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Unified Fluid/Kinetic Description of Plasma 
Microinstabilities. Part II: Applications

Zuoyang Chang and J. D. Callen

The unified fluid/kinetic equations developed in part I of this 

work are used to study plasma drift type microinstabilities. A gen­
eralized perturbed Ohm’s law is derived (for a sheared slab magnetic 

field model) which is uniformly valid for arbitrary collisionality uj/v 

and adiabaticity ulk\\vt. For electron drift waves we demonstrate 

that the collisional and collisionless drift wave instabilities can be 

uniformly described by replacing the Spitzer resistivity with a gen­
eralized pseudo-resistivity. Similarly, for ion drift type modes we 
obtain a uniformly valid dispersion relation for the ion temperature 

gradient modes (r/t modes). The 77; threshold as a function of ion-ion 

collisionality and ion Landau damping strength is addressed. Apply­

ing the unified equations to electron electromagnetic modes leads to 
generalized coupled equations for (f> and Ay which include electron 

Landau damping effects and are valid for any a;/i/. It is shown that 

the semi-collisional micro-tearing and drift-tearing modes of Drake 

and Lee [Phys. Fluids 20, 1341 (1977)] can be easily reproduced 
in the appropriate limit. Generalization of the two-field Hasegawa- 

Wakatani turbulent equations [Phys. Rev. Lett. 50, 682 (1983)] to 

include electron temperature fluctuations and linear Landau damp­

ing effects is also discussed. Finally, a new method is presented to 
facilitate the study of magnetic trapped particle modes using our 

kinetic closure procedure. It is found that by including the trapped 

particle effects in the closure relations, the usual separation of the 
fluid equations into trapped and untrapped components becomes 

unnecessary.
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I. INTRODUCTION

In part I of this work,1 we developed a set of closed fluid moment equa­

tions for perturbed density (n), parallel flow ({«||) and temperature (T) that 

are uniformly valid for arbitrary collisionality where ui is the fluctuation 
mode frequency, u is the collision frequency, and adiabaticity ujlk\\vt, where 
A:|| is the parallel mode number and vt is the species thermal velocity. Due to 

the usage of a Chapman-Enskog-like procedure and a moment approach (see 
part I) these equations exhibit the same structure as the classical Braginskii 
fluid equations2 except that the transport coefficients (viscosity //, thermal dif- 
fusivity y, etc.) have been self-consistently generalized to the low collisionality 

(or even collisionless) regime, and the important linear wave-particle Landau 
damping effects are included. The establishment of this unified description of 
plasmas is mostly suitable for drift type microinstability studies. It not only 
greatly simplifies the theoretical analyses of plasma microinstabilities, but also 

enlarges the window of validity for present microturbulence theory models and 

facilitates the numerical simulation of plasma turbulence that is more realistic 

with respect to present tokamak operational regimes.
The main goal of this paper is to show how to use the unified equations to 

study various drift wave problems and how the resultant unified theories recover 
the previous results from collisional fluid analysis and collisionless kinetic anal­

ysis in the corresponding limits. In Section II we first review the fluid/kinetic 

equations developed in part I. A generalized perturbed Ohm’s law which gen­

eralizes the widely used Hazeltine, Dobrott and Wang’s result3 to include the 

electron Landau damping effects will be derived in Section III. In the fluid limit 

(viU A:||Vt) we recover Hazeltine et al.'s result; in the adiabatic limit we show 
that electron Landau damping replaces the Coulomb collision dissipative effect 

and resists the current flow. Section IV through Section VII discuss applica­
tions of this work to many existing branches of plasma microinstability theory. 

In Section IV the linear electron drift wave theory is developed using our uni­

fied equations. It is shown that the resultant dispersion equations (local and
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nonlocal) have exactly the same structure as the usual fluid ones except for 

the replacement of the Spitzer resistivity by the generalized pseudo-resistivity 

from Section III. These dispersion equations describe not only the dissipative 

electron drift instability, which is driven by the collisional drag force, but also 

the collisionless instability (universal instability) driven by the electron Lan­

dau damping mechanism. A similar situation is shown to happen in the ion 

drift wave analysis in Section V where the ion temperature gradient modes (//; 
modes) are addressed. The well-known instability threshold values (r}c) for the 
fluid r]i branch (ric = 2/3) and kinetic rji branch (rjc = 2) are again recovered. 

Using the new uniformly valid dispersion relation we obtain the T]c as a function 
of the ion-ion collisionality and ion Landau damping strength. The electron 
electromagnetic modes are studied in Section VI where the generalized coupled 

eigenvalue equations (for </> the electrostatic potential and Ay the parallel vector 

potential) for micro-tearing type modes are derived. When the mode is purely 

magnetic, our dispersion relation easily reproduces the previous semi-collisional 

micro-tearing4 and drift-tearing3, 4 instabilities in the appropriate limits.

Since all nonlinear terms are retained in the three moment equations (though 
the closures are linearized), we can use them to study plasma microturbu­

lence problems. In Section VII, we discuss the generalization of the Hasegawa- 

Wakatani two field ((j) and n) equations5 which have been widely used for elec­

tron dissipative drift wave turbulence studies.6 Due to the complicated u> de­

pendence in the closure coefficients, the direct application of the generalized 

three-field (</>, n and T) equations for arbitrary u/v and u/k^Vt becomes dif­

ficult. A suggestion for simplification arising from one-pole approximations to 
the plasma dispersion functions1 (Z and Z') is proposed. The net result is an 

extended plasma turbulence description which requires the inclusion of more 

time evolution equations (for the closure terms).
Although the entire work in this paper and its corollary part I have been 

developed for a simple sheared slab magnetic geometry, the idea is equally ap­

plicable to a toroidal geometry where magnetic trapped particle effects become 

another important means of accessing the plasma free energy. In Section VIII,
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the usual drift-kinetic equation is used to calculate the closure relations for a 

toroidal geometry. It is demonstrated that by including the trapped particle 

effects in the closure relations we can dramatically simplify the description of 

trapped particle modes. In the new description the usual separate fluid equa­

tions for trapped and untrapped components of a single plasma species can be 
avoided. The trapped particle effects are included via the closure relations. A 

simple example is given for the dissipative trapped electron mode. The summary 
and conclusions are given in Section IX.

