

National Uranium Resource Evaluation

**TONOPAH QUADRANGLE
NEVADA**

**Bendix Field Engineering Corporation
Grand Junction, Colorado**

Issue Date
April 1982

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
Assistant Secretary for Nuclear Energy
Grand Junction Area Office, Colorado

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report is a result of work performed by Bendix Field Engineering Corporation, Operating Contractor for the U.S. Department of Energy, as part of the National Uranium Resource Evaluation. NURE is a program of the U.S. Department of Energy's Grand Junction, Colorado, Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

Available from: Technical Library
Bendix Field Engineering Corporation
P.O. Box 1569
Grand Junction, CO 81502-1569

Telephone: (303) 242-8621, Ext. 278

Price per Microfiche Copy: \$6.50

PGJ/F--128(82)

DE82 015180

PGJ/F-128(82)

NATIONAL URANIUM RESOURCE EVALUATION
TONOPAH QUADRANGLE
NEVADA

B. W. Hurley and D. P. Parker

BENDIX FIELD ENGINEERING CORPORATION
Grand Junction Operations
Grand Junction, Colorado 81502

NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBLE.
has been reproduced from the best available
copy to permit the broadest possible avail-
ability.

April 1982

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
GRAND JUNCTION AREA OFFICE
UNDER CONTRACT NO. DE-AC07-76GJ01664

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This is the final version of the subject-quadrangle evaluation report to be placed on open file. This report has not been edited. In some instances, reductions in the size of favorable areas on Plate 1 are not reflected in the text.

CONTENTS

	<u>Page</u>
Abstract	1
Introduction	3
Purpose	3
Acknowledgments	3
Scope	3
Procedures.	3
Surface study.	3
Aerial radiometric followup study.	5
HSSR followup study.	5
Subsurface study	5
Sampling and analyses.	5
Physiography and accessibility.	6
Geologic setting.	6
Rock type.	6
Structure.	8
Metamorphism	9
Ore deposits	9
Environments favorable for uranium deposits.	9
Area favorable for hydroallogenic deposits.	9
Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah.	9
Characteristics of host rocks	9
Uranium occurrences in Siebert Formation sediments.	10
Summary.	14
Speculations on the origin of the Big Smoky Valley occurrences	14

CONTENTS (continued)

	<u>Page</u>
Area favorable for authigenic deposits.	15
Granitic rocks of the Toquima and Belmont plutons.	15
Characteristics of host rocks	15
Uranium occurrences in the Toquima and Belmont stocks . .	16
Summary.	18
Speculations on the origin of the authigenic deposits of Area B	19
Environments unfavorable for uranium deposits.	19
Summary	19
Plutonic rocks.	19
Tertiary sediments outside favorable Area A	24
Paleozoic sediments and metasediments outside favorable and unevaluated areas	24
Mesozoic sediments, metasediments, and volcanic rocks	25
Felsic volcanic rocks outside favorable and unevaluated areas . . .	26
Precambrian metasediments	27
Quaternary sediments.	27
Tertiary and Quaternary intermediate to mafic volcanic rocks.	28
Unevaluated environments	28
Mount Jefferson caldera	28
Northumberland caldera.	29
Hydrological system at Warm (Nanny Goat) Springs.	29
Recommendations to improve evaluation.	30
Selected Bibliography.	31
Appendix A. Uranium occurrences in the Tonopah Quadrangle.	In pocket
Appendix B1. Location, fluorimetric uranium analyses, and semiquantitative spectroscopy for rock samples	In pocket

CONTENTS (continued)

	<u>Page</u>
Appendix B2. Water analysis and locations	In pocket
Appendix B3. Table of abbreviations	In pocket
Appendix C. Uranium-occurrence reports	In pocket
Appendix D. CIPW normative minerals differentiation indices. . . .	In pocket
Appendix E. Full rapid-rock data	In pocket
Appendix F. Complete semiquantitative modal analyses	In pocket

ILLUSTRATIONS

Figure 1. Tonopah Quadrangle location map	4
2. Generalized stratigraphic column.	7
Table 1. Gamma-spectroscopy analysis of selected rocks for favorable Area A.	13
2. Gamma-spectroscopy analysis of selected rocks for favorable Area B.	17
3. Gamma-spectroscopy analysis of selected rocks outside favorable areas	21

ILLUSTRATIONS (continued)

Plate 1. Areas favorable for uranium deposits

2. Uranium occurrences

3. Interpretation of aerial radiometric data

4. Interpretation of data from hydrogeochemical and stream-sediment reconnaissance

5. Location map of geochemical samples - rock

6. Drainage

7. Location map of geochemical samples - water

8. Cummulative probability and percent frequency for selected rock types

9. Detail of favorable Area A - rock samples-uranium and phosphorus values

10. Detail of favorable Area B - rock samples-uranium values

11. Detail of favorable Area B - water samples-uranium values

12. Geologic map of Tonopah Quadrangle

13. Geologic-map index

14. Generalized land status

15. Culture

Plates in accompanying packet

Missing Page
from
Original Document

INTRODUCTION

PURPOSE

The Tonopah Quadrangle, Nevada (Figure 1), was evaluated to a depth of 1500 m (5,000 ft) to identify geologic environments and delineate areas that exhibit characteristics favorable for uranium deposits. Favorable environments are those that could contain at least 100 tons of U_3O_8 in rocks having an average grade of at least 0.01 percent U_3O_8 . Selection of a favorable environment is based on the similarity of its geologic characteristics to the National Uranium Resource Evaluation (NURE) recognition criteria described by Mickle and Mathews (eds., 1978). The study was conducted by the Reno Field Office of Bendix Field Engineering Corporation (BFEC) for the NURE program, managed by the Grand Junction Office of the U.S. Department of Energy (DOE).

ACKNOWLEDGMENTS

Appreciation is expressed to the following persons for providing access and geologic information concerning mineral properties: Edward Alusow, Anaconda Copper Company; Edward I. Bloomstein, U.S. Steel; Mike Easdon, Lacana Mining; Ed Falsey, Royal Blue Mining; Fredric Files, U.S. Department of Energy; Joe L. Johnson, Rocky Mountain Energy; Larry Martin, Houston International Minerals; Bobby Nichols, Gila Mines Corporation; Paul Sonerholm, Smoky Valley Mining; Robert M. Steder, Mobil Oil; and Carl M. Welch of Reno, Nevada. Douglas R. Allen of BFEC, Grand Junction Operations, was responsible for the petrographic analyses of rock samples for this project.

SCOPE

The Tonopah Quadrangle project began with literature research and work-plan formulation on May 1, 1980; these activities required 0.3 man-years to complete. The succeeding field study and data compilation and evaluation required 1.0 man-years and began on July 1, 1980. Report preparation began January 1, 1981, and required 0.3 man-years to complete.

PROCEDURES

The Tonopah Quadrangle evaluation consisted of the following activities:

1. Surface study
2. Aerial radiometric followup
3. Hydrogeochemical and stream-sediment reconnaissance followup
4. Subsurface study
5. Sampling and analyses

Surface Study

The surface study consisted of reconnaissance of the accessible areas of the Tonopah Quadrangle and detailed investigation of selected geologic

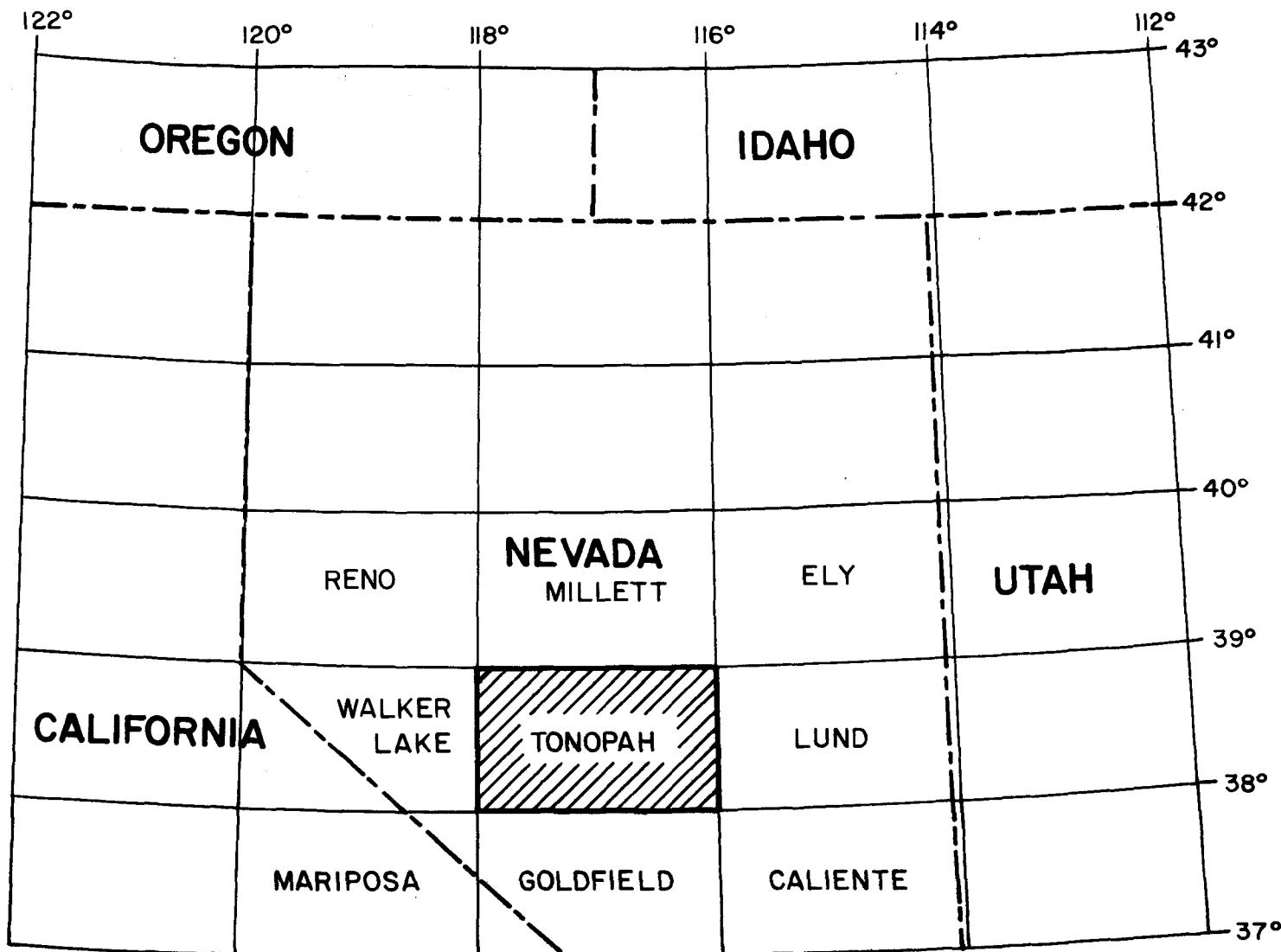


Figure 1. Tonopah Quadrangle location map.

environments. Known and newly discovered uranium occurrences were studied and sampled (Plate 2). The data from surface studies are recorded in Appendices A, B-1, B-2, B-3, C, D, E, and F.

The surface reconnaissance included scintillometer (Mt. Sopris SC-132) and field gamma-ray spectrometer (GR-310) surveying, identification and sampling of major rock types, and sampling of mineralized environments. Scintillometer surveying was carried out utilizing road and foot traverses, whereas the spectrometer survey was conducted at selected sample locations. Sampling of major rock types was done concurrently with radiometric surveying.

Detailed surface investigations were conducted in the immediate vicinity of uranium occurrences. These investigations included rock sampling, localized geologic mapping, scintillometer and gamma-ray spectrometer surveying, and in some instances, secondary followup sampling.

Aerial Radiometric Followup Study

The aerial radiometric survey of the Tonopah Quadrangle was completed prior to this study by Geodata International, Inc. (1979). Followup of this survey consisted of geologic reconnaissance, surface scintillometer surveying, and rock sampling in the vicinity of indicated anomalies (Plate 3); this followup was carried out concurrently with surface investigations of the same areas.

HSSR Followup Study

The Hydrogeochemical and Stream Sediment Reconnaissance report was completed by Lawrence Livermore Laboratory (LLL) in 1979. Followup of this survey consisted of geologic reconnaissance, surface scintillometer surveying, and rock sampling in the vicinity of indicated anomalies (Plate 4); this followup was carried out concurrently with surface investigation of the areas.

Subsurface Study

Subsurface data were obtained from the U.S. Geological Survey (USGS) and U.S. Atomic Energy Commission (AEC), as well as from confidential information supplied by several private companies. This information was used to confirm minimum grade levels in both areas designated as favorable in the Tonopah Quadrangle. Subsurface data were also used to substantiate unfavorability of occurrences for the Brunton Pass, Stewart Valley, Monte Cristo Range, northern Ralston Valley, Stone Cabin Valley, and Hot Creek Range areas.

Sampling and Analyses

Initial sampling was begun in 1978 by Carl Welch; he collected 69 rock samples, primarily during uranium-occurrence studies (Plate 2). Fluorimetric-uranium and 29-element emission spectrographic analyses were run on these samples; 29 samples were analyzed by Rocky Mountain Geochemical of Sparks, Nevada, and TSL Laboratories, Inc., in Opportunity, Washington, analyzed the

remaining 40 samples. One rock was submitted to the BFEC laboratory in Grand Junction, Colorado.

Rock sampling resumed in 1980 with the collection of an additional 187 samples (Plate 5). Fluorimetric-uranium and 34-element emission spectrographic analyses were run on all rock samples by the BFEC laboratory in Grand Junction, Colorado. Selected rock samples were sent to the BFEC laboratory for petrographic and rapid-rock analyses and for gamma-ray spectroscopic determination of equivalent uranium, equivalent thorium, and potassium.

Equivalent thorium-to-chemical uranium ratios are used as indicators of uranium enrichment or depletion in this report. Equivalent-thorium values are based upon gamma-ray spectroscopic measurements of the daughter products of thorium decay. Because of the relative chemical immobility of thorium, equivalent-thorium values are assumed to accurately represent the original thorium content of the rocks examined. Chemical-uranium values, adjusted from U_3O_8 assays of rock samples, accurately reflect the present uranium content of these samples. In contrast, equivalent uranium values, obtained from gamma-ray spectroscopic measurements of uranium daughter products, reflect the daughter products content only and may not accurately represent the amount of uranium, a more mobile element, present.

PHYSIOGRAPHY AND ACCESSIBILITY

The Tonopah Quadrangle is within the Great Basin and includes portions or all of 12 mountain ranges and 10 basins. Elevations are from 1360 m at Columbus Salt Marsh to 3642 m at Mount Jefferson. Large areas of several ranges exceed 2700 m; valley floors typically exceed 1500 m. The climate is semiarid to arid for the quadrangle except in the higher portions of the higher mountain ranges.

All valleys within the quadrangle are accessible by road or jeep trail, as are most of the lower mountainous areas. The higher mountainous areas are generally accessible only by foot, particularly in the Hot Creek, Monitor, Toiyabe, and Toquima Ranges.

GEOLOGIC SETTING

The Tonopah Quadrangle, Nevada, is between lat $38^{\circ}00'00''$ N. and $39^{\circ}00'00''$ N. and long $116^{\circ}00'00''$ W. and $118^{\circ}00'00''$ W. (Figure 1). The entire quadrangle is within the Basin and Range physiographic province and is characterized by north-northeast-trending, block-faulted horst mountains separated by deep graben basins.

Rock Type

The oldest rocks in the quadrangle are metamorphosed lower Precambrian claystone, siltstone, limestone, and dolomite at Lone Mountain in the southwestern portion of the quadrangle (Figure 2; Albers and Stewart, 1962, 1972). Paleozoic marine carbonate and clastic sedimentary rocks, locally

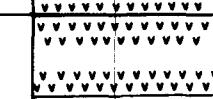

ERA	SYSTEM	SERIES	MAP UNIT	LITHOLOGY	DESCRIPTION
Cenozoic	Quaternary	Holocene	Qs, Qb		Alluvium fan deposits, stream gravel, dune sands, playa lake deposits, basalt flows and cinder cones.
		Pleistocene			Older gravel, lake beds, terrace deposits, landslide deposits, basaltic rocks.
	Tertiary	Pliocene	Timv		Andesite, basalts, quartz, latite flows, plugs, and dikes, dacite porphyry.
		Miocene			Rhyolite to quartz latite ash flow tuffs, dacite, rhyolite intrusions, tuffaceous shale, sandstone, diatomite.
		Oligocene	Tfv, Ts		Rhyolitic ash flow tuffs, dacitic to andesitic lava flows, welded tuffs, ash flow tuffs, tuffaceous and clastic sedimentary rocks.
	Cretaceous		Msv		Sandstone, shale, conglomerate.
	Jurassic				Conglomerate, sandstone, silty limestone, siltstone.
	Triassic				Limestone, dolomite, shale, sandstone, conglomerate, and felsic volcanic rocks.
Paleozoic	Permian		Ps		Altered andesitic flows, breccias, chert conglomerate, shale, and limestone.
	Pennsylvanian				Sandy conglomeratic limestone.
	Devonian				Limestone with some shale.
	Silurian				Limestone, dolomite, and shale.
	Ordovician				Dolomite, quartzite, chert, siltstone, and volcanic rock, black shale.
	Precambrian		pes		Bedded limestone, dolomite, dark quartzite, and siltstone.

Figure 2. Generalized stratigraphic column.

attaining an exposed thickness of more than 1000 m, are in most mountainous portions of the quadrangle. These Precambrian and Paleozoic sedimentary rocks were apparently deposited in moderate to shallow water depths near the cratonic margin. Mesozoic (primarily Triassic) volcanic and volcaniclastic sedimentary rocks, intercalated with shallow-marine carbonate and clastic sedimentary rocks, overlie the Paleozoic rocks over much of the western third of the quadrangle (Albers and Stewart, 1972; Ross, 1961).

Middle Mesozoic to lower Tertiary plutonic rocks of granitic to gabbroic composition intrude all older rock types of the region. Within the Tonopah Quadrangle, mafic to intermediate plutons are restricted to small exposures at Lone Mountain and the Paradise Range. Mesozoic felsic plutonic rocks are much more common and are exposed at Lone Mountain and in the Cedar Hills and the Monte Cristo, Paradise, Toquima, Shoshone, Toiyabe, and San Antonio Ranges (Plate 12). These rocks are not found in the western third of the quadrangle.

Tertiary felsic volcanic rocks are the most common rocks in the Tonopah Quadrangle and are widely exposed in all mountain ranges. The majority of these felsic volcanic rocks are Oligocene and Miocene ash-flow tuffs of rhyolitic quartz latitic composition. These tuffs apparently were erupted from a number of inferred vents within the Tonopah Quadrangle. Late Tertiary volcaniclastic and lacustrine sedimentary rocks are locally interbedded with the felsic volcanic rocks over much of the quadrangle and are locally overlain by later rhyolite flows and domes.

Structure

Both Tertiary and Quaternary intermediate and mafic volcanics, predominantly of flow origin, are present throughout the Tonopah Quadrangle. The Quaternary volcanic rocks are locally intercalated with and overlain by Quaternary alluvial, landslide, lacustrine, and playa sediments. No uranium occurrences are known in the Tertiary and Quaternary intermediate and mafic volcanic rocks or associated Quaternary sediments within the quadrangle.

Throughout the quadrangle, the Precambrian and Paleozoic rocks have been folded into approximately north-trending open folds. These folded sediments and at least some of the overlying Mesozoic volcanic and sedimentary rocks are cut by thrust faults that predate Mesozoic to lower Tertiary plutonic rocks. Subsequent minor low-angle faulting occurred locally, adjacent to intrusive margins; and minor folding, likely due to compaction and soft-sediment slumping, has locally deformed the Tertiary Siebert Formation. All rock types in the quadrangle are cut by late Tertiary and Quaternary basin-and-range high-angle faults.

