

CONF-891093-15

X-ray Absorption Studies of
 $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$, $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$, and $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$

C.L. Lin, S.L. Qiu, Jie Chen,* and Myron Strongin
 Brookhaven National Laboratory
 Physics Department
 Upton, NY 11973-5000

BNL--43461
 DE90 003640

J.E. Crow
 Physics Department
 Temple University
 Philadelphia, PA 19122

C.W. Chu
 Physics Department
 University of Houston
 Houston, TX 77204

ABSTRACT

O K-edge absorption studies show that the density of O 2p empty states near the Fermi level increases with increasing oxygen content for $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$, and Sr concentration in $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$. With Zn substitution for Cu in $\text{YBa}_2\text{Cu}_3\text{O}_7$, T_c does not correlate with the density of O 2p empty states. In this case T_c dramatically decreases with Zn substitution while the pre-edge feature remains unchanged. The O K-edge spectrum of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ barely changes from the undoped, insulating, to the Ce doped superconducting sample. The lack of unoccupied O 2p states near the Fermi level in this case is consistent with naive expectations for electron-doping.

INTRODUCTION

It is generally believed that undoped La_2CuO_4 is a charge-transfer insulator and that the metallic conductivity is achieved by substituting divalent Sr for trivalent La which yields extra hole doping. For $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$, "doped holes" are created by added oxygen atoms which modify the electronic structure. In addition, T_c increases with increasing oxygen content as $x > 0.50$. The transition from the insulating ($x < 0.5$) to the superconducting phase ($x > 0.5$) is also accompanied by a transition from tetragonal to orthorhombic crystal structure. The latter contains both CuO_2 planes and Cu-O chains. Photoemission,¹ electron energy loss,² and x-ray absorption^{3,4} measurements on $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ and $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ have revealed that there is very little evidence of the Cu 3^+ valence state and

* Also at Hunter College, CUNY, NY 10021.

The submitted manuscript has been authored under contract DE-AC02-76CH00016 with the Division of Materials Sciences, U.S. Department of Energy. Accordingly, the U. S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes.

MASTER SP

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

the doped holes have dominantly oxygen 2p character. In addition, Hall effect measurements⁵ indicate that holes are the charge. However, the nature and symmetry of the O 2p orbitals, which are thought to be the hole sites, are not yet firmly established.

Another interesting subject is the study of the effect of substitutions on high T_c superconductivity. For YBa₂Cu₃O₇, it is known that the substitution of rare earth elements for Y, except Ce, Pr and Tb, does not affect the superconductivity. This has been interpreted as showing that the rare earth site is not involved in the mechanism for superconductivity. Transition metal substitution for Cu has been investigated by both thermodynamic and magnetic measurements.^{6,7} Surprisingly, Zn substitution for Cu exhibits a more dramatic depression rate for T_c than that for magnetic ions, e.g., Fe and Ni. To understand this significant change in T_c, it is crucial to study the change in the density of unoccupied O 2p states with Zn substitution.

Recently, new superconducting cuprates, Nd_{2-x}Ce_xCuO₄, have been discovered,⁸ and Hall effect and seeback coefficient measurements⁹ have confirmed that the charge carriers are electrons, which is naively predicted by simple valence counting. This simple picture naturally raises the interesting question of whether or not hole doping is a prerequisite for high T_c superconductivity.

EXPERIMENTAL

In the work reported here, O K-edge absorption measurements using total electron yield were performed on the U7A beamline at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The photon energies were calibrated by comparing the oxygen 1s $\rightarrow 1\pi_g$ absorption peak of condensed molecular oxygen with that of reported⁸ gas phase data which yields the π_g feature at 530.8 eV. Polycrystalline samples were scraped *in situ* with a stainless steel grinder under UHV conditions. Scraping was continued until the carbon 1s peak due to surface contamination could no longer be observed.

RESULTS AND DISCUSSION

The oxygen K-edge absorption spectra of La_{2-x}Sr_xCuO₄ with x=0.0 and x=0.15 are shown in figure 1. The pre-edge peak marked A at about 530 eV for undoped La₂CuO₄ is similar to that observed for simple transition metal oxides, e.g., CuO and NiO.¹⁰ It has been suggested that this feature is due to filling a hybridized Cu 3d state which has some oxygen component because of the strong hybridization between the Cu 3d and O 2p orbitals. For the Sr doped superconducting material, a new feature marked B appears at about 528.5 eV, which was also observed in the electron energy loss² and fluorescence emission¹¹ measurements. It should be pointed out that the reported data for the XPS O 1s core level still remain controversial, and the position of this feature is very important for the interpretation of O K-edge absorption studies. The earlier published results^{4,12,13} for cleaved single crystal and scraped polycrystal La_{2-x}Sr_xCuO₄ and YBa₂Cu₃O₇ showed that the XPS O 1s core level was at 529 eV. However, a dominant O 1s feature at 528 eV for cleaved single crystal YBa₂Cu₃O₇ was reported very recently¹⁴ and must be