II. REVIEW OF THE UNIFIED FLUID/KINETIC EQUATIONS

The closed set of the fluid/kinetic equations for a sheared slab magnetic 

geometry developed in part I of this work1 can be summarized as follows. The 
three basic fluid moment equations for perturbed density (h), parallel flow (ii||) 
and temperature (T) are (for both electrons and ions)

| — -I-Ve-Vx] n = —n0 V ||U|| — rc0 Vj_ • Vp — V,e • Vn0, (1)

+ Vs • Vj. j ft|| = enoE||-V|| Po_ b • (V x UjJ

-b • V • f[|| + /(V (2)

3
— 2noVE • vr0 -poV||U|| - V||9||

—PoV_l • Vp, (3)

where V# = cE x B/R2 is the usual E x B flow velocity and b = B/jB is a 
unit vector along the magnetic field. The divergence of the polarization flow is 

given by

v • =v- M!+^ ^vi (4)
The pressure gradient term in Eq. (2) should be understood as

V||p = ik\\p + b • V(p0 + p)- (5)
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The extra part in the second term of the right side of Eq. (2) is a parallel 

vorticity induced pressure anisotropy, which comes from the reduction of the 

gyroviscous stress force.7, 8’ 9 The /inear closure relations for the parallel stress 

force (b • V • II||) and heat flux (^y) are calculated in part I of this work by 
using a Chapman-Enskog-like approach and a moment approach. The simplified 

formulas are1

b • V ■ ri||e = —n0me/q|eVy£t||e - hnoiV^i, (6)

b • V • riyi = -nom^y.Vyttyi - /ino(VyTi)i, (7)

q\\e = -hepeii\le - noX||e(VyTe)i + r\\pe(u\\e - Uyt), (8)

'7||. = -hiPiU\\i - noXy^VyT,)!, (9)

where
(VyT)! ^^yf + b- VT0. (10)

The electron parallel frictional force is given by

R\\e = (r/s/0.51)|e|noiy + rA=n0mei/et —, (11)
OsjTT pe

where r/s is the Spitzer resistivity

T]s = 0.51
mPuP
e n0

and vei (and later va) is the electron-ion (ion-ion) collision frequency.2 

Eqs. (6)-(9) the pseudo-transport coefficients are given by (j = e,i):

In

M|b' — 

X\\j =

/Ivtj
5^y
9vtj
birk

z(zi),

= -5^),

48(3v/x — 1) 
257r-v/7r

^ei
k\\Vte

Z(U),

(12)

(13)

(14)

(15)

where /iy is the parallel flow viscosity coefficient; the Ts are the coefficients of 

the stress forces induced by the perturbed parallel temperature gradients; X|| is
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the parallel thermal difFusivity coefficient; the h's are the heat pinch coefficients; 

and ry is the coefficient of the electron frictional heat flux. The arguments (£’s) 

in the Z and Z' functions are functions of mode frequency u, collision frequency 

1/ and k||iq:

£1 = (3/5)(u> +
H = \/3/10(a; + igjV^KkwVtj),

H = 36(u> + ig jvji) j (2b,Kk\\Vtj)i (16)

<^4 = 24(3v/7r - 1)(^ + igeVei)l{?bnk\\vte), 

where dj and gj are constants:

de ~ 0.90 + 0.64/z, di ~ 0.32 (17)

#e ~ 0.98 + 0.42/2, g{ ~ 0.42 (18)

with 2 being the ion charge state.
Asymptotic expressions of the pseudo-transport coefficients in both the fluid 

and adiabatic limits are very useful in the following analysis. They can be easily 

obtained by using the asymptotic expansion of the Z functions. The results are 

listed in Table 1.
The quasineutrality condition (which leads to a vorticity equation) that we 

will use in this paper is
V-I = 0,

which, using the results obtained above, becomes

V'(j||+j.+jp) = 0, (19)

j II eno(fl||i fl||e)t>,
j, = -^b X V(p, + Pe) + X V(pi + Pe),

jp = en0Vp.

As discussed in Ref. 1, this set of equations (l)-(ll) are uniformly valid for ar­

bitrary ratios of u/u and cj/k||Ut. This unified feature allows us to study plasma 

drift instabilities of arbitrary collisionality and Landau damping strength uni­

formly within a fluid framework.
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III. GENERALIZED PERTURBED OHM’S LAW

Generalizing the classical fluid Ohm’s law [r]3J = E -|- (l/c)V x B] to the 

drift wave frequency regime (i.e., z/ ~ ~ is a key issue in plasma fluid

theories. A widely used generalized Ohm’s law is the Hazeltine, Dobrott and 

Wang’s form3 [HDW form, see Eq. (26)], which is valid for arbitrary uz/rq,;. 

Unfortunately, due to the fluid ordering > knvt used in their derivation,3 

the HDW form is only valid in the fluid limit, or in the vicinity of a mode rational 
surface. The important electron Landau resonance effects are therefore missing 
in the HDW formula. This shortcoming can be overcome by using our unified 
fluid/kinetic equations. Using the electron parallel momentum equation (2) 

(where the finite Larmor radius effect induced scalar pressure anisotropy term 
can be neglected for electrons) together with the closure relations Eqs. (7), (8) 

and (11) we obtain a very general nonlinear perturbed parallel Ohm’s law:

+ = A + ^(vllP.H + Ufv.r,),

+
meve

e
i / 4 , k\ u

\ 'i /Zhe * J ^11e yo-iyTT vei vei)
mec

(20)

Here, the generalized resistivity i) is given by

mekl
V = Vo~ 1-7— + 1—^||e e^no e no

4 mei/e; 
Sv/tt e2n0 (r|| - l>e), (21)

with T]o = 773/0.51. This generalized resistivity extends the classical resistivity 

to include the contributions from electron inertia (the second term on the right 
side), viscous force (/7||e), frictional heat flux effect (r||) and heat pinch (he) 

effects. In Eq. (20) the E x B nonlinear terms are denoted by the Poisson 

bracket

[a, /3] =b ■ (Va x V/3). (22)

