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Unified Fluid/Kinetic Description of Plasma
Microinstabilities. Part II: Applications

Zuoyang Chang and J. D. Callen

The unified fluid/kinetic equations developed in part I of this
work are used to study plasma drift type microinstabilities. A gen-
eralized perturbed Ohm'’s law is derived (for a sheared slab magnetic
field model) which is uniformly valid for arbitrary collisionality ULV
and adiabaticity ulk\\vz. For electron drift waves we demonstrate
that the collisional and collisionless drift wave instabilities can be
uniformly described by replacing the Spitzer resistivity with a gen-
eralized pseudo-resistivity. Similarly, for ion drift type modes we
obtain a uniformly valid dispersion relation for the ion temperature
gradient modes (r/t modes). The 77; threshold as a function of ion-ion
collisionality and ion Landau damping strength is addressed. Apply-
ing the unified equations to electron electromagnetic modes leads to
generalized coupled equations for (> and Ay which include electron
Landau damping effects and are valid for any a;/i/. It is shown that
the semi-collisional micro-tearing and drift-tearing modes of Drake
and Lee [Phys. Fluids 20, 1341 (1977)] can be easily reproduced
in the appropriate limit. Generalization of the two-field Hasegawa-
Wakatani turbulent equations [Phys. Rev. Lett. 50, 682 (1983)] to
include electron temperature fluctuations and linear Landau damp-
ing effects is also discussed. Finally, a new method is presented to
facilitate the study of magnetic trapped particle modes using our
kinetic closure procedure. It is found that by including the trapped
particle effects in the closure relations, the usual separation of the
fluid equations into trapped and untrapped components becomes

unnecessary.



I. INTRODUCTION

In part I of this work,] we developed a set of closed fluid moment equa-
tions for perturbed density (n), parallel flow ({«||) and temperature (T) that
are uniformly valid for arbitrary collisionality where ui is the fluctuation
mode frequency, u is the collision frequency, and adiabaticity wjlk\\ve, where
A is the parallel mode number and vt is the species thermal velocity. Due to
the usage of a Chapman-Enskog-like procedure and a moment approach (see
part 1) these equations exhibit the same structure as the classical Braginskii
fluid equations? except that the transport coefficients (viscosity //, thermal dif-
fusivity y, etc.) have been self-consistently generalized to the low collisionality
(or even collisionless) regime, and the important linear wave-particle Landau
damping effects are included. The establishment of this unified description of
plasmas is mostly suitable for drift type microinstability studies. It not only
greatly simplifies the theoretical analyses of plasma microinstabilities, but also
enlarges the window of validity for present microturbulence theory models and
facilitates the numerical simulation of plasma turbulence that is more realistic
with respect to present tokamak operational regimes.

The main goal of this paper is to show how to use the unified equations to
study various drift wave problems and how the resultant unified theories recover
the previous results from collisional fluid analysis and collisionless kinetic anal-
ysis in the corresponding limits. In Section II we first review the fluid/kinetic
equations developed in part I. A generalized perturbed Ohm’s law which gen-
eralizes the widely used Hazeltine, Dobrott and Wang’s result3 to include the
electron Landau damping effects will be derived in Section III. In the fluid limit
(viU  A:||Vt) we recover Hazeltine et al.’s result; in the adiabatic limit we show
that electron Landau damping replaces the Coulomb collision dissipative effect
and resists the current flow. Section IV through Section VII discuss applica-
tions of this work to many existing branches of plasma microinstability theory.
In Section IV the linear electron drift wave theory is developed using our uni-

fied equations. It is shown that the resultant dispersion equations (local and



nonlocal) have exactly the same structure as the usual fluid ones except for
the replacement of the Spitzer resistivity by the generalized pseudo-resistivity
from Section III. These dispersion equations describe not only the dissipative
electron drift instability, which is driven by the collisional drag force, but also
the collisionless instability (universal instability) driven by the electron Lan-
dau damping mechanism. A similar situation is shown to happen in the ion
drift wave analysis in Section V where the ion temperature gradient modes (//;
modes) are addressed. The well-known instability threshold values (r/c) for the
fluid i branch (ric = 2/3) and kinetic 7ji branch (rjc = 2) are again recovered.
Using the new uniformly valid dispersion relation we obtain the Tjc as a function
of the ion-ion collisionality and ion Landau damping strength. The electron
electromagnetic modes are studied in Section VI where the generalized coupled
eigenvalue equations (for <> the electrostatic potential and Ay the parallel vector
potential) for micro-tearing type modes are derived. When the mode is purely
magnetic, our dispersion relation easily reproduces the previous semi-collisional
micro-tearing4 and drift-tearing3, 4 instabilities in the appropriate limits.

Since all nonlinear terms are retained in the three moment equations (though
the closures are linearized), we can use them to study plasma microturbu-
lence problems. In Section VII, we discuss the generalization of the Hasegawa-
Wakatani two field ((j) and n) equationsi which have been widely used for elec-
tron dissipative drift wave turbulence studies.6 Due to the complicated > de-
pendence in the closure coefficients, the direct application of the generalized
three-field (<>, » and 7) equations for arbitrary z/v and w/k™Vt becomes dif-
ficult. A suggestion for simplification arising from one-pole approximations to
the plasma dispersion functions! (Z and Z') is proposed. The net result is an
extended plasma turbulence description which requires the inclusion of more
time evolution equations (for the closure terms).

Although the entire work in this paper and its corollary part I have been
developed for a simple sheared slab magnetic geometry, the idea is equally ap-
plicable to a toroidal geometry where magnetic trapped particle effects become

another important means of accessing the plasma free energy. In Section VIII,



the usual drift-kinetic equation is used to calculate the closure relations for a
toroidal geometry. It is demonstrated that by including the trapped particle
effects in the closure relations we can dramatically simplify the description of
trapped particle modes. In the new description the usual separate fluid equa-
tions for trapped and untrapped components of a single plasma species can be
avoided. The trapped particle effects are included via the closure relations. A
simple example is given for the dissipative trapped electron mode. The summary

and conclusions are given in Section IX.