The western third of the Tonopah Quadrangle lies within a transitional zone of disturbed structure between the Sierra Nevada province to the west and the more typical Basin and Range Province in the eastern two-thirds of the quadrangle (Bonham and Garside, 1979; Ekren and others, 1980; Ferguson and Muller, 1949). This transition zone is typified by a parallel and subparallel right-lateral strike-slip fault zone, which extends southward into the northwest corner of the quadrangle.

Metamorphism

Regional metamorphism of variable intensity has affected the Precambrian and Paleozoic sedimentary and the lower Mesozoic volcanic and sedimentary rocks of the Tonopah Quadrangle. Metamorphic intensity ranged locally from essentially unmetamorphosed to greenschist facies; Precambrian rocks are the most pervasively metamorphosed rocks in the quadrangle (Albers and Stewart, 1962).

Contact metamorphism is prevalent around the margins of granitic plutons and is especially pronounced in carbonate rocks, which are metamorphosed to calc-silicate scarns. Where the plutons intrude argillaceous sediments, hornfels have developed in inner aureole zones.

Ore Deposits

A number of different types of ore deposits are present in the Tonopah Quadrangle. Notable among these are silver vein deposits of the Reveille and Tonopah districts (Albers and Klinhampl, 1970; Basin and Laney, 1918; Bonham and Garside, 1979; Bonham and others, 1972; Eakle, 1912; Kral, 1951; and Spurr, 1905), gold vein deposits of the Manhattan, Round Mountain, and Belmont districts, bedded barite deposits of Northumberland Canyon (Shawe and others, 1967), porphyry molybdenum deposits of the San Antonio Mountains (Davis and others, 1971; Kral, 1951), playa potash and borate deposits of Columbus Salt Marsh (Hicks, 1915), the turquoise deposits at Royston Hills and Lone Mountain (Morrissey, 1968), and brucite deposits in the Paradise Range (Callaghan, 1933). Numerous other small precious- and base-metal deposits are associated with the Paleozoic sedimentary and Mesozoic plutonic rocks of the quadrangle (Ferguson, 1916, 1927, 1933).

ENVIRONMENTS FAVORABLE FOR URANIUM DEPOSITS

Two areas in the Tonopah Quadrangle have environments favorable for uranium deposits (Plate 1). Area A (the Big Smoky Valley west of Tonopah) is favorable for hydroallogenic uranium deposits (Class 540; Pilcher, 1978). Area B (the Toquima and Belmont granitic plutons) is favorable for authigenic deposits (Class 360; Mathews, 1978).

AREA FAVORABLE FOR HYDROALLOGENIC DEPOSITS

Miocene Lacustrine Sediments of the Big Smoky Valley west of Tonopah

Characteristics of Host Rocks. Sedimentary rocks of the Miocene Siebert Formation in the Big Smoky Valley contain environments favorable for hydroallogenic uranium deposits (Class 540; Pilcher, 1978). The Siebert Formation, originally called the Siebert Tuff (Spurr, 1905), contains a wide variety of sedimentary and volcanic rocks (Bonham and Garside, 1979). Sedimentary rock types include conglomerates, sandstones, and siltstones of fluvial origin and lacustrine claystones, shales, diatomites, and limestones. The coarser clastic sediments are most common near the base of the Siebert and along the flanks of the San Antonio and Lone Mountain horsts. Finer grained sediments are much more common basinward in the Big Smoky and Montezuma

(between Tonopah and Lone Mountain) Valleys. Most of the clastic sediments within the Siebert Formation contain tuffaceous material (Bonham and Garside, 1979).

Volcanic rock types within the Siebert Formation are predominantly felsic lapillistones and tuff breccias of pyroclastic origin. These pyroclastic rocks are commonly interbedded with the Siebert sediments throughout the formation. Much less common and limited to the upper part of the Siebert Formation are trachyandesite flows; dikes of similar composition locally intrude underlying portions of the formation.

The type locality of the Siebert Formation is the exposed section of sedimentary and volcanic rocks on Siebert Mountain just southwest of Tonopah (Bonham and Garside, 1979). At the type locality, the Siebert is approximately 180 m thick but may be considerably thicker basinward (Erwin, 1968). The Siebert overlies with angular unconformity earlier Miocene pyroclastic and flow rocks and is intruded and unconformably overlain by later Miocene volcanic plugs and flows, respectively. The age of the Siebert has been determined as 13 to 17 m.y. years by radiometric age dating. This age agrees with a Barstovian age indicated by fossil assemblages, which include mammal, fish, gastropod, ostracod, and algal fossils (Bonham and Garside, 1979).

Uranium Occurrences in Siebert Formation Sediments. The Foster, Bobby Jack (plus Jeep, Lincoln, and Roan Claims), and Silver Queen (plus Garibaldi and Rich and Rare Claims) uranium occurrences are hosted by lacustrine sediments of the Siebert Formation (Plate 2; Appendix C). Each of these occurrence groups actually consists of a number of closely spaced small uranium-enriched zones. The three occurrence groups lie along a north-northwesterly trend of anomalously high radioactivity that is approximately 13 km long and more than 1 km wide (Davis and Hetland, 1956). This trend is approximately parallel to the western boundary of the San Antonio Mountains horst. Individual occurrences along the trend appear related to approximately north-trending minor faults and fractures but exhibit considerable stratigraphic control locally (Garside, 1973). Although lacustrine claystones and shales are the predominant host uranium, both fluvial sandstone and tuffs are locally enriched in uranium.

The Silver Queen occurrence group is the largest and best exposed. Uranium mineralization at this locality took place primarily in phosphatic claystones and shales and in strongly silicified, locally brecciated, fine-grained sediments hereafter referred to as opalite breccia. Both the claystone and shales typically contain both tuffaceous and diatomaceous material. The opalite beds are extremely fine grained and range from massive to thinly laminated. Those seen by the authors vary in thickness from a few centimeters to several meters and appear to be laterally discontinuous. This variation suggests that these opalites are lenses intercalated with the thicker surrounding lacustrine beds. Upper and lower contacts between the opalite and the bounding claystones and shales appear gradational; whether this represents primary depositional facies changes or limits of subsequent silicification is unknown. The opalite breccias are rarely present within areas of opalite beds and appear to have been formed in moundlike or pipelike masses. These masses resemble paleo-hot-spring mounds, in lake sediments, seen by the authors at the McDermitt Mercury Mine in northern Nevada.

Although lacustrine sediments are the primary host rocks at the Silver Queen occurrence, uranium concentrations here also occur in sandstone, conglomerate, and felsic tuff. Uranium enrichment in these rocks is limited to very small areas near contacts with the lake sediments. Enrichment appears closely related to the same processes that mineralize the lacustrine beds. At the Foster and Bobby Jack occurrences, sandstones are intercalated with mineralized claystones and shales and are themselves mineralized to a lesser extent. Silicification is locally noticeable at both these occurrences, but no true opalite or opalite breccia was seen by the authors. No mineralized tuffs were noted at either the Foster or the Bobby Jack occurrences.

Several types of alteration have been noted in the Siebert Formation, particularly in the lake sediments. Silicification of these sediments is, of coarse, widespread, but whether this silicification is due to primary deposition or subsequent alteration is unknown. Petrologic investigation indicates volcanic-ash material originally present in these sediments has been completely devitrified and altered to clay minerals, zeolites, ferruginous clays, limonite as veinlets and small diffuse patches, and hematite (Appendix F). Oxidation is common in surface exposures of both the lacustrine and fluvial sediments, and the most radioactive zones appear to be in oxidized hosts. At both the Silver Queen and Foster prospects, uranium mineralization appears related to oxidized claystone beds containing small (3 mm in diameter) oxidized spheroids that resemble oxidized iron sulfide nodules. Pyrite has been reported in unoxidized mineralized sediments in the subsurface at the Silver Queen (Garside, 1973), which indicates prior reduction of these sediments.

The sediments of the Siebert Formation occurrences are most commonly white to light gray, where unaltered. Where altered, the sediments are most commonly yellow to reddish brown and display oxidation bands. Portions of the matrix of the opalite breccia are reddish brown, even where this rock appears unoxidized. Fracture surfaces in the oxidized sediments are, in rare instances, coated with a black film which may be a manganese oxide.

With the exception of pyrite noted from subsurface samples, no reductants have been identified at these occurrences. Uranium appears to have been concentrated by inclusion, within cryptocrystalline apatite (collophanite) of the claystones and shales, and within the opaline silica of the opalite and opalite breccia. Uranium appears to be adsorbed on clay, zeolite, and iron oxide minerals. Except for a minor occurrence of autunite in tuff at the Bobby Jack occurrence (Garside, 1973), no uranium minerals are reported at the Big Smoky Valley occurrences.

The maximum uranium content found by us in the Big Smoky Valley occurrences is 1,820 ppm (U_3O_8), in a sample (MER-061) of gray shale from the southern portion of the Foster occurrence (Table 1; Appendix B-1; Appendix C). A U_3O_8 value of 1,307 ppm from a sample (MER-067) of oxidized silty claystone is the maximum assay from the Bobby Jack occurrence (collected at the Jeep and Lincoln Claims portion). The maximum U_3O_8 assay at the Silver Queen group is 1,160 ppm in a sample of oxidized white claystone (MER-072). Mean assays from mineralized samples taken at the Foster, Bobby Jack, and Silver Queen occurrences are 587, 484, and 511 ppm U_3O_8 , respectively. Lowest U_3O_8 contents in unmineralized rocks from the Foster, Bobby Jack, and Silver Queen are 2, 3, and 7 ppm, respectively.

Ratios of laboratory gamma-ray spectrographic equivalent U_3O_8 values to U_3O_8 assays from selected samples range with two exceptions from 0.47 to 1.00, showing consistent uranium disequilibrium in favor of chemical uranium (Table 1). This may be due to either (1) such recent deposition of uranium that it has not yet produced sufficient daughter elements to be in secular equilibrium or (2) a leaching of daughter products. The authors believe the first circumstance to be most likely; such a circumstance may indicate supergene concentration of uranium in oxidized surface rocks during weathering. The two eU_3O_8 to cU_3O_8 ratios that exceed unity are 6.91 and 3.93 (Table 1). These high ratios indicate strong depletion of uranium, likely due to leaching during weathering.

The anomalous uranium correlates closely with high contents of calcium and phosphorus, which are constituent elements of apatite (Plate 9, Appendix B-1). Only one sample containing more than 50 ppm U_3O_8 , an opalite breccia from the Silver Queen occurrence (MER-079) containing 133 ppm U_3O_8 , has low contents of calcium and phosphorus. In this sample, uranium is likely held in opaline silica rather than cryptocrystalline apatite. Both molybdenum and zirconium show order-of-magnitude differences between high and low in Silver Queen and Foster Group samples, but these variations are not correlative with changes in uranium content (Appendix B-1, Appendix C). Anomalous values for arsenic were noted in several uranium-mineralized samples from the Silver Queen and Bobby Jack prospects, but other mineralized samples contained much lower arsenic contents. It does not appear that variations in arsenic and uranium contents are directly related (Appendix B-1, Appendix C).

The presence of uranium at the Big Smoky Valley occurrences may be detected by aerial radiometric surveying. The Foster and Bobby Jack occurrences lie directly beneath a line flown during the aerial radiometric survey of the Tonopah Quadrangle, and a bismuth-214 (uranium daughter product) anomaly is shown in their vicinity (Geodata International, 1979). The Silver Queen workings lie between lines flown in this survey.

As there is no surface water nor any water wells within that portion of the Big Smoky Valley encompassed in Area A, no ground-water information is available. No stream-sediment anomalies were noted in or near Area A (Qualheim, 1979).

Although it is not within favorable Area A, one other uranium occurrence should be mentioned in connection with the Siebert Formation occurrences. This occurrence is the Can't Miss prospect located at the south end of Cedar Mountain about 38 km (23 mi) northwest of the Foster occurrence (Plate 2, Appendix C). The Can't Miss occurrence is hosted by upper Tertiary fluvial and lacustrine sediments and an underlying Miocene ash-flow tuff. These sediments strongly resemble lacustrine and fluvial sediments exposed along the west side of Big Smoky Valley; they are mapped as Esmeralda Formation (Albers and Stewart, 1972) but appear to the authors to be identical to the Siebert Formation. The rocks along the west side of Big Smoky Valley and on Cedar Mountain overlie the Fraction Breccia (Albers and Stewart, 1972), which also lies directly beneath the Siebert Formation west of Tonopah (Bonham and Garside, 1979). Uranium mineralization at the Can't Miss occurs in oxidized sandstones (interbedded with lacustrine shales) and brecciated and silicified Fraction ash-flow tuff (Appendix C). The maximum U_3O_8 assays in sandstone

TABLE 1. GAMMA SPECTROSCOPY ANALYSIS OF SELECTED ROCKS FOR FAVORABLE AREA A*

Sample # (MER-)	Uranium Occurrence	Rock Type ⁺	CPS **	Chemical U ₃ O ₈ (ppm)	Calculated cU (ppm)	Equivalent U (ppm)	Equivalent Th (ppm)	eTh/eU	eTh/cU	eU/cU
058	Foster Group	cs	2500	560	475	376	30	.08	.06	.79
059	Foster Group	cs	900	243	206	---	---	---	---	---
060	Foster Group	sh	140	3	2.5	---	---	---	---	---
061	Foster Group	sh	1800	1820	1543	995	407	.41	.26	.64
092	Foster Group	lbs	1000	273	232	245	14	.06	.06	1.06
093	Foster Group	lbs	85	2	1.7	2	3	1.5	1.76	1.18
094	Foster Group	lbs	1700	553	469	---	---	---	---	---
095	Foster Group	lbs	2500	72	61	283	13	.05	.21	4.64
062	Bobby Jack	sh	900	560	475	313	87	.28	.18	.66
063	Bobby Jack	sts/cs	1000	560	475	263	119	.45	.25	.55
064	Bobby Jack	ss	1100	103	87	---	---	---	---	---
065	Bobby Jack	ss	1400	289	245	---	---	---	---	---
066	Bobby Jack	ss	1500	184	156	---	---	---	---	---
067	Bobby Jack	cs	3000	1307	1108	774	102	.13	.09	.70
068	Bobby Jack	ss/cs	3750	467	396	386	82	.21	.21	1.0
069	Bobby Jack	ss	1700	401	340	---	---	---	---	---
070	Silver Queen	lbs	4500	45	38	311	1260	4.1	33.16	8.18
071	Silver Queen	lbs	2000	499	423	384	100	.26	.24	.91
072	Silver Queen	lbs	11200	1160	984	1147	374	.33	.38	1.17
073	Silver Queen	lbs	6600	940	797	---	---	---	---	---
074	Silver Queen	lbs	225	15	12.7	---	---	---	---	---
075	Silver Queen	lbs	2700	500	424	425	531	1.2	1.25	1
076	Silver Queen	lbs	200	7	5.9	---	---	---	---	---
077	Silver Queen	lbs	260	20	17	---	---	---	---	---
078	Silver Queen	lbs	1000	283	240	---	---	---	---	---
079	Silver Queen	lbs	800	133	113	105	5	.05	.04	.93
080	Silver Queen	lbs	2500	10	8.5	---	---	---	---	---
091	Silver Queen	lbs	2500	60	51	---	---	---	---	---

*Gamma Spectroscopy analysis run by BFEC personnel in Grand Junction, Colorado Office.

+See Appendix B-3. Table of Abbreviations.

**Mt. Sopris Scintillometer SC-132.

and tuff at the Can't Miss are 324 and 228 ppm, respectively. Chemical analysis and petrology indicate uranium is held in the cryptocrystalline apatite structure (Appendix B-1; Appendix F). However, drilling at this prospect failed to encounter uranium in grades and tonnages of economic interest (Joe L. Johnson, pers. comm., 1980). If these sediments are of provenance and depositional history similar to those of sediments along the west side of Big Smoky Valley, it is likely that environments favorable for uranium deposits may be beneath the Quaternary alluvial cover continuously across Big Smoky Valley. Due to the lack of subsurface data, the depth, lithologies, and distribution of the postulated Siebert Formation extension beneath the valley is unknown.

Summary

The uranium occurrences of the Big Smoky Valley west of Tonopah are in a graben basin of the Basin and Range Province. The occurrences seem to be along minor faults and fractures, which approximately parallel the normal fault(s) bounding the east side of the graben. At individual occurrences, uranium mineralization appears to be predominately in tuffaceous lacustrine claystones and shales. Minor uranium enrichment is also in interbedded fluvial sandstones and ash-flow tuffs. The shape of the deposits is tabular to lenticular and apparently stratiform in most instances. Silicification, argillization, and zeolitization are common in these deposits, and pyritization is known from the subsurface. Uraniferous opal is apparently present at the Silver Queen occurrence (Davis and Hetland, 1956), and molybdenum, although not directly correlative with uranium content, is enriched in some Silver Queen samples. Nearly all equivalent thorium-to-chemical U_3O_8 ratios for these occurrences are less than unity (Table 1). All of the aforementioned characteristics are consistent with the recognition criteria for hydroallogenic uranium occurrences (Class 540; Pilcher, 1978). Based on these occurrences, Area A in the Big Smoky Valley is considered favorable for hydroallogenic uranium deposits.

Speculations on the Origin of the Big Smoky Valley Occurrences

Two theories of origin have been suggested for the Big Smoky Valley uranium occurrences. Davis and Hetland (1956) favor a hydrothermal origin, whereas Garside (1973) suggests a ground-water ash-leach mode of origin. Garside points out the absence of typical hydrothermal features and mineralogy as evidence against a hydrothermal origin for these deposits. However, a simple ash-leach theory does not explain the apparent localization of the occurrences along faults and fractures and the sinterlike opalite breccia and cryptocrystalline apatite. In addition, these deposits lack the abundance of calcium uranyl phosphate minerals (particularly autunite) present in other Basin and Range hydroallogenic occurrences, such as the Tick Canyon Mine, which are thought to be of ash-leach origin (Hurley and others, 1980).

The authors believe that these occurrences were formed by a hot-spring system that included both shallow hydrothermal (geothermal) and ash-leach processes. The similarity between the opalite lenses, opalite breccia, and lacustrine sediments at the Silver Queen prospect and the McDermitt Mine are striking. The McDermitt mercury deposit is believed to have formed in a

hot-spring environment along a fault system; this fault system deposited apronlike lenses of siliceous sinter within a sequence of concurrently deposited tuffaceous lake sediments (Roper, 1976). A similar origin is suggested for the Opalite and Bretz mercury deposits, which are also uranium occurrences (Roper, 1976; Rytuba and Glanzman, 1978). Such a hot spring-lacustrine environment would seem to explain the interbedded opalite lenses, opalite breccia, and extensive devitrification and argillization of the sediments at the Silver Queen occurrence. It would also explain the localization of the Big Smoky Valley occurrences along fault and fracture systems. The uranium in these occurrences may have originated from a deep hydrothermal source or from ash-leach of tuffaceous sediments and tuffs by circulating geothermal ground waters. The lack of typical hydrothermal vein characteristics leads the authors to favor the latter source alternative.

A hot spring emanation into cooler lake waters may also explain the presence of uraniferous apatite in the Big Smoky Valley occurrences. Krauskopf (1967) describes two mechanisms for the formation of marine phosphorites; these mechanisms might also be applicable in a hot spring-lacustrine environment. In one case, upwelling waters rich in calcium and phosphate lost carbon dioxide due to decreasing pressure and consumption during plant photosynthesis; as a result, calcium phosphate minerals are inorganically precipitated. In the second instance, abundant aquatic life stimulated by upwelling warm, phosphate-rich waters precipitates calcium phosphates organically as skeletal material. The warm circulating waters of the postulated geothermal system may have been enriched in phosphates during migration through the Siebert sediments; the sediments locally contain not only vertebrate and invertebrate fossils (Bonham and Garside, 1979) but also include tuffs at the base of Siebert Mountain made up entirely of diatoms (Spurr, 1905b, p. 69). The presence of limestone beds near the Bobby Jack occurrence attests to calcium enrichment within these waters. The action of the abundant aquatic life, commonly associated with the present hot springs of the region and recorded in the Siebert fossil record, may have led to the inorganic and/or organic precipitation of the calcium phosphate apatite. Where uranium was in the geothermal waters, it became incorporated in the precipitating collophane. The irregular distribution of the mineralized zones may be explained by the irregular occurrence of hot springs along faults and fractures, periods of nondeposition of phosphatic beds, and interruptions in hot spring activity and uranium supply. Perplexing features, such as beds that are mineralized on only one side of a fracture system (Garside, 1973), may be explained by current drift of the uranium-bearing hot waters.