The first two terms on the right side of Eq. (20) are the usual parallel electric 

field and pressure gradient correction terms. The third V||Te (“thermal force”)
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term is from the electron thermal heat flux (x||e) and temperature gradient 
induced stress force (/e) contributions expressed by the coefficient /c,

8 Vei
K = ■X||. -L (23)

v2te ,

Note that since our closure relations are linearized, we cannot include the non­

linear term from (V||Te)i as we did in Eq. (5). The last two terms in Eq. (20) 

are the ion contributions which can be neglected when up <C u\\e.
In the fluid limit i.e., vei,to k\\vte, the heat flux effects (terms with X|| 

and r||) become important while the viscous effects (terms with /q| and l) are 

small. By taking ku —► 0 we obtain

.Sy/ir U)

0.51 4

2

' bsjn uj + igevei

iv P

(24)

(25)
y/iru + igevei ’

Then, the generalized Ohm’s law Eq. (20) can be reduced to the following form

Vsj\\ = + oi
Bx
B

VPe
en0 + 0^2'VTP

(26)

where

0.51 1 - ibveilu Sv/tt
-I -1VjO

~ 0.99

«2 =

5^(1 + igeVei/u) 
1 — 0.54ta;Te 

1 — 2.9SiuJTe — 1.04a;2r^ 
2ivei/u

4 vei 

(for 1),

V^l + igevei/u>)
~ 0.80(1 -OMiuTe)-1 (for 2 = 1).

(27)

(28)

Equations (26), (27) and (28) are identical to the HDW formula [Eqs. (50)-(52) 
of Ref. 3], which was derived using a variational approach and solving the drift 

kinetic equation iteratively for large Lj/k\\vte. When i/ > u, further expansion 

of Eq. (26) leads to Hassam’s formula11:

r]a[l - i0.68(u/vei)]j\\ = Ey + (en0)_1( V||pe)i

+ (0.80/e)(l + z'0.71cu/uet)(V||re)1. (29)
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In contrast to the above formulas, since there is no assumption of large ui/k^Vt 
made in our Ohm’s law Eq. (20), our formula remains valid for arbitrary 

Therefore, we can study the important electron Landau damping effects in the 

small ulk\\Vte adiabatic regime.
In the adiabatic limit, vei,u <C k\\vte, we find that the viscous effects become 

dominant. Using Table 1 we have

mekjj
e2n,0

2v/7r mefc||Ute 
5 e2n0 ’ (30)

k —> —/e — -2/5. (31)

Therefore, Eq. (20) becomes (also neglecting the ion flow) 

/ 2^ mek\\vt
e2n0

h\ = E\\ + _ j;<v\\Te)i- (32)

This result shows that away from the mode rational surface (where fc|| = kyx/Ls 

becomes large) the electron Landau damping effect replaces the Coulomb col­
lisional dissipation. In the sheared slab geometry, this “Landau resistivity” 

increases linearly with the distance from the mode rational surface (x). The 

spatial behavior of 17 as a function of x for different veilu) values is shown in 
Fig. 1. First of all, the whole spatial region can be clearly divided into two

regions: the fluid region where x < xe (xe is defined by u>/k\\(xe)vte = 1) and

the Landau damping region where x > xe. In the fluid region the dynamic effect 

(iu) can enhance the real resistivity when veilui becomes small. The change in 

the imaginary part of i) also increases (becoming more negative) with decreasing 

Uei/uj. Second, in the adiabatic Landau region the Landau damping mechanism 

dominates the pseudo-resistivity even when veiluj is quite large (~ 10). We 

also find from Fig. 1 that the adiabatic region increases as the ratio Veiju de­

creases. For example, when = 10 the Landau damping starts to take over
for x > xe, whereas when Vei/u = 0.1 the Landau damping effects becomes
significant for x < 0.5xe.

The linearized form of Eq. (20) can be also expressed in terms of the electric 

and vector potentials (f) and A\\ by using the following electron density and
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temperature equations (from Eqs. (1), (3) and (8)):

n0
£|| J|| , e<i> . ^|| ~ 

—-—— H------ — H—ui en0 u> TP u (33)

r, ( .2 fcj NS 1+*3>' = ^*eVe (
Ld

e4> -2, e^||\
Ye + *3^l|X||e^7; J

2 A: || ~-x(l ~ + r|| —LJ||
3 weno
2 A;|i

+ ~(1 — he) U||j.
O U)

(34)

Here, b • VTe = —iu*eT]eeA\\/c has been used. Substituting (33) and (34) into 
(20) and neglecting the ion parallel motion, we obtain an alternate form of the 
linear generalized Ohm’s law

rj + i
meklv2te
2e‘2n0u>

Hi h

+ 1
to.
id

U*eVe
id

H, iud-±,

where

H\ = ( 1 + -—7= —X||e — K \ ( 1 + *
Sv/tti te

91c2

3a;

-i
X||e

H2 = l + -(1 — he +

8 Vei 2A)|j#3 = 1 + T-r=—X\\e - h- Ij^XUeHr.
Sa/tF ) te

This form will be used in the micro-tearing mode studies in Section VI.