II. REVIEW OF THE UNIFIED FLUID/KINETIC EQUATIONS

The closed set of the fluid/kinetic equations for a sheared slab magnetic
geometry developed in part I of this workl can be summarized as follows. The
three basic fluid moment equations for perturbed density (h), parallel flow (ii||)

and temperature (7) are (for both electrons and ions)

| — -I-VE-VX] n = —n0V|U| —1c0Vj_* Vp — V.E + VnO, (1)
+Vs:Vj.jfll = enoE|-V| Poy o v x ujs
b VAT + AV )

3
—2noVE ' vl -poV||U]|| - V||9]|
—PoV L ' Vp, 3)

where V# = cE x B/R! is the usual E x B flow velocity and b = B/IB is a
unit vector along the magnetic field. The divergence of the polarization flow is

given by
v =v- M1+ “>vi (4)
The pressure gradient term in Eq. (2) should be understood as
V|lp = ik\\p + b+ V(p0 + p)- (5)
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The extra part in the second term of the right side of Eq. (2) is a parallel
vorticity induced pressure anisotropy, which comes from the reduction of the
gyroviscous stress force.7, 8 9 The /inear closure relations for the parallel stress
force (b *+ V ' II||) and heat flux (“y) are calculated in part I of this work by
using a Chapman-Enskog-like approach and a moment approach. The simplified

formulas arel

b Viri|le = —n0me/qleVy£tlle — ~2rzoi 1", (6)
b 'V riyi = -nom”y.Vyttyi — /ino(VyTi)i, @)
g\le = —Aepeiille — noX||le(VyTe)i + rilpe(ulle — Uyt), ®)
7). = -hiPiU\li — noXy~VyT,)!, )
where
(VyD)! "yt + b- VTO. (10)

The electron parallel frictional force is given by

Rl\le = (r/s/0.51)|elnoiy + rA=n0mei/et—, (11
OsjTT pe
where r/s is the Spitzer resistivity
mPulb

IIls = 0.51
e nl

and vei (and later va) is the electron-ion (ion-ion) collision frequency.? In

Egs. (6)-(9) the pseudo-transport coefficients are given by (j = e,i):

/vty
- 12
Mib shy 12
= VY iz, (13)

J birk
= -57), (14)

48(3v/x — 1) %ei

Gvix = 1) el (15)

257t=v/Tr k\\Wze Z(U),

where /iy is the parallel flow viscosity coefficient; the Ts are the coefficients of

the stress forces induced by the perturbed parallel temperature gradients; X|| is



the parallel thermal difFusivity coefficient; the 4's are the heat pinch coefficients;
and ry is the coefficient of the electron frictional heat flux. The arguments (£’s)
in the Z and Z’ functions are functions of mode frequency wu, collision frequency

/ and K|liq:
£l = (3/5)(w> +
H =V3/10(a; + igi V"KkwV'tj),
H = 36(v> + igjvji)j (2bKk\Vtj)i (16)
M =243v/Tt = 1)(" + igeVei)l{?bnk\\vte),
where dj and gj are constants:

de ~ 0.90 + 0.64/z, di ~ 0.32 (17)
#e ~ 098 + 0.42/2, gl ~ 0.42 (18)

with 2 being the ion charge state.

Asymptotic expressions of the pseudo-transport coefficients in both the fluid
and adiabatic limits are very useful in the following analysis. They can be easily
obtained by using the asymptotic expansion of the Z functions. The results are
listed in Table 1.

The quasineutrality condition (which leads to a vorticity equation) that we
will use in this paper is

V-1=0,
which, using the results obtained above, becomes
V' GlI+i-Hip) =0, (19)

jlI eno(fllji fljje)t>,
J> = -"b X V(p, + Pe) + X V(pi + Pe),

jp = en0Vp.

As discussed in Ref. 1, this set of equations (1)-(11) are uniformly valid for ar-
bitrary ratios of 22/« and ¢j/k||Ut. This unified feature allows us to study plasma
drift instabilities of arbitrary collisionality and Landau damping strength uni-

formly within a fluid framework.



III. GENERALIZED PERTURBED OHM’S LAW

Generalizing the classical fluid Ohm’s law [r/3J = E -- (1/c)V x B] to the
drift wave frequency regime (i.e., 7 ~ ~ is a key issue in plasma fluid
theories. A widely used generalized Ohm’s law is the Hazeltine, Dobrott and
Wang’s form3} [HDW form, see Eq. (26)], which is valid for arbitrary uz/rq,;.
Unfortunately, due to the fluid ordering > knvt used in their derivation,]
the HDW form is only valid in the fluid limit, or in the vicinity of a mode rational
surface. The important electron Landau resonance effects are therefore missing
in the HDW formula. This shortcoming can be overcome by using our unified
fluid/kinetic equations. Using the electron parallel momentum equation (2)
(where the finite Larmor radius effect induced scalar pressure anisotropy term
can be neglected for electrons) together with the closure relations Egs. (7), (8)

and (11) we obtain a very general nonlinear perturbed parallel Ohm’s law:

+ = A + ">(wVIPH + Ufv.r,),
e
mevel / 4 | k\ u
V', /Zhe , * )] Ml
e yo-y vei vei
mec
20)
Here, the generalized resistivity i) is given by
mekl 4  meile; ; o1
= ~ ] —T ___AN — >
V="ro 10 }no le Sv/m e2nl (x %

with Tjo = 773/0.51. This generalized resistivity extends the classical resistivity
to include the contributions from electron inertia (the second term on the right
side), viscous force (/7|le), frictional heat flux effect (r]|) and heat pinch (%e)
effects. In Eq. (20) the E x B nonlinear terms are denoted by the Poisson
bracket

[a, 3] =b 1 (Va x V/3). (22)

The first two terms on the right side of Eq. (20) are the usual parallel electric

field and pressure gradient correction terms. The third V||Te (“thermal force™)



term is from the electron thermal heat flux (x|le) and temperature gradient

induced stress force (/e) contributions expressed by the coefficient /c,

R (v (23)

Note that since our closure relations are linearized, we cannot include the non-

linear term from (V||Te)i as we did in Eq. (5). The last two terms in Eq. (20)
are the ion contributions which can be neglected when up <C ulle.