The rare autunite and the disequilibrium in favor of chemical uranium likely seem due to recent supergene enrichment of uranium in near-surface environments during weathering. If these deposits are due to epigenetic hydrothermal or ash-leach processes, the disequilibrium in favor of chemical uranium may indicate a very recent age of primary mineralization for the Big Smoky Valley occurrences.

AREA FAVORABLE FOR AUTHIGENIC DEPOSITS Granitic Rocks of the Toquima and Belmont Plutons

Characteristics of Host Rocks. The granitic intrusive rocks of the adjacent Toquima and Belmont stocks (Area B, Plate 1) contain environments

favorable for authigenic uranium deposits (Class 360; Mathews, 1978). These Cretaceous plutons have yielded nearly contemporaneous radiometric age dates (Toquima, 76.4 m.y.; Belmont, 79.6 m.y.) and may be comagmatic (Ervine, 1973). Both intrusions are predominately quartz monzonite but include rocks from granite to granodiorite, consisting of various amounts of potassium feldspar, sodic plagioclase, quartz, and biotite with traces of muscovite, allanite, apatite, zircon, and monazite (Ervine, 1973; Appendix F). The chief difference between the plutons appears to be the common porphyritic quartz monzonite phase that contains large potassium feldspar phenocrysts in the Belmont stock. Both plutons apparently consist of multiple intrusions, and both are cut by later dikes of granitic aplite and pegmatite, massive quartz, and felsite probably related to volcanism that produced the overlying Tertiary ash-flow tuffs. The Toquima and Belmont stocks intrude Cambrian metasedimentary rock types including crystalline limestone, argillite, quartzite, and schist, which underwent complex folding prior to intrusion. All known uranium occurrences in Area B are present within the plutons themselves, and no uranium concentration appears to have occurred in the country rocks at plutonic margins.

Uranium Occurrences in the Toquima and Belmont Stocks. Eight uranium occurrences are in the plutons of Area B (Plate 2; Appendix C). Seven of these occurrences, the Henebergh Tunnel, Bey, Joker Shaft, Ace Adit, Huebnerite Mill, N and H, and Pine occurrences, are in the Toquima pluton. The largest occurrence, the Hot Claims, is hosted by the Belmont stock. All these occurrences share a number of characteristics. At each occurrence, uranium concentration is limited to fracture fillings and altered granitic rocks immediately adjacent to fractures, and the host rocks have undergone oxidation and argillic and sericitic alteration (Appendix F). These mineralized fractures have a generally north-northeast trend (Gibbs, 1976). Fracture fillings at all occurrences include iron oxide minerals, and kaolinitic clays fill fractures at five prospects (Table 2; Appendix C). The only uranium minerals identified from these occurrences are the uranyl phosphates, autunite and torbernite (Garside, 1973). Uranium is also in accessory allanite, apatite, monazite, and zircon in the host rocks (Gibbs, 1976).

Although all the uranium occurrences of Area B display marked similarities, some characteristics vary between occurrences. At the Henebergh Tunnel, Joker Shaft, and Pine Group prospects, dikes of porphyritic felsite intrude granite or quartz monzonite host rocks along the fracture zones that host uranium (Appendix C). The felsite dikes themselves do not contain appreciable amounts of uranium at any locality and appear unrelated to uranium mineralization. Fluorite and scheelite are present at the N and H prospect and fluorite, scheelite, pyrite, and chalcopyrite at the Ace Adit (Gibbs, 1976), but their relationship to uranium is unclear. Massive vein quartz is also common in several occurrences (Table 2).

Chemically, no consistent correlation between uranium content and the contents of any other element could be discerned from the samples collected during this study (Appendix B-1). However, Gibbs (1976) states that monazite and allanite are present only in zones of anomalous radioactivity and that apatite and zircon are always more abundant in these zones. As mentioned above, copper, fluorine, silicon, and tungsten are locally enriched at some occurrences.

TABLE 2. GAMMA SPECTROSCOPY ANALYSIS OF SELECTED ROCKS FOR FAVORABLE AREA B*

Sample # (MER-)	Uranium Occurrence	Rock Type†	CPS**	Chemical U ₃ O ₈ (ppm)	Calculated cU (ppm)	Equivalent U (ppm)	Equivalent Th (ppm)	eTh/eU	eTh/cU	eU/cU
011	Shale Pit	ft	310	13	11	---	---	---	---	---
012	Shale Pit	fpt	500	184	156	---	---	---	---	---
163	Shale Pit	ft	230	5	---	---	---	---	---	---
013	Red Bird Toquima	hy in fi	400	67	56.8	---	---	---	---	---
014	Bey Group	hy in fi	1100	122	103.5	---	---	---	---	---
015	Ace Adit	hy in fi	1400	77	65	71	11	.16	.17	1.1
016	Ace Adit	hy in fi	2500	273	231.5	127	5	.04	.02	.55
157	Ace Adit	fi	150	1	---	---	---	---	---	---
017	Pine Group	hy in fi	12000	1470	1247	1440	11	.008	.009	1.15
018	Pine Group	hy in fi	5000	234	198	501	5	.01	.025	2.5
019	Green Top	hy in fi	350	49	42	---	---	---	---	---
020	Violet Blue	hy in fi	550	29	25	---	---	---	---	---
021	Huebnerite Mill Prospect	hy in fi	700	226	192	---	---	---	---	---
022	Huebnerite Mill Prospect	hy in fi	1200	5	4.24	---	---	---	---	---
031	Hennebergh Tunnel	fi	220	16	13.6	---	---	---	---	---
032	Hennebergh Tunnel	hy in fi	250	65	55	---	---	---	---	---
033	N and H Group	hy in fi	1500	467	396	---	---	---	---	---
034	N and H Group	hy in fi	1700	93	79	---	---	---	---	---
035	Joker Shaft	hy in fi	3750	653	554	443	16	.04	.029	.80
155	Joker Claims	tss	260	9	7.6	---	---	---	---	---
156	Joker Claims	fi	195	1	.848	---	---	---	---	---
037	Hot Claims	fi	70	3	2.5	5	16	3.2	6.4	2
038	Hot Claims	hy in fi	900	513	435	---	---	---	---	---
039	Hot Claims	hy in fi	2500	747	633	---	---	---	---	---
040	Hot Claims	hy in fi	700	28	24	---	---	---	---	---
042	Hot Claims	hy in fi	2500	1027	871	---	---	---	---	---
043	Hot Claims	hy in fi	600	114	97	---	---	---	---	---
052	Hot Claims	fi	650	194	165	---	---	---	---	---
053	Hot Claims	hy in fi	4000	196	166	---	---	---	---	---
158	Hot Claims	hy in fi	250	4	3.4	---	---	---	---	---
159	Hot Claims	hy in fi	140	3	2.5	---	---	---	---	---
160	Hot Claims	hy in fi	150	7	5.9	---	---	---	---	---
044		fi	100	3	2.5	---	---	---	---	---
049		hy in fi	220	3	2.5	---	---	---	---	---

*Gamma Spectroscopy analysis run by BFEC personnel in Grand Junction, Colorado Office.

†See Appendix B-3. Table of Abbreviations.

**Mt. Sopris Scintillometer SC-132.

Uranium content in the Toquima and Belmont stocks (excluding mineralized zones) averaged 1.9-3.4 ppm (Gibbs, 1976), which is less than the 4.7 ppm average for granitic rocks (Clark, 1966). Thorium content of these rocks averages 9.6-12.2 ppm (Gibbs, 1976), compared to an average thorium value of 320 ppm for granitic rocks (Clark, 1966). Thus these plutons have a range of 2.8 to 6.4 for thorium-to-uranium ratios compared to a 4.3 ratio from granitic rock averages. This indicates that intense leaching of uranium from these plutons has not occurred, except possibly on a very local scale. Thorium-to-uranium ratios are commonly less than unity, as would be expected, in uranium-mineralized areas (Table 2). Maximum uranium content in our samples from the Toquima pluton is 1,470 ppm U_3O_8 in MER-017, a sample of iron oxide-coated granite from the Pine Prospect (Table 2). A U_3O_8 content of 1,027 ppm in a sample of altered quartz monzonite is the maximum uranium assay obtained from the Belmont pluton occurrence.

A number of equivalent U_3O_8 -to-chemical U_3O_8 ratios for mineralized samples show disequilibrium in favor of chemical uranium. This could be due to daughter-product leaching but is considered most likely due to recent near-surface enrichment of uranium, as discussed earlier for the Area A occurrences. One sample showed marked disequilibrium in favor of equivalent uranium, suggesting either the leaching of uranium relative to its daughter products or analytical error in this analysis.

As mentioned previously, the uranyl phosphates autunite and torbernite and uranium-bearing allanite, apatite, monazite, and zircon are present at these occurrences. No uranium or uranium-bearing accessory minerals could be identified in some radioactive samples of iron oxide and clay; it appears that the uranium in these samples is adsorbed on the iron oxide and clay minerals.

Both aerial radiometric and hydrogeochemical and stream-sediment reconnaissance studies detected anomalies within Area B. Two small aerially detected radiometric anomalies are in the central part of Area B, near the east margin of the Toquima stock (Plate 3). Several ground-water uranium anomalies are in the Belmont stock drainage area; the anomalies outline a radioactive zone that includes the Hot Claims occurrence (Plate 4).

Summary

The uranium occurrences of Area B are along fracture zones in granitic and quartz monzonitic rocks of the closely related Toquima and Belmont stocks. These rocks are commonly leucocratic and contain high proportions of alkali feldspars and quartz. Fluorite is locally present within hydrothermal veins in these rocks. Texturally, both porphyritic and pegmatitic phases are present within these intrusions, which are postorogenic and which intrude metasediments of greenschist facies. The uranium minerals identified in these occurrences are similar to those listed for authigenic uranium occurrences (Class 360; Mathews, 1978), which these occurrences are considered to be.

The sizes of the various uranium occurrences of Area B appear to be quite variable. Subsurface exploration at the Henebergh Tunnel prospect indicates reserves of less than 25 tons of U_3O_8 at a grade of approximately 250 ppm (Mike Easdon, pers. comm., 1980). Based on comparative sizes of surface exposures, the other Toquima occurrences seem likely to be of a similar or

smaller tonnage than the Henebergh deposit. The Hot Claims prospect in the Belmont pluton is considerably larger. It seems almost certain that in excess of 100 tons of U_3O_8 at a grade of more than 100 ppm is within Area B.

Access to the Toquima pluton occurrences is by dirt road from Round Mountain, Nevada, with the exception of the N and H occurrence. The road to the N and H is no longer usable except possibly by motorcycle. Because all the Toquima stock occurrences, except the Bey prospect, are deep within the Toquima Range, they are likely inaccessible in winter. The Hot Claims are accessible by one good dirt road from Belmont, Nevada, and a poorer trail from Manhattan, Nevada. As the Hot Claims lie east of the higher portion of the Toquima Range, they are accessible most of the year.

Speculations on the Origin of the Authigenic Deposits of Area B

Gibbs (1976) concludes that argillitic and sericitic alteration and such hydrothermal minerals as pyrite, chalcopyrite, scheelite, quartz, and fluorite (at some occurrences) indicate a low-temperature hydrothermal origin for the Toquima pluton occurrences. The absence of these minerals at most occurrences, and the lack of tetravalent uranium minerals at any locality, does not support a hydrothermal origin, however. In addition, drilling at both the Henebergh and Hot Claims deposits indicate that oxidation and uranium enrichment die out within several hundred feet of the surface. This, coupled with the apparent recent enrichment of chemical uranium in some samples, suggests that these deposits may have formed very recently due to near-surface ground-water migration through prominent fracture zones. More study is needed to accurately determine the mode of origin of these occurrences.

ENVIRONMENTS UNFAVORABLE FOR URANIUM DEPOSITS

SUMMARY

In the Tonopah Quadrangle, Paleozoic sediments and metasediments outside unevaluated areas were found to be unfavorable for meeting the base NURE criteria. Tertiary sediments outside favorable Area A are considered unfavorable. Felsic volcanics outside of the unevaluated Northumberland and Mount Jefferson calderas are unfavorable. Plutonic rocks outside of favorable Area B are unfavorable. Mesozoic and Precambrian sediments and metasediments were found to be unfavorable. Intermediate and mafic volcanics and metavolcanics are considered unfavorable. Quaternary sediments also fail to meet the base criteria for uranium favorability.

PLUTONIC ROCKS

Plutonic rocks of Cretaceous to Tertiary age and from gabbro to alaskite granite in composition crop out as numerous small stocks in the western half of the Tonopah Quadrangle. None of these meet the criteria for uranium favorability for plutonic rocks set by Mathews (1978).

Multi-element emission spectroscopy for 18 rock samples (Appendix B-1) taken from various plutons indicates they are not similar in bulk composition to the Toquima and Belmont plutons, both of which are considered favorable. An unexpected result was the difference in bulk chemistry between the Toquima and Belmont plutons and the unnamed pluton immediately south of them at the south end of the Toquima Range (Appendix B-1; Plate 12). This is the largest of the unfavorable plutons and has an area of approximately 40 km^2 . No literature on this pluton was found; however, petrologic and chemical studies (Appendix B-1; Appendix F) for eight samples give a range in composition from quartz monzonite to granodiorite; the average uranium content is 1 ppm U_3O_8 , and an average eTh/eU ratio is 7, suggesting some uranium depletion. This pluton is probably Cretaceous or Tertiary in age. Eight springs draining this pluton (Plate 4; Plate 6) have anomalous uranium values that average of 72 ppb and have a high of 208 ppb. Two anomalous sediment samples of 22 ppm and 53 ppm U_3O_8 are also associated with this pluton. Thus, uranium is being mobilized and transported from this pluton; however, there is no evidence any significant concentration of uranium has taken place.

The Lone Mountain pluton, 30 km west of the town of Tonopah, is the only other intrusion of interest. It has an areal extent of approximately 32 km^2 and is a multiple intrusion that has phases from gabbro to alaskite granite in composition. The bulk of the composition is considered between quartz monzonite and biotite granite (Bonham and Garside, 1979; Phariss, 1974). Five rock samples taken from the western side of the pluton (Plate 5) have from 1 ppm to 10 ppm U_3O_8 (average 5.4 ppm). KUT values (Table 3) indicate enrichment of uranium in three of the samples. Three springs associated with the margins of the pluton (Plate 4) have anomalous uranium values of 27 ppb, 39 ppb, and 39 ppb. Slight disequilibrium, indicating both enrichment and depletion of uranium, is indicated within the pluton; but no sign of significant uranium concentrations in outcrop was found in the pluton or in the intruded Precambrian sediments.

A small quartz diorite (Silberling, 1959) intrusive body in the Shoshone Range has a spring sample and a stream-sediment sample having 12 ppb and 30 ppm U_3O_8 , respectively, associated with it. A small granodiorite plug (Callaghan, 1933) in the Paradise Range has a spring containing 14 ppb U_3O_8 associated with it. Both were field checked and showed no evidence of any significant uranium accumulations.

The aerial radiometric survey revealed an anomaly associated with a small intrusive body between the favorable Area B plutons and the southernmost plutons in the Toquima Range. This is directly over the Barrel Spring "occurrence" where a number of small scattered aplitic dikes intrude quartzite. One of the dikes is uraniferous and has U_3O_8 values between 662 ppm and 13,000 ppm, but the volume of mineralized material at this occurrence is insignificant.

Mineralization at Anaconda's Hall Molybdenum property 48 km north of Tonopah is associated with a small aplitic porphyry. Four samples taken from the presently exposed mineralized portion of the stock have an average U_3O_8 content of <1.5 ppm and an average eTh/eU ratio of 2.8. Uranium is not considered to be associated with this molybdenum-enriched pluton.

TABLE 3. GAMMA SPECTROSCOPY ANALYSIS OF SELECTED ROCKS OUTSIDE FAVORABLE AREAS*

Sample # (MER-)	Uranium Occurrence	CPS**	Rock Type +	Chemical U ₃ O ₈ (ppm)	Calculated eU (ppm)	Equivalent U (ppm)	Equivalent Th (ppm)	eTh/eU	eTh/eU	eU/eU
004	---	625	sh	7	59	99	18	.18	3	16.61
005	Barrel Springs	5000	---	662	561	---	---	---	---	---
006	Barrel Springs	10000	---	618	524	---	---	---	---	---
007	Barrel Springs	10000	fi	13000	11024	13300	2860	.22	.26	1.2
008	---	200	sc	79	70	8	21	2.63	.3	.11
009	Lee Hiatt Prospect	425	tb	167	142	---	---	---	---	---
010	Lee Hiatt Prospect	225	ph	11	9.3	---	---	---	---	---
029	---	6000	T	3410	2891	2000	16	.008	.005	.69
036	---	7000	ff, Pzs	4200	3561	2670	1	.0003	.0003	.75
081	---	270	vg	13	11	9	30	3.3	2.7	.82
082	---	270	vg	13	11	9	29	3.2	2.6	.82
083	---	2600	tb of ft	228	193	175	21	.12	.11	.91
084	---	400	tb of ft	50	42	44	25	.57	.60	1.05
085	---	1400	ss	324	275	392	5	.01	.02	1.43
086	---	200	ss	25	21	16	6	.38	.29	.76
087	---	400	hy in fi	31	26	15	10	.67	.38	.58
090	---	180	mv	13	11	8	12	1.5	1.09	.73
092	---	1000	lbs/cs	273	231	245	14	.06	.06	1.06
093	---	85	lbs/cs	2	1.7	2	3	1.5	1.76	1.18
094	---	1790	lbs/cs	553	469	---	---	---	---	---
098	---	120	fi	11	9.3	2	12	6	1.29	.22
099	---	250	fi	7	6	5	13	2.6	2.27	.83
100	---	110	fi	9	7.6	3	11	3.7	1.45	.39
115	---	125	ft	5	4.2	3	11	3.7	2.61	.71
116	---	160	ft	5	4.2	4	14	3.5	3.33	.95
117	---	250	ft	7	6	7	24	3.4	4	1.17
118	---	150	ff	4	3.4	5	12	2.4	3.53	1.47
119	---	95	ii	5	4.2	3	12	4	2.86	.71
120	---	150	ft	5	4.2	3	21	7	5	.71
121	---	280	ft	13	11	16	68	4.25	6.18	1.45
122	---	135	it	4	3.4	3	17	5.67	5	.88
123	---	190	it	6	5.1	4	24	6	4.70	.78
124	---	110	lbs	15	12.7	13	57	4.4	4.49	1.02
125	---	110	ss	9	7.6	6	15	2.5	1.97	.79
126	---	110	fi	6	5.1	4	9	2.3	1.76	.78
128	---	190	fi	10	8.5	5	22	4.4	2.59	.588
129	---	190	ft	6	5.1	2	8	4	1.57	.39
130	---	205	ff	5	4.2	3	14	4.66	3.33	.71
131	---	210	fi	5	4.2	3	22	7.33	5.24	.71
132	---	125	ft	6	5.1	6	12	2	2.35	1.2
133	---	115	fi	1	.848	1	5	5	5.9	.848
134	---	200	ff	11	9.3	5	21	4.2	2.25	.54
135	---	195	it	5	4.24	4	20	5	4.70	.94
136	---	195	iat	3	2.5	6	18	3	7.2	2.4
137	---	110	it	2	1.7	4	14	3.5	8.2	2.4
138	---	225	iat	6	5.1	7	19	2.7	3.72	1.37
139	---	225	ii	7	6	5	15	3	2.5	.83
140	---	150	ff	2	1.7	5	17	3.4	10	2.94
141	---	180	fi	2	1.7	4	14	3.5	8.2	2.35