(35)

(36)

(37)

(38)

IV. ELECTRON LINEAR DRIFT WAVES AND INSTABILITIES

To simplify the analysis we use the conventional cold ion, constant electron 

temperature and electrostatic mode assumptions. In this case, the quasineu­

trality condition Eq. (19) becomes

e2n0 2 5 V72 7 ^ ~ n
(39)
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where ps = cs/Qi, c] = Telm.i. From Eq. (33) the generalized Ohm’s law 

becomes

? + ! )n -(1 - u.elu)ik\\(j)

(k\vl k\ \.me„
+ ~1 + ‘k’Tu»‘- (40)

For cold ions the niu is mainly the ion acoustic motion:

U\\i ~
clh e4>

u>
Using Eqs. (39)-(41) we obtain the following local (d/dx 

tion for electron drift waves:

(41)

0) dispersion equa-

{u;^ [l - iuifje1 no/[k^Te]^ + iu -uime - k\c2Jlo} <^ = 0, (42)

with bs = k^p^. Solving Eq. (42) for small growth rate modes and dropping the 

last ion sound wave term, we obtain

uv
1 + 6/ (43)

7 =
e2n0

Re(fj). (44)
k\vtM + ba) me

This result looks the same as the usual fluid result6 except now the resistivity is a 

generalized one containing important dynamic and kinetic information. There­

fore, dispersion equation (42) is valid for arbitrary collisionality and Landau 

damping strength. In the collisional limit, rj reduces to the Spitzer resistivity 

(7/3). Then, we immediately obtain the well-known dissipative electron drift 
wave.6, 12 In the adiabatic limit the resistivity arises from the electron Landau 

damping induced viscosity. Using Eq. (30) we then find

7 4 j—
- ------- 63.

5 k\\vte
(45)

This is the familiar collisionless drift instability (universal instability) result.12 

(The extra factor 4/5 in Eq. (45) is due to the assumption of constant temper­

ature in the present simplified analysis.)
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A generalized nonlocal electron drift wave eigenmode equation can be easily 
obtained from Eq. (42) by taking d>(x, t) = 4>(x)exip[i{kyy — cjt)]. The result is

„2 /'^1V
dx* \ <t> -

X
1 -

— IX R

where
, e nouj ,

^ = ——v,TPk?
x2 =

(46)
UJ X2J

2UJ
k'2c2 *All C-_

(47)

As in the local case, Eq. (46) is identical to the dissipative electron drift eigen­

mode equation derived by Lui Chen, et a/.,13 except that the resistivity in xR 
is a generalized one defined in Eq. (21). It is this replacement (r]s —> rj) that 

makes Eq. (46) valid for electron drift wave analyses in arbitrary collisionality 
and adiabaticity regimes. Detailed study of Eq. (46) requires a more sophis­
ticated WKB treatment and numerical analysis,13 and is beyond the scope of 

this paper.

V. ION LINEAR DRIFT TYPE MODES

Similar to the electron case, the generic equations for ion drift wave problems 

can be derived from Eqs. (1) - (9). When the electron-ion friction is not very 
large (mei/e,/m,< u;,), the ion fluid/kinetic equation set decouples from that 

for the electrons. Substituting the closure equations (6) and (9) into (1) - (3), 
neglecting the vorticity induced pressure anisotropy in Eq. (2), we obtain the 
following three linearized equations for ion electrostatic instability studies (the 

species subscript i is suppressed for simplicity):

u— = (1 + bjk^vt + tu,— - u;6 — +-----—
n0 T \T p 3p,

U\! 1
{u + lflfy)— = -kl{Vt 

vt z
e<}> h t
T+n + T(l-l)

2 T
(u; +-zfcjjxii)^; = -u,r)Y + t:(1 ~ h + b)k]lu{

(48)

(49)

(50)
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where b = (\/2)k2Lp2i and Try = (2/3)b • V • ri||i.

To illustrate how this set of unified equations works, we will discuss the ion 

temperature gradient modes (p; modes). As usual, to simplify the analysis we 

assume the electrons are purely adiabatic. Thus, the quasineutrality condition 

leads to
ni he ed> m ,
— = — = r = Te/Tt. 51
n0 n0 t1i

Solving the closed equations (48)-(51) for the small finite Larmor radius effects 
{kj-Pi 1) case, we obtain the following generalized dispersion equation

ui

where

1 + UJ
TUJ.

klv2r . ir<«r , k\v^ rPi Gz — 0, (52)

Gi — 1 + i—
id

1
1 + - 

T L
G 1 + 3^3(1 ~ M

G, = (l-/i)(l+ ^x„) ■

(53)

(54)

(55)

The rji mode can be easily addressed by taking u <C cj,,14 in which case 
Eq. (52) becomes

kWti G3
uj2 =

2 Gx L'/, - j(l - hi) (56)

This is a generalized 77; mode dispersion relation valid for arbitrary collisionality 

and adiabaticity. In the collisional limit, Va u,k\\vti, we have Gi,G3 —> 1 

and the heat pinch term hi —» 0. Then. Eq. (56) immediately reproduces the 

well-known fluid purely growing rji mode result

7 = - 2/3)1/!. (57)

Thus, the fluid threshold is r]c = 2/3. On the other hand, in the adiabatic 

limit, k\\vti ^ uj, Va, the ion Landau resonance effect becomes dominant. Using 
Table 1, we find

13



(58)

Gj —> 1 + * —yTc------ •
5 uj

G3 —> —z UJ

2

The dispersion equation (56) then becomes

W - 2),

which reproduces the kinetic z/, mode threshold15, 16

Vc = 2.

Therefore, our equation (56) does unify the fluid and kinetic features of the 
rji modes. Using Muller’s method for numerical root searching we obtain from 

Eq. (56) the threshold r]c as a function of zq, shown in Fig. 2. In the intermediate 

region where zq, ~ k\\vti, we find that the rjc is about 1.3.

VI. MICRO-TEARING MODE THEORY

Micro-tearing modes3, 4’ 17, 18, 19, 20’ 21 are a set of electromagnetic modes 

driven by either magnetic free energy (A'-micro-tearing mode) or electron tem­

perature gradient (z/e-drift tearing mode), with finite collisionality. As a possi­
ble candidate for plasma anomalous transport in tokamaks, these modes have 

often been invoked and intensively studied. In this section we first give the 

basic equations for these modes derived from our fluid/kinetic equation set. 

These equations are valid for arbitrary collisional regimes. In contrast to most 

of the previous works,3, 4’ 18, 20 the electron Landau damping effects are self- 

consistently included in our equations. We will prove that in the so-called semi- 

collisional regime the previous results (the A' driven and r]e driven modes) can 

be readily reproduced when the electron Landau damping effects are neglected.
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Taking the perturbations as (A\\,<f>) ~ [y4||(x), <^>(a:)] exp[—iut+ ikyy-\-ik\\z], 

assuming cold ions and neglecting the ion acoustic effects, we have following 

three basic equations for electron electromagnetic mode studies.