In the fluid limit i.e., vei,to k\Wte, the heat flux effects (terms with X]|

and r||) become important while the viscous effects (terms with /q| and /) are

small. By taking ku — 0 we obtain

Sy/i
vy o (24)
0.51 4 'bsjn U] + igevei
2 P
. o (25)
V/iru + igevei
Then, the generalized Ohm’s law Eq. (20) can be reduced to the following form

VTP
. Bx  VPe 0’

Vsjll = + oi B enl (26)
where
051 | = ibveilu sv/m 01
S~N(1 + igeVei/u) 4 vei
099 1 — 0.54ta;Te (for b, 27
1 — 2.98iuJTe — 1.04a;2r"
2ivei/u
«@ = VA1 + igeveilu>)
~ 0.80(1 ~-OMiuTe)-1 (for 2 = 1). (28)

Equations (26), (27) and (28) are identical to the HDW formula [Egs. (50)-(52)
of Ref. 3], which was derived using a variational approach and solving the drift
kinetic equation iteratively for large Lj/k\\vte. When i/ > u, further expansion

of Eq. (26) leads to Hassam’s formulall:

rlafl — i0.68(u/vei)]j\l = Ey + (en0) 1(V||pe)i
+(0.80/e)(1 + Z'0.71cu/uet)(V]|re)l. 29)



In contrast to the above formulas, since there is no assumption of large ui/k™Vt
made in our Ohm'’s law Eq. (20), our formula remains valid for arbitrary
Therefore, we can study the important electron Landau damping effects in the
small ulk\\Vte adiabatic regime.

In the adiabatic limit, vei,u <C kl\\vte, we find that the viscous effects become

dominant. Using Table | we have

mekjj 2v/7r mefc||Ute 30
e2n,) 5 e2n) ' (30)
K — —/e — -2/5. 3D
Therefore, Eq. (20) becomes (also neglecting the ion flow)
N
/27 mekivi  Jr=Te)i- (32)
e2nl

This result shows that away from the mode rational surface (where fc| = kyx/Ls
becomes large) the electron Landau damping effect replaces the Coulomb col-
lisional dissipation. In the sheared slab geometry, this “Landau resistivity”
increases linearly with the distance from the mode rational surface (x). The
spatial behavior of 17 as a function of x for different veilu) values is shown in
Fig. 1. First of all, the wholespatial region can be clearly divided into two
regions: the fluid region where x < xe (xe is defined by u>/k\\(xe)vte = 1) and
the Landau damping region where x > xe. In the fluid region the dynamic effect
(iv) can enhance the real resistivity when veilui becomes small. The change in
the imaginary part of i) also increases (becoming more negative) with decreasing
Uei/uj. Second, in the adiabatic Landau region the Landau damping mechanism
dominates the pseudo-resistivity even when veiluj is quite large (~ 10). We
also find from Fig. | that the adiabatic region increases as the ratio Veiju de-
creases. For example, when = 10 the Landau damping starts to take over
for x > xe, whereas when Vei/u=0.1 the Landau damping effects becomes
significant for x < 0.5xe.

The linearized form of Eq. (20) can be also expressed in terms of the electric

and vector potentials () and All by using the following electron density and



temperature equations (from Eqgs. (1), (3) and (8)):

£, <> M|~ 3
w wend TE B (33)
i N A P> -2, AN
é (1+5;.f§>' = LedVe (eYe + *3’\1|X||e/e\7;||J

2 Al ~
-x(1 ~ =+ 11| —LJH
3 Wweno

|

20— ne™ g 34
'5( — Q)w Ilj- (34)

Here, b * VTe = —iu*elleeA\\/c has been used. Substituting (33) and (34) into
(20) and neglecting the ion parallel motion, we obtain an alternate form of the

linear generalized Ohm’s law

mekiv:
C L ;
U 2e2nlv>
*
b to U .eVeH iud—+, (35)
id id
where
912 -1
H = (l+—7—X|lle—K| (1+* 36
( SV 1o [ ( 3q; Xle (36)
H =1+-(1 —he+ G7)
2 . .
#3 =1+ T—rZEX\\e — /f2— IJZA)/J{’UeHr. (38)
SV/TF) 4o

This form will be used in the micro-tearing mode studies in Section VI.

