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ABSTRACT:

We present new developments in nonadiabatic geometric phases along

two lines for systems undergoing changes of quantum state in intense

fields. We first present a geometric representation of the non-

Hermitian Schrodinger equation and introduce the notion of a complex

multiphoton Aharonov-Anandan (AA) phase associated with dissipative

two-level systems driven by periodic fields. The concept is further

extended to include field modulation effects. We then develop the AA

phase for spin-j systems in periodic fields and find conditions for

cyclic evolution for general multi-level systems. In both cases,

generalizations of the Floquet formalism lead to general analytical

expressions for geometric phases that can be tested by experiments.
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I. INTRODUCTION

The study of the geometric factor accompanied by an adiabatic or

cyclic change in classical or quantum systems has received

considerable attention in recent times[1-6]. The adiabatic quantum

phase discovered by Berry [1] is associated with the adiabatic

evolution of a Hamiltonian H(R) along a closed curve r in the

parameter (R) space. When the quantum system remains in an eigenstate

of H(R) during this cyclic evolution, a geometric phase, the Berry

phase, is resultant. This phase depends only on r. More recently,

Aharonov and Anandan [3] have introduced a new geometric phase, the AA

phase, which is the nonadiabatic generalization of Berry's phase and

is associated with the cyclic evolution of a quantum system, i.e., a

system with state described by |«J»(t)> which returns to itself, apart

from a phase factor •: |i|i(T)> = exp( i«) I ty( 0)>. Both Berry and AA

phases have been detected experimentally [7],

The AA phase is of fundamental interest for systems being driven

by strong fields and so are undergoing changes of quantum state. The

cyclic evolution associated with the AA phuse may be interest for

recurring system behavior as well as general phenomenology. Here we

present new concepts and methods in AA geometric phases in two direc-

tions. We present first in section II a generalized non-Hermitian

density matrix formalism for the treatment of dissipative quantum

systems in periodic fields in which we introduce the notion of a

complex AA geometric phase. This concept is further extended to em-

brace multiphoton transitions, the complex multiphoton AA phase. In

section III, we generalize the theory to include the effects of field

modulation. The second direction is a Floquet formalism for the AA



phase in any spin-j system subject to intense periodic fields which is

presented in section IV.

II. COMPLEX GEOMETRIC PHASE IN DISSIPATIVE TWO-LEVEL SYSTEMS

A. Generalized Density Matrix Formu,lation for Complex

Geometric Phase

The AA phase is associated with the cyclic evolution of the

quantum system in which the initial state recurs, apart from a phase

factor. The associated density matrix therefore is cyclic:pr(T)=pf(0)

as is the Eloch vector of a two-level system: S(T) = £3(0), S^t)

= Tr{aip(t)}, a^ a Pauli matrix. Consider a two-level system with

Hamiltonian operator which includes T^type damping.

Pit) = Ho + 0(t) - iG (l)

Ho represents the unperturbed two-level Hamiltonian with diagonal

energies Ea and Eg, V(t) the electric dipole coupling to the time-

dependent field and G is the diagonal damping ga & go representing,

for example, the spontaneous decay of these levels. Due to the

dissipation, Tr{p'(t)} and <i|i(t) I <|/(t)> are decreasing functions. This

leads to difficulties in meeting the conditions of cyclic evolution

and the geometric representation of the AA phase. To overcome these

difficulties, we consider the following generalized density matrix:

p(t) = U(t)xX(t)|, (2)

defined in the biorthonormal Hilbert space [8] with lx(t)> the

solution of the Schrodinger equation with the adjoint Hamiltonian

N+{t) { in atomic units }

i ̂  lx(t)> = £+(t) |X(t)>. (3)



The generalized L i o u v i l l e and Bloch e q u a t i o n s b a s e d upon (2 ) have t h e

r e s p e c t i v e symplecti c f o r m s w h i c h a r e i d e n t i c a l t o t h e i r n o n -

d i s s i p a t i v e c a s e s

d|i£> ) ,S( t ) l (4a)

^ ? . tit). ( 4 b )
dt

Therefore, the trace of p(t), the norm of S(t) and <x(t) I ij»(t)> remain

constant throughout.

