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INTRODUCTION
PURPOSE

The Tonopah Quadrangle, Nevada (Figure 1), was evaluated to a depth of
1500 m (5,000 ft) to identify geologic environments and delineate areas that
exhibit characteristics favorable for uranium deposits. Favorable
environments are those that could contain at least 100 tons of Uq0g in
rocks having an average grade of at least 0.0l percent U30g. Selection of
a favorable environment is based on the similarity of its geologic
characteristics to the National Uranium Resource Evaluation (NURE) recognition
criteria described by Mickle and Mathews (eds., 1978). The study was
conducted by the Reno Field Office of Bendix Field Engineering Corporation
(BFEC) for the NURE program, managed by the Grand Junction Office of the U.S.
Department of Energy (DOE).

ACKNOWLEDGMENT S

Appreciation is expressed to the following persons for providing access
and geologic information concerning mineral properties: Edward Alusow,
Anaconda Copper Company; Edward I. Bloomstein, U.S. Steel; Mike Easdon, Lacana
Mining; Ed Falsey, Royal Blue Mining; Fredric Files, U.S. Department of
Energy; Joe L. Johnson, Rocky Mountain Energy; Larry Martin, Houston
International Minerals; Bobby Nichols, Gila Mines Corporation; Paul Sonerholm,
Smoky Valley Mining; Robert M. Steder, Mobil 0il; and Carl M. Welch of Reno,

Nevada. Douglas R. Allen of BFEC, Grand Junction Operations, was responsible
for the petrographic analyses of rock samples for this project.

SCOPE

The Tonopah Quadrangle project began with literature research and work-
plan formulation on May 1, 1980; these activities required 0.3 man-years to
complete. The succeeding field study and data compilation and evaluation
required 1.0 man-years and began on July 1, 1980. Report preparation began
January 1, 1981, and required 0.3 man-years to complete.

PROCEDURES
The Tonopah Quadrangle evaluation consisted of the following activities:
1. Surface study
2. Aerial radiometric followup
3. Hydrogeochemical and stream—sedimeant reconnaissance followup

4. Subsurface study
5. Sampling and analyses

Surface Study

The surface study consisted of reconnaissance of the accessible areas of
the Tonopah Quadrangle and detailed investigation of selected geologic
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enviromments. Known and newly discovered uranium occurrences were studied and
sampled (Plate 2). The data from surface studies are recorded in Appendices
A, B-1, B-2, B-3, C, D, E, and F.

The surface reconnaissance included scintillometer (Mt. Sopris SC-132)
and field gamma-ray spectrometer (GR-310) surveying, identification and
sampling of major rock types, and sampling of mineralized enviromments.
Scintillometer surveying was carried out utilizing road and foot traverses,
whereas the spectrometer survey was conducted at selected sample locations.
Sampling of major rock types was done concurrently with radiometric surveying.

Detailed surface investigations were conducted in the immediate vicinity
of uranium occurrences. These investigations included rock sampling,
localized geologic mapping, scintillometer and gamma-ray spectrometer
surveying, and in some instances, secondary followup sampling.

Aerial Radiometric Followup Study

The aerial radiometric survey of the Tonopah Quadrangle was completed
prior to this study by Geodata International, Inc. (1979). Followup of this
survey consisted of geologic reconnaissance, surface scintillometer surveying,
and rock sampling in the vicinity of indicated anomalies (Plate 3); this
followup was carried out concurrently with surface investigations of the same
areas.

HSSR Followup Study

The Hydrogeochemical and Stream Sediment Reconnaissance report was
completed by Lawrence Livermore Laboratory (LLL) in 1979. Followup of this
survey consisted of geologic reconnaissance, surface scintillometer surveying,
and rock sampling in the vicinity of indicated anomalies (Plate 4); this
followup was carried out concurrently with surface investigation of the areas.

Subsurface Stﬁdy

Subsurface data were obtained from the U.S. Geological Survey (USGS) and
U.S. Atomic Energy Commission (AEC), as well as from confidential information
supplied by several private companies. This information was used to confirm
ninimum grade levels in both areas designated as favorable in the Tonopah
Quadrangle. Subsurface data were also used to substantiate unfavorability of
occurrences for the Brunton Pass, Stewart Valley, Monte Cristo Range, northern
Ralston Valley, Stone Cabin Valley, and Hot Creek Range areas.

Sampling and Analyses

Initial sampling was begun in 1978 by Carl Welch; he collected 69 rock
samples, primarily during uranium-occurrence studies (Plate 2). Fluorimetric-
uranium and 29-element emission spectrographic analyses were run on these
samples; 29 samples were analyzed by Rocky Mountain Geochemical of Sparks,
Nevada, and TSL Laboratories, Inc., in Opportunity, Washington, analyzed the



remaining 40 samples. One rock was submitted to the BFEC laboratory in Grand
Junction, Colorado.

Rock sampling resumed in 1980 with the collection of an additional 187
samples (Plate 5). Fluorimetric-uranium and 34-element emission
spectrographic analyses were run on all rock samples by the BFEC laboratory in
Grand Junction, Colorado. Selected rock samples were sent to the BFEC
laboratory for petrographic and rapid-rock analyses and for gamma-ray
spectroscopic determination of equivalent uranium, equivalent thorium, and
potassium.

Equivalent thorium-to-chemical uranium ratios are used as indicators of
uranium enrichment or depletion in this report. Equivalent—thorium values are
based upon gamma-ray spectroscopic measurements of the daughter products of
thorium decay. Because of the relative chemical immobility of thorium,
equivalent—-thorium values are assumed to accurately represent the original
thorium content of the rocks examined. Chemical-uranium values, adjusted from
U30g assays of rock samples, accurately reflect the present uranium
content of these samples. In contrast, equivalent uranium values, obtained
from gamma-ray spectroscopic measurements of uranium daughter products,
reflect the daughter products content only and may not accurately represent
the amount of uranium, a more mobile element, present.

PHYSIOGRAPHY AND ACCESSIBILITY

The Tonopah Quadrangle is within the Great Basin and includes portions or
all of 12 mountain ranges and 10 basins. Elevations are from 1360 m at
Columbus Salt Marsh to 3642 m at Mount Jefferson. Large areas of several
ranges exceed 2700 m; valley floors typically exceed 1500 m. The climate is
semiarid to arid for the quadrangle except in the higher portions of the
higher mountain ranges.

All valleys within the quadrangle are accessible by road or jeep trail,
as are most of the lower mountainous areas. The higher mountainous areas are
generally accessible only by foot, particularly in the Hot Creek, Monitor,
Toiyabe, and Toquima Ranges.

GEOLOGIC SETTING

The Tonopah Quadrangle, Nevada, is between lat 38°00'00"N. and
39°00'00"N. and long 116°00'00"W. and 118°00'00"W. (Figure 1). The entire
quadrangle is within the Basin and Range physiographic province and is
characterized by north-northeast—trending, block~faulted horst mountains
separated by deep graben basins.

Rock Type

The oldest rocks in the quadrangle are metamorphosed lower Precambrian
claystone, siltstone, limestone, and dolomite at Lone Mountain in the
southwestern portion of the quadrangle (Figure 2; Albers and Stewart, 1962,
1972). Paleozolc marine carbonate and clastic sedimentary rocks, locally
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attaining an exposed thickness of more than 1000 m, are in most mountainous
portions of the quadrangle. These Precambrian and Paleozoic sedimentary rocks
were apparently deposited in moderate to shallow water depths near the
cratonic margin. Mesozoic (primarily Triassic) volcanic and volcaniclastic
sedimentary rocks, intercalated with shallow-marine carbonate and clastic
sedimentary rocks, overlie the Paleozoic rocks over much of the western third
of the quadrangle (Albers and Stewart, 1972; Ross, 1961).

-Middle Mesozoic to lower Tertiary plutonic rocks of granitic to gabbroic
composition intrude all older rock types of the region. Within the Tonopah
Quadrangle, mafic to intermediate plutons are restricted to small exposures at
Lone Mountain and the Paradise Range. Mesozoic felsic plutonic rocks are much
more common and are exposed at Lone Mountain and in the Cedar Hills and the
Monte Cristo, Paradise, Toquima, Shoshone, Toiyabe, and San Antonio Ranges
(Plate 12). These rocks are not found in the western third of the quadrangle.

Tertiary felsic volcanic rocks are the most common rocks in the Tonopah
Quadrangle and are widely exposed in all mountain ranges. The majority of
these felsic volcanic rocks are Oligocene and Miocene ash—-flow tuffs of
rhyolitic quartz latitic composition. These tuffs apparently were erupted
from a number of inferred vents within the Tonopah Quadrangle. Late Tertiary
volcaniclastic and lacustrine sedimentary rocks are locally interbedded with
the felsic volcanic rocks over much of the quadrangle and are locally overlain
by later rhyolite flows and domes.