Ampere’s law:

{h_ d) ii = (59)
Quasineutrality condition [Eq. (39)]:

{h -1») ^<60>

Generalized Ohm’s law [Eq. (35)]:

1 ^ ^«e 3u>«e7/e u \ ) 2 i (a UJ*e
a \ uj

where d is a generalized conductivity

a(u,vei,ku(x)) = [ri + i-

H3) iu^- 
UJ J c

m tk?Ax)x -1
te

2e2noUj
Ho

(61)

(62)

The kinetic effects are included in the H's defined in Eqs. (36)-(38) and in fj. 

These coupled equations for <f) and A\\ are valid uniformly for all values of the 

ratios uj/uei and ujlk\\vte.

To simplify the analysis and show how to reproduce the previous result by 

Drake and Lee,4 we restrict ourselves to the magnetic perturbations and ne­
glect the electrostatic potential. This corresponds to the semi-collisional micro­
tearing regime.4 In this case, the eigenmode equation becomes

dji]l
dx2

2 ~ 4Trio; „
— k;.A\\ = ■ - <7 1 -

ai.
or UJ

h3)a (63)

Integrating Eq. (63) over the resistive layer (denoted by A) and using the con­
stant ijj approximation we find

A' =
1 dAii

-xA||(0) dx 
47rioi fx / UJ

UJ

*e H,
UJ

(64)
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where the discontinuity A' is the usual tearing mode stability parameter, and 
the assumption d2/dx2 k2 ~ a~2 has been made with a being the plasma 

radius.
If the mode is well localized near the mode-rational surface, the fluid limit 

expressions can be used. They are

H\ — H$ ~ 1 T i? (65)
-y/Tro; + igeisei

+ (66)

and Eq. (24) for rj. Extending A to infinity to carry out the integration in 

Eq. (64), we find after some rearrangement

0 Be2 / " x 2
-H- -)■ (67)

uJ.e U).e:

where following the notation of Drake and Lee4

 kyVteA'a
— 2y/rrklaLs

is the collisionless growth rate, k^x = c/o;pe is the collisionless skin depth, c is 

the speed of light and u>pe is the electron plasma frequency. Dispersion relation 
(67) describes the local fluid micro-tearing modes for arbitrary u/v values and 

thus generalizes the Drake and Lee result.4

A. Collisional MHD limit case uei u> a;*
Under this ordering, fj —> r]a, H2 — 3.17, and thus Eq. (67) produces a purely 

growing mode with growth rate

7 =
diyv,.

i.oiifV'3, (68)

where re is the electron-ion collision time of Braginskii.2 This is identical to the 

semi-collisional micro-tearing mode of Drake and Lee:

tI DL V4r(ii/4)y
0.9572/31/3
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B. Collisional drift case i/e, u; ~ u;» >> 7^3t~1/3

In this case Eq. (67) reduces to

k0c r-------
U> -U>,e - COmeT]eH3 + ~/k—rF----—\Jir]sH2 = 0,

\J I’KiO'-!1TTUO1-
(69)

where i73 ~ 1.81. Choosing the unstable branch for \/i (= — V^/2 — i\/2/2) 

and supposing that the growth rate is smaller than the mode frequency, we 
reproduce the T]e driven drift-tearing mode3, 4

coT ~ a;,2 = ^.e(l + 1.81r;e),

7 = 0.58u>*er}eLO+2/vei + 0.28~f kkocrjy2 io~^2 ■

When the collision frequency is small compared with the mode frequency 
(but still in the fluid region), Eq. (67) will also reproduce the inertially driven 

tearing mode discussed by Hazeltine, et al.3

We note that in above analysis the electron Landau damping effects have 
been totally neglected. As we discussed in Section III, the generalized resistivity 

will be dominated by the electron Landau damping effects in the x > xe region. 

Including the Landau damping effects properly requires a more careful treatment 

of the integral in Eq. (64). Numerical analysis and a more complicated study 

of the coupled equations (59) and (60) will then be needed. However, these are 

beyond the scope of this paper.

VII. NONLINEAR MODE COUPLING EQUATIONS — GENER­
ALIZED HASEGAWA-WAKATANI EQUATIONS

The nonlinear fluid moment equations (1), (2) and (3) plus the linear 

fluid/kinetic closure relations (7)-(9) can be used to study plasma drift type 

microturbulence if the nonlinearities from the closure relations are not impor­

tant. In this section we derive a set of three-field (</>, h, T) mode coupling 
equations for electron drift wave turbulence studies. These equations general­
ize the Hasegawa-Wakatani two-field (<^>, h) turbulent equations5 to arbitrary 

collisionality and adiabaticity.
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For simplicity, we adopt the usual cold ion assumption. Using following 

normalization

L/n

,, rr * \ Ln (ej> h fe vd j|| q\\e \
{(f), n.,T, vd, j, q) * , i rp i ! 5 I ?p3 \Je n0 7e cs en0cs pecsJ

me Ln e2n0 A
j/ --------------- q,

rrii cs me
where Vd = —(cT’e/|e|B)i~1 is the electron diamagnetic flow velocity, we obtain 

the three-field (<1), n and T) mode coupling equations

d
di

V24> - V,,; = [Vi<M,

dn dh .
gI+vi^-VIJ = ln,4,l

ST dt 2
sT +‘''"''a? " 3V|l(-'+ 9) = |T^1’

i/j = -V||[^ - n - (1 + k)T\.

(70)

(71)

(72)

(73)

Equations (71)-(73) represent the vorticity, electron density, electron tempera­

ture and Ohm’s law equations from Eqs. (19), (1), (3) and (20), respectively. 
The nonlinear Poisson brackets are defined in (22). An me/mj order nonlinear 

term in the Ohm’s law has been dropped. In Eq. (73), the generalized resistivity 

1/(77) and the temperature gradient induced current denoted by k. are given by 
Eqs. (21) and (23). The normalized parallel heat flux q in Eq. (72) is given by 

Eq. (8).
In the collisional fluid limit and constant temperature case, i> vs (the 

normalized Spitzer resistivity), the Ohm’s law becomes

vsj = -V||[<?i> - n\.