IV. ELECTRON LINEAR DRIFT WAVES AND INSTABILITIES

To simplify the analysis we use the conventional cold ion, constant electron
temperature and electrostatic mode assumptions. In this case, the quasineu-

trality condition Eq. (19) becomes

enl 25V 17 N~ n
(39)
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where ps = c¢s/Qi, ¢/ = Telm.i. From Eq. (33) the generalized Ohm’s law

becomes

> 4 Yz -(1 — u.elw)ik\\(G)

(k\vl k\ \.77ze,
+ ~1 + KT (40)

For cold ions the niu is mainly the ion acoustic motion:

clh 4>

o~ 41

Using Eqgs. (39)-(41) we obtain the following local (d/dx 0) dispersion equa-

tion for electron drift waves:

{w [I - iuifielno/[k"Te]" + iu —uime — k\cJ10} < = 0, (42)

with bs = k”p”. Solving Eq. (42) for small growth rate modes and dropping the

last ion sound wave term, we obtain

W, (43)

2n(

7= k\wtM + ba) eme Red). (“44)
This result looks the same as the usual fluid result6 except now the resistivity is a
generalized one containing important dynamic and kinetic information. There-
fore, dispersion equation (42) is valid for arbitrary collisionality and Landau
damping strength. In the collisional limit, 1 reduces to the Spitzer resistivity
@/3). Then, we immediately obtain the well-known dissipative electron drift
wave.b, 12 In the adiabatic limit the resistivity arises from the electron Landau
damping induced viscosity. Using Eq. (30) we then find

7Y (45)
5 k\\vte

This is the familiar collisionless drift instability (universal instability) result.12
(The extra factor 4/5 in Eq. (45) is due to the assumption of constant temper-

ature in the present simplified analysis.)

11



A generalized nonlocal electron drift wave eigenmode equation can be easily

obtained from Eq. (42) by taking d>(x, t) = 4>(x)exp/i{kyy — cjt)]. The result is

' /
MNINS x | - (46)
dx* \ —IXg u X7
where ) UJ2
, e nouj , _
Vo= X = . 47
TPk? " kioe? ! “7

As in the local case, Eq. (46) is identical to the dissipative electron drift eigen-
mode equation derived by Lui Chen, et a/.,13 except that the resistivity in xR
is a generalized one defined in Eq. (21). It is this replacement (/s — rj) that
makes Eq. (46) valid for electron drift wave analyses in arbitrary collisionality
and adiabaticity regimes. Detailed study of Eq. (46) requires a more sophis-
ticated WKB treatment and numerical analysis,!3 and is beyond the scope of

this paper.

V. ION LINEAR DRIFT TYPE MODES

Similar to the electron case, the generic equations for ion drift wave problems
can be derived from Eqgs. (1) - (9). When the electron-ion friction is not very
large (mei/e,/m,<< u;,), the ion fluid/kinetic equation set decouples from that
for the electrons. Substituting the closure equations (6) and (9) into (1) - (3),
neglecting the vorticity induced pressure anisotropy in Eq. (2), we obtain the
following three linearized equations for ion electrostatic instability studies (the

species subscript i is suppressed for simplicity):

2o = (1 + k™t + tu, s =6 | e (“48)
nl T \7" p 3p,
ok | <> h zZ
fu+ UIf)— = -kt 7 +p + T(l-]) (49)
vt z
2 ... T
(w H-zfejxin)™; = -2, )Y + 1:(1 ~ h + b)k]lu|
(50)
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where b = (\/2)kLpi and Ty = (2/3)b '+ V ' ri|1.

To illustrate how this set of unified equations works, we will discuss the ion
temperature gradient modes (p; modes). As usual, to simplify the analysis we
assume the electrons are purely adiabatic. Thus, the quasineutrality condition

leads to

)

m
—_— == r =1T1e/Tt 51

Solving the closed equations (48)-(51) for the small finite Larmor radius effects

{kj-Pi 1) case, we obtain the following generalized dispersion equation

. u ki A
i 1+ v v Kikar | kv rPi o0 52)

where
Gi — | +i— (53)
id
|
| + = 1 +3301 ~M (54)

G
G’ = (I-II)(I+ Ax,!) I (55)

The rji mode can be easily addressed by taking u« <C CJ,,14 in which case

Eq. (52) becomes

kWt G3

u2 = V- A
5 G A = i) (56)

This is a generalized 77; mode dispersion relation valid for arbitrary collisionality
and adiabaticity. In the collisional limit, Va u, k\\vti, we have GI1,G3] — |
and the heat pinch term Ai — 0. Then. Eq. (56) immediately reproduces the

well-known fluid purely growing ri mode result
7= - 2/3)1/1. (57)

Thus, the fluid threshold is rjc = 2/3. On the other hand, in the adiabatic
limit, k\\vti © vJ, Va, the ion Landau resonance effect becomes dominant. Using
Table 1, we find

13



The dispersion equation (56) then becomes

w - 2), (58)
which reproduces the kinetic 7z, mode thresholdls, 16
Ve = 2.

Therefore, our equation (56) does unify the fluid and kinetic features of the
rji modes. Using Muller’'s method for numerical root searching we obtain from
Eq. (56) the threshold rjc as a function of zq, shown in Fig. 2. In the intermediate

region where zq, — k\\v#i, we find that the rjc is about 1.3.

VI. MICRO-TEARING MODE THEORY

Micro-tearing modes3, 4 17, 18, 19, 20' 21 are a set of electromagnetic modes
driven by either magnetic free energy (A'-micro-tearing mode) or electron tem-
perature gradient (z/e-drift tearing mode), with finite collisionality. As a possi-
ble candidate for plasma anomalous transport in tokamaks, these modes have
often been invoked and intensively studied. In this section we first give the
basic equations for these modes derived from our fluid/kinetic equation set.
These equations are valid for arbitrary collisional regimes. In contrast to most
of the previous works,3, 4 18, 20 the electron Landau damping effects are self-
consistently included in our equations. We will prove that in the so-called semi-
collisional regime the previous results (the A' driven and rfe driven modes) can

be readily reproduced when the electron Landau damping effects are neglected.