TABLE 3. GAMMA SPECTROSCOPY ANALYSIS OF SELECTED ROCKS OUTSIDE FAVORABLE AREAS* (Continued)

142	120	fi	>1	---	---	---	---	---	---	---	---
184	435	ss	66	56	54	13	.24	.24	.24	.96	
185	725	ss	107	91	113	81	71.7	.89	1.24		
186	360	ss	36	30	44	12	3.67	.40	1.42		
187	430	ss	29	25	27	11	2.45	.44	2.27		
188	280	ss	33	28	33	10	3.3	.36	1.18		
189	470	ss	82	70	68	5	13.6	.07	.97		
190	450	ch	76	64	70	6	11.67	.09	1.09		
191	200	ft	8	6.8	7	15	2.14	2.2	1.03		
192	195	ft	9	7.6	9	35	3.89	4.6	1.18		
193	195	ft	5	4.2	5	29	5.8	6.9	1.19		
194	140	ft	5	4.2	2	22	1.1	.52	.48		
195	140	ft	3	2.5	3	15	5	6	1.2		
196	180	ft	7	6	5	23	4.6	3.83	.83		
197	135	ss	3	2.5	4	22	5.5	8.8	1.6		
198	225	ft	8	6.8	7	29	4.14	4.26	1.03		
199	110	ii	2	1.7	3	15	3	8.8	1.76		
200	150	it	2	1.7	3	14	4.7	8.2	1.76		
251	170	ft	3	2.5	3	17	5.7	6.8	1.2		
252	350	ls	28	24	22	1	.045	.04	.92		
253	55	ls	2	1.7	1	1	1	.59	.59		
254	75	ls	6	5.1	4	2	.5	.39	.78		
256	100	ch	<1	---	---	---	---	---	---	---	---
257	425	ch	61	52	51	2	.04	.04	.98		
258	225	tb/ls	3	2.5	4	24	6	9.6	1.6		
259	200	it	4	3.4	4	20	5	5.9	1.18		
260	250	it	5	4.2	4	22	5.5	5.24	.95		
261	250	vg	6	5.1	5	20	4	3.92	.98		
262	250	ft	6	5.1	9	45	5	8.82	1.76		
263	250	lbs	5	4.2	5	23	4.6	5.48	1.19		
264	225	it	4	3.4	3	22	7.3	6.47	.88		
265	230	vg	6	5.1	6	24	4	4.70	1.18		
266	250	it	3	2.5	3	21	7	8.4	1.2		
267	170	fi	<1	<1	2	13	6.5	<6.4	>2		
268	170	fi	<1	<1	1	10	10	<10	>1		
269	170	fi	<1	<1	2	11	5.5	<5.5	>1		
270	250	ff	5	4.2	5	20	4	4.76	1.19		
271	200	ff	1	.85	2	10	5	11.76	2.35		
272	250	ff	5	4.2	6	20	3.33	4.76	1.43		
273	250	ff	3	2.5	3	22	7.3	8.8	1.2		
274	225	it	6	5.1	5	15	3	2.94	.98		
275	180	it	4	3.4	4	22	5.5	6.47	1.18		
276	140	ft	5	4.2	4	24	6	5.7	.95		
277	125	ft	1	.85	2	13	6.5	15.3	2.35		
278	150	ft	4	3.4	4	20	5	5.88	1.29		
279	175	mv	5	4.2	4	18	4.5	4.30	.95		
280	65	lbs	<1	---	---	---	---	---	---	---	---
281	45	ls	1	.85	1	1	1	1.18	1.18		
282	40	ft	4	3.4	2	1	.50	.29	.59		
283	283	ft	4	3.4	2	10	5	2.94	.59		
284	375	ar	9	7.6	98	14	.14	1.84	12.9		
285	195	vg	9	7.6	8	24	3	3.15	1.05		
286	180	ii	4	3.4	4	21	5.25	6.17	1.18		
287	195	ff	4	3.4	4	13	3.25	3.82	1.18		
288	275	ft	10	8.5	10	23	2.3	2.70	1.18		

TABLE 3. GAMMA SPECTROSCOPY ANALYSIS OF SELECTED ROCKS OUTSIDE FAVORABLE AREAS* (Continued)

289	---	120	scs	7	6	7	1	.14	.17	1.17
290	---	140	sts	5	4.2	7	0	0	0	1.67
291	---	1300	sts	45	38	152	43	3.53	1.13	4
292	---	400	cs	12	10	6	19	3.17	1.9	.60
293	---	200	ii	4	3.4	25	83	3.32	24.4	7.36
294	---	140	fi	<1	<1	2	13	6.5	>13	>2
295	---	160	fi	<1	<1	1	11	>11	>11	>1
296	---	140	fi	1	.8	2	14	7	17.5	2.5
297	---	140	fi	<1	<1	1	9	9	>9	>1
298	---	140	fi	<1	<1	2	9	4.5	>9	>2
299	---	70	fi	<1	---	0	1	---	---	---
300	---	140	fi	1	.85	3	6	2	7.1	3.5
301	---	1900	s	<1	---	256	0	---	---	---
302	---	110	ls	<1	.85	1	1	1	1.18	1.18
303	---	1300	s	2	1.7	64	3	.05	1.76	37.6
304	---	200	ft	4	3.4	5	21	4.2	6.17	1.47
305	---	215	ft	3	2.6	5	15	3	6	2
306	---	200	fi	3	2.6	4	9	2.3	3.5	1.5
307	---	85	fi	<1	---	1	7	7	>7	>1

*Gamma Spectroscopy analysis run by BFEC Personnel in Grand Junction, Colorado Office.

+See Appendix B-3. Table of abbreviations.

**Mt. Sopris Scintillometer SC-132.

TERTIARY SEDIMENTS OUTSIDE FAVORABLE AREA A

Tertiary sediments consist of conglomerates, sandstone, and siltstones of fluvial origin and lacustrine claystones, shales, diatomites, and limestones. These rocks have localized exposures throughout most of the Tonopah Quadrangle.

Tertiary sediments outside of favorable Area A host two uranium occurrences. At the Can't Miss Group (Class 240 and 530) (Garside, 1973), in the southern portion of Cedar Mountain, concentration occurs along fault contacts between oxidized, silicified vitric-crystal tuff and associated Tertiary tuffaceous sandstone. Petrographic investigation suggests uranium is substituting for calcium in cryptocrystalline apatite to form collophane at this locality (Appendix F). At the Stone Cabin Valley Claims (Class 240), near Five Mile Spring in Stone Cabin Valley, concentration is in intercalated silicified (opalized) lithic sandstones and volcanic conglomerates. Petrologic investigation of Tertiary sediment sample MER-185 indicates uranium is absorbed on clay minerals. Neither the Can't Miss Group nor the Stone Cabin Claims fits the base criteria of 100 tons of U_3O_8 at an average grade of 100 ppm U_3O_8 .

The aerial radiometric anomalies investigated in Tertiary sediments were not found to be associated with significant concentrations of uranium in outcrop (Plate 3). No significant stream or sediment anomalies are found associated with these rocks. Tertiary sedimentary rocks within the Tonopah Quadrangle outside favorable Area A are considered unfavorable for 100 tons of U_3O_8 at an average grade of 100 ppm U_3O_8 .

PALEOZOIC SEDIMENTS AND METASEDIMENTS OUTSIDE FAVORABLE AND UNEVALUATED AREAS

Paleozoic sediments and metasediments crop out in most of the mountain ranges in the Tonopah Quadrangle. These Paleozoic rocks consist of three assemblages: a miogeosynclinal assemblage of carbonates, a transitional assemblage of shale and limestone in the eastern and central portions of the quadrangle, respectively, and an eugeosynclinal assemblage of siliceous-clastic and volcanic rocks in the extreme western portion of the quadrangle. During Late Devonian to Early Mississippian time, the Roberts Mountain Thrust displaced the eugeosynclinal assemblage eastward over the transitional and carbonate assemblages. Throughout the rest of the Paleozoic, the landscape in the central portion of the quadrangle was dominated by the Antler Highland. Three depositional provinces in the quadrangle are associated with the highland: a conglomerate and carbonate province within the Antler Highland, a carbonate and terrigenous-detrital province to the east of the highland, and a siliceous and volcanic province to the west of the highland (Stewart, 1980; Kay and others, 1964; Kleinhampf and Zoiny, 1967; Langenheim and Larson, 1973; Vitaliano and Callaghan, 1963; Webb, 1958).

Economic deposits of gold, silver, copper, tungsten, and antimony, as well as minor occurrences of uranium, are associated with the contact aureoles where a Mesozoic granitic pluton intruded Paleozoic sediments (Dyan, 1916; Ferguson, 1917b, 1921, 1927; Ferguson and Cathcart, 1954; Kral, 1951; Kurfak, 1975; Nolan, 1930, 1935; Silberman and McKee, 1974; Silberman and others, 1978). Two uranium occurrences, the Lee Hiatt Prospect in the southern

Toquima Range and the Titus-Black and Pete Prospect (Garside, 1973) in the central Hot Creek Range (both Class 370), are contact associated. Based on confidential company information, neither of these appear to meet the basic criteria of tonnage and grade for favorability.

Three aerial radiometric anomalies were reported in Paleozoic rocks (Plate 3). One in the northern Toiyabe Range and another in the south-central Hot Creek Range were not found to be associated with significant concentrations of uranium. The third is over the Lee Hiatt and Barrel Springs uranium occurrence. Anomalous uranium, in spring waters of 27 ppb and 21 ppb on the northwestern side of the Paradise Range, was not found to be associated with any concentrations of uranium that could be located on outcrop.

Paleozoic sediments in the Tonopah Quadrangle are considered unfavorable for uranium deposits. Recognition-criteria characteristics for uranium deposits in sedimentary and metamorphic rocks (Mickle and Mathews, 1978) are not present; nor do concentrations of any prospects in these rock types approach minimum-grade and minimum-tonnage requirements. Additionally, no significant HSSR or aerial radiometric anomalies were associated with these rock types.

MESOZOIC SEDIMENTS, METASEDIMENTS, AND VOLCANIC ROCKS

Rocks of Mesozoic age occur in the western third of the study area and comprise four formations of interest. The Triassic Excelsior Formation (Muller and Ferguson, 1936, p. 224), exposed in the Pilot Mountains, is composed of volcanic rocks and sediments with an aggregate thickness exceeding 3000 m.

The Middle Triassic Grantsville Formation has limited exposure in the Shoshone Range but is of interest as a host for the Grantsville mercury mining district. The formation consists of a lower clastic unit, a massive siliceous pebble conglomerate that grades upward into a sandy argillite, and an upper 90-m-thick limestone unit, the host for the mercury ore. The contact ore deposits of silver, lead, zinc, and mercury were formed by the selective mineralization of this limestone by an igneous intrusive rock that is not exposed at the surface (Silberling, 1959). The Grantsville district has produced several thousand flasks of quicksilver. Fluorite is also associated with the Grantsville Limestone Member and the Luning Formation as replacement deposits in alteration and fault zones (Silberman, 1959; Papke, 1979). No uranium concentration is present in the area.

The Triassic Luning Formation, named by Muller and Ferguson (1936, p. 245), is exposed in the Pilot Mountains, Paradise Range, Shoshone Range, and Cedar Hills. The formation consists predominately of approximately 2400 m of limestone and subordinate shale, argillite, and conglomerate. The only uranium occurrence associated with Mesozoic rocks is in argillite of the Luning Formation in the Paradise Range, at an old mercury mine near Brunton Pass (Appendix C). The Brunton Pass occurrence (Class 370?) was found and drilled by Phillips Uranium Corp. in 1978. The low-grade metasediments are hydrothermally altered. Mineralization has occurred along steeply dipping shear zones. However, concentrations of uranium are below those for the NURE criteria.

The Jurassic Dunlap Formation, named by Muller and Ferguson (1936, p. 250), is in the Cedar Hills, Pilot Mountains, and Shoshone Range. The Dunlap Formation is composed mostly of a clastic sequence of sandstone, conglomerate, and fanglomerate overlain locally by volcanic rocks and limestone. In the Pilot Mountains, over 5,000 flasks of quicksilver were mined, mostly from the limestone and sandstone units of the Dunlap Formation (Foshag, 1928; Phoenix and Cathcart, 1952; Rose, 1961); but no uranium is associated with this mineralization.

Mesozoic rocks in the Tonopah Quadrangle are considered unfavorable for uranium mineralization for these reasons: only one small uranium occurrence is reported; hypogene mineralizing solutions, which accomplished mercury and fluorine mineralization in the area, commonly were not uraniferous; and there are no aerial radiometric or HSSR anomalies within these rocks.

FELSIC VOLCANIC ROCKS OUTSIDE FAVORABLE AND UNEVALUATED AREAS

Felsic volcanic rocks, from rhyolite porphyry to quartz latite in composition, make up the bulk of the rocks exposed in the Tonopah Quadrangle. The majority of these rocks are considered Tertiary in age. They occur as rhyolite plugs, flows, and domes; air- and water-lain tuffs; and thick sequences of ash-flows that grade upward from vitric bases through densely welded to nonwelded tuffs in complete sections.

Laboratory gamma-spectroscopy analyses of 35 felsic volcanic rocks yielded average ratios of $e\text{Th}/e\text{U} = 4.3$, $e\text{Th}/c\text{U} = 5.3$, and $e\text{U}/c\text{U} = 1.2$. These ratios suggest some depletion of chemical uranium in these rocks. Several anomalous stream and water samples from felsic volcanic rocks also indicate release of uranium from these rocks (Plate 4). Several small aerial radiometric anomalies in felsic volcanic rocks (Plate 3), none related to the aforementioned HSSR anomalies, were not found to be associated with anomalous concentrations of uranium in outcrop.

The only uranium occurrence in felsic volcanics is the Can't Miss Group (Class 530, 240) in the southern portion of Cedar Mountain (Garside, 1973). Mineralization occurs along fault contacts between oxidized, silicified vitric-crystal tuff and associated tuffaceous sandstone sediments. Petrographic investigation suggests that uranium is substituting for calcium in cryptocrystalline apatite (collophane). (See discussion on "Speculations of origin of Big Smoky Valley occurrences," this report.) This occurrence does not meet the minimum tonnage and grade requirement for favorability (J. Johnson, pers. comm., 1980).

The felsic volcanic rocks in the Tonopah Quadrangle are considered unfavorable for uranium deposits. Although KUT data (Table 3), the aerial radiometric survey, and HSSR data indicate some uranium mobility, concentrations of uranium within these rocks, such as at the Can't Miss occurrence, appear of small extent and very low grade.

PRECAMBRIAN METASEDIMENTS

Rocks of Precambrian age crop out around the margins of the Lone Mountain pluton approximately 30 km west of Tonopah. Rocks of three formations, from late Proterozoic to Cambrian in age, are represented here: the Wyman Formation, the Reed Dolomite, and the Deep Springs Formation. The Wyman Formation (Maxson, 1934) is composed of marble interbedded with phyllite, quartzite, and calc-silicate hornfels. The Reed Dolomite (Kirk, in Knoph, 1918, p. 27), conformably overlying the Wyman, is a recrystallized dolomite that grades into marble. The Deep Springs Formation (Kirk, in Knoph, 1918, p. 27) conformably(?) overlies the Reed Dolomite and consists of alternating gray thin-bedded marble, mica schist, and lesser amounts of light-gray quartzite. These units have been complexly folded and intruded by mafic dike swarms of unknown age and by the felsic Lone Mountain pluton of Cretaceous age. Albers and Stewart (1972, p. 28) suggest that the Lone Mountain pluton occupies the core of a gently plunging anticline developed in the late Precambrian rocks. The contact between the metasediments and the pluton is described by Bonham and Garside (1979, p. 26) as sharp and discordant in detail. Slight sericitic and chloritic alteration of the exposed pluton was observed in the study area. The Precambrian metasediments seem unlikely for uranium concentrations in the two possible categories considered, the contact-metasomatic class (340) and the allogenic class (370): because of the lack of strong alteration, the apparent poor porosity and permeability of the metasedimentary rocks, and the lack of any observable concentrations of uranium in either the pluton or the Precambrian metasediments.

Surface radiometric readings for the metasediments were from 40 cps to 165 cps, and averaged 83 cps on the Mount Sopris SC-132. No aerial radiometric anomalies were found.

The HSSR study reported three anomalous water values from the Lone Mountain area. A spring north of Lone Mountain, flowing from a rock of granite to quartz monzonite composition, contains 27 ppb uranium. A sample of the granite (MER-127) contained 1 ppm U_3O_8 . A well on the east side of the Lone Mountain plutons contains 39 ppb uranium. The well was in quartz monzonite that contains 1 ppm U_3O_8 . A spring on the west side of the pluton contains 39 ppb uranium. Three other wells in the area contain between 1.21 ppb and 8 ppb uranium. As mentioned before under the section on felsic and mafic plutons, uranium content of rocks seems to be low, and the somewhat elevated concentrations of uranium in ground water suggest that further studies in the area are needed to determine the true potential of the Lone Mountain pluton as a source of uranium.

QUATERNARY SEDIMENTS

Quaternary sediments found throughout the Tonopah Quadrangle consist of desert wash, colluvium, alluvium, talus, and fan and playa deposits. These sediments are considered unfavorable for uranium deposits. No concentration of uranium was found in these units, although many are downdip from possible source rocks and contain organic material. Carbone radiometric readings were from 40 cps to 150 cps on the Mount Sopris SC-132 scintillometer. These readings are consistent with expected averages for detrital sources; there were no apparently anomalous readings. The aerial radiometric anomalies

associated with these sediments were followed up by ground reconnaissance but had no positive results (Plate 3). The HSSR study failed to record any anomalous readings associated with these sediments.

TERTIARY AND QUATERNARY INTERMEDIATE TO MAFIC VOLCANIC ROCKS

Intermediate and mafic volcanic rocks are found throughout the Tonopah Quadrangle. Tertiary intermediate and mafic rocks have their greatest exposure in the Monte Cristo Range, whereas Quaternary basaltic rocks cap large areas of the Pancake and Reveille Ranges and San Antonio Mountains.

Intermediate to mafic volcanic rocks of Tertiary and Quaternary age in the Tonopah Quadrangle are considered unfavorable because of their chemical nature, their stratigraphic position, and lack of evidence indicating uranium enrichment from outside sources.

The chemical composition of such rock types, as pointed out by Pilcher (1978) and others, makes them poor sources of uranium. Coupled with this, the geologic setting, as capping units in most areas, allows these rocks to be mineralized only by ascending uraniferous fluids. Evidence of such mineralization having occurred is completely lacking in surface exposures of the capping intermediate and mafic volcanic rocks examined in this study.

A number of aerial radiometric anomalies were associated with the intermediate and mafic volcanic rocks. Followup surface reconnaissance failed to locate any uranium or anomalous radioactivity in outcrop (Plate 3). One anomalous reading in the northwest corner of the quadrangle near Gabbs is attributed to particulates in the air emanating from the presently operating brucite refinery. Another anomaly over andesites and basalts in the Monte Cristo Range was not checked due to access problems and limited time.

HSSR failed to locate any anomalous water or stream sediments associated with intermediate to mafic volcanic rocks. Uranium values for 20 intermediate volcanic rock samples were from <1 ppm to 7 ppm and had an average of 4.1 ppm. Radiometric readings of intermediate to mafic volcanic rocks were from 65 cps to 225 cps on the Mount Sopris SC-132 scintillometer.

UNEVALUATED ENVIRONMENTS

Environments not evaluated due to lack of time, access, hydrologic data, and access to subsurface data are the Northumberland and Mount Jefferson calderas and the radiometrically important hydrologic system at Warm Springs.