Structure

Both Tertiary and Quaternary intermediate and mafic volcanics,
predominantly of flow origin, are present throughout the Tonopah Quadrangle.
The Quaternary volcanic rocks are locally intercalated with and overlain by
Quaternary alluvial, landslide, lacustrine, and playa sediments. No uranium
occurrences are known in the Tertiary and Quaternary intermediate and mafic
volcanic rocks or associated Quaternary sediments within the quadrangle.

Throughout the quadrangle, the Precambrian and Paleozoic rocks have been
folded into approximately north-trending open folds. These folded sediments
and at least some of the overlying Mesozoic volcanic and sedimentary rocks are
cut by thrust faults that predate Mesozoic to lower Tertiary plutonic rocks.
Subsequent minor low-angle faulting occurred locally, adjacent to intrusive
margins; and minor folding, likely due to compaction and soft-sediment
slumping, has locally deformed the Tertiary Siebert Formation. All rock types
in the quadrangle are cut by late Tertiary and Quaternary Basin—and-range
high-angle faults.

The western third of the Tonopah Quadrangle lies within a transitional
zone of disturbed structure between the Sierra Nevada province to the west and
the more typical Basin and Range Province in the eastern two-thirds of the
quadrangle (Bonham and Garside, 1979; Ekren and others, 1980; Ferguson and
Muller, 1949). This transition zone is typified by a parallel and subparallel
right-lateral strike-slip fault zone, which extends southward into the
northwest corner of the quadrangle.



Metamorphism

Regional metamorphism of variable intensity has affected the Precambrian
and Paleozoic sedimentary and the lower Mesozoic volcanic and sedimentary
rocks of the Tonopah Quadrangle. Metamorphic intensity ranged locally from
essentially unmetamorphosed to greenschist facies; Precambrian rocks are the
most pervasively metamorphosed rocks in the quadrangle (Albers and Stewart,
1962).

Contact metamorphism is prevalent around the margins of granitic plutons
and is especially pronounced in carbonate rocks, which are metamorphosed to
calc-silicate scarns. Where the plutons intrude argillaceous sediments,
hornfels have developed in inner aureole zones.

Ore Deposits

A number of different types of ore deposits are present in the Tonopah
Quadrangle. Notable among these are silver vein deposits of the Reveille and
Tonopah districts (Albers and Klinhampl, 1970; Basin and Laney, 1918; Bonham
and Garside, 1979; Bonham and others, 1972; Eakle, 1912; Kral, 1951; and _
Spurr, 1905), gold vein deposits of the Manhattan, Round Mountain, and Belmont
districts, bedded barite deposits of Northumberland Canyon (Shawe and others,
1967), porphyry molybdenum deposits of the San Antonio Mountains (Davis and
others, 1971; Kral, 1951), playa potash and borate deposits of Columbus Salt
Marsh (Hicks, 1915), the turquoise deposits at Royston Hills and Lone Mountain
(Morrissey, 1968), and brucite deposits in the Paradise Range (Callaghan,

~1933) . Numerous other -small precious— and base—metal deposits are associated ..

with the Paleozoic sedimentary and Mesozoic plutonic rocks of the quadrangle
(Ferguson, 1916, 1927, 1933).

ENVIRONMENT S FAVORABLE FOR URANIUM DEPOSITS

Two areas in the Tonopah Quadrangle have enviromments favorable for
uranium deposits (Plate 1). Area A (the Big Smoky Valley west of Tonopah) is
favorable for hydroallogenic uranium deposits (Class 540; Pilcher, 1978).
Area B (the Toquima and Belmont granitic plutons) is favorable for authigenic
deposits (Class 360; Mathews, 1978).

AREA FAVORABLE FOR HYDROALLOGENIC DEPOSITS
Miocene Lacustrine Sediments of the Big Smoky Valley west of Tonopah

Characteristics of Host Rocks. Sedimentary rocks of the Miocene Siebert
Formation in the Big Smoky Valley contain environments favorable for
hydroallogenic uranium deposits (Class 540; Pilcher, 1978). The Siebert
Formation, originally called the Siebert Tuff (Spurr, 1905), contains a wide
variety of sedimentary and volcanic rocks (Bonham and Garside, 1979).
Sedimentary rock types include conglomerates, sandstones, and siltstones of
fluvial origin and lacustrine claystones, shales, diatomites, and limestones.
The coarser clastic sediments are most common near the base of the Siebert and
along the flanks of the San Antonio and Lone Mountain horsts. Finer grained
sediments are much more common basinward in the Big Smoky and Montezuma




(between Tonopah and Lone Mountain) Valleys. Most of the clastic sediments
within the Siebert Formation contain tuffaceous material (Bonham and Garside,
1979).

Volcanic rock types within the Siebert Formation are predominantly felsic
lapillistones and tuff breccias of pyroclastic origin. These pyroclastic
rocks are commonly interbedded with the Siebert sediments throughout the
formation. Much less common and limited to the upper part of the Siebert
Formation are trachyandesite flows; dikes of similar composition locally
" intrude underlying portions of the formation.

The type locality of the Siebert Formation is the exposed section of
sedimentary and volcanic rocks on Siebert Mountain just southwest of Tonopah
(Bonham and Garside, 1979). At the type locality, the Siebert is
approximately 180 m thick but may be considerably thicker basinward (Erwin,
1968). The Siebert overlies with angular unconformity earlier Miocene
pyroclastic and flow rocks and is intruded and unconformably overlain by later
Miocene volcanic plugs and flows, respectively. The age of the Siebert has
been determined as 13 to 17 m.y. years by radiometric age dating. This age
agrees with a Barstovian age indicated by fossil assemblages, which include
mammal, fish, gastropod, ostracod, and algal fossils (Bonham and Garside,
1979).

Uranium Occurrences in Siebert Formation Sediments. The Foster, Bobby
Jack (plus Jeep, Lincoln, and Roan Claims), and Silver Queen (plus Garibaldi
and Rich and Rare Claims) uranium occurrences are hosted by lacustrine
sediments of the Siebert Formation (Plate 2; Appendix C). Each of these
occurrence groups actually consists of a number of closely spaced small
uranium-enriched zones. The three occurrence groups lie along a north-
northwesterly trend of anomalously high radioactivity that is approximately 13
km long and more than 1 km wide (Davis and Hetland, 1956). This trend is
approximately parallel to the western boundary of the San Antonio Mountains
horst. Individual occurrences along the trend appear related to approximately
north-trending minor faults and fractures but exhibit considerable
stratigraphic control locally (Garside, 1973). Although lacustrine claystones
and shales are the predominant host uranium, both fluvial sandstone and tuffs
are locally enriched in uranium.

The Silver Queen occurrence group is the largest and best exposed.
Uranium mineralization at this locality took place primarily in phosphatic
claystones and shales and in strongly silicified, locally brecciated, fine-
grained sediments hereafter referred to as opalite breccia. Both the
- claystone and shales typically contain both tuffaceous and diatomaceous
material. The opalite beds are extremely fine grained and range from massive
to thinly laminated. Those seen by the authors vary in thickness from a few
centimeters to several meters and appear to be laterally discontinuous. This
variation suggests that these opalites are lenses intercalated with the
thicker surrounding lacustrine beds. Upper and lower contacts between the
opalite and the bounding claystones and shales appear gradational; whether
this represents primary depositional facies changes or limits of subsequent
silicification is unknown. The opalite breccias are rarely present within
areas of opalite beds and appear to have been formed in moundlike or pipelike
masses. These masses resemble paleo—hot-spring mounds, in lake sediments,
seen by the authors at the McDermitt Mercury Mine in northern Nevada.
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Although lacustrine sediments are the primary host rocks at the Silver
Queen occurrence, uranium concentrations here also occur in sandstone,
conglomerate, and felsic tuff. Uranium enrichment in these rocks is limited
to very small areas near contacts with the lake sediments. Enrichment appears -
closely related to the same processes that mineralize the lacustrine beds. At
the Foster and Bobby Jack occurrences, sandstones are intercalated with
mineralized claystones and shales and are themselves mineralized to a lesser
extent. Silicification is locally noticeable at both these occurrences, but
no true opalite or opalite breccia was seen by the authors. No mineralized
tuffs were noted at either the Foster or the Bobby Jack occurrences.

Several types of alteration have been noted in the Siebert Formation,
particularly in the lake sediments. Silicification of these sediments is, of
coarse, widespread, but whether this silicification is due to primary
deposition or subsequent alteration is unknown. Petrologic investigation
indicates volcanic-ash material originally present in these sediments has been
completely devitrified and altered to clay minerals, zeolites, ferruginous
clays, limonite as veinlets and small diffuse patches, and hematite (Appendix
F). Oxidation is common in surface exposures of both the lacustrine and
fluvial sediments, and the most radioactive zones appear to be in oxidized
hosts. At both the Silver Queen and Foster prospects, uranium mineralization
appears related to oxidized claystone beds containing small (3 mm in diameter)
oxidized spheriods that resemble oxidized iron sulfide nodules. Pyrite has
been reported in unoxidized mineralized sediments in the subsurface at the
Silver Queen (Garside, 1973), which indicates prior reduction of these
sediments.