Then, our three-field equations reduce to the Hasegawa-Wakatani equations5:

dt ns
dn d(j>
m+Vdd^

-Vjj(n - <£) = [V2<M 

—~Vjj(n — (f>) = [n, (j)].
V S
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Although Eqs. (70)-(73) are valid for arbitrary collisionality and adiabaticity, 

some special care needs to be taken before these equations can be used for 

numerical simulations since the quantities is, k and q contain the mode frequency 

Ld. To advance the equations explicitly in time, we need to do the inverse Laplace 

transformations. This is usually a subtle problem. Here, using a procedure 

suggested in Section IV. C of part I,1 we suggest the following approximations.

Instead of using the generalized Ohm’s law (73), we use the electron parallel 
momentum equation (2) for the parallel perturbed current ~ —en0u^e). 
After writing this in terms of normalized variables we obtain

+ M = -VnW-n-r)
+H - u(j + 3<7/5), (74)

where
4 me Ln n LI

-b • vn,,
Sy/ir rrii cs en pspe

The closure terms H and q are still functions of us. They can be rewritten in a 
decomposed form

b • V • fl||e = Uv + Ht, 

<7||e = Qv + Qt + Q/■

Using the simplest one-pole approximations to the Z and Z' functions,1 we find 
that the components satisfy the following evolution equations (in unnormalized 
form, see Ref. 1):

d . 5 , \ ^ 2me/I
— + delSei + 7=:fc||Ute UV =-----—(«||Vte) J||,
dt 3e

5^ + ge^ei + ~^~k\\VtA Qt = -^<en0^||Te,

(75)

(76)

H j1

Qv

2
3 (V*e)2

tiqi Te 
-Wo

(77)
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where

d 25v/7t \
Ft + 9el/ei + 24(3v/^-l)fc||U‘V “ (78)

2

Ax = 2gei>ei + \Jfwl§k\\vte,

A2 = (tfei'e;)2 + \J^ F9e^eik\\vte + (5/3) (^||t;ie)2.

Equations (70), (71), (74), (75)-(78) provide closed fluid/kinetic equations for 
numerical simulation of electron drift turbulence. Unfortunately, as we can see, 
in order to include the Landau damping effects in a real time variable formu­

lation, we need to solve additional evolution equations (75)-(78) for the closure 
terms. However, since the closure term evolution equations (75)-(78) are lin­
ear, the numerical treatment should be much easier than the other nonlinear 

equations. While this procedure provides one numerically viable approach, pre­

cisely how best to embed the Landau damping effects in an efficient numerical 

simulation scheme remains an unsolved problem.

VIII. PRELIMINARY CONSIDERATION OF TRAPPED PARTI­
CLE EFFECTS

So far our discussion has been restricted to a sheared slab magnetic geom­
etry. Other kinds of kinetic effects arise in toroidal plasmas, for example the 

magnetic trapped particle effects. Due to the new free energy sources they 

make accessible, the magnetic trapped particle effects play an important role 

in determining the plasma stability and turbulence of toroidal magnetized plas­

mas. Since trapped particle effects are basically single particle motion kinetic 

effects, the question of how to include them self-consistently in the fluid equa­
tions is still a challenging problem. The usual way of treating trapped particle 

problems is to separate a plasma species (electrons or ions) into trapped and 

untrapped species and have two sets of fluid equations for each components (e.g. 
the usual Kadomtsev and Pogutse approach,22 or a fluid equation for the un­

trapped component and a kinetic equation for the trapped component). There­

fore, the number of the equations needed for describing trapped particle modes
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is nearly doubled from that needed for ordinary drift wave instabilities. This 
makes the analytic or numerical treatment very difficult. In this section we 

will show that the separation of the fluid equations into trapped and untrapped 

components can be omitted when the trapped particle effects are included in 

the closure relations. To see how this procedure works, for simplicity we use 

the drift kinetic approach for calculating the closure relations instead of the full 

Chapman-Enskog-like approach.
The closure terms in Eqs. (2) and (3) can be written for an inhomogeneous 

magnetic field case as

2
b • V • II|| = -b • Vify — if ||b ■ V In B,

o
(79)

Vy • q = b • V<7|| -<?||b • VlnB, (80)

where the kinetic definitions of 7T|| and g|| are

Using the usual drift kinetic equation, we can solve for the perturbed distribu­

tion function / for the trapped and untrapped particles. The detailed derivation 

of if|| and q\\ is given in Appendix A where we assume electrostatic modes and 
adopt a Krook collision model. Substituting the solutions (A.l) and (A.2) into 
the above definitions, we find that the parallel stress force is composed of three 

parts: trapped particle contribution 7f||t Eq. (A.3), untrapped particle Landau 

resonance effect if^ Eq. (A.7) and magnetic resonance effect ifj^ Eq. (A.10). 

The total if|| (see Eq. (A.12) of Appendix A) is given by

where

TTll K\\t + 7f L 
|| u + 7f M 

|| u

2nmvt y S,
UJ

S2

S, = V^z + O - v^H^ + M/), '=1,2.

(81)
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Here, a small inverse aspect ratio e ~ a//? <C 1 has been assumed. The trapped 
particle contribution is denoted by /; given in Eqs. (A.4), the Landau resonance 

effect Li in Eqs. (A.8) and (A.9), and the magnetic drift resonance effect M; in 
Eqs. (A.11). (Note that the magnetic drift resonance effect due to the trapped 

particles can be neglected due to the s/e <C 1 ordering.)
Similar expression for q\\ is given in Eq. (A.13) except that due to the odd 

velocity moment there is no trapped particle generated parallel heat flux, just 

like the plasma current has no direct contributions from the trapped particles.