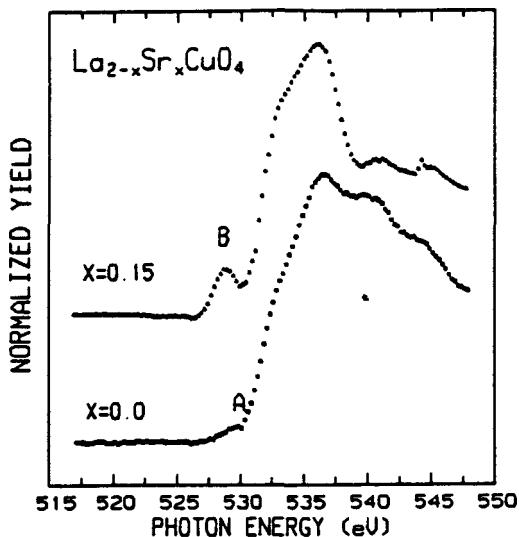


Fig. 1: O K-edge absorption spectra of $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ with Sr concentration $x=0.0$ and $x=0.15$

taken as the more reliable estimate. If we take 529 eV as the position of the XPS O 1s core level in the case of our scraped samples, the pre-edge peak is 0.5 eV lower in energy, and since the core hole is expected to be deeper in binding energy due to the hole in the final state one can argue plausibly that the new feature marked B for $\text{La}_{1.85}\text{Sr}_{0.15}\text{CuO}_4$ can be attributed to a transition into initially empty states near the Fermi level which are dominantly of O 2p character. In contrast, if we take 528 eV for the XPS O 1s core level energy, the unoccupied states related to this pre-edge peak are somewhat above the Fermi level. In the metallic case excitonic effects in the near edge spectrum would be expected to be small and are not thought to affect the results.

Shown in figure 2 are oxygen K-edge absorption spectra of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ with $x=0.0$ and $x=0.15$. The spectrum does not change on going from the undoped insulating to doped metallic state except for a small shift to higher photon energies. It should be noted that before scraping, the pre-edge peak marked A of the Ce doped sample did not shift as compared with that of undoped Nd_2CuO_4 . The same set

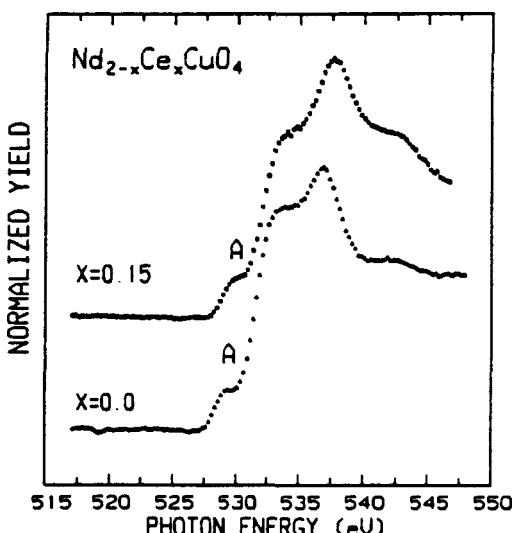


Fig. 2: O K-edge absorption spectra of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ with Ce concentration $x=0.0$ and $x=0.15$.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

of samples was also used for the fluorescence emission measurements which are much more bulk sensitive, and the results do not indicate any shift. In view of this, it seems implausible that the shift observed in the absorption spectrum is intrinsic to the bulk material and is thought to be due to some variation of surface stoichiometry upon scraping. Electron energy loss measurements¹⁵ on $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ by Nucker et al. also showed that the pre-edge position of Ce doped material is the same as that of undoped sample. However, they claimed that there is a slight change in the height of the feature. Again, taking the energy position at 529.5 eV of the pre-edge feature for $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ with $x=0.0$ and 0.15 , compared with the XPS O 1s core level which is from 528 to 529 eV, the unoccupied states are located at least 1 eV above the Fermi level. (If one accounts for the core hole, the discrepancy is even larger.) Furthermore, comparing with the case of La_2CuO_4 discussed above, this pre-edge feature of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ could be a hybridized Cu 3d state. The lack of O 2p holes at the Fermi level for superconducting $\text{Nd}_{1.85}\text{Ce}_{0.15}\text{CuO}_4$ is consistent with naive expectations for electron-doping. However, the interpretation made by Nucker et al.,¹⁵ based on the increase in the pre-edge feature for the doped sample, implies the behavior of these samples is similar to the hole doped superconductors.