The sediments of the Siebert Formation occurrences are most commonly
white to light gray, where unaltered. Where altered, the sediments are most
commonly yellow to reddish brown and display oxidation bands. Portions of the
matrix of the opalite breccia are reddish brown, even where this rock appears
unoxidized. Fracture surfaces in the oxidized sediments are, in rare
instances, coated with a black film which may be a manganese oxide.

With the exception of pyrite noted from subsurface samples, no reductants
have been identified at these occurrences. Uranium appears to have been
concentrated by inclusion, within cryptocrystalline apatite (collophanite) of
the claystones and shales, and within the opaline silica of the opalite and
opalite breccia. Uranium appears to be adsorbed on clay, zeolite, and iron
oxide minerals. Except for a minor occurrence of autunite in tuff at the
Bobby Jack occurrence (Garside, 1973), no uranium minerals are reported at the
Big Smoky Valley occurrences.

The maximum uranium content found by us in the Big Smoky Valley
occurrences is 1,820 ppm (U30g), in a sample (MER-061) of gray shale from
the southern portion of the Foster occurrence (Table 1; Appendix B-1; Appendix
C). A Uz0g value of 1,307 ppm from a sample (MER-067) of oxidized silty
claystone is the maximum assay from the Bobby Jack occurrence (collected at
the Jeep and Lincoln Claims portion). The maximum U30g assay at the
Silver Queen group is 1,160 ppm in a sample of oxidized white claystone
(MER-072). Mean assays from mineralized samples taken at the Foster, Bobby
Jack, and Silver Queen occurrences are 587, 484, and 511 ppm U30g,
respectively. Lowest U30g contents in unmineralized rocks from the
Foster, Bobby Jack, and Silver Queen are 2, 3, and 7 ppm, respectively.
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Ratios of laboratory gamma-ray spectrographic equivalent U30g values
to U30g assays from selected samples range with two exceptions from 0.47
to 1.00, showing consistent uranium disequilibrium in favor of chemical
uranium (Table 1). This may be due to either (1) such recent deposition of
uranium that it has not yet produced sufficient daughter elements to be in
secular equilibrium or (2) a leaching of daughter products. The authors
believe the first circumstance to be most likely; such a circumstance may
indicate supergene concentration of uranium in oxidized surface rocks during
weathering. The two elU30g to cU30g ratios that exceed unity are 6.91
and 3.93 (Table 1). These high ratios indicate strong depletion of uranium,
likely due to leaching during weathering.

The anomalous uranium correlates closely with high contents of calcium
and phosphorus, which are constituent elements of apatite (Plate 9, Appendix
B-1). Only one sample containing more than 50 ppm U30g, an opalite
breccia from the Silver Queen occurrence (MER-079) containing 133 ppm
U30g, has low contents of calcium and phosphorus. In this sample, uranium
is likely held in opaline silica rather than cryptocrystalline apatite. Both
molybdenum and zirconium show order-of-magnitude differences between high and
low in Silver Queen and Foster Group samples, but these variations are not
correlative with changes in uranium content (Appendix B-1, Appendix C).
Anomalous values for arsenic were noted in several uranium—mineralized samples
from the Silver Queen and Bobby Jack prospects, but other mineralized samples
contained much lower arsenic contents. It does not appear that variations in
arsenic and uranium contents are directly related (Appendix B-1, Appendix C).

The presence of uranium at the Big Smoky Valley occurrences may be
detected by aerial radiometric surveying. The Foster and Bobby Jack
occurrences lie directly beneath a line flown during the aerial radiometric
survey of the Tonopah Quadrangle, and a bismuth-214 (uranium daughter product)
anomaly is shown in their vicinity (Geodata International, 1979). The Silver
Queen workings lie between lines flown in this survey.

As there is no surface water nor any water wells within that portion of
the Big Smoky Valley encompassed in Area A, no ground-water information is
available. No stream—sediment anomalies were noted in or near Area A
(Qualheim, 1979).

Although it is not within favorable Area A, one other uranium occurrence
should be mentioned in connection with the Siebert Formation occurrences.
This occurrence is the Can't Miss prospect located at the south end of Cedar
Mountain about 38 km (23 mi) northwest of the Foster occurrence (Plate 2,
Appendix C). The Can't Miss occurrence is hosted by upper Tertiary fluvial
and lacustrine sediments and an underlying Miocene ash-flow tuff. These
sediments strongly resemble lacustrine and fluvial sediments exposed along the
west side of Big Smoky Valley; they are mapped as Esmeralda Formation (Albers
and Stewart, 1972) but appear to the authors to be identical to the Siebert
Formation. The rocks along the west side of Big Smoky Valley and on Cedar
Mountain overlie the Fraction Breccia (Albers and Stewart, 1972), which also
lies directly beneath the Siebert Formation west of Tonopah (Bonham and
Garside, 1979). Uranium mineralization at the Can't Miss occurs in oxidized
sandstones (interbedded with lacustrine shales) and brecciated and silicified
Fraction ash-flow tuff (Appendix C). The maximum U30g assays in sandstone
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TABLE 1. GAMMA SPECTROSCOPY ANALYSIS|OF SELECTED ROCKS FOR FAVORABLE AREA A*

Sample # Chemical Calculated Equivalent Equivalent

(MER-) Uranium Occurrence Rock Typet CPS ** U30s C(ppm)) cU (ppm) U (ppm) Th (ppm) eTh/eU eTh/cU eU/cU
058 Foster Group cs 2500 560 : 475 376 30 .08 .06 .79
Cs9 Foster Group cs 900 243 206 —— -~ —— - ——-
060 Foster Group sh 140 3 2.5 -— -— -— -— -—-
061 Foster Group sh 1800 1820 1543 995 407 A .26 .64
092 Foster Group Lbs 1000 273 232 245 14 .06 .06 1.06
093 Foster Group lbs 85 2 1.7 2 3 1.5 1.76 1.18
094 Foster Group tbs 1700 553 469 -— -— - -— -
095 Foster Group lbs 2500 72 61 283 13 .05 .21 4,64
062 Bobby Jack sh 900 560 475 313 87 .28 .18 .66
063 Bobby Jack sts/cs 1000 560 475 263 119 .45 .25 .55
064 Bobby Jack sS 1100 103 87 - —— - - —
065 Bobby Jack ss 1400 289 245 ——— —-—— - —— -
066 Bobby Jack ss 1500 184 156 ——— —— —-—- - -
067 Bobby Jack cs 3000 1307 1108 774 102 .13 .09 .70
068 Bobby Jack ss/cs 3750 467 | 396 386 82 .21 .21 1.0
069 Bobby Jack ss 1700 401 340 — - - -— ——
070 Silver Queen lbs 4500 45 38 31 1260 4.1 33.16 8.18
071 Silver Queen Lbs 2000 499 i 423 384 100 .26 .24 .91
072 Silver Queen lbs 11200 1160 : 984 1147 374 .33 .38 1.17
073 Silver Queen tbs 6600 940 i 97 - - - - -
074 Silver Queen Lbs 225 15 ; 12.7 - - - - -
Q75 Silver Queen Lbs 2700 500 i 424 425 53 1.2 1.25 1
a76 Silver Queen lbs 200 7 | 5.9 -— - - - —
077 Silver Queen lbs 260 20 | 17 ——- -—= — - -
078 Silver Queen Lbs 1000 283 ! 240 -— -— - - —-=-
079 Silver Queen lbs 800 133 i 113 105 5 .05 .04 .93
080 Silver Queen lbs 2500 10 8.5 -—- —— - - -
091 Silver Queen lbs 2500 60 51 -—- —— - - -

*Gamma Spectroscopy analysis run by BFEC personnel in Grand Junction, Colorado Office.
+See Appendix B-3. Table of Abbreviations.
**Mt. Sopris Scintillometer SC-132.




and tuff at the Can't Miss are 324 and 228 ppm, respectively. Chemical

analysis and petrology indicate uranium is held in the cryptocrystalline

apatite structure (Appendix B-1; Appendix F). However, drilling at this

prospect failed to encounter uranium in grades and tonnages of economic

interest (Joe L. Johnson, pers. comm., 1980). If these sediments are of

provenance and depositional history similar to those of sediments along the -
west side of Big Smoky Valley, it is likely that environments favorable for
uranium deposits may be beneath the Quaternary alluvial cover continuously
across Big Smoky Valley. Due to the lack of subsurface data, the depth,
lithologies, and distribution of the postulated Siebert Formation extension
beneath the valley is unknown.