14



Taking the perturbations as (4\,<f>) ~ [y4||(x), <>(a)] exp/—iut+ ikyy-\-ik\\z],
assuming cold ions and neglecting the ion acoustic effects, we have following

three basic equations for electron electromagnetic mode studies.

sh d)ii= )

Quasineutrality condition [Eq. (39)]:

h -) — — ——————60

Ampere’s law:

Generalized Ohm’s law [Eq. (35)]:

1 MoNe 3weTew \ ) 20 (1 Ul H3) ro™- 1)
a \ uJ uw J
where d is a generalized conductivity
-1
2
a(u,vei,ku(x)) = [ri + i RZAX)X 1o Ho (62)

2e2nolj

The kinetic effects are included in the H's defined in Eqs. (36)-(38) and in f.
These coupled equations for <) and A4\l are valid uniformly for all values of the
ratios wj/uei and ujlk\\vte.

To simplify the analysis and show how to reproduce the previous result by
Drake and Lee,4 we restrict ourselves to the magnetic perturbations and ne-
glect the electrostatic potential. This corresponds to the semi-collisional micro-
tearing regime.4 In this case, the eigenmode equation becomes

dji]l 2~ A4Trio; , ai.

— kAN = 1 -< 1 = H3)A (63)
dx) or uJ

Integrating Eq. (63) over the resistive layer (denoted by A) and using the con-

stant ijj approximation we find

1 dAii
All(0) dx _,
47rioi _fx / U] %,

uJ uJ

A =

H, (64)

15



where the discontinuity A' is the usual tearing mode stability parameter, and
the assumption d2/dx] k} ~ a~] has been made with a being the plasma
radius.

If the mode is well localized near the mode-rational surface, the fluid limit

expressions can be used. They are

H —H} ~1T —e— ) (65)
-y/Tro; + igeisei

+ (66)

and Eq. (24) for ri. Extending A to infinity to carry out the integration in

Eq. (64), we find after some rearrangement

0 Bel / wle  U)e " Xym 67

where following the notation of Drake and Leed
kyVteA'a
— 2y/rrklaLs
is the collisionless growth rate, &A™ = c/o;pe is the collisionless skin depth, c is
the speed of light and wpe is the electron plasma frequency. Dispersion relation
(67) describes the local fluid micro-tearing modes for arbitrary z¢/v values and

thus generalizes the Drake and Lee result.4

A. Collisional MHD limit case uei w> ay*
Under this ordering, fj — rla, H) — 3.17, and thus Eq. (67) produces a purely

growing mode with growth rate

diyv v.,.
i-OiifV'?), (68)

where re is the electron-ion collision time of Braginskii.2 This is identical to the

semi-collisional micro-tearing mode of Drake and Lee:

Tow  Var(ii/a)y

0.9572/3 1/3

16



B. Collisional drift case i/e, u ~ upy >> 7°31~1/3
In this case Eq. (67) reduces to

kOc Prmmmmmme
> -U>,e — (OmelleH3 + ~/k—rF---—-———\Jir]sH2 = 0, (69)
\J IKi@"!1

).~

where 173 ~ 1.81. Choosing the unstable branch for \/i (= —V*~2 —iV2/2)
and supposing that the growth rate is smaller than the mode frequency, we

reproduce the Tle driven drift-tearing mode3, 4
col ~ a;,2 =".e(l + 1.81r;e),
7 = 0.58u>*erjeLO+2/vei + 0.28~fkkocrjylio~"1

When the collision frequency is small compared with the mode frequency
(but still in the fluid region), Eq. (67) will also reproduce the inertially driven
tearing mode discussed by Hazeltine, et al.3

We note that in above analysis the electron Landau damping effects have
been totally neglected. As we discussed in Section III, the generalized resistivity
will be dominated by the electron Landau damping effects in the x > xe region.
Including the Landau damping effects properly requires a more careful treatment
of the integral in Eq. (64). Numerical analysis and a more complicated study
of the coupled equations (59) and (60) will then be needed. However, these are
beyond the scope of this paper.

VII. NONLINEAR MODE COUPLING EQUATIONS — GENER-
ALIZED HASEGAWA-WAKATANI EQUATIONS

The nonlinear fluid moment equations (1), (2) and (3) plus the linear
fluid/kinetic closure relations (7)-(9) can be used to study plasma drift type
microturbulence if the nonlinearities from the closure relations are not impor-
tant. In this section we derive a set of three-field (<> h, 7) mode coupling
equations for electron drift wave turbulence studies. These equations general-
ize the Hasegawa-Wakatani two-field (<>, #) turbulent equationsS to arbitrary

collisionality and adiabaticity.
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For simplicity, we adopt the usual cold ion assumption. Using following

normalization

L/n
\s rr A Ln (ef> h _fe vd ]| glle \
0.n.1.vdj.q) p3 \Je’ nOi ngi cs! enOcsSpecsj ?
me Ln e2nl 4
rrii cs  me
where Vd = —(cTe/|e|B)i~! is the electron diamagnetic flow velocity, we obtain

the three-field (<l n and 7) mode coupling equations

d. V24> - V”; = [Vi<Ma (70)
1
dn dh ,
gl +vi™~— L1 = In4,l (71)
ST dr 2
ST +"""57 ™ 3V|I(="+ 9) = [T~ (72)
ili = -VII[* =n - (1 + OT\ (73)

Equations (71)-(73) represent the vorticity, electron density, electron tempera-
ture and Ohm'’s law equations from Egs. (19), (1), (3) and (20), respectively.
The nonlinear Poisson brackets are defined in (22). An me/mj order nonlinear
term in the Ohm’s law has been dropped. In Eq. (73), the generalized resistivity
1/(77) and the temperature gradient induced current denoted by K are given by
Egs. (21) and (23). The normalized parallel heat flux ¢ in Eq. (72) is given by
Eq. (8).