MOUNT JEFFERSON CALDERA

The Oligocene Mount Jefferson caldera, north of Round Mountain, consists of a thick pile of rhyolite ash-flow tuffs that may be a composite sheet. The caldera is within the most rugged and the highest (Mount Jefferson, 3642 m) portion of the Toquima Range. Access to the area is quite limited, and little published geologic information is available. One uranium occurrence, the

Hardscrabble (Class 530), is associated with the northern ring-fracture of the caldera (Meehan and others, 1956). This hydroauthigenic occurrence is in a Tertiary ash-flow tuff that has a background of 6 ppm U_3O_8 and a high of 5,130 ppm U_3O_8 . Mineralization appears related to a series of north-northeast-trending faults, but the potential size and grade of this occurrence cannot be determined from surface exposures; and private subsurface data was not available during this study. No water, stream-sediment, or aerial radiometric survey anomalies are associated in or around the Mount Jefferson caldera. Lack of access, subsurface information, and sufficient time for detailed studies prevented in-depth evaluation.

NORTHUMBERLAND CALDERA

The Oligocene Northumberland caldera lies within the Toquima Range just north of the Mount Jefferson caldera. Good exposure of the east half of the 20-mi-wide caldera can be seen in the Northumberland Canyon; here a sequence of ash flows, lava flows, intercaldera landslide blocks of Paleozoic sedimentary rocks, and postcaldera sedimentary fill are visible. Particularly well exposed are the thick, composite quartz latite Northumberland Tuff, the eruption of which is believed to have caused the creation of the caldera, and the postcollapse rhyolite tuff of Hoodoo Canyon (McKee, 1974a, 1974b; Bonham and Garside, 1974a, 1974b).

There are two uranium occurrences we believe to be associated with the ring fracture system, the Rainbow Claims (Garside, 1973; Meehan and others, 1956) and the Jane Prospect. Both occurrences are of the hydroallogenic class (540) and are in altered and brecciated Paleozoic sediments of the Vinini Formation. Petrology for these two occurrences includes the uranium mineral carnotite and uranium possibly adsorbed onto carbonaceous matter at the Rainbow Claims. Neither appears likely to contain 100 tons of U_3O_8 at an average grade of 100 ppm U_3O_8 .

Within this unevaluated area are 11 water anomalies, which have uranium values from 9 ppb to 31 ppb (average 15 ppb), and 2 stream-sediment anomalies have 17 ppm U_3O_8 and 22 ppm U_3O_8 . No anomaly was found to be associated with uranium concentration in outcrop. No aerial radiometric anomalies are associated with the Northumberland caldera.

Two private companies presently have claims staked over most of the caldera and surrounding areas and are still in the process of evaluating their properties. Lack of access to this information has made it impossible to ascertain favorability of the Northumberland caldera and associated areas.

HYDROLOGICAL SYSTEM AT WARM (NANNY GOAT) SPRINGS

Three springs in the extreme south of the Hot Creek Range near Warm Springs, Nevada, are considered to be of possible importance. A cold spring, found a mile northwest of Warm Springs, contains 18 ppb uranium and drains a white felsic crystal tuff (MER-279) that contains 5 ppm U_3O_8 . The tuff is presently considered to be at radiometric equilibrium (Table 3). Two hot springs (60°C) rise from a brecciated fault zone in Paleozoic limestone at Warm Springs Station (Garside and Schilling, 1974). The one to the west

drains into a fish pond, and the one to the east runs down a trench into the local swimming pool; MER-311 and MER-313 have readings (Mt. Sopris SC-132) of 200 cps and 1,900 cps and chemical uranium values of <1 ppb and 5 ppb, respectively. Samples MER-301, 302, and 303 of sinter and tuff around the hot springs have uranium values of <1 ppm, <1 ppm, and 2 ppm, respectively. Time to study these springs and the surrounding rocks was not available. Therefore this area of hot- and cold-water springs was left essentially unevaluated.

RECOMMENDATIONS TO IMPROVE EVALUATION

The most important areas on which to improve evaluation are the Northumberland and Mount Jefferson calderas. The cheapest method would be to obtain drilling information from the companies presently drilling in the area. Due to access problems into the Mount Jefferson caldera, helicopter support could be of great assistance; the same applies for access problems in the Toiyabe, Monitor, and Hot Creek Ranges for rock and water sampling. Followup studies of the Lone Mountain pluton, as a possible source rock, as well as the southern pluton in the Toquima Range, to establish age and chemical relation to the favorable Belmont pluton to the north are warranted. Most costly, but of great importance, would be subsurface and hydrologic studies of the major basins in the area.

SELECTED REFERENCES

Albers, J. P., and Kleinhapl, F. J., 1970, Spatial relation of mineral deposits to Tertiary volcanic centers in Nevada: U.S. Geological Survey Professional Paper 700-C, p. C1-C10.

Albers, J. P., and Stewart, J. H., 1962, Precambrian (?) and Cambrian stratigraphy in Esmeralda County, Nevada: U.S. Geological Survey Professional Paper 450-D, p. D24-D27.

Albers, J. P., and Stewart, J. H., 1972, Geology and mineral deposits of Esmeralda County, Nevada: Nevada Bureau of Mines and Geology Bulletin 78, 80 p., plate 1, scale 1:250,000.

Bastin, E. S., and Laney, F. B., 1918, The genesis of the ores at Tonopah, Nevada: U.S. Geological Survey Professional Paper 104, 50 p.

Bonham, H. F., Jr., and Garside, L. J., 1974a, Road Log and trip guide, Carver Station-Tonopah district: in Guidebook to the geology of four Tertiary volcanic centers in central Nevada: Nevada Bureau of Mines and Geology Report 19, p. 6-13.

Bonham, H. F., Jr., and Garside, L. J., 1974b, Tonopah mining district and vicinity in Guidebook to the geology of four Tertiary volcanic centers in central Nevada: Nevada Bureau of Mines and Geology Report 19, p. 4248.

Bonham, H. F., Jr., and Garside, L. J., 1979, Geology and mineral deposits of the Tonopah, Lone Mountain, Klondike and northern Mud Lake Quadrangles, Nevada: Nevada Bureau of Mines and Geology Bulletin 92, p. 141.

Bonham, H. F., Jr., Garside, L. J., and Silberman, M. L., 1972, K-Ar ages of ore deposition at Tonopah, Nevada: Isochromn/West, number 4, p. 5-6.

Callaghan, E., 1933, Brucite deposit, Paradise Range, Nevada: Nevada Bureau of Mines and Mackay School of Mines Bulletin 19, volume 27, number 1, p. 1-4.

Clark, S. P., Jr., 1966, Handbook of Physical Constants, Revised Edition: The Geological Society of America Memoir 97, 587 p.

Davis, D. L., and Hetland, D. C., 1956, Uranium in clastic rocks of the Basin and Range province: in Page, L. R., Stocking, and Smith, H. B., comps., Contributions to the geology of uranium and thorium by the U.S. Geological Survey and Atomic Energy Commission for the United Nations International Conference on Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1955: U.S. Geological Survey Professional Paper 300, p. 351-359.

Davis, W. E., Kleinhapl, F. J., and Zoiny, J. T., 1971, Aeromagnetic and generalized geologic map of the San Antonio Mountains, Nevada: U.S. Geological Survey Geophysical Investigations Map GP-744, scale 1:125,000.

Dixon, G. L., Hedland, D. C., and Ekren, E. B., 1972, Geologic map of the Pritchards Station Quadrangle, Nye County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-728, scale 1:48,000.

Dynan, J. L., 1916, The White Caps Mine, Manhattan, Nevada: Mining and Science Press, volume 113, p. 884-885.

Eakle, A. S., 1912, The Minerals of Tonopah, Nevada: University of California Department of Geological Science Bulletin, volume 7, number 1, p. 1-20.

Ekren, E. B., Bath, G. D., Dixon, G. L., Healey, D. L., Quinlivan, W. D., 1974, Tertiary history of Little Fish Lake Valley, Nye County, Nevada, and its implications as to the origin of the Great Basin: U.S. Geological Survey Journal Research, volume 2, number 1, figure 2, scale 1:250,000, p. 105-118.

Ekren, E. B., Byers, F. M., Jr., Hardiman, R. F., Marvin, R. F., and Silberman, M. L., 1980, Stratigraphy, preliminary petrology, and some structural features of Tertiary volcanic rocks in the Gabbs Valley and Gillis Range, Mineral County, Nevada: U.S. Geological Survey Bulletin 1,464, 54 p.

Ekren, E. B., Hinrichs, E. N., Quinlivan, W. D., and Hoover, D. L., 1973, Geologic map of the Moores Station Quadrangle, Nye County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-756, scale 1:48,000.

Ekren, E. B., Rogers, C. L., and Dixon, G. L., 1973, Geologic and Bouger gravity map of the Reveille Quadrangle, Nye County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-806, scale 1:48,000.

Ervine, W. B., 1973, The geology and mineral zoning of the Spanish Belt mining district, Nye County, Nevada: Palo Alto, California, Stanford University, Ph.D. dissertation, plate 1, scale 1:6,000, (295 p.).

Ferguson, H. G., 1917a, The Golden Arrow, Clifford, and Ellendale districts, Nye County, Nevada: U.S. Geological Survey Bulletin 640-F, p. 113-123.

Ferguson, H. G., 1917b, Placer deposits of the Manhattan district, Nevada: U.S. Geological Survey Bulletin 640-J, p. 163-193.

Ferguson, H. G., 1921, The Round Mountain district, Nevada: U.S. Geological Survey Bulletin 725-I, p. 383-406.

Ferguson, H. G., 1927, The Gilbert district, Nevada: U.S. Geological Survey Bulletin 795-F, p. 125-145.

Ferguson, H. G., 1933, Geology of the Tybo district, Nevada: University of Nevada Bulletin, volume 27, number 3, 61 p.

Ferguson, H. G., and Cathcart, S. H., 1954, Geology of the Round Mountain Quadrangle, Nevada: U.S. Geological Survey Geological Quadrangle Map GQ-40, scale 1:125,000.

Ferguson, H. G., and Muller, S. W., 1949, Structural Geology of the Hawthorne and Tonopah Quadrangles, Nevada: U.S. Geological Survey Professional Paper 216, 55 p.

Finch, W. I., 1967, Geology of epigenetic uranium deposits in sandstone in the United States: U.S. Geological Survey Professional Paper 538, 121 p.

Foshag, W. F., 1928, Quicksilver deposits of the Pilot Mountains, Mineral County, Nevada: U.S. Geological Survey Bulletin 795-E, p. 113-123.

Garside, L. J., 1973, Radioactive mineral occurrences in Nevada: Nevada Bureau of Mines and Geology Bulletin 81, 121 p.

Garside, L. J., Schilling, J. H., 1979, Thermal waters of Nevada: Nevada Bureau of Mines and Geology Bulletin 91, p. 163.

Gibbs, A. D., 1976, Uranium geology of the granitic rocks east of Round Mountain, Nevada: San Diego, University California, M.S. thesis, p. 1-76.

Hicks, W. B., 1915, The composition of muds from Columbus Salt Marsh, Nevada: U.S. Geological Survey Professional Paper 95, p. 1-11.

Hurley, B. W., Johnson, C. L., Cupp, G. M., Mayerson, D. L., Dodd, P. A., and Berg, J. C., 1980, Uranium resource evaluation, Reno Quadrangle, Nevada and California: U.S. Department of Energy Preliminary Open File Report PGJ-037(81).

Hyndman, D. W., 1972, Petrology of igneous and metamorphic Rocks: McGraw-Hill, New York, 533 p.

Kay, Marshall, and Crawford, J. P., 1964, Paleozoic facies from the miogeosynclinal to the eugeosynclinal belt in thrust slices, central Nevada: Geological Society of American Bulletin, volume 75, number 5, plate 2, scale 1:35,000, p. 425-454.

King, R. V., and Roberts, W. A., 1949, Henebergh tunnel, Round Mountain, Nye County, Nevada, Special report of field examination number 12: U.S. Geological Survey Trace Element Memoir Report TEM-12, 10 p.

Kleinhampl, F. J., and Zoiny, J., 1967, Preliminary geologic map of northern Nye County, Nevada: U.S. Geological Survey Open-File Map, scale 1:200,000.

Krauskopf, K. B., 1967, Introduction to geochemistry: New York, McGraw Hill Book Company, 721 p.

Knoph, Adolph, 1921, The Divide silver district, Nevada: U.S. Geological Survey Bulletin 715-K, 23 p.

Kral, V. E., 1951, Mineral resources of Nye County, Nevada: University of Nevada Bulletin, volume 45, number 3, 220 p.

Kurfak, J. M., 1975, Stratigraphy and structure in the Belmont mining district, Nye county, Nevada: Reno, University Nevada, M.S. thesis, plate 1, scale 1:12,000, 68 p.

Langenheim, R. L., and Larson, E. R., 1973, Correlation of Great Basin stratigraphic units: Nevada Bureau of Mines and Geology Bulletin 72, 42 p.

Lenzer, R. C. 1973, Geology and wallrock alteration at the Morey mining district, Nye county, Nevada: Madison, Wisconsin University, Ph.D. dissertation, plate 1, scale 1:4,800, 155 p.

Lowell, J. D., 1965, Lower and Middle Ordovician stratigraphy in the Hot Creek and Monitor Ranges, central Nevada: Geologic Society of America Bulletin, volume 76, number 2, (a) Figure 2, scale 1:24,000, (b) Figure 3, scale 1:55,000, p. 259-266.

Maxon, J. H., 1934, Precambrian stratigraphy of the Inyo Range [abs.]: Pan-American Geologist, volume 61, number 4, p. 310-311; Geological Society of American Proceedings 1934, p. 314.

McKee, E. H., 1974a, Northumberland caldera and Northumberland Tuff: in Guidebook to the geology of four Tertiary volcanic centers in central Nevada, Nevada Bureau of Mines and Geology Report 19, p. 35-41.

McKee, E. H., 1974b, Road log and trip guide Austin-Northumberland caldera Carver Station: in Guidebook to the geology of four Tertiary volcanic centers in central Nevada, Nevada Bureau of Mines and Geology Report 19, p. 2-5.

Meehan, R. J., Sharp, B. J., and Mallory, N. S., 1956, Airborne and ground reconnaissance project, Austin-Belmont-Tonopah area, Nevada: U.S. Atomic Energy Commission Open-File Report RME-2,055, 19 p.

Mickle, D. G., and Mathews, G. W., eds., 1978, Geologic characteristics of environments favorable for uranium deposits: U.S. Department of Energy Open-File Report GJBX-67(78), 250 p.

Morrissey, F. B., 1968, Turquoise deposits of Nevada: Nevada Bureau of Mines and Geology Report 17, plate 1, 28 p.

Mottern, H. H., Jr., 1962, Pre-Tertiary geology of a portion of Cedar Mountain, Nevada: Laramie, University Wyoming, M.S. thesis, plate 4, scale 1:17,360, 60 p.

Nevada Bureau of Mines and Geology, 1974, Guidebook to the geology of four Tertiary volcanic centers in central Nevada: Nevada Bureau of Mines and Geology Report 19, p. 1-72.

Nielson, R. L. 1964, Geology of the Pilot Mountains and vicinity, Mineral County, Nevada: Berkeley, University California, Ph.D. dissertation, plate 2, scale 1:31,000, p. 640.

Nishimori, R. K., Ragland, P. C., Rogers, J. J. W., and Greenberg, J. K., 1977, Uranium deposits in granitic rocks: U.S. Energy Research and Development Administration, Open-File Report GJBX-13(77), 301 p.

Nolan, T. B., 1930, The underground geology of the western part of the Tonopah Mining District, Nevada: Nevada State Bureau of Mines and Mackay School of Mines Bulletin 9, volume 24, p. 1-35.

-----1935, The underground geology of the Tonopah Mining District, Nevada: Nevada Bureau of Mines and Mackay School of Mines Bulletin 23, volume 29, number 5, p. 1-49.

Papke, K. G., 1979, Fluorspar in Nevada: Nevada Bureau of Mines Bulletin 93, p. 77.

Phariss, E. I., 1974, Geology and ore deposits of the Alpine mining district, Esmeralda County, Nevada: Reno, University of Nevada, M.S. thesis, 114 p.

Phoenix, D. A., and Chathcart, J. B., 1952, Quicksilver deposits in the southern Pilot Mountains, Mineral County, Nevada: U.S. Geological Survey Bulletin 973-D, 28 p.

Pilcher, R. C., 1978, Volcanogenic uranium occurrences: in Mickle, D. G., and Mathews, G. W., eds., Geologic characteristics of environments favorable for uranium deposits, U.S. Department of Energy Open-File Report GJBX-67(78), p. 181-220.

Qualheim, B., 1979, Hydrogeochemical and stream sediment reconnaissance report for the Tonopah NTMS Quadrangle, Nevada: U.S. Department of Energy Open-File Report GJBX-89(79), 8 figures, 7 tables, 6 overlays, 2 appendices, 45 p.

Quinliven, W. D., and Rogers, C. L., 1974, Geologic map of the Tybo Quadrangle, Nye County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-821, scale 1:48,000.

Robinson, P. T., McKee, E. H., and Moiola, R. A., 1968, Cenozoic volcanism and sedimentation, Silver Peak region, western Nevada and adjacent California, in Studies in volcanology: Geological Society of America Memoir 116, plate 1, scale 1:150,000, p. 557-611.

Roper, M. W., 1976, Hot Springs mercury deposition at McDermitt mine, Humboldt County, Nevada: Society of Mining Engineers, AIME Transactions volume 260, p. 192-195.

Ross, D. C., 1961, Geology and mineral deposits of Mineral County, Nevada: Nevada Bureau of Mines and Geology Bulletin 58, plate 2, scale 1:250,000, 98 p.

Rytuba, J. J., and Glanzman, R. K., 1978, Relation of mercury, uranium, and lithium deposits to the McDermitt caldera complex, Nevada-Oregon: U.S. Geological Survey OFR 78-926, 19 p.

Sandy, J., Jr., 1965, Geology of the Lone Mountain intrusive, Esmeralda County, Nevada: New Orleans, Louisiana, Tulane University, M.S. thesis, plate 1, scale 1:20,000.

Shawe, D. R., 1977, Preliminary generalized geologic map of the Round Mountain Quadrangle, Nye County, Nevada: U.S. Geological Survey Miscellaneous Field Studies Map MF-833, scale 1:24,000.

Shawe, D. R., Poole, F. G. and Brobst, D. A., 1967, Bedded barite in east Northumberland Canyon, Nye County, Nevada: U.S. Geological Survey Circular 555, figure 2, scale 1:31,680.

Silberling, N. J., 1959, Pre-Tertiary stratigraphy and upper Triassic paleontology of the Union district, Shoshone Mountains, Nevada: U.S. Geological Survey Professional Paper 322, plate 10, scale 1:24,000, 67 p.

Silverman, M. L., and McKee, E. H., 1974, Ages of Tertiary volcanic rocks and hydrothermal precious-metal deposits in central and western Nevada: in Guidebook to the geology of four Tertiary volcanic centers in central Nevada, Nevada Bureau of Mines and Geology Report 19, p. 67-72.

Silverman, M. L., Bonham, H. F., Jr., Garside, L. J., and Ashley, R. P., 1978, Radiometric ages of volcanic and plutonic rocks and hydrothermal alteration-mineralization in the Tonopah mining district and vicinity, Nye and Esmeralda Counties, Nevada: U.S. Geological Survey Preliminary Open-File Report v 78-841, p. 1-41.

Snyder, R. P., Ekren, E. B., and Dixon, G. L., 1972, Geologic map of the Lunar Crater Quadrangle, Nye County, Nevada: U.S. Geological Survey Miscellaneous Investigations Map I-700, scale 1:48,000.