Under a cyclic quantum evolution, 'pCt+T) ~ £(t), S(t+T) = s(t]

and

U(t+T)> = exp(i*) |iKt)> » Ix(t+T)> = exp(i$*) lx(t)>. (5)

where * is the now complex total phase and is the sum of the dynamical

phase (aD) and AA geometric phase (8 G): *=aD + 8G, where

T T
aD = ~ / <xl ̂  !•> dt , BG = / <x'l ia/at |*'> dt. (6)

0 0

We have shown the following theorem to be true concerning the

geometric representation of th is complex AA phase [9] :

Theorem: The complex geometric phase BG is equal to one-half the

complex solid angle fl(C) enclosed by the complex trajectory C of the

vector S ( t ) .

In the case the dissipative terms vanish, |i|»(t)> = ! x ( t ) > and <5>, ciD

and BG are rea l quant i t ies .

B. Complex Multiphoton Geometric Phases

Consider a d i s s i p a t i v e two-level quanttim system undergoing

multiphoton Rabi f lopp ings in an i n t e n s e p e r i o d i c f i e l d . The

perturbation is given by



V(t) = -H • t o cos(oit+$), (7)

where "y is the electric dipole moment of the system, "e o, to & $ are the

electric field amplitude, frequency and phase, respectively. In terms

of the unperturbed { |a>, |6> } basis, the total Hamiltonian is

(8)

with Vag(t) = <a|V(t)|6>. The non-Hermitian time-dependent Schrodinger

equation with periodic Hamiltonian (8) may be transformed into an

equivalent infinite-dimensional non-Hermitian Floquet matrix { Ap }

eigenvalue problem [8,10]

AF |XTn> = Xyn |Xyn>, (9)

where X n and I X n> are the complex quasi-er.ergy eigenvalues and

eigenvectors, with y *= a or B and n = --> to « .

For nearly resonant multiphoton processes. Eg - E a = uio s

(2n+l)u, Ap can be reduced to a two-dimensional effective Floquet

Hamiltonian (Aeff) by extension of appropriate nearly-degenerate

perturbation theory [11].

f n\

u.A

Aeff
0a (10)

here 6^c'and 6^c'are the complex AC Stark shifts for states a and (8).

u a 0 and Uga represent the effective (2n+l) photon coupling.

The biorthogonal eigenvalues and eigenvectors are found following

the method described by Faisal [12]. Aef£ is diagonal in the basis

|X±> and its adjoint the basis |c±>

Aeff|X±> = X±|X±> , A +
e f f |e±> = E ± | E ± > . (11)



The eigenvalues x± are found to be

A± = K * q (12)

where K = 1/2 Tr(A e f f) , Tr(Ae f f) indicating the trace of the matrix,

and q = l/2/(A2+4uagUga) with A the detuning parameter, A =Tr(A e f fo2).

Note biorthonormality and closure are sa t is f ied

<e±|A±> = 1, <e± I X±> = 0 , fe+xx+l + |e_><X_| =1 . (13)

These propert ies are useful in computing the time evolution operator

U(t , t 0 ) s e x p [ - i A e f f ( t - t 0 ) ] . (14)

T h e r e f o r e , g i v e n an i n i t i a l s t a t e of t h e sys t em a t t 0 , t h e

wavefunct ion a t time t i s approx imated , u s i n g t he e igenva lue

properties and biorthonormal closure from above. Note that elements of

t h e complex Bloch v e c t o r § ( t ) = ( u , v , w ) may be computed by

subst i tut ion of the wavefunction into the component expressions .

The AA phase may now be calculated using the wavefunction method

as previously discussed. After an interval of time T = n/q , the

wavefunction completes a cycle

U(T)> = exp£(n+KT)]|iKO)>. (15)

The t o t a l phase * and dynamical phase aD are, respectively

$ =-n - KT (16.a)

aD = -(KT+TT[<X(O) |X + ><E + | * (O)>-<X(O) i X_><e_| *(0)>] ) . (16.b)

The general formula for the complex AA phase for multiphoton Rabi

floppings and period T = tr/q is

The corresponding formula for non-dissipative systems is •

B G =-TT{1-[ |<I|»(0) |X + >i
2-|<«j;(0) | X_>|2]} . (18)



From inspection of the effective Hamiltonian A e f f it is evident that

the AA phase is calculable in terms of important experimental

parameters such as initial state, detuning, field strength and phase

and so on. This method is thus of great practical importance as well

as theoretical importance; the remarkable simplicity of (17) and (18)

underscores their generality.

C. Examples

The purpose of this section is to demonstrate graphically the

behavior of the Aharonov-Anandan geometric phase as a function of

various parameters which may be of interest for experimental study. In

what follows, it is assumed the difference in energies of the two-

level system, tno = Eg - E a = 1 in arbitrary units. The w and

couplings b in these diagrams are reported in units of uo.