In the collisional fluid limit and constant temperature case, P vs (the

normalized Spitzer resistivity), the Ohm’s law becomes
vsj = -V|[<?> — nl
Then, our three-field equations reduce to the Hasegawa-Wakatani equationsS:

-Vjj(n = <) = [V2<M
dr ns

d dj ..
o Viddn —Vii — ) = [n. )
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Although Egs. (70)-(73) are valid for arbitrary collisionality and adiabaticity,
some special care needs to be taken before these equations can be used for
numerical simulations since the quantities is, kK and ¢ contain the mode frequency
Ld. To advance the equations explicitly in time, we need to do the inverse Laplace
transformations. This is usually a subtle problem. Here, using a procedure
suggested in Section IV. C of part I,I we suggest the following approximations.

Instead of using the generalized Ohm’s law (73), we use the electron parallel
momentum equation (2) for the parallel perturbed current ~ —enlu’e).

After writing this in terms of normalized variables we obtain

+M = -VnW-n-r)

+H — u@G + 3<7/5), (74)
where
4 me Ln LI
s n -b VI,
Sy/ir rrii ¢s  en pspe

The closure terms H and ¢ are still functions of us. They can be rewritten in a
decomposed form

bV fllle = Uv + HT,

e= Qv+ Or+ O
Using the simplest one-pole approximations to the Z and Z’ functions,| we find

that the components satisfy the following evolution equations (in unnormalized

form, see Ref. 1):

d ) 5 N 2me/l
— + delSei + 7=:Ac|[Ute UV =—-—- «||Vte) J||, (75)
dt 3e
N+ getei + —N—klVtA QT = -"5<<enO"||Te, (76)
H; 2 mior T8
V*e)) (77)
Ov Vel o
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d 25v/m \
Ft + Yelfei + 243v/™~=Dfe|uUvV < (78)

where
Ax = 2geiei + \JfwilSk\\vee,

A) = (tfei'e;)) + \JNF9ereik\\vte + (5/3) (M[t;ie)2.

Equations (70), (71), (74), (75)-(78) provide closed fluid/kinetic equations for
numerical simulation of electron drift turbulence. Unfortunately, as we can see,
in order to include the Landau damping effects in a real time variable formu-
lation, we need to solve additional evolution equations (75)-(78) for the closure
terms. However, since the closure term evolution equations (75)-(78) are lin-
ear, the numerical treatment should be much easier than the other nonlinear
equations. While this procedure provides one numerically viable approach, pre-
cisely how best to embed the Landau damping effects in an efficient numerical

simulation scheme remains an unsolved problem.

VIII. PRELIMINARY CONSIDERATION OF TRAPPED PARTI-
CLE EFFECTS

So far our discussion has been restricted to a sheared slab magnetic geom-
etry. Other kinds of kinetic effects arise in toroidal plasmas, for example the
magnetic trapped particle effects. Due to the new free energy sources they
make accessible, the magnetic trapped particle effects play an important role
in determining the plasma stability and turbulence of toroidal magnetized plas-
mas. Since trapped particle effects are basically single particle motion kinetic
effects, the question of how to include them self-consistently in the fluid equa-
tions is still a challenging problem. The usual way of treating trapped particle
problems is to separate a plasma species (electrons or ions) into trapped and
untrapped species and have two sets of fluid equations for each components (e.g.
the usual Kadomtsev and Pogutse approach,2? or a fluid equation for the un-
trapped component and a kinetic equation for the trapped component). There-

fore, the number of the equations needed for describing trapped particle modes
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is nearly doubled from that needed for ordinary drift wave instabilities. This
makes the analytic or numerical treatment very difficult. In this section we
will show that the separation of the fluid equations into trapped and untrapped
components can be omitted when the trapped particle effects are included in
the closure relations. To see how this procedure works, for simplicity we use
the drift kinetic approach for calculating the closure relations instead of the full
Chapman-Enskog-like approach.

The closure terms in Egs. (2) and (3) can be written for an inhomogeneous

magnetic field case as

2
bV I = -b ' Vify —if|b 1 VIn B, (79)
(1}
Vy 'q = b ' V<] -<?||b * VInB, (80)

where the kinetic definitions of 7T| and g|| are

Using the usual drift kinetic equation, we can solve for the perturbed distribu-
tion function / for the trapped and untrapped particles. The detailed derivation
of if| and ¢l is given in Appendix A where we assume electrostatic modes and
adopt a Krook collision model. Substituting the solutions (A.l) and (A.2) into
the above definitions, we find that the parallel stress force is composed of three
parts: trapped particle contribution 7f]t Eq. (A.3), untrapped particle Landau
resonance effect if™ Eq. (A.7) and magnetic resonance effect ifj® Eq. (A.10).
The total if]] (see Eq. (A.12) of Appendix A) is given by

I K\t + 7ffu + 7f|1|\{l1
nmvt 3 S, S? (81)
us
where
S, =V~z+ 0 - v"H™ + M/), '=1,2.
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Here, a small inverse aspect ratio ¢ ~ a//? <C | has been assumed. The trapped
particle contribution is denoted by /; given in Eqgs. (A.4), the Landau resonance
effect Li in Eqgs. (A.8) and (A.9), and the magnetic drift resonance effect M; in
Egs. (A.11). (Note that the magnetic drift resonance effect due to the trapped
particles can be neglected due to the s/e <C | ordering.)

Similar expression for ¢ll is given in Eq. (A.13) except that due to the odd
velocity moment there is no trapped particle generated parallel heat flux, just

like the plasma current has no direct contributions from the trapped particles.