Summary

The uranium occurrences of the Big Smoky Valley west of Tonopah are in a
graben basin of the Basin and Range Province. The occurrences seem to be
along minor faults and fractures, which approximately parallel the normal
fault(s) bounding the east side of the graben. At individual occurrences,
uranium mineralization appears to be predominately in tuffaceous lacustrine
claystones and shales. Minor uranium enrichment is also in interbedded
fluvial sandstones and ash-flow tuffs. The shape of the deposits is tabular
to lenticular and apparently stratiform in most instances. Silicification,
argillization, and zeolitization are common in these deposits, and
pyritization is known from the subsurface. Uraniferous opal is apparently
present at the Silver Queen occurrence (Davis and Hetland, 1956), and ,
molybdenum, although not directly correlative with uranium content, is -
enriched in some Silver Queen samples. Nearly all equivalent thorium-to-
chemical U30g ratios for these occurrences are less than unity (Table 1).
All of the aforementioned characteristics are consistent with the recognition
criteria for hydroallogenic uranium occurrences (Class 540; Pilcher, 1978).
"Based on these occurrences, Area A in the Big Smoky Valley is considered
favorable for hydroallogenic uranium deposits.

Speculations on the Origin of the Big Smoky Valley Occurrences

Two theories of origin have been suggested for the Big Smoky Valley
uranium occurrences. Davis and Hetland (1956) favor a hydrothermal origin,
whereas Garside (1973) suggests a ground-water ash-leach mode of origin.
Garside points out the absence of typical hydrothermal features and mineralogy
as evidence against a hydrothermal origin for these deposits. However, a
simple ash-leach theory does not explain the apparent localization of the
- occurrences along faults and fractures and the sinterlike opalite breccia and
cryptocrystalline apatite. In addition, these deposits lack the abundance of
calcium uranyl phosphate minerals (particularly autunite) present in other
Basin and Range hydroallogenic occurrences, such as the Tick Canyon Mine,
which are thought to be of ash-leach origin (Hurley and others, 1980).

The authors believe that these occurrences were formed by a hot-spring
system that included both shallow hydrothermal (geothermal) and ash-leach
processes. The similarity between the opalite lenses, opalite breccia, and
lacustrine sediments at the Silver Queen prospect and the McDermitt Mine are
striking. The McDermitt mercury deposit is believed to have formed in a
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hot-spring environment along a fault system; this fault system deposited
apronlike lenses of siliceous sinter within a sequence of concurrently
deposited tuffaceous lake sediments (Roper, 1976). A similar origin is
suggested for the Opalite and Bretz mercury deposits, which are also uranium
occurrences (Roper, 1976; Rytuba and Glanzman, 1978). Such a hot spring-
lacustrine environment would seem to explain the interbedded opalite lenses,
opalite breccia, and extensive devitrification and argillization of the
sediments at the Silver Queen occurrence. It would also explain the
localization of the Big Smoky Valley occurrences along fault and fracture
systems. The uranium in these occurrences may have originated from a deep
hydrothermal source or from ash-leach of tuffaceous sediments and tuffs by
circulating geothermal ground waters. The lack of typical hydrothermal vein
characteristics leads the authors to favor the latter source alternative.

A hot spring emanation into cooler lake waters may also explain the
presence of uranilferous apatite in the Big Smoky Valley occurrences.
Krauskopf (1967) describes two mechanisms for the formation of marine
phosphorites; these mechanisms might also be applicable in a hot spring-
lacustrine environment. In one case, upwelling waters rich in calcium and
phosphate lost carbon dioxide due to decreasing pressure and consumption
during plant photosynthesis; as a result, calcium phosphate minerals are
inorganically precipitated. 1In the second instance, abundant aquatic life
stimulated by upwelling warm, phosphate-rich waters precipitates calcium
phosphates organically as skeletal material. The warm circulating waters of
the postulated geothermal system may have been enriched in phosphates during
migration through the Siebert sediments; the sediments locally contain not-

include tuffs at the base of Siebert Mountain made up entirely of diatoms
(Spurr, 1905b, p. 69). The presence of limestone beds near the Bobby Jack
occurrence attests to calcium enrichment within these waters. The action of
the abundant aquatic life, commonly associated with the present hot springs of
the region and recorded in the Siebert fossil record, may have led to the
inorganic and/or organic precipitation of the calcium phosphate apatite.

Where uranium was in the geothermal waters, it became incorporated in the
precipitating collophane. The irregular distribution of the mineralized zones
may be explained by the irregular occurrence of hot springs along faults and
fractures, periods of nondeposition of phosphatic beds, and interruptions in
hot spring activity and uranium supply. Perplexing features, such as beds
that are mineralized on only one side of a fracture system (Garside, 1973),
may be explained by current drift of the uranium-bearing hot waters.

The rare autunite and the disequilibrium in favor of chemical uranium
likely seem due to recent supergene enrichment of uranium in near-surface
environments during weathering. If these deposits are due to epigenetic
hydrothermal or ash—leach processes, the disequilibrium in favor of chemical
uranium may indicate a very recent age of primary mineralization for the Big
Smoky Valley occurrences.

AREA FAVORABLE FOR AUTHIGENIC DEPOSITS
Granitic Rocks of the Toquima and Belmont Plutons

Characteristics of Host Rocks. The granitic intrusive rocks of the
adjacent Toquima and Belmont stocks (Area B, Plate 1) contain environments
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favorable for authigenic uranium deposits (Class 360; Mathews, 1978). These
Cretaceous plutons have yielded nearly contemporaneous radiometric age dates
(Toquima, 76.4 m.y.; Belmont, 79.6 m.y.) and may be comagmatic (Ervine, 1973).
Both intrusions are predominately quartz monzonite but include rocks from
granite to granodiorite, consisting of various amounts of potassium feldspar,
sodic plagioclase, quartz, and biotite with traces of muscovite, allanite,
apatite, zircon, and monazite (Ervine, 1973; Appendix F). The chief
difference between the plutons appears to be the common porphyritic quartz
monzonité phase that contains large potassium feldspar phenocrysts in the
Belmont stock. Both plutons apparently consist of multiple intrusions, and
both are cut by later dikes of granitic aplite and pegmatite, massive quartz,
and felsite probably related to volcanism that produced the overlying Tertiary
ash-flow tuffs. The Toquima and Belmont stocks intrude Cambrian
metasedimentary rock types including crystalline limestone, argillite,
quartzite, and schist, which underwent complex folding prior to intrusionm.

All known uranium occurrences in Area B are present within the plutons
themselves, and no uranium concentration appears to have occurred in the
county rocks at plutonic margins.

Uranium Occurrences in the Toquima and Belmont Stocks. Eight uranium
occurrences are in the plutons of Area B (Plate 2; Appendix C). Seven of
these occurrences, the Henebergh Tunnel, Bey, Joker Shaft, Ace Adit,
Huebnerite Mill, N and H, and Pine occurrences, are in the Toquima pluton.
The largest occurrence, the Hot Claims, is hosted by the Belmont stock. All
these occurrences share a number of characteristics. At each occurrence,
uranium concentration is limited to fracture fillings and altered granitic
rocks immediately ad jacent to fractures, and the host rocks have undergone
oxidation and argillic and sericitic alteration (Appendix F). These
mineralized fractures have a generally north-northeast trend (Gibbs, 1976).
Fracture fillings at all occurrences include iron oxide minerals, and
kaolinitic clays fill fractures at five prospects (Table 2; Appendix C). The
only uranium minerals identified from these occurrences are the uranyl
phosphates, autunite and torbernite (Garside, 1973). Uranium is also in
accessory allanite, apatite, monazite, and zircon in the host rocks (Gibbs,
1976).

Although all the uranium occurrences of Area B display marked
similarities, some characteristics vary between occurrences. At the Henebergh
Tunnel, Joker Shaft, and Pine Group prospects, dikes of porphyritic felsite
intrude granite or quartz monzonite host rocks along the fracture zones that
host uranium (Appendix C). The felsite dikes themselves do not contain
appreciable amounts of uranium at any locality and appear unrelated to uranium
mineralization. Fluorite and scheelite are present at the N and H prospect
and fluorite, scheelite, pyrite, and chalcopyrite at the Ace Adit (Gibbs,
1976), but their relationship to uranium is unclear. Massive vein quartz is
also common in several occurrences (Table 2).

Chemically, no consistent correlation between uranium content and the
contents of any other element could be discerned from the samples collected
during this study (Appendix B-1). However, Gibbs (1976) states that monazite
and allanite are present only in zones of anomalous radioactivity and that
apatite and zircon are always more abundant in these zones. As mentioned
above, copper, fluorine, silicon, and tungsten are locally enriched at some
occurrences.
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GAMMA SPECTROSCOPY ANALYSIS OF SELECTED ROCKS FOR FAVORABLE AREA B*

TABLE 2.

