamical phase

ap = — { x(1) + n [<x(0)[r (v)><e ()| (0)> (26)
= <x(0)Ix (t)><e_(t)ly(0)>] }.

Note that these expressions revert to the previous expressions for ¢
and ap if 7X is independent of the time. This is also true of the AA

phase, now generalized to the expression

Bg = -n{ 1 — [<x(0) 2 (t)><e, (1) 19(0)>=<x(0)|A_(1)><e_(t)|9(0)>]}.
(27)
This is a very general expression which should be of use given that
the components of X are varied sufficiently slow. It is possible to
extend the range of validity further by the use of higher—-order Magnus

approximations. The result is sufficient to show that anélytic methods



can be usad to determine the conditions for cyclic evolution and the

AA phase even if the parameters describing the field are modulated.
IV. THE AA GEOMETRIC PHASE OF SPIN-j SYSTEMS IN PERIODIC FIELDS

Another case of signicancé is the multi-level system driven by a
strong field. In general, cyclic evolution is not common for such a
case and so the AA phase is not defined. However, in the instance of a
spin-j7 system, such evolution is possible and this is further
instructive in considering the general conditions for cyclic system
behavior.

Consider a spin-j system subjected to a static magnetic field
along the z-axis and a linearly polarized, time-dependent magnetic
field along the %-axis. This situation is typical of many magnetic
resonance experiments ([(15]. The Hamiltonian for this system is (in
atomic units)

A(t) = - (u/3) [ Jy BY cosut + 3, BY ) (28)
which is expressed in terms of the magnetic field B{t) and the angular
momentum operators 3. Here u is the magnetic dipole moment of the
épin-j system and j 1s the angular momentum . This expression may be
further developed by expanding 3x in terms of the ladder operator,
thus realizing the form

fice) = Wo 32 + 2w ( 3+ + 3_ ) cosut (29)
wy is the level splitting and ZmL represents the coupling between the
dipole moment and the field.

wo = -uBS /3, ] = - uBg /3 (o)
and where lugl >> lujl.

The Hamiltonian is periodic in time: fi(t+2/w) = fi(t), so that it



is advantageous to use Flogquet theory to transform the time-dependent
Schrodinger equation into an equivalent time-independent eigenvalue
problem as previously discussed . Application of the rotating wave
approximation (RWA) truncates this infinite Flogquet matrix to
dimension (2j+1). X (2j+1). The resulting time-independent RWA
Hamiltonian in operator form is
Hpwa = —Jo T+ 4 3, + 2w 3y (31)
where 4 = wy =-w is the detuning or degree of off-resonance and T is
the identity operation. QRWA satisfies
ﬁRWA b e > = €m b e > (32)
The eigenvalues and eigenvectors are determined by a rotation in the

‘Xz plane by an angle B

tang = —Eﬁé——
A .
The Rabi frequency 9 is defined as
R = [ a2 + 40 2 11/2 (33)
cosg = A/2 , sing = 2uj/e .

Using the properties developed ,the eigenspectrum of ﬁRWA is
€m = —Ju + me . (34)

The system evolves as

. J .
| v(t) > = eldut § em >< €q | ¥(0) > e~imat

=-] (35)
where | e, > are expressed in terms of the rotation matrices atdd,
Now the condition for cyclic evolution may be deduced by considering
general quasienergies e in (35). It is evident that the qﬁasienergy

spectrum must spaced 1in integer multiples of some common parameter,

though not necessarily equally spaced, as is the present case. Such a



spectrum of quasienergies guarantees cyclic evolution.

Equation (35) shows that after a period T = 2y/ﬂ a cyclic
evolution is executed by the spin-j7 system in the magnetic field. The
total phase associated with the cyclic evolution is

¢ = j (T - %n) : (36)
and the dynamical phase is given by the expression

ap = JuT - 21!% . mi< ¢(0) | ep >12 (37)

m=-3

The gauge-invarient AA phase of the driven spin-j system is

BG=—2n(j—)%_ml<¢(0)Ism>|2. (38)

m==3
This equation is the main result of this section. It is the extension

to 2j+1 levels of the result found previously for two-level systems

(18). A particularly interesting case to study is that where the
initial state corresponds tom = -j , [¢(0)> = |]j,-3>.
Bg=-2 7 j (1~ cosg) . (39)

These expressions are in agreement with results we have obtained
with Youhong Huang by the method of SU(2) spin-coherent states [16],
which result states Bg 1s eqguivalent to the solid angle enclosed by
the generalized Bloch vector's closed circuit times j (Figure 3 shows
the generalized Bloch sphere of the spin-j system). Note this result
is the gencralization of the previous theorem for the two-level

system.

V. CONCLUSIONS
We have presented new concepts and methods 1in geometric phases

along two lines. First, we have introduced the notion of complex AA



phases in a dissipative two-level systems and have further extended
the concept to include multiphoton processes and the effécts of field
modulation. The second development involved the AA phase‘in the spin-j
system for arbitrary J. Here we found insight into cyclic evolution
of multi-level systems. In both areas, we have fouﬁd the Floquet
formalism to be most useful in formuléting the theory and subsequent
extensions of this formalism provided general expressions for the AA
phase in both the multiphoton dissipative and spin-j cases. We are
presently considering extensions of this work tc more complex dissipa-
tive systems.
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FIGURES

Figure 1

Aharonov-Anandan geometric phase 85 as a function of the coupling b.
(a) Re(Bg) and (b)Im(B8;) for field frequencies w = 0.95 (solid), 1.00
(dashed) and 1.05 (dash-double dot). Laser phase ¢ = 0, damping

constants are: g, = 0.001 and gg = 0.004. Initial state |a>.

Figure 2

Oscillations in Aharonov-Anandan phase. Real (a) and imaginary (b)
components are shown. Coupling b =0.1, w = 0.3333 and damping
constants the same as in figure 1. Two initial states are shown: |a>

(dashed) and (la> + [B>)//2 (solid).

Figure 3

Generalized Bloch sphere model for any spin j . Every point n =
(sinecos¢.sinqsin¢.cose) on the unit radius Bloch sphere represents a
a spin-coherent state. The unit vector 60 (south pole) corresponds to
the fundamental vector |¢o> = |F,-7>. Also shown 1is a sterographic

projection of the vector ntoa point £ on the complex plane.
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