A. Dissipative trapped electron instability
To demonstrate the validity of our single species treatment for trapped par­

ticle modes, we discuss the simplest trapped-particle mode — the dissipative 
trapped electron mode.23 For cold ions we have

'kid UJ.. \ el

TVn0
+ -6,Ll>‘ U)

(82)

For electrons (as an entire species) the density and parallel momentum equations 

can be combined together to yield,

no
1 -

2a;2
klv te

2u>2
ed 2 TTjj 
Te 3 Pe

+
a;, ecj)

uj Tk
(83)

where temperature fluctuations have been neglected. The kinetic effects (trapped 

electrons, electron Landau and magnetic drift resonance effects) have been all 

included in the closure parallel stress force term 7r||. For electron drift type 

modes, u>/k\\ ute, using Eq. (81) and the quasineutrality condition n* = ne, 

we obtain the following dispersion relation:

4 
3

1 + V -
UJ*

UJ
1

UJ*

UJ

Sr - ^S2
UJ

= 0. (84)

Here, terms of order uj2/k^vle <C 1 and ds/v2e = me/nii <C 1 have been 

dropped. When the untrapped particle contributions are neglected (L = M = 

0), Eq. (A.6) yields the dispersion relation

1 + V
UJ

UJ
-e + ze3'2 UJ

Vei
1 -

UJ*

UJ

^JUJ *eTj e

2uj
= 0. (85)
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To the lowest order we have

Ur — CJ«e/(l + &a),

J_ ~ e3/2^i ^ + .
\/7r

This is the same as the typical kinetic result,23 apart from some inconsequential 

differences in the numerical coefficients.
This simple example shows that analogous to the inclusion of Landau damp­

ing effects discussed in part I of this work, the trapped (and magnetic drift 
resonance) effects can be also included in the fluid equations through closure 

terms 7f|| and q\\. Consequently, it is not necessary to separate the trapped and 
untrapped components and have separate fluid moment equations for them as 

is done in most treatments22 of trapped-particle instabilities. Rather, in our 

model one need only treat the electrons and ions as whole species with regular 

fluid moment equations, with the trapped-particle effects entering through the 

closure relations.

IX. SUMMARY AND DISCUSSION

We have investigated various plasma microinstabilities using the set of 

fluid/kinetic moment equaitons developed in Part I of this work. A new gen­

eralized perturbed Ohm’s law has been derived which is valid for arbitrary 

collisionality u;/i/ej and adiabaticity u/k^vte. Therefore, both the dynamic (fi­

nite iui) and kinetic (Landau damping) effects are uniformly included. In the 

fluid limits the new Ohm’s law reproduces the previous Hazeltine, Dobrott and 

Wang result [Eq. (50) of Ref. 3].
The advantages of using the unified equations [Eqs. (l)-(ll)] have been ex­

hibited through applications to the major plasma drift type microinstabilities 

— the electron drift modes, rji modes and micro-tearing modes. Due to its 

fluid characteristics, the analytic procedure is analogous to the usual analysis of 

the classical Braginskii equations. The result, however, is valid for any ratio of 

to/vei- The dynamic and kinetic effects are automatically included through the
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new pseudo-transport coefficients in the closure relations. As we have shown 

in this paper, generalized theories can be easily developed using our unified 

equations for the major plasma microinstabilities by following the usual fluid 

analysis. These generalizations and unifications not only build a bridge connect­

ing the fluid and kinetic descriptions, but also opens many new areas for both 

linear and nonlinear plasma microinstability and turbulence studies. The appli­

cation of these equations to various major microinstability problems described 
in this paper has just begun. Further effort needs to be devoted to solving the 
generalized equations that have been derived in this paper in order to explore 
the physics in the intermediate parameter regime.

The application of the unified equations to nonlinear electron drift instabil­

ities and turbulence has been addressed. The resultant generalized Hasegawa- 

Wakatani equations [Eqs. (70)-(73)] involve electron temperature fluctuations 
and include electron Landau damping effects. An inverse Laplace transforma­

tion of the closure relations to the real time space is suggested for numerical 

simulation purposes. Application to nonlinear ion drift waves (rji mode turbu­
lence for example) can proceed in the same manner.

The additional kinetic effects induced by non-slab magnetic geometry effects 

{e.g. magnetic trapped particle, and magnetic drift resonance effects) have been 

studied using the same kinetic closure idea. Preliminary results show that in 

contrast to the usual separation treatment for trapped and untrapped compo­

nents of a plasma species, our model need only treat the electrons or ions as 

whole species with regular fluid moment equations where the trapped particle 

effects entering through the closure relations. A great simplification is therefore 

achieved.
Through this work (parts I and II) we have shown that a unification of the 

fluid and kinetic descriptions of plasmas can be achieved by using the lowest 

order fluid moment equations and careful kinetic calculation of the needed mo­

ment closure relations. The unified equations possess the attractive simplicity 

and consistency features we desired. Since this work has been concerned pri­

marily with a sheared slab geometry, the resultant equations can be considered
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as a generalization of the classical Braginskii equations.2 Much work needs to 

be done to extend this work to include neoclassical effects (viscous damping, 

bootstrap current, etc.) and full trapped-particle effects within the Chapman- 

Enskog-like formalism. Also, how to self-consistently include the nonlinearity 

effects and other intrinsical kinetic effects (nonthermal high energetic particle 
effects, for example) in the Chapman-Enskog closure procedure is certainly an­

other important and challenging topic. Nonetheless, the present work (parts 
I and II) has laid out the basic approach and demonstrated its power for a 

number of important plasma problems.
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APPENDIX A: CALCULATION OF ^ AND g,, USING 
THE DRIFT KINETIC APPROACH

The calculations for both 7f|| and q\\ are similar. We only present the detailed 
algebra for the 7f|| evaluation, but give results for both closure equations.