In figure 1 we show the Aharonov-Anandan geometric phase BG as

a function of the coupling parameter b, where b = -1/2 <a \VL | B> • "t Q,

This is a one photon transition. Three frequencies are shown, a

resonant and detuned (± 0.05 uo) cases. The detuned cases are nearly,

but not quite, symmetrical , on account of the complex Stark shifting

which effects both real and imaginary parts of the geometric phase .

In figure 2 we show oscillations in the Aharonov-Anandan phase as

a function of laser phase $ for a three-photon transition. The

interference effect is sensitive to the initial conditions, requiring

a superposition of both states. An interesting feature is that the

number of oscillations is characteristic of the particular order of

photon process.



III. THE COMPLEX AA GEOMETRIC PHASE IN MODULATED FIELDS

The method described in the previous sections works well provided

the parameters of the external field such as amplitude, frequency

and phase remain constant. If parameters are modulated, however the

formulation involving a time-independent effective Hamiltonian fails

to be adequate for the construction of the time evolution operator.

The Hamiltonian operator is written in a more general form

Hit) = Ho - iG - u • t o (t) cos(u(t)t+*(t)) . (19)

Although this form is similar to that previously studied, and while HQ

and G have their original meaning , the external field interaction may

involve time-dependent field amplitude, frequency, phase or any

combination thereof. Let £(t) =(<u(t) ,$(t), t^tt)). In the nearly

diabatic basis [13], the matrix form of the Schrodinger equation is

i
cB(t)

Aeff(*(t))
CB(t)

dt
(20)

which is similar to the differential equation equation in the original

{ |a>,|B>} basis but, using the Floquet-nearly degenerate perturbation

method, involves an operator varying slowly in time.

A very general method for solving (20) is the Magnus

approximation [14] which, as implemented here, is similar to the

previous method involving a time-independent effective Floquet

Hamiltonian, and in fact the eigenvalues and eigenvectors have a

similar form as before. Let M be defined as

M =°J Aeff(t)dt.

There is a basis in which M is diagonal.



A
M | X ± > = X ± | X ± > , < e ± | M = < e ± | e ±

The eigenvalues are:

X±(x) = K(O±q(T), e± - X* (21)

'O.

where
x + t,

K ( T ) = 1/2 / tr{ A e f f(t)} dt (22)

and

q(x) = 1/2 TJ °{ [tr(Aeff(t)az]
2 + 4uag(t)u0a(t) )

1 / 2 dt.

to (23)

If q(i) is found such that

q(t) » Ti (24)

then the condition for cyclic evolution is realized. The total phase

is

* = -ir - K ( T ) (25)

the dynamical phase
<xD = - ( K(T) + v [<x(o) |X +(T)><C + (T) IMo)>

- <X(O) |X (T)><€_(T)U(0)>] }.

Note that these expressions revert to the previous expressions for $

and aD if ~*"X is independent of the time. This is also true of the AA

phase, now generalized to the expression

+ (T)U(0)>-<x(0)|X_(T)XE_(T)U(O)>]).

(27)

This is a very general expression which should be of use given that

the components of & are varied sufficiently slow. It is possible to

extend the range of validity further by the use of higher-order Magnus

approximations. The result is sufficient to show that analytic methods



can be used to determine the conditions for cyclic evolution and the

AA phase even if the parameters describing the field are modulated.

IV. THE AA GEOMETRIC PHASE OF SPIN-J SYSTEMS IN PERIODIC FIELDS

Another case of signicance is the multi-level system driven by a

strong field. In general, cyclic evolution is not common for such a

case and so the AA phase is not defined. However, in the instance of a

spin-j' system, such evolution is possible and this is further

instructive in considering the general conditions for cyclic system

behavior.

Consider a spin-j system subjected to a static magnetic field

along the z-axis and a linearly polarized, time-dependent magnetic

field along the x-axis. This situation is typical of many magnetic

resonance experiments [15], The Hamiltonian for this system is (in

atomic units)

H(t) = - (w/j) [ 3 X B° cosut + 3 2 B° ] (28)

which is expressed in terms of the magnetic field 6(t) and the angular

momentum operators 3. Here u is the magnetic dipole moment of the

spin-./ system and j is the angular momentum . This expression may be

further developed by expanding 3 X
 i n terms of the ladder operator,

thus realizing the form

H(t) = 03o 3Z + 2<i»j_ ( 3+ + 3- ) cosiot (29)

oi0 is the level splitting and 2ui represents the coupling between the

dipole moment and the field.

wo = -uB° /j , uj_ = - UB° /j (30)

and where lwol >> I ujj .