Spurr, J. E., 1905, Geology of the Tonopah Mining District, Nevada: U.S. Geological Survey Professional Paper 42, 295 p.

Stewart, J. H., 1980, Geology of Nevada; A discussion to accompany the geologic map of Nevada: Nevada Bureau of Mines and Geology Special Publication 4, 51 figures, 136 p.

Thornton, C. P., and Tuttle, O. F., 1960, Chemistry of igneous rocks; Part I, differentiation index: America Journal of Science, volume 258, number 9, p. 664-684.

Travis, R. B., 1955, Classification of rocks: Golden, Colorado, Quarterly of the Colorado School of Mines, v. 50, no. 1, 98 p.

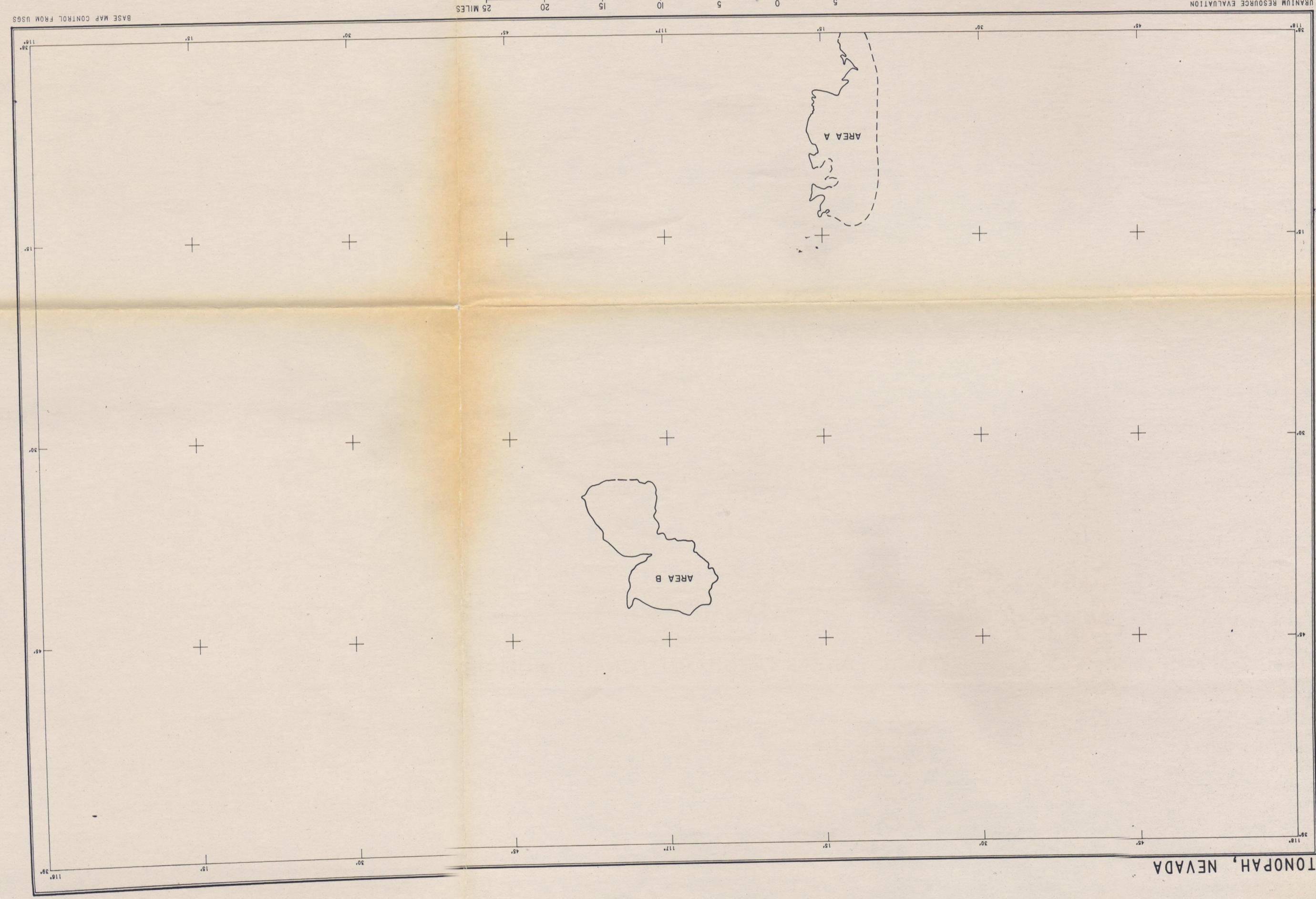
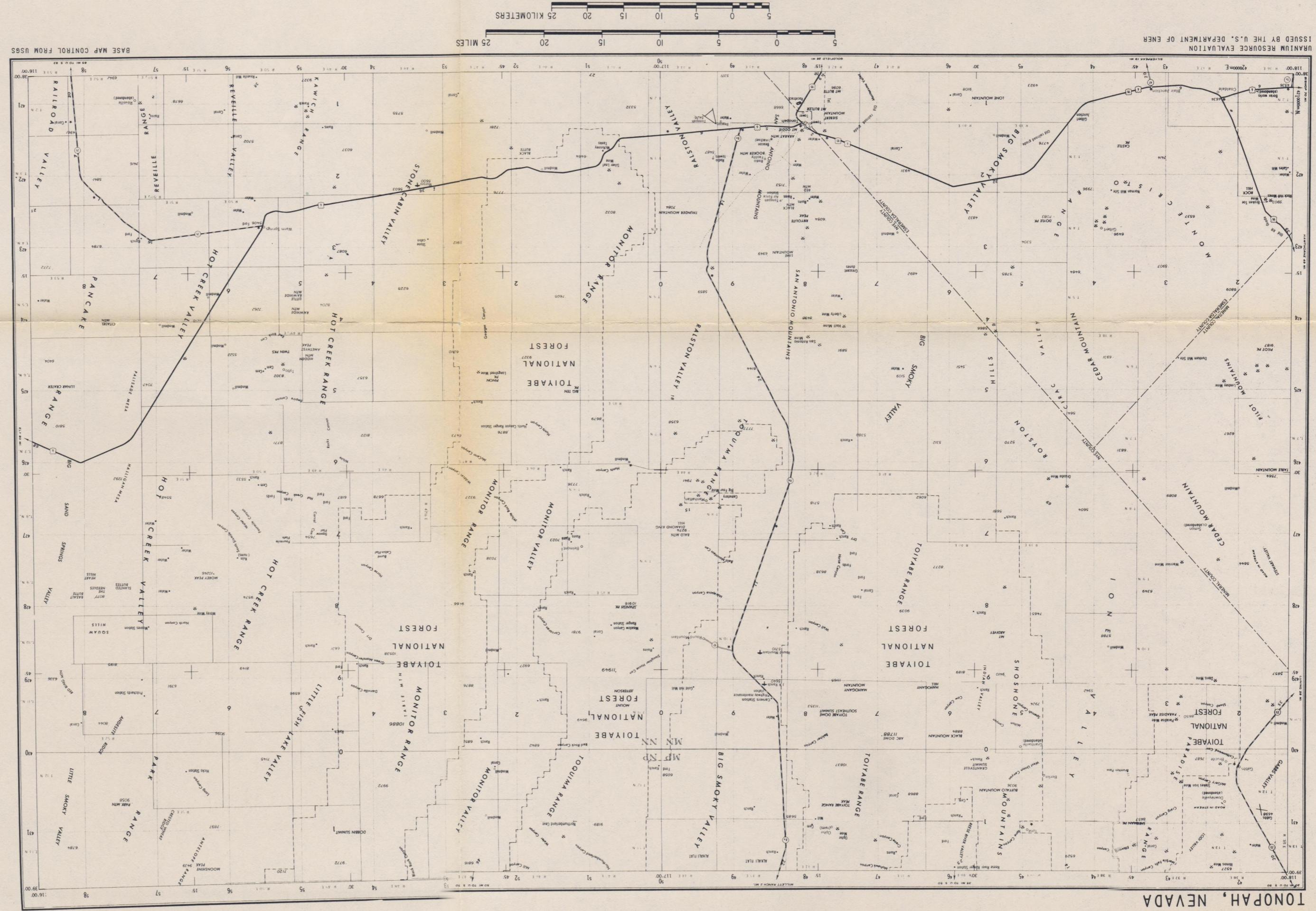
Vitaliano, C. J., 1963, Cenozoic geology and sections of the Ione Quadrangle, Nye County, Nevada: U.S. Geological Survey Mineral Investigation Field Studies Map MF-255, scale 1:62,500.

Vitaliano, C. J., and Callaghan, E., 1963, Geology of the Paradise Peak Quadrangle, Nevada: U.S. Geological Survey Geologic Quadrangle Map CQ-250, scale 1:62,500.

Webb, G. W., 1958, Middle Ordovician stratigraphy in eastern Nevada and western Utah: American Association of Petroleum Geologist Bulletin, volume 42, number 10, p. 2,335-2,377.

Plate 1. AREAS FAVORABLE FOR URANIUM DEPOSITS

URANIUM RESOURCE EVALUATION
ISSUED BY THE U.S. DEPARTMENT OF ENERGY

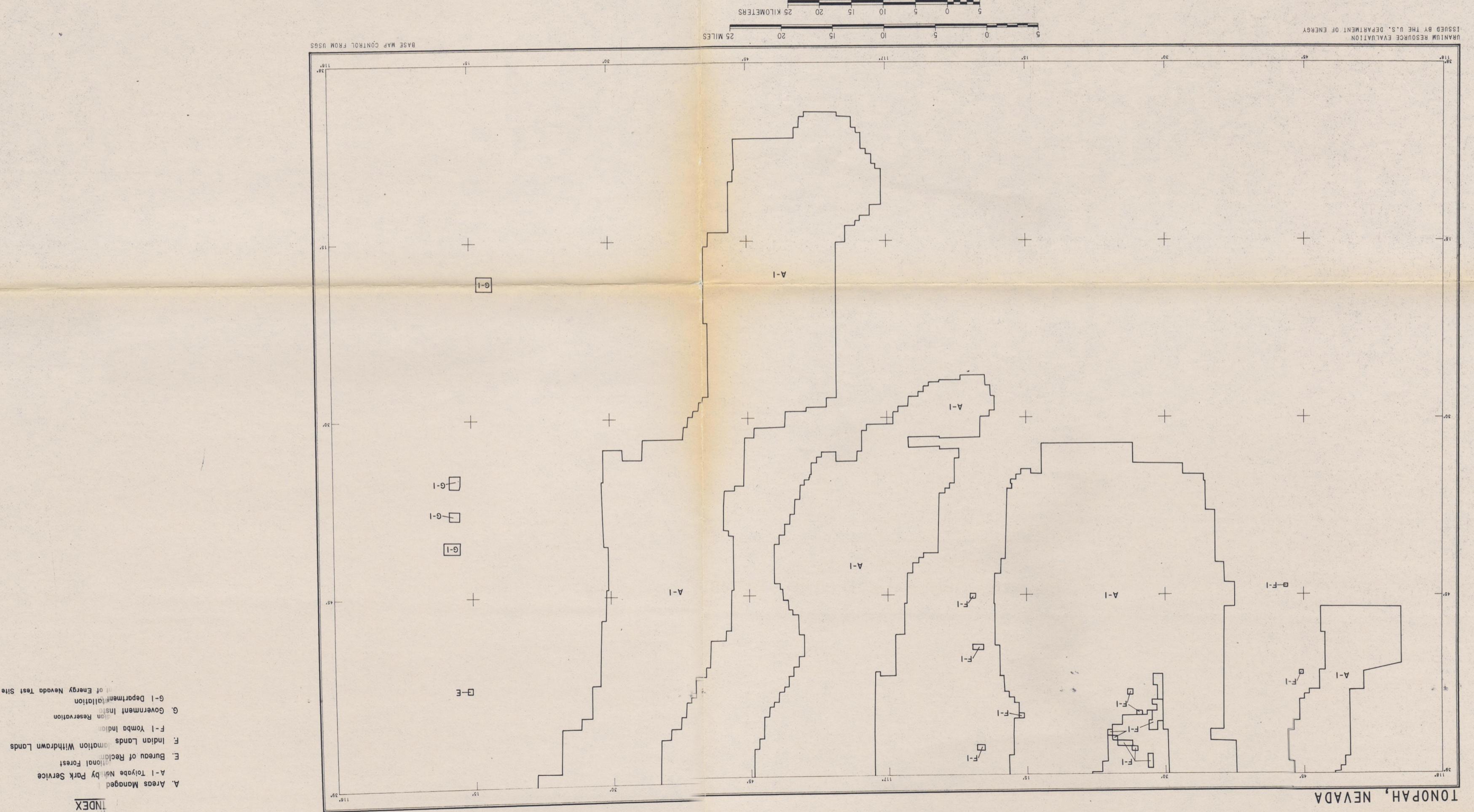
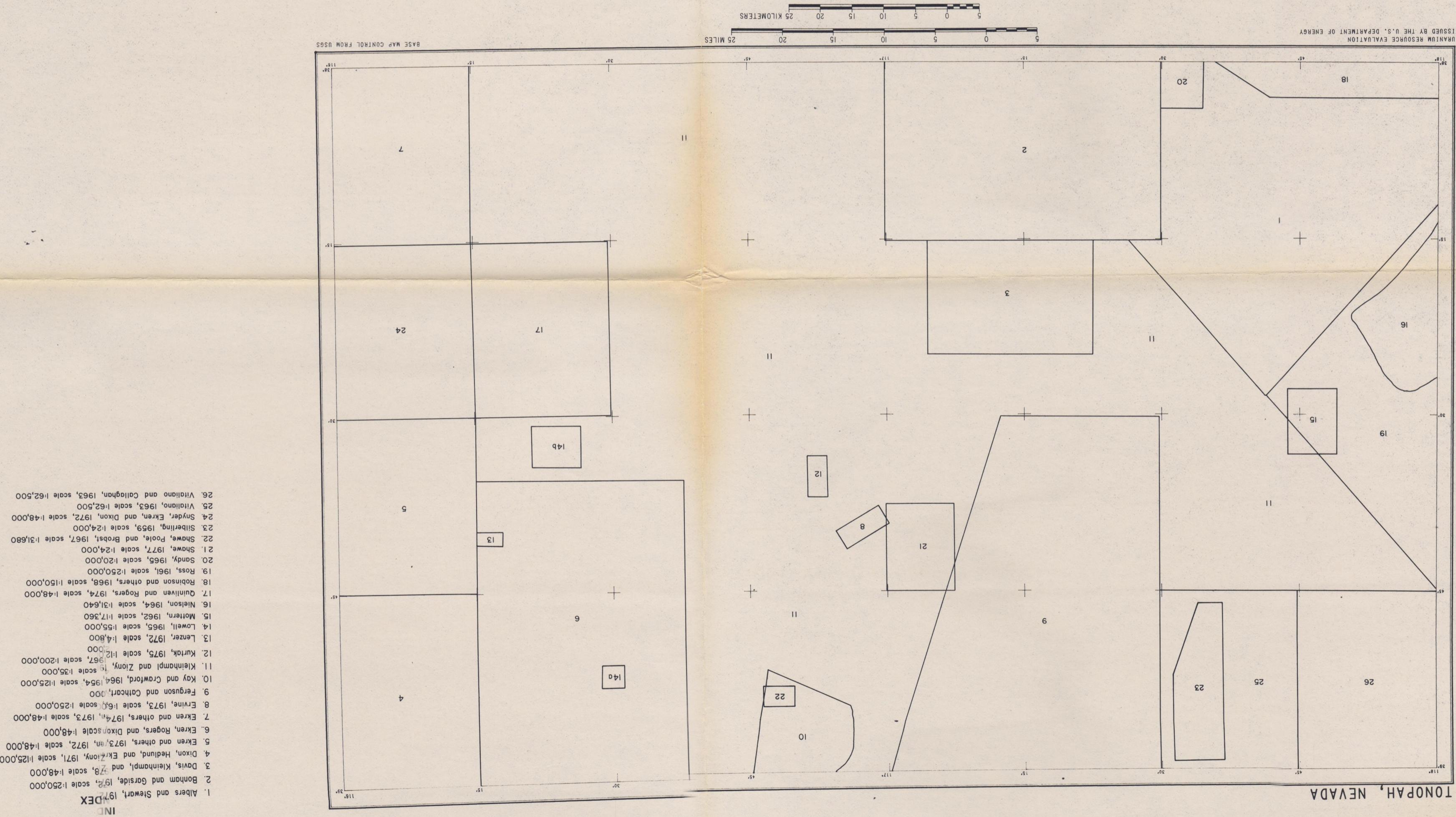