A. Dissipative trapped electron instability
To demonstrate the validity of our single species treatment for trapped par-
ticle modes, we discuss the simplest trapped-particle mode — the dissipative

trapped electron mode.23 For cold ions we have

kid UJ.. \ el
.t —6, (82)
nl > U TV

For electrons (as an entire species) the density and parallel momentum equations
can be combined together to yield,

. klv, —ed 2T LA )

(83)
no 2a;) 2u>) Te 3 Pe v Tx

where temperature fluctuations have been neglected. The kinetic effects (trapped
electrons, electron Landau and magnetic drift resonance effects) have been all
included in the closure parallel stress force term 71| For electron drift type
modes, u>/kl| ute, using Eq. (81) and the quasineutrality condition n* = ne,

we obtain the following dispersion relation:

* 4 *
T+v o | Wsr-mst o (84)
uJ 3 uJ uw
Here, terms of order wj2/k”™vle <C | and ds/vle = me/nii <C | have been

dropped. When the untrapped particle contributions are neglected (L = M =
0), Eq. (A.6) yields the dispersion relation
UJ* NUJ *eTje

w , U
1 +V  -e +ze3” I - = 0. (85)
uJ Vei w 2u
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To the lowest order we have

Ur — Cl«e/(1 + &a),

A +
V7r

J_ ~e3/2ni

This is the same as the typical kinetic result,23 apart from some inconsequential
differences in the numerical coefficients.

This simple example shows that analogous to the inclusion of Landau damp-
ing effects discussed in part I of this work, the trapped (and magnetic drift
resonance) effects can be also included in the fluid equations through closure
terms 7| and ¢\l Consequently, it is not necessary to separate the trapped and
untrapped components and have separate fluid moment equations for them as
is done in most treatments2) of trapped-particle instabilities. Rather, in our
model one need only treat the electrons and ions as whole species with regular
fluid moment equations, with the trapped-particle effects entering through the

closure relations.

IX. SUMMARY AND DISCUSSION

We have investigated various plasma microinstabilities using the set of
fluid/kinetic moment equaitons developed in Part I of this work. A new gen-
eralized perturbed Ohm’s law has been derived which is valid for arbitrary
collisionality u;/i/ej and adiabaticity u/kA"vte. Therefore, both the dynamic (fi-
nite iuij) and kinetic (Landau damping) effects are uniformly included. In the
fluid limits the new Ohm'’s law reproduces the previous Hazeltine, Dobrott and
Wang result [Eq. (50) of Ref. 3].

The advantages of using the unified equations [Egs. (1)-(11)] have been ex-
hibited through applications to the major plasma drift type microinstabilities
— the electron drift modes, ri modes and micro-tearing modes. Due to its
fluid characteristics, the analytic procedure is analogous to the usual analysis of
the classical Braginskii equations. The result, however, is valid for any ratio of

to/vei- The dynamic and kinetic effects are automatically included through the
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new pseudo-transport coefficients in the closure relations. As we have shown
in this paper, generalized theories can be easily developed using our unified
equations for the major plasma microinstabilities by following the usual fluid
analysis. These generalizations and unifications not only build a bridge connect-
ing the fluid and kinetic descriptions, but also opens many new areas for both
linear and nonlinear plasma microinstability and turbulence studies. The appli-
cation of these equations to various major microinstability problems described
in this paper has just begun. Further effort needs to be devoted to solving the
generalized equations that have been derived in this paper in order to explore
the physics in the intermediate parameter regime.

The application of the unified equations to nonlinear electron drift instabil-
ities and turbulence has been addressed. The resultant generalized Hasegawa-
Wakatani equations [Egs. (70)-(73)] involve electron temperature fluctuations
and include electron Landau damping effects. An inverse Laplace transforma-
tion of the closure relations to the real time space is suggested for numerical
simulation purposes. Application to nonlinear ion drift waves (7ji mode turbu-
lence for example) can proceed in the same manner.

The additional kinetic effects induced by non-slab magnetic geometry effects
{e.g. magnetic trapped particle, and magnetic drift resonance effects) have been
studied using the same kinetic closure idea. Preliminary results show that in
contrast to the usual separation treatment for trapped and untrapped compo-
nents of a plasma species, our model need only treat the electrons or ions as
whole species with regular fluid moment equations where the trapped particle
effects entering through the closure relations. A great simplification is therefore
achieved.

Through this work (parts I and II) we have shown that a unification of the
fluid and kinetic descriptions of plasmas can be achieved by using the lowest
order fluid moment equations and careful kinetic calculation of the needed mo-
ment closure relations. The unified equations possess the attractive simplicity
and consistency features we desired. Since this work has been concerned pri-

marily with a sheared slab geometry, the resultant equations can be considered
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as a generalization of the classical Braginskii equations.? Much work needs to
be done to extend this work to include neoclassical effects (viscous damping,
bootstrap current, etc.) and full trapped-particle effects within the Chapman-
Enskog-like formalism. Also, how to self-consistently include the nonlinearity
effects and other intrinsical kinetic effects (nonthermal high energetic particle
effects, for example) in the Chapman-Enskog closure procedure is certainly an-
other important and challenging topic. Nonetheless, the present work (parts
I and II) has laid out the basic approach and demonstrated its power for a

number of important plasma problems.
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APPENDIX A: CALCULATION OF ~ AND g, USING
THE DRIFT KINETIC APPROACH

The calculations for both 7f| and ¢!l are similar. We only present the detailed
algebra for the 7f] evaluation, but give results for both closure equations.

