

2000
C00-4366-2

MOLECULAR MECHANISMS OF MUTAGENESIS AND CARCINOGENESIS

Final Report
for Period November 1, 1978-October 31, 1979

Mark Ptashne

Harvard University
Cambridge, Massachusetts 02138

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

April 1980

MASTER

Prepared For

DIVISION OF BIOMEDICAL AND ENVIRONMENTAL RESEARCH
DEPARTMENT OF ENERGY
UNDER CONTRACT DE-AC02-77EVO4366.A001

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

leg

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

ABSTRACT

The *recA* gene product mediates induction of a battery of cellular functions in *E. coli* collectively known as the SOS inducible functions. These include prophage induction, induction of filamentous cell growth, induction of DNA repair systems and induction of the *recA* gene itself. Prophage induction has been demonstrated to result from cleavage of the phage repressor protein by a specific protease function of the *recA* protein. Such cleavage destroys repressor function in lysogenic cells and allows the prophage to enter the vegetative growth cycle. Normally, the protease function of *recA* protein only becomes active in the cell in response to signals produced by agents (carcinogens) or treatments that specifically damage DNA or interfere with DNA replication. In the *tif-1* mutant of *recA*, however, the protease can be made to be active simply by raising the temperature of the culture from 30° to 40° C; λ prophage is induced and the cell produces a normal burst of phage. Indeed, all known SOS functions are also induced under these conditions. Thus, it has been proposed that all SOS functions are similarly regulated by repressors that are sensitive to the *recA* protease function. We have sought to further characterize the *recA*-mediated cleavage reaction and its requirements for λ repressor *in vitro* and to extend our biochemical studies to a cellular SOS repressor, the *lexA* gene product which is proposed to negatively regulate several SOS inducible functions, including the *recA* gene, a gene controlling cell septation and the *lexA* gene itself.

ISOLATION OF NEW *tif* MUTANTS

The activation of the *recA* protease function toward λ repressor *in vitro* has been the object of studies in several laboratories. Because *recA* protease function in the *tif-1* mutant is activated *in vivo* at 42° C in the absence of classical inducing treatments, we have shifted our emphasis in this area to attempts to understand the basis of such mutational activation. The goal has been to isolate new *tif*-like mutants in systems designed to provide opportunity for obtaining a variety of such mutants, especially with regard to strength and substrate specificity of the protease function. The general basis of the selections has been the spontaneous inactivation of λ repressor *in vivo*. The study utilized the λ *precA* specialized transducing phage in which the *recA* gene has been substituted for the non-essential *b* region in the phage (see Figure 1). The *recA* gene on the phage is regulated by its natural promoter and not by any phage promoter. The concept behind the selection was that if λ *precA* bore a *tif*-like mutation, then the phage should form plaques on a homoimmune lysogen since as it enters the cell, it should inactivate λ repressor and develop normally. The system was devised using the *tif-1* derivative of λ *precAcl* which was found to exhibit the desired "virulent" phenotype only under a special set of conditions, namely, on a *spr sfi recAΔ(λKB1)* host. The *spr* mutation inactivates the *lexA* gene product, the proposed repressor of the *recA* gene, and permits constitutive *recA* gene expression from the phage soon after infection; the *recA* deletion blocks synthesis of *recA* gene product from the host, thereby eliminating possible inhibitory co-dominant effects on the phage-encoded *recA* product; the *sfi* (suppressor of filamentation) mutation permits survival of *spr* cells which would otherwise filament and die. The phage itself must bear a mutation in the *cI* gene encoding phage repressor to prevent any contribution to repressor synthesis by the phage. λ repressor is supplied by the λ *KB1* prophage (see Figure 2) in which the *cI* gene of λ is under the control of the *lac* promoter. This enables the level of λ repressor in the lysogen to be experimentally regulated with IPTG (an inducer of the *lac* operon) independently of the elements normally controlling λ repressor synthesis. The level of λ repressor in such lysogens maximally stimulated with IPTG is about 40% of the monolysogen level (Backman and Ptashne, 1978). Under these conditions, λ *precA⁺cI⁻* do not form plaques. However, within stocks of λ *precA⁺cI⁻* (unmutagenized), plaque-forming mutant derivatives which resemble λ *ptif-1cI⁻* can be detected at a frequency of about $1-2 \times 10^{-6}$ (see Table).