Plate 15. CULTURE

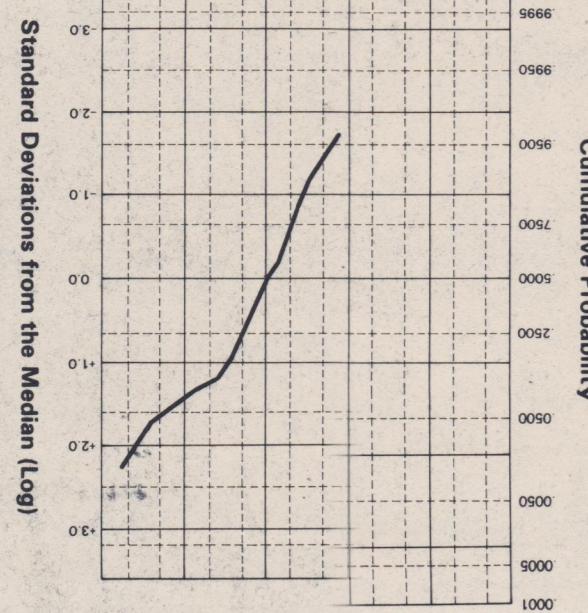
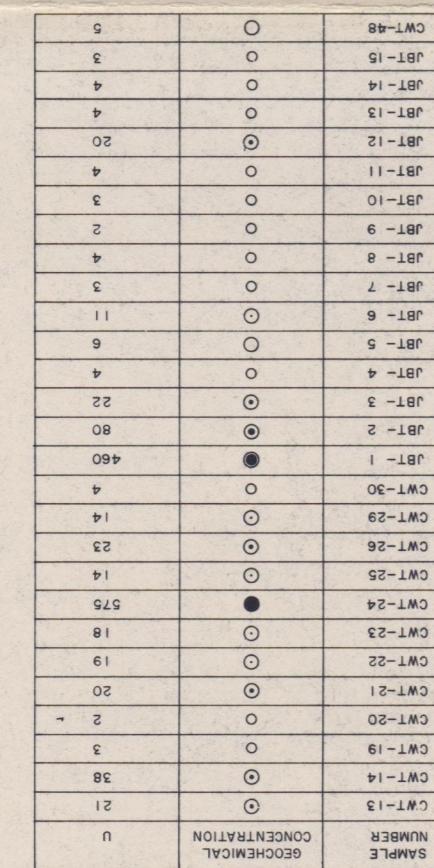
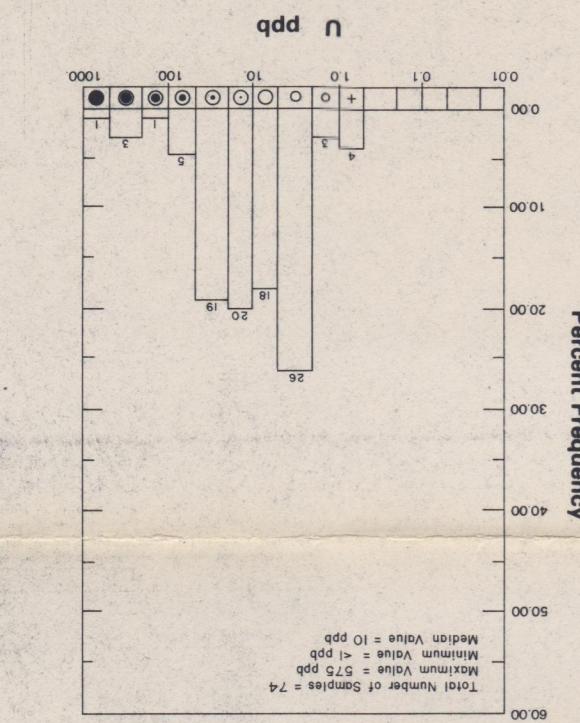
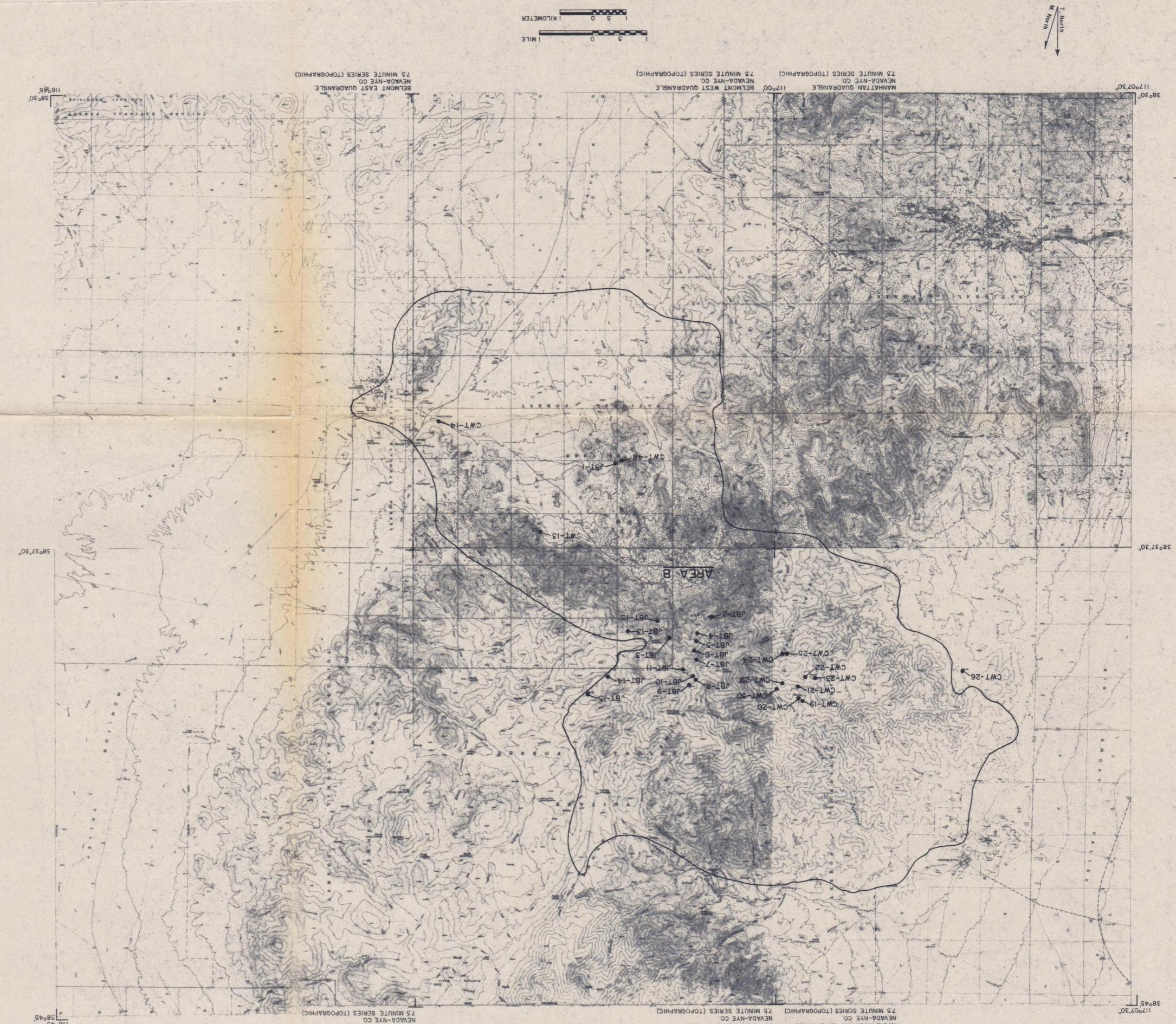
Plate 14. GENERALIZED LAND STATUS

URANIUM RESOURCE EVALUATION
ISSUED BY THE U.S. DEPARTMENT OF ENERGY

四

Plate 13. GEOLOGIC-MAP INDEX







Plate 12. GENERALIZED GEOLOGIC MAP OF THE TONOPAH QUADRANGLE

ISSUED BY THE U. S. DEPARTMENT OF ENERGY
URANIUM RESOURCE EVALUATION

DESCRIPTION		POSITION OF MAP UNITS	
Sediments	Qs		
Basaltic Rocks	Qb		
Tertiary Sedimentary Rocks	Ts		
Tertiary Intermediate and Mafic Volcanics	TiMv		
Tertiary Felsic Volcanics	TfV		
Mesozoic Felsic Plutons	Mfp		
Mesozoic Mafic (+ Intermediate) Plutons	Mmp		
Mesozoic Sedimentary (+ Volcanic) Rocks	MsV		
Palaeozoic Sedimentary Rocks	Ps		
Pre-Cambrian Metasedimentary Rocks	PCs		

Plate 11. DETAIL OF FAVORABLE AREA B: WATER SAMPLES-URANIUM VALUES

Plate 11.
April, 1981

Plate 10. DETAIL OF FAVORABLE AREA B: ROCK SAMPLES-URANIUM VALUES

Plate 10.
April, 1981

SAMPLE NUMBER	ROCK TYPE	U ₃ O ₈ (ppm)
MER-011	FT	13
MER-012	FT	184
MER-013	HY IN FI	67
MER-014	HY IN FI	122
MER-015	HY IN FI	77
MER-016	HY IN FI	237
MER-017	HY IN FI	1,470
MER-018	HY IN FI	234
MER-019	HY IN FI	49
MER-020	HY IN FI	29
MER-021	HY IN FI	226
MER-022	HY IN FI	5
MER-023	HY IN FI	16
MER-024	HY IN FI	93
MER-025	HY IN FI	653
MER-027	FI	3
MER-028	HY IN FI	513
MER-029	HY IN FI	747
MER-030	HY IN FI	28
MER-032	HY IN FI	1,027
MER-034	HY IN FI	114
MER-035	HY IN FI	194
MER-036	FI	3
MER-037	HY IN FI	111
MER-038	HY IN FI	1,027
MER-039	HY IN FI	114
MER-040	HY IN FI	28
MER-041	HY IN FI	111
MER-042	HY IN FI	1,027
MER-043	HY IN FI	114
MER-044	HY IN FI	3
MER-045	HY IN FI	194
MER-046	HY IN FI	3
MER-047	HY IN FI	111
MER-048	HY IN FI	196
MER-049	HY IN FI	194
MER-050	HY IN FI	196
MER-051	HY IN FI	196
MER-052	HY IN FI	196
MER-053	HY IN FI	196
MER-054	P ₃ S	22
MER-055	HY IN FI	9
MER-056	HY IN FI	1
MER-057	FI	1
MER-058	HY IN FI	4
MER-059	HY IN FI	3
MER-060	HY IN FI	7
MER-061	HY IN FI	5

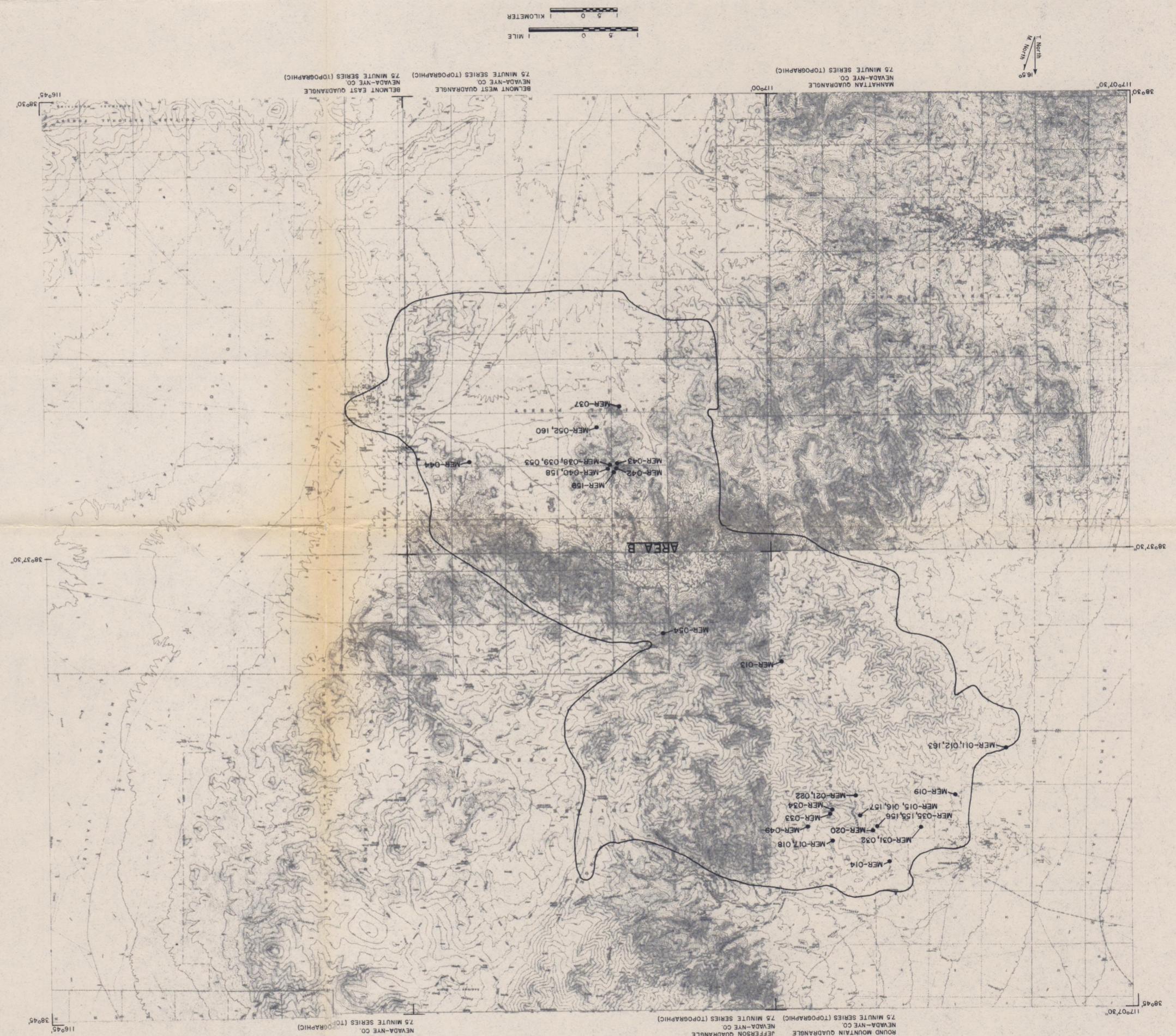


Plate 9. DETAIL OF FAVORABLE AREA A: ROCK SAMPLES-URANIUM AND PHOSPHORUS VALUES

Plate 9.
April, 1981

SAMPLE NUMBER	ROCK TYPE	U ₃ O ₈ (ppm)	P (ppm)	Ca (ppm)
MER-059	CS	0.560	-	44,200
MER-050	CS	0.243	-	42,400
MER-061	SH	0.3	-	37,800
MER-062	SH	1,820	-	42,400
MER-063	SH	560	-	42,400
MER-064	CS	560	-	42,400
MER-065	SS	103	-	29,900
MER-066	SS	184	-	42,400
MER-067	CS	1,107	-	42,400
MER-068	STS	401	-	42,300
MER-069	STS	401	-	42,300
MER-070	STS/OP	145	-	42,300
MER-071	STS/OP	112,200	18,500	-
MER-072	STS/OP	67,700	80,600	-
MER-073	STS/OP	500	22,500	67,500
MER-074	STS/OP	15	880	>100,000
MER-075	STS/OP	940	58,700	80,600
MER-076	STS/OP	1,160	67,700	80,600
MER-077	STS/OP	7	1,460	1,360
MER-078	STS/OP	20	100	300
MER-079	STS/OP	135	783	300
MER-080	STS/OP	10	489	300
MER-081	STS/OP	60	10,100	12,1700
MER-082	STS/OP	273	17,300	52,400
MER-083	STS/OP	2	707	16,100
MER-084	STS/OP	553	56,900	70,200
MER-085	STS/OP	72	26,600	27,500