The Hamiltonian is periodic in time: H(t+2/w) = H(t), so that it



is advantageous to use Floquet theory to transform the time-dependent

Schrodinger equation into an equivalent time-independent eigenvalue

problem as previously discussed . Application of the rotating wave

approximation (RWA) t runca tes t h i s i n f i n i t e Floquet matrix to

dimension (2j+i) x (2j+l) . The result ing time-independent RWA

Hamiltonian in operator form is

"RWA = -3w I .+ A Sz + 2 wj_ j x (31)

where A = UJO -ui is the detuning or degree of off-resonance and I is

the identity operation. H R W A satisfies

fiRWA ' Em > = Em I em >• <32)

The eigenvalues and eigenvectors are determined by a rotation in the

xz plane by an angle 0

2wi
tanB = —

A

The Rabi frequency ft is defined as •

9. = [ A2 + 4wj_2 ] 1 / 2 (33)

cosB = A/ft , sinS = 2wj/fi .

Using the properties developed ,the eigenspectrum of H R W A is

em = -ju + mfi . (34)

The system evolves as

I ?(t) > = e^^t Y I e >< e I iHo) > e~^-mJ}t

m=-j m m (35)

where | em > are expressed in terms of the rotation matrices d ^ ) .

Now the condition for cyclic evolution may be deduced by considering

general quasienergies em in (35). It is evident that the quasienergy

spectrum must spaced in integer multiples of some common parameter,

though, not necessarily equally spaced, as is the present case. Such a



spectrum of quasienergies guarantees cyclic evolution.

Equation (35) shows that after a period T = 2n/fl a cyclic

evolution is executed by the spin-j system in the magnetic field. The

total phase associated with the cyclic evolution is

* = j (wT - 2if) (36)

and the dynamical phase is given by the expression

aD = jwT - 2 IF I m|< i|«(0) I em > I ̂  . (37)
m=-j

The gauge-invariant AA phase of the driven spin-j system is

0G = - 2TT ( j - t m |< 1/(0) I em >|
2 . (38)

m=-j

This equation is the main result of this section. It is the extension

to 2j+l levels of the result found previously for two-level systems

(18). A particularly interesting case to study is that where the

initial state corresponds to m = -j , |i|/(0)> = |j,-j>.

BG = -2 it j ( 1 - cose) . (39)

These expressions are in agreement with results we have obtained

with Youhong Huang by the method of SU(2) spin-coherent states [16],

which result states 8G is equivalent to the solid angle enclosed by

the generalized Bloch vector's closed circuit times j (Figure 3 shows

the generalized Bloch sphere of the spin-./ system) . Note this result

is the generalization of the previous theorem for the two-level

system.

V. CONCLUSIONS

We have presented new concepts and methods in geometric phases

along two lines. First, we have introduced the notion of complex AA



phases in a dissipative two-level systems and have further extended

the concept to include multiphoton processes and the effects of field

modulation. The second development involved the AA phase in the spin-j

system for arbitrary j. Here we found insight into cyclic evolution

of multi-level systems. In both areas, we have found the Floquet

formalism to be most useful in formulating the theory and subsequent

extensions of this formalism provided general expressions for the AA

phase in both the multiphoton dissipative and spin-j cases. We are

presently considering extensions of this work to more complex dissipa-

tive systems.
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FIGURES

Figure 1

Aharonov-Anandan geometric phase BQ as a function of the coupling b.

(a) Re(6G) and (b)Im(eG) for field frequencies u » 0.95 (solid), 1.00

(dashed) and 1.05 (dash-double dot).. Laser phase $ «= 0, damping

constants are: ga = 0.001 and ge = 0.004. Initial state |a>.

Figure 2

Oscillat ions in Aharonov-Anandan phase. Real (a) and imaginary (b)

components a r e shown. Coupling b «=0.1, to « 0.3333 and damping

constants the same as in figure 1. Two i n i t i a l s t a t e s are shown: |a>

(dashed) and (Ia> + |e>)/ /2 ( so l id ) .

Figure 3

Generalized Bloch sphere model for any spin j . Every point n =

(sin9cos$,sin8sin$ ,cose) on the unit radius Bloch sphere represents a

a spin-coherent state. The unit vector no (south pole) corresponds to

the fundamental vector |i|io> = |j»-j>. Also shown is a sterographic

projection of the vector n to a point 5 on the complex plane.