Since *E. coli* mutants carrying certain other alleles of the *lexA* gene (e.g., *lexA3*) produce a *lexA* product whose function cannot normally be inactivated by *recA* protease, the efficacy of the above system was initially upheld by (a) failure of the mutant subpopulation within the λ *precA⁺* phage stock to form plaques at any detectable frequency on the *lexA3* version of the λ *KB1* lysogen and (b) by the failure to detect a virulent subpopulation

in the λ lexB30cI⁻¹ phage stock when plated either on the spr⁻ or the lexA3(λ KB1) lysogen (see Table). Four additional genetic tests confirmed the presence of tif-like mutations in the virulent derivatives of λ precA⁺cI⁻:

(a) In a genetic backcross system, the immunity region bearing the cI gene (imm λ) of each of 87 separate isolates was replaced first with the analogous immunity region from phage 21 (imm21) and then with the imm λ cI⁻ region from the parent. Each backcrossed isolate was demonstrated to have retained the ability to form plaques on the λ KB1 lysogen. This confirms that virulence does not result from mutations in the immunity region, e.g., operator or cI transdominant mutants. The backcrossed derivatives of the tif-1 and recA⁺ control phage strains retained their respective phenotypes.

(b) λ ptif-1cI⁻ fails to form plaques on the lexA3(λ KB1) lysogen (see Table) suggesting that the hyperactivity of the tif form of the recA product is controlled on the phage as it normally is in the host chromosome. Each new tif mutant isolate (87/87) behaves similarly (but see below).

(c) λ ⁺ and λ precA⁺cI⁺ (imm λ , imm21, or imm434) form normal turbid plaques on the spr⁻sfi⁻recA Δ strain. However, λ ptif-1cI⁺ of each immunity type forms clear plaques on this strain as do the cI⁺ derivatives of each of the 87 new mutant isolates. Clear plaque formation by the tif mutants presumably occurs through continuous tif-mediated inactivation of repressor synthesized during phage development. The cIind⁻ mutation of imm λ or imm434 blocks the clear plaque phenotypes of all the tif mutant isolates. Interestingly, only 10% of the new λ ptif isolates form turbid plaques characteristic of λ ptif-1cI⁺ plaque formation on the lexA3 nonlysogen. The remainder which form clear plaques on the lexA3 host are considered to bear alterations which permit greater protease activity than tif-1 or the other new isolates.

(d) The spr⁻sfi⁻tif-1 allele combination in the *E. coli* chromosome causes infecting cI⁺ phages (imm λ , imm21, imm434, imm22, etc.) to form clear plaques; the cIind⁻ derivatives form turbid plaques (Mount, 1977). This host phenotype can be mimicked in the spr⁻sfi⁻recA Δ strain if made lysogenic with λ ptif-1 (maintained by cIind⁻ on the prophage or by a plasmid which overproduces homo-immune repressor). Nine new tif mutant phages screened in this manner each reproduce the phenotype whereas the recA⁺ parental phage does not.

No direct test has been performed to demonstrate that the mutations specifically lie within the recA gene. However, the similarity of their phenotypes to the λ ptif-1 phage (sensitivity to the lexA⁻ control and absence of "virulent" mutations in the immunity region, together with their plating behavior) make it quite unlikely that the mutants comprise some unknown class of virulent phage types whose mutations are unrelated to recA gene

expression and which are also not observed in stocks of the λcI^- or $\lambda plexB30cI^-$ control phages.

In a second scheme, the spr^- allele of the host has been substituted by the $lexA3$ allele to reduce the level of $recA$ gene expression from the phage. Neither $\lambda precA^+cI^-$ nor $\lambda ptif-1cI^-$ forms plaques on this host induced with IPTG (see Table). However, if each phage is first grown on the $mutD$ strain of *E. coli* (which increases the level of mutants in the phage stock by about 10^4 ; see Degnen and Cox, 1974), plaque-forming derivatives of each phage were obtained (at frequencies of about 10^{-8} and 10^{-6} , respectively, for $recA^+$ and $tif-1$ forms of the phage). Analysis of eighteen such isolates from the $recA^+$ parent reveals the presence of strong tif -like mutations. These mutants, interestingly, all retain specificity for ind^+ repressor. Judging from the frequency of occurrence and accounting for the 10^4 -fold increase in the level of mutagenesis imposed by the $mutD$ strain, the derivatives of the $recA^+$ phage are almost certainly double mutants. They could be of three types: (a) mutants bearing multiple tif -like mutations that together greatly enhance the protease activity of $recA$ in the absence of high level $recA$ gene expression from the phage, (b) mutants bearing a single tif mutation plus a separate mutation in the putative operator region (see below) to allow the elevated level of $recA$ gene expression from the phage, or (c) mutants bearing single or multiple tif -like mutations which confer upon the protease the capacity to inactivate the $lexA^-$ product which should also lead to increased expression of $recA$ from the phage. The mutants deriving from the $tif-1$ parent could also be of the above general types. The three types are being distinguished genetically.

The continuing study of the new tif -like mutants will attempt to further classify the isolates based on other genetic parameters such as temperature sensitivity, genetic map location, recombinational groups, dominance and activity toward λ repressor and other SOS repressors as well as toward their mutant forms. The subsequent biochemical study of the isolates will involve DNA sequence analysis of the mutants and analysis of the possible differences in protease activity of the mutant $recA$ proteins and their requirements for such activity in the *in vitro* cleavage reaction.