$M_{\text{IV},\text{V}}$ absorption measurements¹¹ of Ce and Nd, which are not shown here, together with other macroscopic studies,⁹ indicate that the Ce ions are in an intermediate valence state between 3+ and 4+ and that the Nd ions remain in the trivalent state. The immediate question is to understand where the doped electrons go. Based on the Cu K-edge studies,¹⁶ Tranquada et al. argued that electrons are located in the Cu d orbital forming a Cu 1+ state. On the other hand, other groups¹⁷ claimed that the doped electrons are delocalized in the CuO₂ plane and a localized Cu 1+ state is not evident. This controversy must be addressed by further experimental and theoretical studies, although we emphasize that both studies indicate the Nd based compounds are indeed electron doped.

The O K-edge absorption spectra of $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ with $x=0.25$, 0.55 , 0.65 , 0.75 and 1.0 are shown in figure 3. The spectrum of

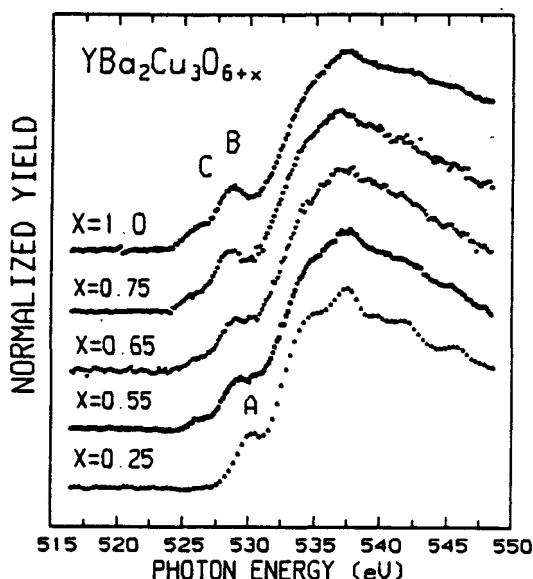


Fig. 3: O K-edge absorption spectra of $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ with oxygen content $x=0.25$, 0.55 , 0.65 , 0.75 , and 1.0 .

tetragonal $\text{YBa}_2\text{Cu}_3\text{O}_{6.25}$ is similar to that of La_2CuO_4 which is shown in figure 1. The pre-edge peak which emerges at 530.5 eV for this sample can also be interpreted as the oxygen part of the hybridized Cu 3d state which was mentioned previously. As oxygen content increases to $x=0.55$, the crystal structure changes to orthorhombic and the sample becomes superconducting at low temperatures. Two new features appear in the pre-edge region and are marked B at 528.5 eV and C at 527 eV.¹⁸ The intensity of these two peaks visibly increases as the oxygen content increases; while T_c reaches 95 K for $x=1.0$. Peaks B and C were also observed by electron energy loss measurements² on single crystal $\text{YBa}_2\text{Cu}_3\text{O}_7$ for the q vector perpendicular to the c axis (CuO_2 plane) and parallel to the c-axis (Cu-O chain), respectively. However, peak C was not always observed in the polycrystalline samples by other groups^{4,19} using synchrotron radiation. This might be due to sample quality, surface contamination, and/or instrumental resolution.

It is unclear how the double peaked structure in the 1-2-3 compounds should be interpreted. In compounds which have only two-dimensional planes such as $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ and $\text{Bi}_{2-x}\text{Sr}_x\text{CaCu}_2\text{O}_8$, only a single pre-edge feature is seen. It is thus tempting to identify the different features in the 1-2-3 materials with chains and planes.² It seems clear that the lower energy states near 527 eV are the states near the Fermi level and it is reasonable that these should be associated with conduction band states in the planes. However these states have been interpreted as due to oxygen in the chains.² This situation needs clarification, and more single crystal experiments are necessary.