Sample # Chemical ! Calculated
(MER-) Uranium Occurrence Rock Type+ CPS** U30q (ppm); cU (ppm)
011 Shale Pit ft 310 13 11
012 Shale Pit fpt 500 184 156
163 Shale Pit ft 230 5 -

013 Red Bird Toquima hy in fi 400 67 56.8
014 Bey Group hy in fi 1100 122 103.5
015 Ace Adit hy in fi 1400 77 65
016 Ace Adit hy in fi 2500 273 ! 231.5
157 Ace Adit fi 150 1 i -—

017 Pine Group hy in fi 12000 1470 i 1247
018 Pine Group hy in fi 5000 234 198
019 Green Top hy in fi 350 49 42
020 Violet Blue hy in fi 550 29 25
021 Huebnerite Mill Prospect hy in fi 700 226 192
022 Huebnerite Mill Prospect hy in fi 1200 5 4,24
031 Hennebergh Tunnel fi 220 16 13.6
032 Hennebergh Tunnel hy in fi 250 65 55
033 N and H Group hy in fi 1500 467 396
034 N and H Group hy in fi 1700 93 79
035 Joker Shaft hy in fi 3750 653 554
155 Joker Claims tss 260 9 7.6
156 Joker Claims fi 195 1 .848
037 Hot Claims fi 70 3 2.5
038 Hot Claims hy in fi 900 513 435
039 Hot Claims hy in fi 2500 747 633
040 Hot Claims hy in fi 700 28 24
042 Hot Claims hy in fi 2500 1027 871
043 Hot Claims hy in fi 600 114 i 97
052 Hot Claims - i 650 194 ! 165
053 Hot Claims hy in fi 4000 196 i 166
158 Hot Claims hy in fi 250 4 i 3.4
159 Hot Claims hy in fi 140 3 j 2.5
160 Hot Claims hy in fi 150 7 ‘ 5.9
044 fi 100 3 i 2.5
049 hy in fi 220 3 2.5
*Gamma Spectroscopy analysis run by BFEC personnel in Grand Junction, Colorapo Office.

+See Appendix B-3.

**Mt. Sopris Scintillometer SC~132.

Table of Abbreviations.

Equivalent
U (ppm)

Equivalent
Th Cppm)

eTh/eU

eTh/cU

el/cU



Uranium content in the Toquima and Belmont stocks (excluding mineralized
zones) averaged 1.9-3.4 ppm (Gibbs, 1976), which is less than the 4.7 ppm
average for granitic rocks (Clark, 1966). Thorium content of these rocks
averages 9.6-12.2 ppm (Gibbs, 1976), compared to an average thorium value of
320 ppm for granitic rocks (Clark, 1966). Thus these plutons have a range of
2.8 to 6.4 for thorium—-to—~uranium ratios compared to a 4.3 ratio from granitic
rock averages. This indicates that intense leaching of uranium from these
plutons has not occurred, except possibly on a very local scale. Thorium—to-
uranium ratios are commonly less than unity, as would be expected, in
uranium-mineralized areas (Table 2). Maximum uranium content in our samples
from the Toquima pluton is 1,470 ppm U40g in MER-017, a sample of iron
oxide-coated granite from the Pine Prospect (Table 2). A U30g content of
1,027 ppm in a sample of altered quartz monzonite is the maximum uranium assay
obtained from the Belmont pluton occurrence.

A number of equivalent U30g~to—chemical U30g ratios for
mineralized samples show disequilibrium in favor of chemical uranium. This
could be due to daughter—product leaching but is considered most likely due to
recent near-surface enrichment of uranium, as discussed earlier for the Area A
occurrences. One sample showed marked disequilibrium in favor of equivalent
uranium, suggesting either the leaching of uranium relative to its daughter
products or analytical error in this analysis.

As mentioned previously, the uranyl phosphates autunite and torbernite
and uranium-bearing allanite, apatite, monazite, and zircon are present at
these occurrences. No uranium or uranium-bearing accessory minerals could be
identified in some radioactive samples of iron oxide and clay; it appears that
the uranium in these samples is adsorbed on the iron oxide and clay minerals.

Both aerial radiometric and hydrogeochemical and stream—sediment
reconnaissance studies detected anomalies within Area B. Two small aerially
detected radiometric anomalies are in the central part of Area B, near the
east margin of the Toquima stock (Plate 3). Several ground-water uranium
anomalies are in the Belmont stock drainage area; the anomalies outline a
radioactive zone that includes the Hot Claims occurrence (Plate 4).

Summary

The uranium occurrences of Area B are along fracture zones in granitic
and quartz monzonitic rocks of the closely related Toquima and Belmont stocks.
These rocks are commonly leucocratic and contain high proportions of alkalil
feldspars and quartz. Fluorite is locally present within hydrothermal veins
in these rocks. Texturally, both porphyritic and pegmatitic phases are
present within these intrusions, which are postorogenic and which intrude
metasediments of greenschist facies. The uranium minerals identified in these
occurrences are similar to those listed for authigenic uranium occurrences
(Class 360; Mathews, 1978), which these occurrences are considered to be.

The sizes of the various uranium occurrences of Area B appear to be quite
variable. Subsurface exploration at the Henebergh Tunnel prospect indicates
reserves of less than 25 tons of U30g at a grade of approximately 250 ppm
(Mike Easdon, pers. comm., 1980). Based on comparative sizes of surface
exposures, the other Toquima occurrences seem likely to be of a similar or
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smaller tonnage than the Henebergh deposit. The Hot Claims prospect in the
Belmont pluton is considerably larger. It seems almost certain that in excess
of 100 tons of U30g at a grade of more than 100 ppm is within Area B.

Access to the Toquima pluton occurrences is by dirt road from Round
Mountain, Nevada, with the exception of the N and H occurrence. The road to
the N and H is no longer usable except possibly by motorcycle. Because all
the Toquima stock occurrences, except the Bey prospect, are deep within the
Toquima Range, they are likely inaccessible in winter. The Hot Claims are
accessible by one good dirt road from Belmont, Nevada, and a poorer trail from
Manhattan, Nevada. As the Hot Claims lie east of the higher portion of the
Toquima Range, they are accessible most of the year.

Speculations on the Origin of the Authigenic Deposits of Area B

Gibbs (1976) concludes that argillic and sericitic alteration and such
hydrothermal minerals as pyrite, chalcopyrite, scheelite, quartz, and fluorite
(at some occurrences) indicate a low-temperature hydrothermal origin for the
Toquima pluton occurrences. The absence of these minerals at most
occurrences, and the lack of tetravalent uranium minerals at any locality,
does not support a hydrothermal origin, however. In addition, drilling at
both the Henebergh and Hot Claims deposits indicate that oxidation and uranium
enrichment die out within several hundred feet of the surface. This, coupled
with the apparent recent enrichment of chemical uranium in some samples,
suggests that these deposits may have formed very recently due to near-surface

ground—water-migration -through prominent fracture zones. More study is needed

to accurately determine the mode of origin of these occurrences.

ENVIRONMENTS UNFAVORABLE FOR URANIUM DEPOSITS
SUMMARY

In the Tonopah Quadrangle, Paleozoic sediments and metasediments outside
unevaluated areas were found to be unfavorable for meeting the base NURE
criteria. Tertiary sediments outside favorable Area A are considered
unfavorable. Felsic volcanics outside of the unevaluated Northumberland and
Mount Jefferson calderas are unfavorable. Plutonic rocks outside of favorable
Area B are unfavorable. Mesozoic and Precambrian sediments and metasediments
were found to be unfavorable. Intermediate and mafic volcanics and
metavolcanics are considered unfavorable. Quaternary sediments also fail to
meet the base criteria for uranium favorability.

PLUTONIC ROCKS

Plutonic rocks of Cretaceous to Tertiary age and from gabbro to alaskite
granite in composition crop out as numerous small stocks in the western half
of the Tonopah Quadrangle. None of these meet the criteria for uranium
favorability for plutonic rocks set by Mathews (1978).

19



Multi-element emission spectroscopy for 18 rock samples (Appendix B-1)
taken from various plutons indicates they are not similar in bulk composition
to the Toquima and Belmont plutons, both of which are considered favorable.
An unexpected result was the difference in bulk chemistry between the Toquima
and Belmont plutons and the unnamed pluton immediately south of them at the
south end of the Toquima Range (Appendix B-1; Plate 12). This is the largest
of the unfavorable plutons and has an area of approximately 40 kmZ. No
literature on this pluton was found; however, petrologic and chemical studies
(Appendix B-1; Appendix F) for eight samples give a range in composition from
- quartz monzonite to granodiorite; the average uranium content is 1 ppm
U30g, and an average eTh/eU ratio is 7, suggesting some uranium depletion.
This pluton is probably Cretaceous or Tertiary in age. Eight springs draining
this pluton (Plate 4; Plate 6) have anomalous uranium values that average of
72 ppb and have a high of 208 ppb. Two anomalous sediment samples of 22 ppm
and 53 ppm U30g are also associated with this pluton. Thus, uranium is
being mobilized and transported from this pluton; however, there is no
evidence any significant concentration of uranium has taken place.