Using the following conventional gyrokinetic equation:

f = Tpr f m + g,

(u-uD- fc||U|| - iC + g = - u*)4>,

where b-V = ik\\ + (l/qR)(d/d9), 9 is the poloidal angle, q the safety factor, and 
R the plasma major radius. Here, we have assumed electrostatic perturbations 

and small FLR effects. In low collisionality regimes we have

W’6 =
qR

Thus, the lowest order g does not depend on 9. Bounce-averaging the gyrokinetic 

equation for trapped particles leads to

, .V|| J ,

U0 , Z(t>
gt —------1—j ~—ji

U) — LOd + IVeJ J i
(A.l)

where a Krook collision model has been used with C(gt) = —Vefjgt, in which 
for trapped electrons i/eff — i/ei(u)/e, (e = r/R <C 1). The 9 dependence in (j) 

has been assumed to be small. The bounce average is defined by

^ / rsn nR \ / rsn n R \= ( f" M^A) ( [‘
\J-ea |U||| J \J— Til

Similarly, for the untrapped particles we have

LO — id* e<j)
9 U   7 1— I — | • — J M nn ?

to A:||\v\\ | — ujd + 2^ 1
(A.2)

where the transit average is identical to the bounce average except for the 

replacement of 0O by t1"-
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The trapped particle contribution to 7r|| can thus be expressed as

7T
h = mJ d3v - y) 9t

= nmv 2

T L UJ J UJ .
(A.3)

Here, we have defined

h

h
—~2 [ ----
nv: Jt 1 —

(yj - vim
■/m (A.4)

Uq/uJ iUeff/ujJ ^ — 3/2

To evaluate the integrals, we transform the velocity space variables (f||,Ux) —* 
(\,E), where E = mv2/2, A = //,/E and U|| = crv\/l — \B with a = si5rn(y||). 

Then, we have
9 u2, 2E1 / 3.wjj---- -A = — 1 - -\B) ,
11 2 mV 2 /

y „ ^ \Z27t r00 /— [x<- BdX
/o >/! - Af? ’

where Ac = l/Bmax corresponds to the turning points of banana orbits. The 

integration over A in E and /2 can be readily worked out (neglecting the slight 

A dependence in u>d) to yield

lx’ (i - 3-xb
s/l-XB V 2

1 /T 2B L
a b+Bzrv1

B
Br,

1
2'

(A.5)

Thus, the integrals reduce to (for electrons)

x3/2e~xdx(7>) r_

\ I2 ) Jo 1
/muD/uj + ix 3/2(vei/eu) lx-3/2

The y/e factor has been introduced here based on the fact that the fraction of 

trapped particles is ~ y/e.

For uei/e uj ^ ujd-, the / integrals can be performed to yield

3/2 £ ' 1
2 • ^ ^ 

le^te Vex
1 -

UJ
5w*e7?e

2uj J T(
\e\4>

(A.6)
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(Note however that the integrals I\ and also contain the trapped particle

magnetic drift resonances for uj = &d{x) and these resonance effects would
become important for the opposite limit of vei/e <C uj.)

For untrapped particles, both Landau damping and magnetic drift resonance

effects need to be included. Since the k||U|| and u corrections to the ujd term

are small near the uj ~ ujd resonance, the two resonances can be separated:24

1 1 ujd
-----------------------------------------------------------------------------  ~------------------------------------------------—|-----------------------------------------------.
uj — &||U|| — ujd + iv uj — + iu uj(uj — ujd)

Therefore, we can write

*IN -

where the L superscript represents the Landau resonance part and the M su­

perscript represents the magnetic drift resonance. Assuming that the energy 

dependence of the effective collision frequency can be omitted for the calcu­
lation of Landau resonance effects, we can use our slab geometry calculation 
result (see Ref. 1). Multiplied by the fraction of untrapped particles (1 — \/e), 

the Landau resonance part becomes

~ r /~\ 2

K\\u = (l - y/e)nmvt —
uj J UJ

where

it = l^(Z + (Z'),
2 k\\vt

1 “ Vz'-cz' + l-c),Ll 2 kfV,

with C = (a; + iu)/k^Vt being the argument of the Z and Z' functions. 
The magnetic drift resonance part can be also similarly written as

(A.7)

(A.8)

(A.9)

~ M7T 1 = (1 - Ve)nmu2^

with
Mj

M2

T

1 f00 Lj£,x^/2e~xdx

, UJ.\ UJ.Tj1 — — j Afi —-----AL2
uj J u>

2v/7r
/ 1

/m .
uj — uip \ x —3/2

(A.10)

(ATI)
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The total 7T|| is thus the sum of its three parts:

7T|| = ^lli + ^Hu + ^Hu

2 e<i^
' t J •

UJ J U)
(A.12)

where

Si = Sell + (1 — S){Li + M/), / = 1,2.

The <711 equation is much simpler. Since qu is an odd uy moment, trapped 

particles have no net effect on it, just like the plasma current has no direct 

contributions from the trapped particles. The untrapped particle magnetic res­

onance effect will also vanish (when the boundary-layer effect24 is ignored up 

does not depend on ny), since the particles moving in the opposite directions 

carry the same amount of heat. Therefore, the main contribution to q\\ will 
come from the untrapped particle Landau damping effect. That is, we have

?ll - ^llu

= (i - S)vvt
e<f) ! _ ^ _ ^LK2

uj J uj .
(A.13)

where again the result from a slab geometry calculation1 has been used to yield

K, = \S-(ez’ -zz'n-i).
2 &yUf

Ki = -
1 UJ

2 k\\vt
(CZ1 - 2(JZ' - 3CZ/2 - C - 1).
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Fluid limit

(us, v » k\\vt)

Adiabatic limit

(u>, v < A;||Ut)

^\\j
.•2 vlj 2>A vtj
3 u; + idjVji 5 k^vtj

x\\j
,5 ^ 9 v2tj
4 u; + igjVji 5y/K k\\Vtj

J h 2 2
3 (^ + igjVji)2 5

2 iuei 48 13 Fr If ^ei
HI s/ku + igevei 257T V ^k^Vte

Table 1: Asymptotic expressions for the pseudo-transport coefficients. The 

subscript j = e for electrons and j = i for ions. The parameters d and g are 
given by Eqs. (17) and (18).
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Fig. 1: The generalized resistivity 7) as a function of x (distance from the mode 

rational surface). Here, rjs is the Spitzer resistivity, xe = u;Ts/&j|Ute, and the 

results for three different ratios of ueilio are shown.
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2.2

Fig. 2: The 77; mode threshold value r}c as a function of the ion collision frequency 

va normalized by k\\vti.
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