Figure 4(a) shows the O K-edge absorption spectra of $\text{YBa}_2(\text{Cu}_{1-x}\text{Zn}_x)_{3.0}$ with $x=0.02$, 0.04 and 0.16. Surprisingly, the intensity of peaks B and C is not significantly reduced as the Zn concentration increases to 16%; while T_c is suppressed entirely at about 10% Zn substitution which can be seen in figure 4(b). In other words, T_c

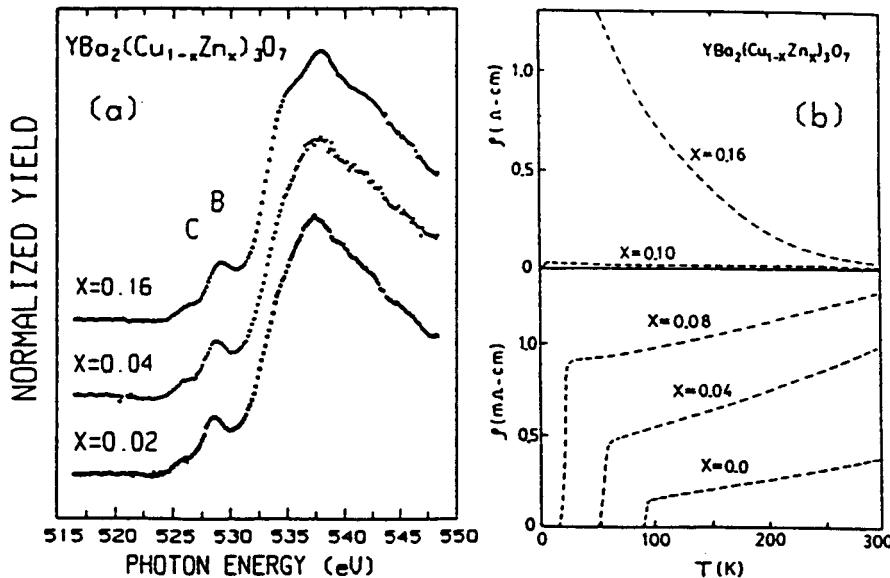


Fig. 4: (a) O K-edge absorption spectra of $\text{YBa}_2(\text{Cu}_{1-x}\text{Zn}_x)_{3.0}$ with Zn concentration $x=0.02$, 0.04, and 0.16. (b) Resistivity vs. T for various Zn concentrations in $\text{YBa}_2(\text{Cu}_{1-x}\text{Zn}_x)_{3.0}$.

does not correlate with the density of O 2p holes and this is in contrast to the case of $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ with different oxygen content. This behavior is in good agreement with that of $\text{EuBa}_2\text{Cu}_3\text{O}_7$ and $\text{EuBa}_2(\text{Cu}_{1-x}\text{Zn}_x)_3\text{O}_7$ which has been reported previously.¹⁹

At $x=0.10$, the critical concentration for the complete suppression of superconductivity, there is a dramatic increase of the resistivity and a switch from metallic to semiconducting-like behavior. For $x>0.10$, the resistivity data cannot be fit to a simple thermally activated behavior with one characteristic energy scale.²⁰ Anderson localization can lead to a variable range hopping expression for the resistivity given by $R(T)=A\exp[(B/T)^{1/4}]$, and which fits the experimental data in a crude way. This may suggest that the conduction is due to phonon-assisted variable range hopping and the electronic states are localized at the Fermi level by disorder in this system, and thus superconductivity is suppressed dramatically.

From the viewpoint of chemical bonding,²¹ it has been known for some years that Cu with a 2+ valence state forms fourfold coordinated bonds with a sp^2d configuration. This type of bond configuration forms the square planar lattice found in the high T_c superconductors. Zn however would have no d involvement in the bonding and this would change the local symmetry and could lower T_c dramatically. For the case of Ni, which is magnetic, similarly to the Cu case, sp^2d four-fold coordinated bonds with oxygen are formed and thereby the bonding symmetry is not seriously affected. This would explain why Ni doping in $\text{YBa}_2\text{Cu}_3\text{O}_7$ has less effect on T_c , when compared to Zn.

CONCLUSION

We show that the pre-edge features of Sr doped La_2CuO_4 and $\text{YBa}_2\text{Cu}_3\text{O}_7$ are different from those for undoped La_2CuO_4 and $\text{YBa}_2\text{Cu}_3\text{O}_6$.⁵ However, the O K-edge spectra of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ barely change from the undoped to the Ce doped superconductor. So far there is no well accepted mechanism to explain the significant depression of T_c by Zn substitution for Cu in $\text{YBa}_2\text{Cu}_3\text{O}_7$. The absence of changes in the density of O 2p empty states near the Fermi level, along with drastic changes in the resistivity implies that the states probed in the near edge measurement become localized with Zn substitution.