The Lone Mountain pluton, 30 km west of the town of Tonopah, is the only
other intrusion of interest. It has an areal extent of approximately 32 km?
and is a multiple intrusion that has phases from gabbro to alaskite granite in
composition. The bulk of the composition is considered between quartz
monzonite and biotite granite (Bonham and Garside, 1979; Phariss, 1974). Five
rock samples taken from the western side of the pluton (Plate 5) have from 1
ppm to 10 ppm U30g (average 5.4 ppm). KUT values (Table 3) indicate
enrichment of uranium in three of the samples. Three springs associated with
the margins of the pluton (Plate 4) have anomalous uranium values of 27 ppb,
39 ppb, and 39 ppb. Slight disequilibrium, indicating both enrichment and
depletion of uranium, is indicated within the pluton; but no sign of
significant uranium concentrations in outcrop was found in the pluton or in
the intruded Precambrian sediments.

A small quartz diorite (Silberling, 1959) intrusive body in the Shoshone
Range has a spring sample and a stream-sediment sample having 12 ppb and 30
ppm U30g, respectively, associated with it. A small granodiorite plug
(Callaghan, 1933) in the Paradise Range has a spring containing 14 ppb
U308 associated with it. Both were field checked and showed no evidence
of any significant uranium accumulations.

The aerial radiometric survey revealed an anomaly associated with a small
intrusive body between the favorable Area B plutons and the southernmost
plutons in the Toquima Range. This is directly over the Barrel Spring
“"occurrence”" where a number of small scattered aplitic dikes intrude
quartzite. One of the dikes is uraniferous and has U30g values between
662 ppm and 13,000 ppm, but the volume of mineralized material at this
occurrence is insignificant.

Mineralization at Anaconda's Hall Molybdenum property 48 km north of
Tonopah is associated with a small aplitic porphyry. Four samples taken from
the presently exposed mineralized portion of the stock have an average
U40g content of <1.5 ppm and an average eTh/eU ratio of 2.8. Uranium is
not considered to be associated with this molybendum-enriched pluton.
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TABLE 3. GAMMA SPECTROSCOPY ANALYSIS OF SELECTED ROCKS OQUTSIDE FAVORABLE AREAS*

Sample # Chemical jzlculated Equivalent Equivalent

(MER-) Uranium Occurrence CPS** Rock Type* U305 {ppm) ‘ {ppm) U (ppm) Th (ppm) eTh/el eTh/cl el/cU
004 i 625 sh 7 - 59 99 18 .18 3 16.61
005 Barrel Springs 5000 —_— 662 . 561 — -— — — _—
006 Barrel Springs 10000 -— 618 ' 524 ——— -— —— — —
007 Barrel Springs 10000 fi 13000 11024 13300 2860 .22 .26 1.2
008 === 200 sc 79 .70 8 21 2.63 .3 .11
009 Lee Hiatt Prospect 425 tb 167 142 - -— — -— —
010 Lee Hiatt Prospect 225 ph 1 [ 9.3 - -—- -— -— ——
029 - 6000 T 3410 12891 2000 16 .008 .005 .69
036 - 7000 ff, Pzs 4200 13561 2670 1 .0003 .0003 : .75
081 - 270 vg 13 T 9 30 3.3 2.7 .82
082 - 270 vg 13 A | 9 29 3.2 2.6 .82
083 -— 2600 tb of ft 228 ;193 175 21 12 .11 .91
084 - 400 tb of ft 50 42 44 25 .57 .60 1.05
085 - 1400 ss 324 275 392 5 .01 .02 1.43
086 -— 200 ss 25 21 16 6 .38 .29 .76
087 - 400 hy in fi 31 I 26 15 10 .67 .38 .58
090 - 180 mv 13 o1 8 12 1.5 1.09 .73
092 - 1000 lbs/cs 273 1231 245 14 .06 .06 1.06
093 ——- 85 lbs/cs 2 | 1.7 2 3 1.5 1.76 1.18
094 - 1790 tbs/cs 553 ' 469 - - --- -—- -
098 - 120 fi 11 9.3 2 12 6 1.29 .22
099 - 250 fi 7 -] 5 13 2.6 2.27 .83
100 - 110 fi 9 7.6 3 1 3.7 1.45 .39
115 - 125 ft 5 4.2 3 11 3.7 2.61 W71
116 ——= 160 ft 5 4.2 4 14 3.5 3.33 95
117 - 250 ft 7 6 7 24 3.4 4 1.17
118 -—= 150 ff 4 3.4 5 12 2.4 3.53 1.47
119 - 95 i 5 4.2 3 12 4 2.86 W71
120 - 150 ft 5 4.2 3 21 7 5 .71
121 — 280 ft 13 1 16 68 4.25 6.18 1.45
122 —-— 135 it 4 : 3.4 3 17 5.67 5 .88
123 - 190 it 6 L 5.1 4 24 6 4.70 78
124 - 110 tbs 15 12.7 13 57 4.4 4.49 1.02
125 ——- 110 Ss 9 7.6 [ 15 2.5 1.97 .79
126 - 110 fi ] 5.1 4 9 2.3 1.76 .78
128 - 190 fi 10 8.5 5 22 4.4 2.59 .588
129 - 190 ft 6 5.1 2 8 4 1.57 .39
130 - 205 ff 5 4.2 3 14 4.66 3.33 .71
131 ——- 210 fi 5 4.2 3 22 7.33 5.24 .71
132 - 125 ft 6 5.1 6 12 2 2.35 1.2
133 -— 115 fi 1 .848 1 5 5 5.9 -848
134 - 200 ff 11 9.3 5 21 4.2 2.25 .54
135 - 195 it 5 4.24 4 20 5 4.70 .94
136 -—- 195 jat 3 2.5 6 18 3 7.2 2.4
137 --- 170 it 2 1.7 4 14 3.5 8.2 2.4
138 - 225 jat 6 5.1 7 19 2.7 3.72 1.37
139 -—- 225 ii 7 6 5 15 3 2.5 .83
140 --= 150 ff 2 1.7 5 17 3.4 10 2.9
141 - 180 fi 2 17 4 14 3.5 8.2 2.35
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GAMMA SPECTROSCOPY ANALYSIS OF SELECTED ROCKS OUTSIDE FAVORABLE AREAS* (Continued)
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289
290
291
292
293
294
295
296
297
298

299
300
301
302
303
304
305
306
307

- 120
- 140
--- 1300
--- 400
- 200
--= 140
-—- 160
--- 140
--= 140
— 140
- 70
-—- 140
-—- 1900
- 110
-— 1300
-— 200
- 215
- 200
- 85

5(S
sts
sts

GAMMA SPECTROSCOPY ANALYSIS OF

<1

SELECTED ROCKS OUTSIDE FAVORABLE AREAS* (Continued)

[ 7 1 .14 17
4.2 7 0 0 0
38 152 43 3.53 1.13
10 6 19 3.17 1.9
3.4 25 83 3.32 24.4
<1 2 13 6.5 3
<1 1 1 11 >11
.8 2 14 7 17.5
<1 1 9 9 9
<1 2 9 4.5 29
— 0 1 - ———
.85 3 -] 2 7.1
e 256 0 --- -—-
.85 1 1 1 1.18
1.7 64 3 .05 1.76
3.4 5 21 4.2 6.17
2.6 5 15 3 -]
2.6 4 9 2.3 3.5
_— 1 7 7 7

*Gamma Spectroscopy analysis run by BFEC Personnel in Grand Junction, Colorado Office.

+See Appendix B-3.

Table of abbreviations.

kaMt. Sopris Scintillometer SC-132.
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TERTIARY SEDIMENTS OUTSIDE FAVORABLE ARFA A

Tertiary sediments consist of conglomerates, sandstone, and siltstones of
fluvial origin and lacustrine claystones, shales, diatomites, and limestones.
These rocks have localized exposures throughout most of the Tonopah
Quadrangle.

Tertiary sediments outside of favorable Area A host two uranium
occurrences. At the Can't Miss Group (Class 240 and 530) (Garside, 1973), in
the southern portion of Cedar Mountain, concentration occurs along fault
contacts between oxidized, silicified vitric-crystal tuff and associated
Tertiary tuffaceous sandstone. Petrographic investigation suggests uranium is
substituting for calcium {n cryptocrystalline apatite to form collophane at
this locality (Appendix F). At the Stone Cabin Valley Claims (Class 240),
near Five Mile Spring in Stone Cabin Valley, concentration is in intercalated
silicified (opalized) lithic sandstones and volcanic conglomerates.

Petrologic investigation of Tertiary sediment sample MER-185 indicates uranium
is absorbed on clay minerals. Neither the Can't Miss Group nor the Stone
Cabin Claims fits the base criteria of 100 tons of U30g at an average

grade of 100 ppm U30g.

The aerial radiometric anomalies investigated in Tertiary sediments were
not found to be associated with significant concentrations of uranium in
outcrop (Plate 3). No significant stream or sediment anomalies are found
associated with these rocks. Tertiary sedimentary rocks within the Tonopah
Quadrangle outside favorable Area A are considered unfavorable for 100 tons of
U30g at an average grade of 100 ppm U30g.

