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INTRODUCTION

Vertical profiles of trace gasses and aerosol particles were measured
between the surface and 9.5 km during the PRECP (PRocessing of Emissions by
Clouds and Precipitation) V field program conducted during June 1987 in the
vicinity of Columbus, Ohio, USA. Measurements were made primarily in the
vicinity of convective storms. "Vertical motions occurring in these storms
can transfer many pollutants from their source near ground level to the
upper troposphere where they are more likely to travel long distances and
influence the global environment (Gidel, 1983).

Observed vertical profiles are interpretable in terms of the pollutant
source region and the vertical redistribution 'mechanism. Peak
concentrations are observed at the altitude of peak emission or formation
rate; near the surface except for H,0, and sometimes 0O; which have mid-
tropospheric and stratospheric sources, respectively.: Vertical motions:
which transport air from the boundary layer to free troposphere are
accompanied by cooling, condensation of cloud water and ultimately
precipitation.  Soluble species such as S0, (taking into account aqueous
phase oxidation) and aerosol particles find themselves incorporated into
cloud water during upward vertical motion.  Conversion of cloud droplets
into precipitation then limits the continued upward transport of dissolved:
pollutants in much the same way as the upward transport of water vapor is
limited. There is no similar barrier to the upward transport of insoluble
pollutants such as NO, (NO, + PAN + organic nitrates) and CO and
measurements in the upper troposphere show elevated concentrations due to
storm venting.

RESULTS

Examples of vertical profiles generated from data collected during the
PRECP V field program are presented here to illustrate the effects of 1)
altitude of source region, 2) detrainment by convective clouds and 3)
removal by precipitation scavenging. Data for these profiles were gathered
from two instrumented aircraft used in the PRECP V experiments; the NOAA
King Air (KA) and NCAR Sabreliner (SL). Figures la - le contain vertical
profiles of CO, NO,, O;, submicron aerosol particles and water vapor as
measured from the SL on the days indicated in the figures.  Figures 2a and
2b are vertical profiles of H,0, and SO, measured from the KA. The vertical
profiles do not include data collected while sampling in clouds or in
precipitation.

The substances that are emitted or formed primarily or exclusively in
the boundary layer (CO, NO,, SO,, water vapor and aerosol particles) all
have their highest concentrations in the boundary layer. The occurrence of
these substances above the boundary layer is in general an indication of
transport, though some contribution from in situ production is possible -
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for example, production of CO from oxidation of CH, and production of NO,
from lightning. Vertical transport due to convective storms was occurring
during most of the PRECP V flights. The occurrence of elevated
concentrations of boundary layer pollutants at high altitudes is therefore
interpreted in terms of the boundary layer composition during the sampling
period. However, it is recognized that some fraction of the pollutants
above the boundary layer were transported there at indeterminate times in
the past ‘

High 05 concentrations are observed in the boundary layer and/or upper
troposphere. The boundary layer maximum is due to NO,/HC photochemistry;
the upper altitude source is transport from the stratosphere. 0, at mid-
altitude could be the result of transport from above or below. Under the
relatively polluted conditions of the present experiments there is probably
in situ generation of 0y also occurring in the mid-troposphere.

The peak in H,0, occurs above the boundary layer. This feature is
observed on most days and shows up also in composite plots for the whole
experimental period. Photochemical calculations identify the peak in H,0,
as occurring in a region of maximum H,0, production - due to a relatively
high concentration of H,0 and a relatively low concentration of NO,
(Kleinman and Leslie, 1988). The decrease in H;0, at higher altitudes is
attributed to a decrease in water vapor which causes a proportionate
reduction in radical production from the short wavelength photolysis of 0;.