ISOLATION OF *recA* OPERATOR-CONSTITUTIVE MUTANTS

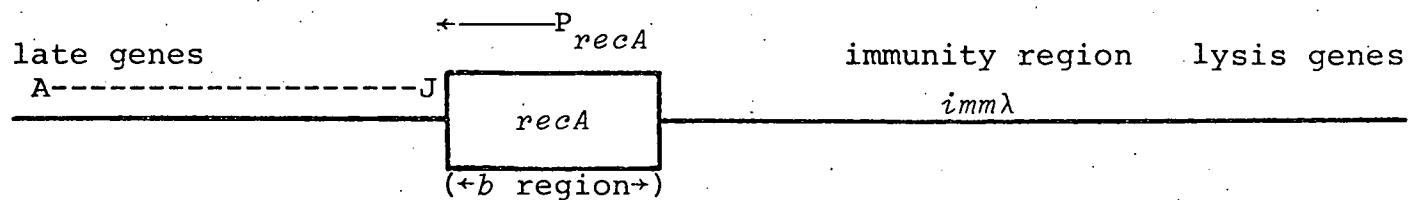
Inactivation of the *lexA* product leads to constitutive high level expression of the *recA* gene. The *lexA3* form of the *lexA* protein prevents normal inactivation of *lexA* repressor function and therefore induction of SOS functions following exposure to classical inducing agents. Such cells are extremely sensitive to agents that damage DNA (e.g., UV). We have attempted in a variety of systems to isolate *recA* mutants affected in negative control by the *lexA3* mutant protein hypothesizing that *recA* operator constitutive mutants should be one subclass of isolates obtained. The method that has provided mutants that exhibit "induced" phenotypes in the presence of the *lexA3* protein is the second selection scheme described for isolation of new *tif*-like mutants (see above). In addition to exhibiting substantial repressor inactivating capacity, the mutants, unlike their parents, confer enhanced UV resistance upon a *lexA3* host (lysogenic for the noninducible λ *ind*⁺ prophage to prevent vegetative growth of the isolates) suggesting that the elevated level of *recA* protein thought to be required for DNA repair can be exhibited by the mutants. Mutants identified genetically as bearing alterations in the site of *lexA* binding (operator mutants) will be analyzed by DNA sequencing techniques and studied in a purified *in vitro* system containing purified *lexA* protein to demonstrate the effect of the mutations on the function of the putative *recA* operator.

FOOTNOTE

¹The *lexB30* allele of *recA* has been demonstrated to inactivate *recA* protease function or some function of the protein required for activation of the protease.

4366-2
COO-
Ptashne
6

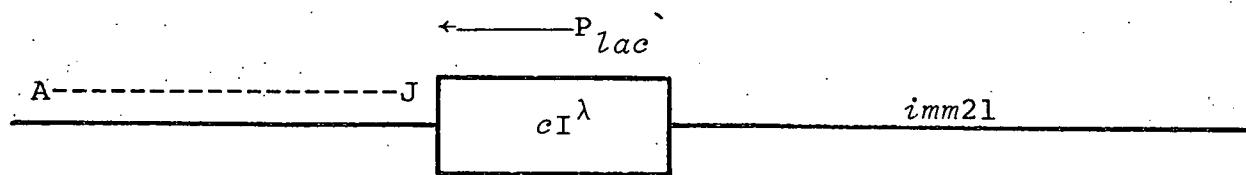
TABLE


Plating character of λ precA and derivatives.

Efficiency of Plating on Lysogens
of λ KBl + IPTG

Phage Strains	<i>spr</i> ⁻	<i>lexA3</i>
λ ptif- <i>lcI</i> ⁻	1.0	$< 10^{-9}$
λ precA ⁺ <i>clI</i> ⁻	$1-2 \times 10^{-6}$	$< 10^{-9}$
λ plexB30 <i>clI</i> ⁻	$< 10^{-9}$	$< 10^{-9}$
λ <i>clI</i> ⁻	$< 10^{-9}$	$< 10^{-9}$
λ imm434 <i>clI</i> ⁻	1.0	1.0

FIGURE 1


λ precA (see McEntee and Epstein, 1977).

4366-2
COO-~~80022~~
Ptashne
-8

FIGURE 2

λ KBl (see Backman and Ptashne, 1978).

REFERENCES

Backman, K. and Ptashne, M. (1978) *Cell* 13, 65-71.

Degnen, G.E. and Cox, E.C. (1974) *J. Bact.* 117, 477-487.

McEntee, K. and Epstein, W. (1977) *Virol.* 77, 306-318.

Mount, D.W. (1977) *Proc. Natl. Acad. Sci. USA* 74, 300-304.