PALEOZOIC SEDIMENTS AND METASEDIMENTS OUTSIDE FAVORABLE AND UNEVALUATED AREAS

Paleozoic sediments and metasediments crop out in most of the mountain
ranges in the Tonopah Quadrangle. These Paleozoic rocks consist of three
assemblages: a miogeosynclinal assemblage of carbonates, a transitional
assemblage of shale and limestone in the eastern and central portions of the
quadrangle, respectively, and an eugeosynclinal assemblage of
siliceous-clastic and volcanic rocks in the extreme western portion of the
quadrangle. During Late Devonian to Early Mississippian time, the Roberts
Mountain Thrust displaced the eugeosynclinal assemblage eastward over the
transitional and carbonate assemblages. Throughout the rest of the Paleozoic,
the landscape in the central portion of the quadrangle was dominated by the
Antler Highland. Three depositional provinces in the quadrangle are
associated with the highland: a conglomerate and carbonate province within
the Antler Highland, a carbonate and terrigenous-detrital province to the east
of the highland, and a siliceous and volcanic province to the west of the
highland (Stewart, 1980; Kay and others, 1964; Kleinhampl and Zoiny, 1967;
Langenheim and Larson, 1973; Vitaliano and Callaghan, 1963; Webb, 1958).

Economic deposits of gold, silver, copper, tungsten, and antimony, as
well as minor occurrences of uranium, are associated with the contact aureoles
where a Mesozoic granitic pluton intruded Paleozic sediments (Dyan, 1916;
Ferguson, 1917b, 1921, 1927; Ferguson and Cathcart, 1954; Kral, 1951; Kurfak,
1975; Nolan, 1930, 1935; Silberman and McKee, 1974; Silberman and others,
1978). Two uranium occurrences, the Lee Hiatt Prospect in the southern
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Toquima Range and the Titus-Black and Pete Prospect (Garside, 1973) in the
central Hot Creek Range (both Class 370), are contact associated. Based on
confidential company information, neither of these appear to meet the basic
criteria of tonnage and grade for favorability.

Three aerial radiometric anomalies were reported in Paleozoic rocks
(Plate 3). One in the northern Toiyabe Range and another in the south-central
Hot Creek Range were not found to be associated with significant
concentrations of uranium. The third is over the Lee Hiatt and Barrel Springs
uranium occurrence. Anomalous uranium, in spring waters of 27 ppb and 21 ppb
on the northwestern side of the Paradise Range, was not found to be associated
with any concentrations of uranium that could be located on outcrop.

Paleozoic sediments in the Tonopah Quadrangle are considered unfavorable
for uranium deposits. Recognition-criteria characteristics for uranium
deposits in sedimentary and metamorphic rocks (Mickle and Mathews, 1978) are
not present; nor do concentrations of any prospects in these rock types
approach minimum-grade and minimum-tonnage requirements. Additionally, no
significant HSSR or aerial radiometric anomalies were associated with these
rock types.

MESOZOIC SEDIMENTS, METASEDIMENTS, AND VOLCANIC ROCKS

Rocks of Mesozoic age occur in the western third of the study area and
comprise four formations of interest. The Triassic Excelsior Formation
(Muller and Ferguson, 1936, p+ 224), exposed in the Pilot Mountains, is -
composed of volcanic rocks and sediments with an aggregate thickness exceeding
3000 m.

The Middle Triassic Grantsville Formation has limited exposure in the
Shoshone Range but is of interest as a host for the Grantsville mercury mining
district. The formation consists of a lower clastic unit, a massive siliceous’
pebble conglomerate that grades upward into a sandy argillite, and an upper
90-m—-thick limestone unit, the host for the mercury ore. The contact ore
deposits of silver, lead, zinc, and mercury were formed by the selective
nineralization of this limestone by an igneous intrusive rock that is not
exposed at the surface (Silberling, 1959). The Grantsville district has
produced several thousand flasks of quicksilver. ¥luorite is also associated
with the Grantsville Limestone Member and the Lunning Formation as replacement
deposits in alteration and fault zones (Silberman, 1959; Papke, 1979). No
uranium concentration is present in the area.

The Triassic Luning Formation, named by Muller and Ferguson (1936, p.
245), is exposed in the Pilot Mountains, Paradise Range, Shoshone Range, and
Cedar Hills. The formation consists predominately of approximately 2400 m of
limestone and subordinate shale, argillite, and conglomerate. The only
uranium occurrence associated with Mesozoic rocks is in argillite of the
Luning Formation in the Paradise Range, at an old mercury mine near Brunton
Pass (Appendix C). The Brunton Pass occurrence (Class 370?) was found and
drilled by Phillips Uranium Corp. in 1978. The low-grade metasediments are
hydrothermally altered. Mineralization has occurred along steeply dipping
shear zones. However, concentrations of uranium are below those for the NURE
criteria.

25



The Jurassic Dunlap Formation, named by Muller and Ferguson (1936, p.
250), is in the Cedar Hills, Pilot Mountains, and Shoshone Range. The Dunlap
Formation is composed mostly of a clastic sequence of sandstone, conglomerate,
and fanglomerate overlain locally by volcanic rocks and limestone. In the
Pilot Mountains, over 5,000 flasks of quicksilver were mined, mostly from the
limestone and sandstone units of the Dunlap Formation (Foshag, 1928; Phoenix
and Cathcart, 1952; Rose, 1961); but no uranium is associated with this
mineralization.

Mesozoic rocks in the Tonopah Quadrangle are considered unfavorable for
uranium mineralization for these reasons: only one small uranium occurrence
is reported; hypogene mineralizing solutions, which accomplished mercury and
fluorine mineralization in the area, commonly were not uraniferous; and there
are no aerial radiometric or HSSR anomalies within these rocks.

FELSIC VOLCANIC ROCKS OUTSIDE FAVORABLE AND UNEVALUATED AREAS

Felsic volcanic rocks, from rhyolite porphyry to quartz latite in
composition, make up the bulk of the rocks exposed in the Tonopah Quadrangle.
The majority of these rocks are considered Tertiary in age. They occur as
rhyolite plugs, flows, and domes; air- and water—lain tuffs; and thick
sequences of ash-flows that grade upward from vitric bases through densely
welded to nonwelded tuffs in complete sections.

Laboratory gamma-spectroscopy analyses of 35 felsic volcanic rocks
yielded average ratios of eTh/eU = 4.3, eTh/cU = 5.3, and eU/cU = 1.2. These
ratios suggest some depletion of chemical uranium in these rocks. Several
anomalous stream and water samples from felsic volcanic rocks also indicate
release of uranium from these rocks (Plate 4). Several small aerial
radiometric anomalies in felsic volcanic rocks (Plate 3), none related to the
aforementioned HSSR anomalies, were not found to be associated with anomalous
concentrations of uranium in outcrop.

The only uranium occurrence in felsic volcanics is the Can't Miss Group
(Class 530, 240) in the southern portion of Cedar Mountain (Garside, 1973).
Mineralization occurs along fault contacts between oxidized, silicified
vitric-crystal tuff and associated tuffaceous sandstone sediments.
Petrographic investigation suggests that uranium is substituting for calcium
in cryptocrystalline apatite (collophane). (See discussion on "Speculations
of origin of Big Smoky Valley occurrences,” this report.) This occurrence
does not meet the minimum tonnage and grade requirement for favorability (J.
-Johnson, pers. comm., 1980).

The felsic volcanic rocks in the Tonopah Quadrangle are considered
unfavorable for uranium deposits. Although KUT data (Table 3), the aerial
radiometric survey, and HSSR data indicate some uranium mobility,
concentrations of uranium within these rocks, such as at the Can't Miss
occurrence, appear of small extent and very low grade.
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PRECAMBRIAN METASEDIMENTS

Rocks of Precambrian age crop out around the margins of the Lone Mountain
pluton approximately 30 km west of Tonopah. Rocks of three formations, from
late Proterozoic to Cambrian in age, are represented here:  the Wyman
Formation, the Reed Dolomite, and the Deep Springs Formation. The Wyman
Formation (Maxson, 1934) is composed of marble interbedded with phyllite,
quartzite, and calc-silicate hornfels. The Reed Dolomite (Kirk, in Knoph,
1918, p. 27), conformably overlying the Wyman, is a recrystallized dolomite
that grades into marble. The Deep Springs Formation (Kirk, in Knoph, 1918, p.
27) conformably(?) overlies the Reed Dolomite and consists of alternating gray
thin-bedded marble, mica schist, and lesser amounts of light-gray quartzite.
These units have been complexly folded and intruded by mafic dike swarms of
unknown age and by the felsic Lone Mountain pluton of Cretaceous age. Albers
and Stewart (1972, p. 28) suggest that the Lone Mountain pluton occupies the
core of a gently plunging anticline developed in the late Precambrian rocks.
The contact between the metasediments and the pluton is described by Bonham
and Garside (1979, p. 26) as sharp and discordant in detail. Slight sericitic
and chloritic alteration of the exposed pluton was observed in the study area.
The Precambrian metasediments seem unlikely for uranium concentrations in the
two possible categories considered, the contact-metasomatic class (340) and
the allogenic class (370): because of the lack of strong alteration, the
apparent poor porosity and permeability of the metasedimentary rocks, and the
lack of any observable concentrations of uranium in either the pluton or the
Precambrian metasediments.