Elevated concentrations of CO and NO, were often observed in the upper
troposphere, at the same altitude, or slightly below the tops of convective
clouds in the area. On 6/09 the concentration of CO at 290 mb was 1.5
times that observed in the mid troposphere. High concentrations of NO, (>
1 ppb) were also encountered at 290 mb; background NO,, however, was low (~
0.1 ppb) and the resulting average vertical profile shows a nearly
constant NO, level above 700 mb. The C shaped vertical profile of CO in
Fig. la is similar to that observed by Dickerson et al.: (1987), which was
attributed to venting from a thunderstorm. In the present experiments, the
elevated concentrations of boundary layer pollutants usually occurred in
patches, which could not be associated with an individual convective cloud.
Rather, the patches appear to be a cumulative result of prior convection
and venting., : :

In contrast to the insoluble pollutants CO and NO,, the concentration
of SO, and aerosol particles measured outside-of- cloud in the upper
troposphere was always low. Figure 2b indicates that SO, decreases with
respect to altitude up to the mid-troposphere. Measurements made from the
SL at higher altitudes were not significantly different than zero. The
number concentration of sub micron aerosol particles shown in Fig. 1d
decreases by a factor of 200 at 290 mb as compared with 975 mb. The
patches of boundary layer air encountered in the upper troposphere usually
had increased numbers of particles. However, absolute concentrations
remained low. While NO, would increase to 0.5 - 1 ppb, a significant
fraction of the boundary layer value, the number of particles might change
from 10 cm™® to 20 cm™®, resulting in an upper tropospheric concentration
- still two orders of magnitude lower than the boundary layer.

Figure 1d contains a vertical profile for water vapor obtained from
dew point measurements made at the same time as the particle measurements.
Similar data, averaged over 12 SL flights, are shown on a log scale in
Fig. 3a. Figure 3b, which displays a vertical profile of the ratio of



particles to water, shows that there is a qualitative proportionality
between these two substances. This proportionality is particularly
noticeable in view of the 200 fold decrease in the individual
concentrations between the surface and upper troposphere. - The observed
relation between particles and water can be explained as being a
consequence of vertical transport of two species which both have boundary
layer origins and which are both removed from the atmosphere via
precipitation. Vertical motions which transport air from the boundary
layer to free troposphere result in adiabatic cooling and the formation of
clouds. A large fraction of aerosol particles is incorporated into cloud
droplets as cloud condensation nuclei (Jensen and Charlson, 1984; ten Brink
et al., 1987). The removal of cloud droplets in the form of precipitation
then removes a roughly proportional number of aerosol particles. The
proportionality between water and particles is maintained during
microphysical transformations of cloud droplets (Flossmann et al., 1985)
and during evaporation, which returns both pollutants and water vapor to
the gas phase. These relations are consistent with the large scale
behavior of particles and water vapor found in the present experiments.

SUMMARY

During the PRECP V field program vertical profiles of CO, NO,, SO,, O,
- H,0,, aerosol particles and water vapor were measured in the vicinity of
convective storms or in air masses which had experienced convection in
their recent past. Peak concentrations occur at the altitudes at which the
various substances are emitted or formed in the atmosphere. For water

" vapor, S$0,, CO, NO, and submicron aerosol particles this is the boundary
layer. High concentrations of 0; occur in the boundary layer where it is
photochemically formed and in the upper troposphere as a result of downward
transport from the stratosphere. The peak formation rate and the highest
concentration of H,0, occurs above the boundary layer.

The insoluble pollutants CO and NO, can be efficiently transported from
the boundary layer to upper troposphere. Soluble species such as S0, and
aerosol particles cannot be similarly transported from the boundary layer
to upper troposphere. The observed proportionality between aerosol
‘particles and water vapor is consistent with limits on the upward transport
imposed by the sequence of cooling, cloud formation, and removal in
precipitation.
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Figure 1. Vertical profiles of CO, NO,, O,, submicron aerosol particles and

water vapor. O3 not measured on the same day as the other four species.
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Figure 2. Vertical profiles of H,0, and S0,
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Figure 3. Composite vertical profiles for number concentration of
submicron aerosol particles (N), water vapor concentration (Q), and the
ratio N/Q; from 12 flights of the SL.