Using the following conventional gyrokinetic equation:

J= IpfM+g

(- D- U — iC + g = — u*)4>,

where b-V = ik\\ + (I/qR) (d/d9), 9 is the poloidal angle, g the safety factor, and
R the plasma major radius. Here, we have assumed electrostatic perturbations

and small FLR effects. In low collisionality regimes we have

W6 = LvIT,
gR

Thus, the lowest order g does not depend on 9. Bounce-averaging the gyrokinetic

equation for trapped particles leads to

vo I
l— ’ ; (A.D
&t U Z1op % Trerr— i |
where a Krook collision model has been used with C(g?z) = —Vefjgt, in which

for trapped electrons ieff — i/ei(u)/e, (e = /R <C 1). The 9 dependence in (j

has been assumed to be small. The bounce average is defined by

N MR (R

\J-eu U J \J- Til

Similarly, for the untrapped particles we have

—id* <j
o0 L (A.2)
to AJwl| —uip + 27 1

where the transit average is identical to the bounce average except for the

replacement of 00 by 1"
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The trapped particle contribution to 7| can thus be expressed as

7Th = mJd3v -y 9%

= nmy A
71 uJ u (A-3)
Here, we have defined

h L (O - vim
2/ w/M (A.4)
A nv: Jt | — vow iveftui -~ _3/2

To evaluate the integrals, we transform the velocity space variables (f]|,Ux) —
(\,E), where E = mv2/2, A = ///E and U| = crvVlI — \B with a = si5m(y||).

Then, we have

9. u, 2E /. 3.
A =""1-2\B
WA T v T B
y , S\ 0 —  fx  BdX
o >/l — AfY’

where Ac = //Bmax corresponds to the turning points of banana orbits. The
integration over A in £ and /) can be readily worked out (neglecting the slight

A dependence in »D) to yield

)

7X (G - 3xB 1 /T 2B L B

s/I-XB v 2 a b+Bzrvi Br 5 (A.5)

Thus, the integrals reduce to (for electrons)

=) T x3/2e~xdx
\n) Jo 1 uDAj+ix 32veifen)’™ 1x-3/2

The y/e factor has been introduced here based on the fact that the fraction of
trapped particles is ~ y/e.

For uei/e  u; ©> UJD, the / integrals can be performed to yield

2.~ - >
BRI | Swrelk leld (A6)
Vex u 200 1 T
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(Note however that the integrals /\ and also contain the trapped particle
magnetic drift resonances for U/ = &D{x) and these resonance effects would
become important for the opposite limit of vei/e <C UJ.)

For untrapped particles, both Landau damping and magnetic drift resonance
effects need to be included. Since the k|U]| and u corrections to the U/ term

are small near the W/ ~ UJD resonance, the two resonances can be separated:24

1 1 UJD

w—&U| —um+iv U — + iu  UJ(U — UJD)

Therefore, we can write
*IN —

where the L superscript represents the Landau resonance part and the M su-
perscript represents the magnetic drift resonance. Assuming that the energy
dependence of the effective collision frequency can be omitted for the calcu-
lation of Landau resonance effects, we can use our slab geometry calculation
result (see Ref. 1). Multiplied by the fraction of untrapped particles (1 — VVe),

the Landau resonance part becomes

Kiu = (1 — y/e)nmvi — 0 u (A.7)
where
it = Z~e=+ (2, AS)
2 kvt
u  bhwy, VZ'-cz'+ 1-c), (A.9)

with C = (a; + iu)/k"Vt being the argument of the Z and Z’ functions.

The magnetic drift resonance part can be also similarly written as

ﬂM (1 = Ve)nmu2 | — UJ Afi _ Wi AL2 (A.10)
T uJ w
with
Mi | 0 Ljf,x"/2e~xdx I
j S0 L M (ATI)
M) 2v/T Ul — uip \ x —3/2
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The total 71| is thus the sum of its three parts:

7T = Alli + *Hu + “Hu

2 et

s W J U (A-12)

where

Si = Sell + (1 — S)ZLi + M)), /= 1,2.

The <l equation is much simpler. Since ¢qu is an odd uy moment, trapped
particles have no net effect on it, just like the plasma current has no direct
contributions from the trapped particles. The untrapped particle magnetic res-
onance effect will also vanish (when the boundary-layer effect24 is ignored up
does not depend on ny), since the particles moving in the opposite directions
carry the same amount of heat. Therefore, the main contribution to ¢ll will

come from the untrapped particle Landau damping effect. That is, we have

m - AMu

<
— G .~ ke (A.13)

uJs J uJ

where again the result from a slab geometry calculation! has been used to yield

k = \S-(ez' -zz'n-i).
2 &yUf
1w
Ki=5, (CZ-2(JZ' -3CZ2-C -1
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Tables

1 Asymptotic expressions for the pseudo-transport coefficients. The
subscript j — e for electrons and j = i for ions. The parameters

d and g are given by Eqs. (17) and (18)...ccccccevvecievieniecinreerieeienn,

Figures

1 The generalized resistivity 1) as a function of x (distance from
the mode rational surface). Here, /s is the Spitzer resistivity,
xe = ula/k'"vte, and the results for three different ratios of vei/u
AT€ SHOWIL. ..o

2 The #ji mode threshold value r)c as a function of the ion collision

frequency uu normalized DY AN ....ooiviiiiecieiieeeeeeeeeeeee s
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Fluid limit

(us, v > k\\we)

.2 vij
ALl
i 3 + idjVji
S5 0007
Xl 4 u; + igjlVji
Joh 2
3N+ igilii)?
2 iuei
HI

KU + igevei

Adiabatic limit
w>, v << Aj||Ut)

2>A vy
5 k™t
9 v
S5y/K k\Vtj
2
5

48 13 Fr If el
257T

v NeNVte

Table 1: Asymptotic expressions for the pseudo-transport coefficients. The

subscript j = e for electrons and j = i for ions. The parameters d and g are

given by Eqgs. (17) and (18).
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Re rj/rj

xlx

Fig. 1: The generalized resistivity 7) as a function of x (distance from the mode
rational surface). Here, rjs is the Spitzer resistivity, xe = u;Ts/&j|Ute, and the

results for three different ratios of ueilio are shown.
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2.2

Fig. 2: The 77; mode threshold value rjc as a function of the ion collision frequency

va normalized by k\\vzi.
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