- Surface radiometric- readings for the metasediments were from.40 cps to.
165 cps, and averaged 83 cps on the Mount Sopris SC-132. No aerial
radiometric anomalies were found.

The HSSR study reported three anomalous water values from the Lone
Mountain area. A spring north of Lone Mountain, flowing from a rock of
granite to quartz monzonite composition, contains 27 ppb uranium. A sample of
the granite (MER-127) contained 1 ppm U30g. A well on the east side of
the Lone Mountain plutons contains 39 ppb uranium. The well was in quartz
monzonite that contains 1 ppm U30g. A spring on the west side of the
pluton contains 39 ppb uranium. Three other wells in the area contain between
1.21 ppb and 8 ppb uranium. As mentioned before under the section on felsic
and mafic plutons, uranium content of rocks seems to be low, and the somewhat
elevated concentrations of uranium in ground water suggest that further
studies in the area are needed to determine the true potential of the Lone
Mountain pluton as a source of uranium.

QUATERNARY SEDIMENTS

Quaternary sediments found throughout the Tonopah Quadrangle consist of
desert wash, colluvium, alluvium, talus, and fan and playa deposits. These
sediments are considered unfavorable for uranium deposits. No concentration
of uranium was found in these units, although many are downdip from possible
source rocks and contain organic material. Carborne radiometric readings were
from 40 cps to 150 cps on the Mount Sopris SC-132 scintillometer. These
readings are consistent with expected averages for detrital sources; there
were no apparently anomalous readings. The aerial radiometric anomalies
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associated with these sediments were followed up by ground reconnaissance but
had no positive results (Plate 3). The HSSR study failed to record any
anomalous readings associated with these sediments.

TERTIARY AND QUATERNARY INTERMEDIATE TO MAFIC VOLCANIC ROCKS

Intermediate and mafic volcanic rocks are found throughout the Tonopah
Quadrangle. Tertiary intermediate and mafic rocks have their greatest
exposure in the Monte Cristo Range, whereas Quaternary basaltic rocks cap
large areas of the Pancake and Reveille Ranges and San Antonio Mountains.

Intermediate to mafic volcanic rocks of Tertiary and Quaternary age in
the Tonopah Quadrangle are considered unfavorable because of their chemical
nature, their stratigraphic position, and lack of evidence indicating uranium
enrichment from outside sources.

The chemical composition of such rock types, as pointed out by Pilcher
(1978) and others, makes them poor sources of uranium. Coupled with this, the
geologic setting, as capping units in most areas, allows these rocks to be
mineralized only by ascending uraniferous fluids. Evidence of such
mineralization having occurred is completely lacking in surface exposures of
the capping intermediate and mafic volcanic rocks examined in this study.

A number of aerial radiometric anomalies were associated with the
intermediate and mafic volcanic rocks. Followup surface reconnaissance failed
to locate any uranium or anomalous radioactivity in outcrop (Plate 3). One
anomalous reading in the northwest corner of the quadrangle near Gabbs is
attributed to particulates in the air emanating from the presently operating
brucite refinery. Another anomaly over andesites and basalts in the Monte
Cristo Range was not checked due to access problems and limited time.

HSSR failed to locate any anomalous water or stream sediments associated
with intermediate to mafic volcanic rocks. Uranium values for 20 intermediate
volcanic rock samples were from <1 ppm to 7 ppm and had an average of 4.1 ppm.
Radiometric readings of intermediate to mafic volcanic rocks were from 65 cps
- to 225 cps on the Mount Sopris SC-132 scintillometer.

UNEVALUATED ENVIRONMENTS
Environments not evaluated due to lack of time, access, hydrologic data,

and access to subsurface data are the Northumberland and Mount Jefferson
calderas and the radiometrically important hydrologic system at Warm Springs.

MOUNT JEFFERSON CALDERA

The Oligocene Mount Jefferson caldera, north of Round Mountain, consists
of a thick pile of rhyolite ash—-flow tuffs that may be a composite sheet. The
caldera is within the most rugged and the highest (Mount Jefferson, 3642 m)
‘portion of the Toquima Range. Access to the area is quite limited, and little
published geologic information is available. One uranium occurrence, the
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Hardscrabble (Class 530), is assoclated with the northern ring-fracture of the
caldera (Meehan and others, 1956). This hydroauthigenic occurrence is in a
Tertiary ash—-flow tuff that has a background of 6 ppm U30g and a high of

5,130 ppm U30g. Mineralization appears related to a series of north-
northeast-trending faults, but the potential size and grade of this occurrence
cannot be determined from surface exposures; and private subsurface data was
not available during this study. No water, stream-sediment, or aerial
radiometric survey anomalies are associated in or around the Mount Jefferson
caldera. Lack of access, subsurface information, and sufficient time for
detailed studies prevented in-depth evaluation.

NORTHUMBERLAND CALDERA

The Oligocene Northumberland caldera lies within the Toquima Range just
north of the Mount Jefferson caldera. Good exposure of the east half of the
20-mi-wide caldera can be seen in the Northumberland Canyon; here a sequence
of ash flows, lava flows, intercaldera landslide blocks of Paleozoic
sedimentary rocks, and postcaldera sedimentary fill are visible. Particularly
well exposed are the thick, composite quartz latite Northumberland Tuff, the
eruption of which is believed to have caused the creation of the caldera, and
the postcollapse rhyolite tuff of Hoodoo Canyon (McKee, 1974a, 1974b; Bonham
and Garside, 1974a, 1974b). .

There are two uranium occurrences we believe to be associated with the
ring fracture system, the Rainbow Claims (Garside, 1973; Meeham and others,
"~ 1956) and the Jane Prospect. Both-occurrences are-of the hydroallogenic class
(540) and are in altered and brecciated Paleozoic sediments of the Vinini
Formation. Petrology for these two occurrences includes the uranium mineral
carnotite and uranium possibly adsorbed onto carbonaceous matter at the
Rainbow Claims. Neither appears likely to contain 100 tons of U30g at an
average grade of 100 ppm U;0g.

Within this unevaluated area are 11 water anomalies, which have uranium
values from 9 ppb to 31 ppb (average 15 ppb), and 2 stream-sediment anomalies
have 17 ppm U40g and 22 ppm U30g. No anomaly was found to be
associated with uranium concentration in outcrop. No aerial radiometric
anomalies are associated with the Northumberland caldera.

Two private companies presently have claims staked over most of the
caldera and surrounding areas and are still in the process of evaluating their
properties. Lack of access to this information has made it impossible to
ascertain favorability of the Northumberland caldera and associated areas.

HYDROLOGICAL SYSTEM AT WARM (NANNY GOAT) SPRINGS

Three springs in the extreme south of the Hot Creek Range near Warm
Springs, Nevada, are considered to be of possible importance. A cold spring,
found a mile northwest of Warm Springs, contains 18 ppb uranium and drains a
white felsic crystal tuff (MER-279) that contains 5 ppm U30g. The tuff is
presently considered to be at radiometric equilibrium (Table 3). Two hot
springs (60°C) rise from a brecciated fault zone in Paleozoic limestone at
Warm Springs Station (Garside and Schilling, 1974). The one to the west .
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drains into a fish pond, and the one to the east runs down a trench into the
local swimming pool; MER-311 and MER-313 have readings (Mt. Sopris SC-132) of
200 cps and 1,900 cps and chemical uranium values of <1 ppb and 5 ppb,
respectively. Samples MER-301, 302, and 303 of sinter and tuff around the hot
springs have uranium values of <1 ppm, <1 ppm, and 2 ppm, respectively. Time
to study these springs and the surrounding rocks was not available. Therefore
this area of hot- and cold-water springs was left essentially unevaluated.

RECOMMENDATIONS TO IMPROVE EVALUATION

The most important areas on which to improve evaluation are the
Northumberland and Mount Jefferson calderas. The cheapest method would be to
obtain drilling information from the companies presently drilling in the area.
- Due to access problems into the Mount Jefferson caldera, helicopter support
could be of great assistance; the same applies for access problems in the
Toiyabe, Monitor, and Hot Creek Ranges for rock and water sampling. Followup
studies of the Lone Mountain pluton, as a possible source rock, as well as the
southern pluton in the Toquima Range, to establish age and chemical relation
to the favorable Belmont pluton to the north are warranted. Most costly, but
of great importance, would be subsurface and hydrologic studies of the major
basins in the area.
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