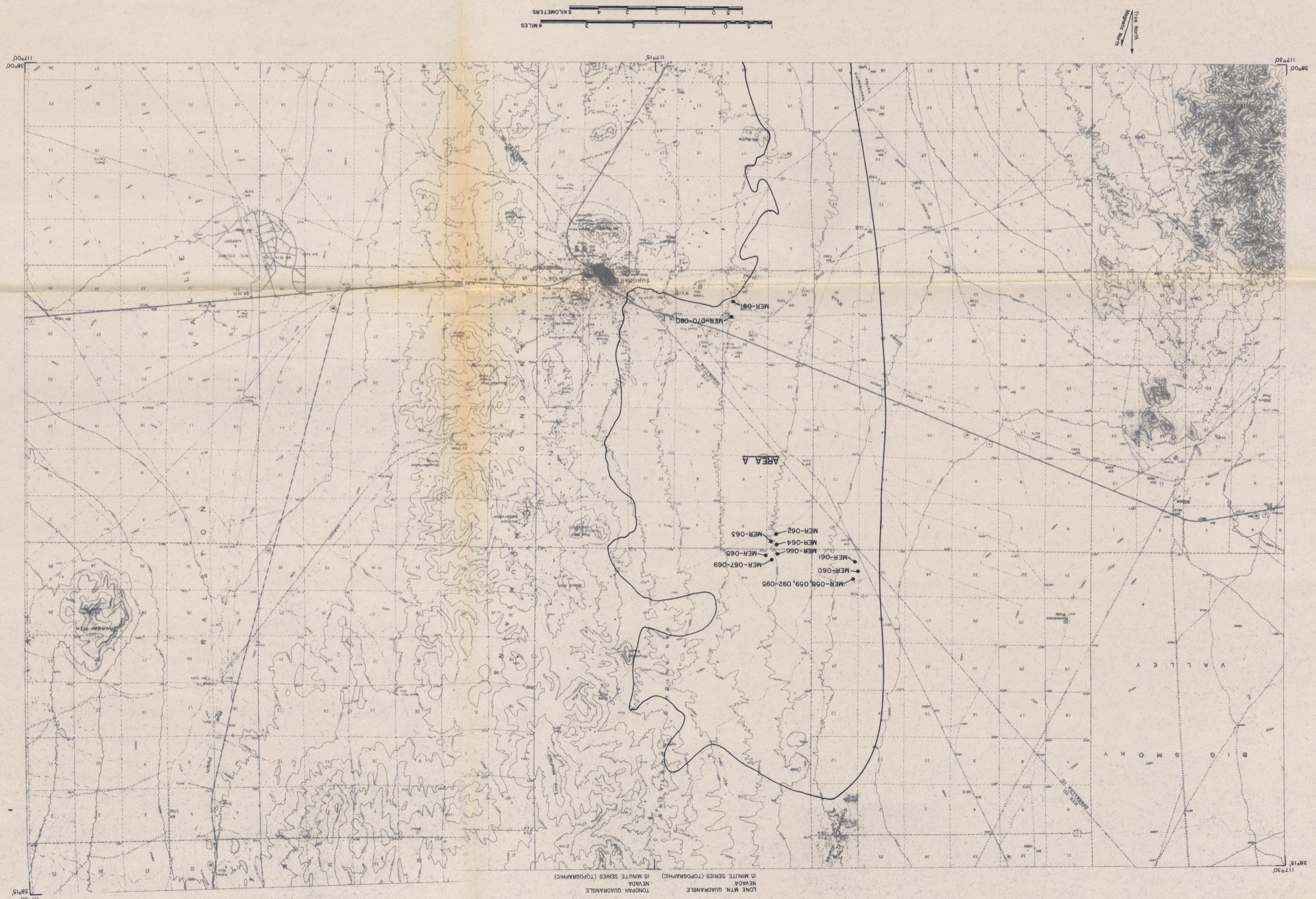


Plate 8. CUMULATIVE PROBABILITY AND PERCENT FREQUENCY FOR SELECTED ROCK TYPES

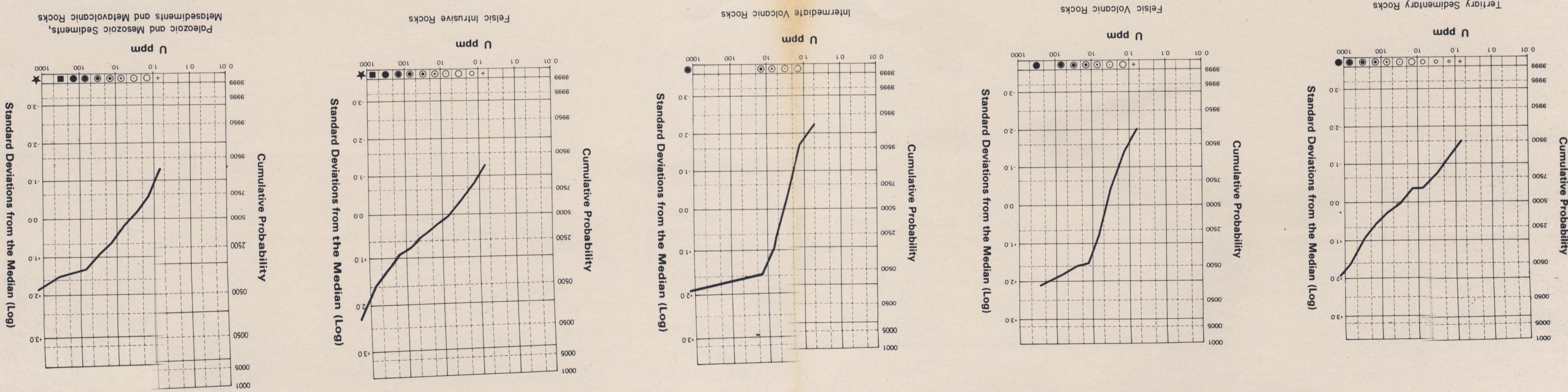
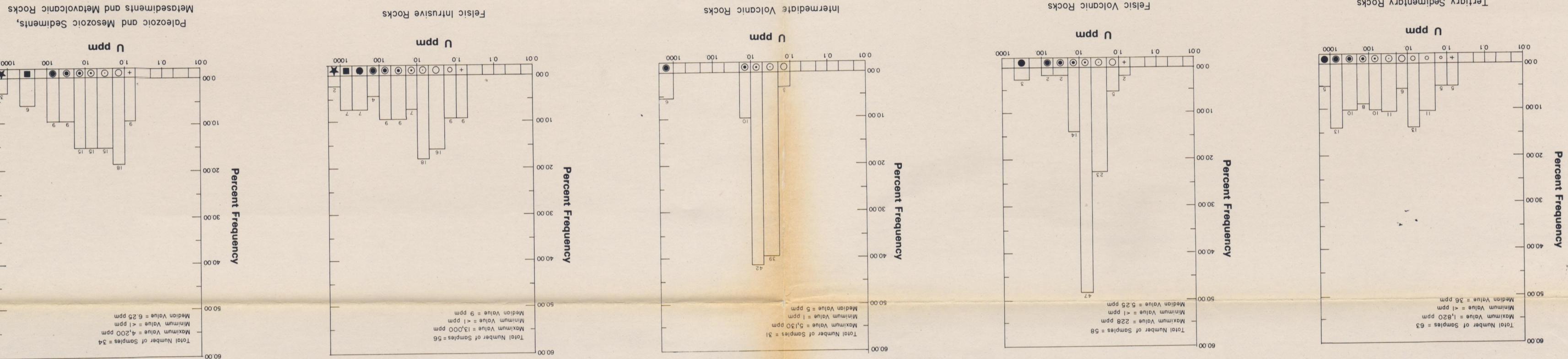
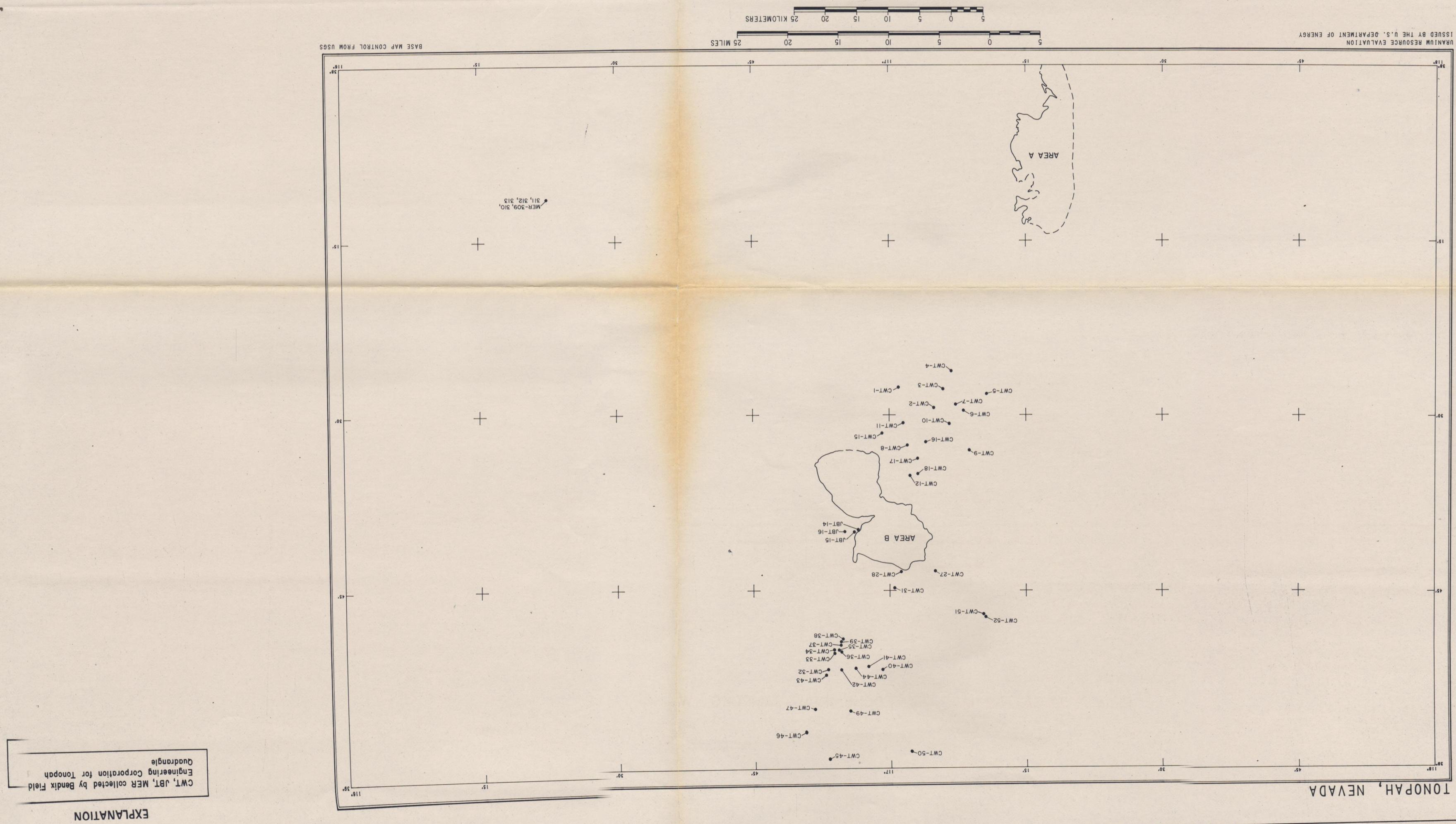
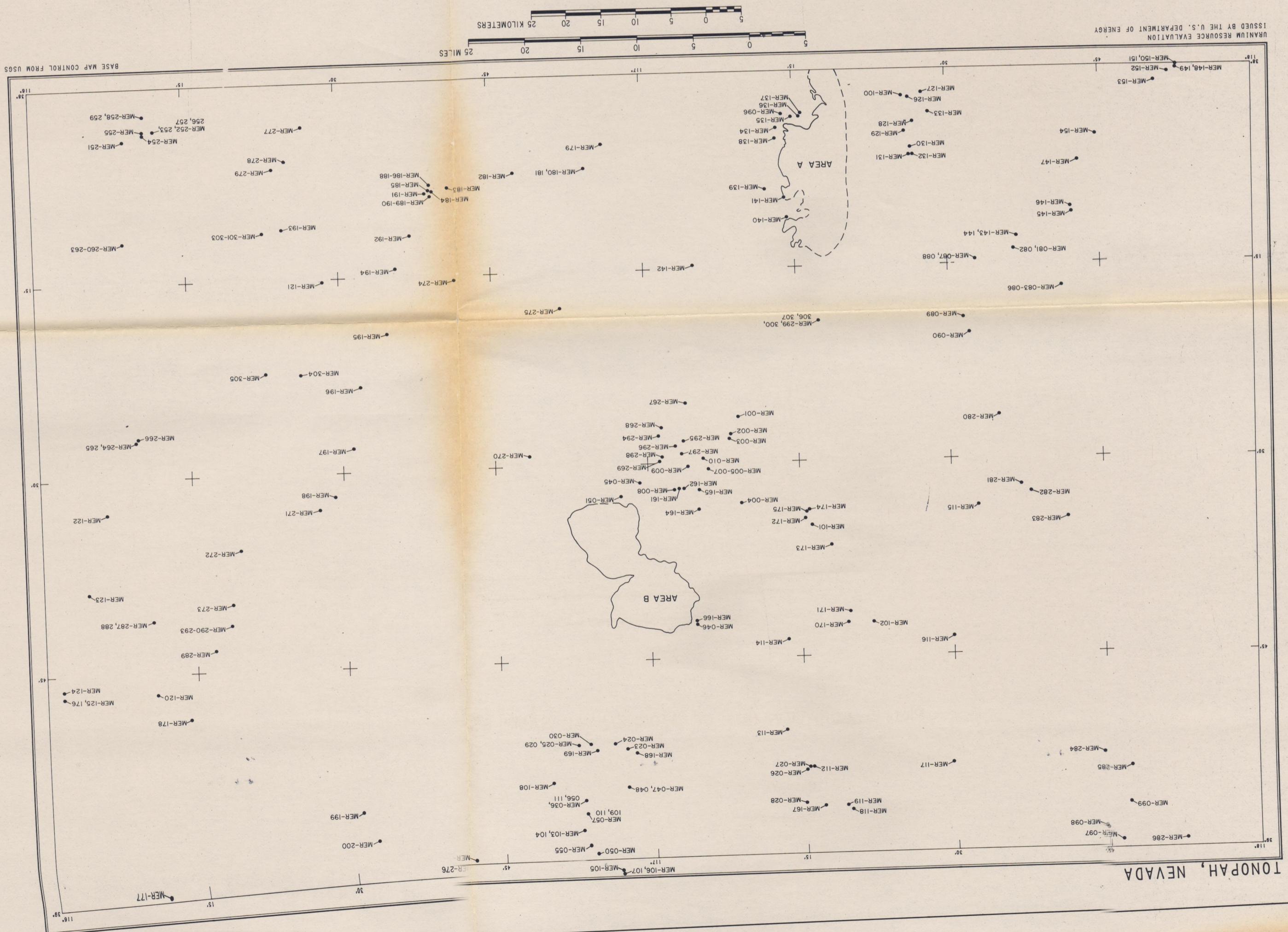



Plate 7. LOCATION MAP OF GEOCHEMICAL SAMPLES - WATER

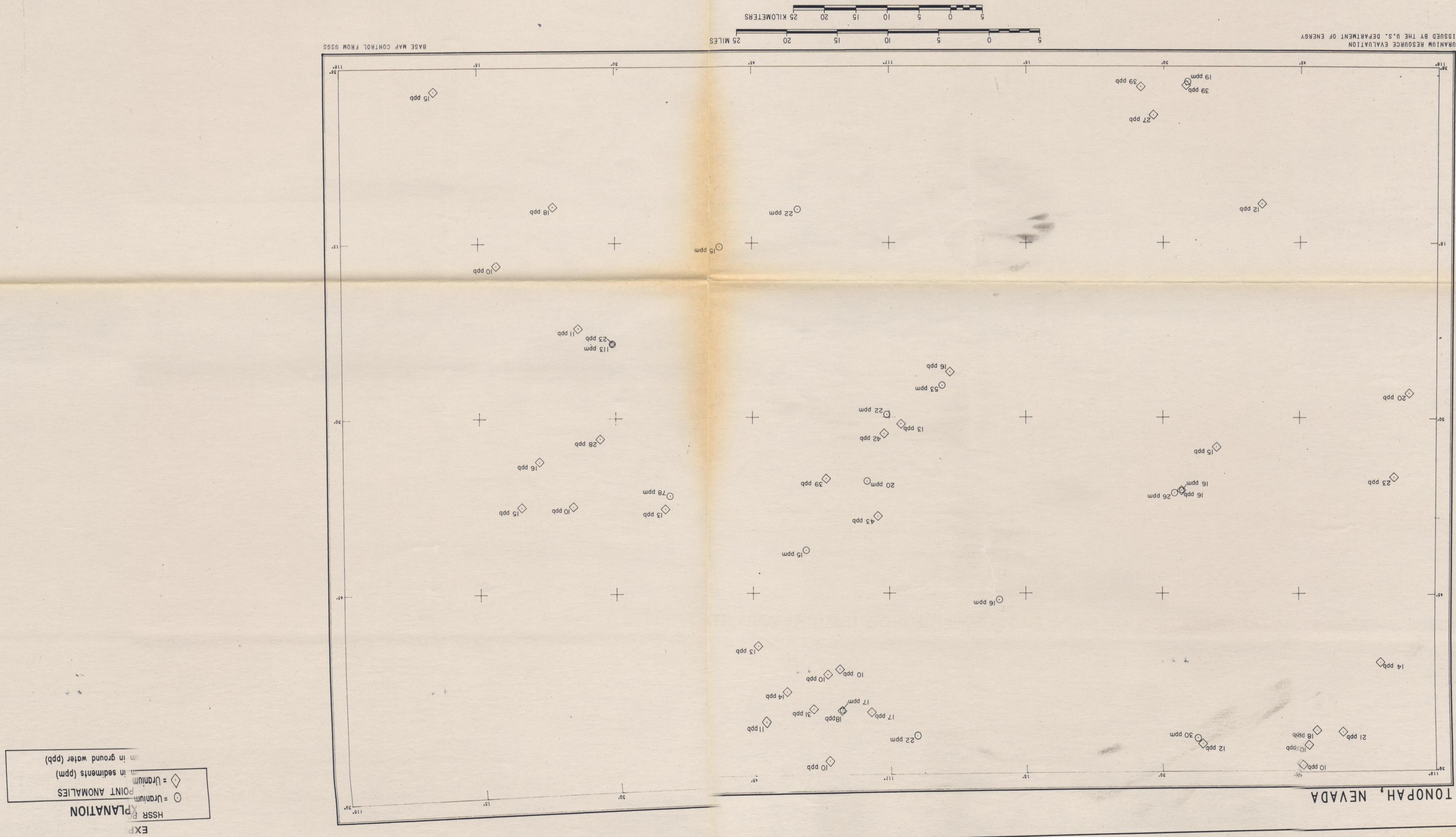

Plate 6. DRAINAGE

Plate 5. LOCATION MAP OF GEOCHEMICAL SAMPLES - ROCK

Plate 4. INTERPRETATION OF DATA FROM HYDROGEOCHEMICAL AND STREAM-SEDIMENT RECONNAISSANCE

Plate 3. INTERPRETATION OF AERIAL RADIOMETRIC DATA

URANIUM RESOURCE EVALUATION
ISSUED BY THE U. S. DEPARTMENT OF ENERGY

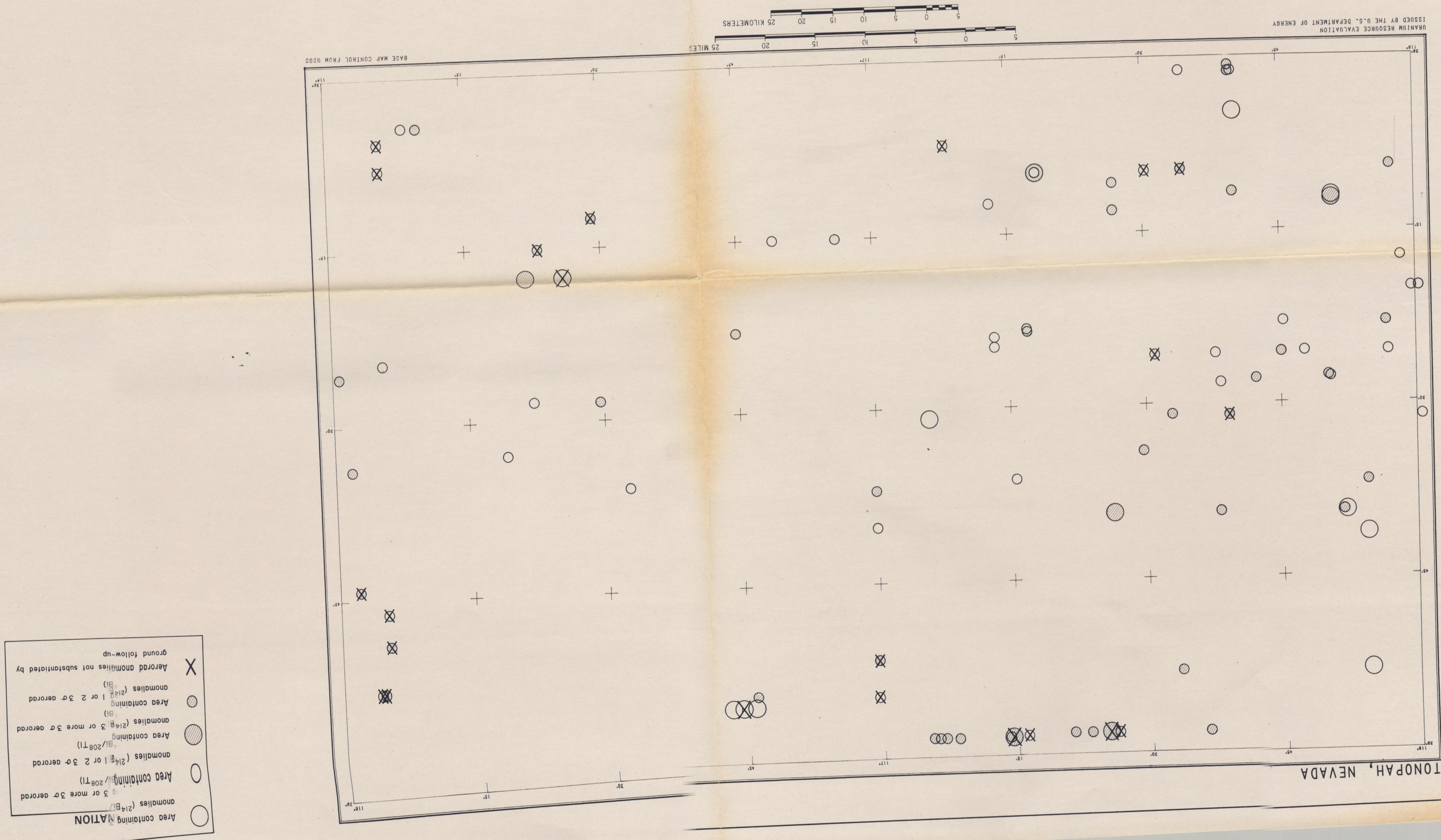
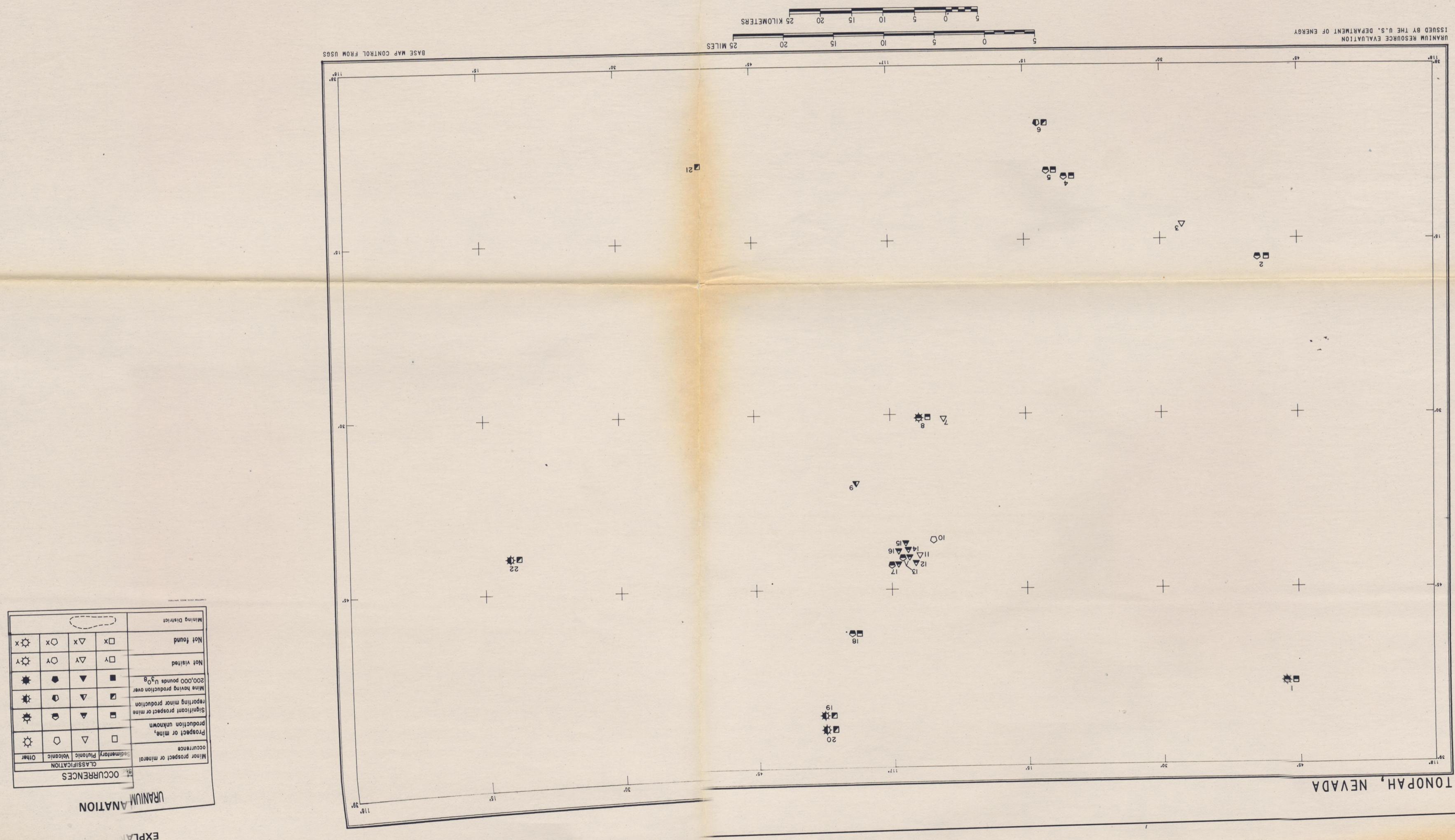



Plate 2. URANIUM OCCURRENCES