ACKNOWLEDGMENTS

We thank the staff of the National Synchrotron Light Source at Brookhaven National Laboratory where x-ray absorption measurements were performed. This work is supported by U.S. Department of Energy under Contract No. DE-AC02-76CH00016. Work at the University of Houston is supported by DARPA Grant No. MDA 972-88-G-002 and NSF Grant No. DMR 8616539. Work at Temple University is supported by NSF Grant No. DMR 8892401.

REFERENCES

1. See for example, K. C. Hass, *Solid State Physics*, vol. 42, 213(1989) and references therein.

2. N. Nucker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Temmerman, *Phys. Rev. B* 37, 5158 (1988); N. Nucker, H. Romberg, X. X. Xi, J. Fink, B. Gegenheimer, and Z. X. Zhao, *Phys. Rev. B* 39, 6619 (1989).
3. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, and M. Suenaga, *Phys. Rev. B* 35, 7187 (1987); P. Steiner, V. Kinsigner, I. Sander, B. Siegmann, S. Hufuer, C. Politis, R. Hoppe, and H. P. Muller, *Z. Phys. B* 67, 487 (1987).
4. P. Kuiper, G. Kruizinga, J. Ghijsen, M. Grioni, P. J. M. Weijs, F. M. deGroot, G. A. Sawatzky, H. Verwij, L. F. Feiner, and H. Petersen, *Phys. Rev. B* 38, 6483 (1988).
5. M. F. Hundly, Z. Zettl, A. Stacy, and M. L. Cohen, *Phys. Rev. B* 35, 8800 (1987); N. P. Ong, Z. Z. Wang, J. Clayhold, J. M. Tarascon, L. H. Greene, and W. R. McKinnon, *Phys. Rev. B* 35, 8807 (1987).
6. C. S. Jee, D. Nichols, A. Kebede, S. Rahman, J. E. Crow, A. M. Ponte Goncalves, T. Mihalisin, G. H. Myer, I. Perez, P. E. Salomon, P. Schlottmann, S. H. Bloom, M. V. Kunc, Y. S. Yao, and R. P. Gurtin, *J. Super. L*, 63 (1988).
7. Thomas J. Kistenmacher, *Phys. Rev. B* 38, 8862 (1988).
8. Y. Tokura, H. Takagi, and S. Uchida, *Nature*, 337, 345 (1989).
9. H. Takagi, S. Uchida, and Y. Tokura, *Phys. Rev. Lett.* 62, 1197 (1989).
10. P. Kuiper, G. Kruizinga, J. Ghijsen, G. A. Sawatzko, and H. Verwij, *Phys. Rev. Lett.* 62, 221 (1989).
11. A. Krol, C. S. Lin, Z. H. Ming, C. J. Sher, Y. H. Kao, C. L. Lin, S. L. Qiu, J. Chen, J. M. Tranquada, Myron Strongin, G. C. Smith, C. T. Chen, F. Sette, Y. Ma, C. W. Chu, Gang Cao, and J. E. Crow, submitted to *Phys. Rev. B*.
12. J. H. Weaver, H. M. Meyer III, P. J. Wagner, D. H. Hill, Y. Gao, D. Peterson, Z. Fisk, and A. J. Arko, *Phys. Rev. B* 38, 4668 (1988).
13. S. L. Qiu, C. L. Lin, M. W. Ruckman, J. Chen, D. H. Chen, Y. Xu, A. R. Moodenbaugh, Myron Strongin, D. Nichols, and J. E. Crow, *AIP Proc. #182*, p. 365 (1989).
14. D. E. Fowler, C. R. Brundle, J. Lerczak, and F. Holtzberg, to be published.
15. N. Nucker, P. Adelmann, M. Alexander, H. Romberg, S. Nakai, J. Fink, H. Rietschel, G. Roth, H. Schmidt, and H. Spille, *Z. Phys. B* 75, 421 (1989).
16. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Croft, *Nature*, 337, 720 (1989).
17. E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, *Phys. Rev. B* 40, 2617 (1989).
18. The previous report by our group showed that two features were at 528 eV and 529 eV which are due to different photon energy calibration.
19. M. L. denBoer, C. L. Chang, H. Petersen, M. Schaible, K. Reilly, and S. Horn, *Phys. Rev. B* 38, 6588 (1988).
20. See for example, Myron Strongin, R. S. Thompson, O.F. Kammerer, and J. E. Crow, *Phys. Rev. B* 1, 1078 (1970).
21. "The Nature of the Chemical Bond," 3rd ed., Linus Pauling, Cornell University Press, 1960.

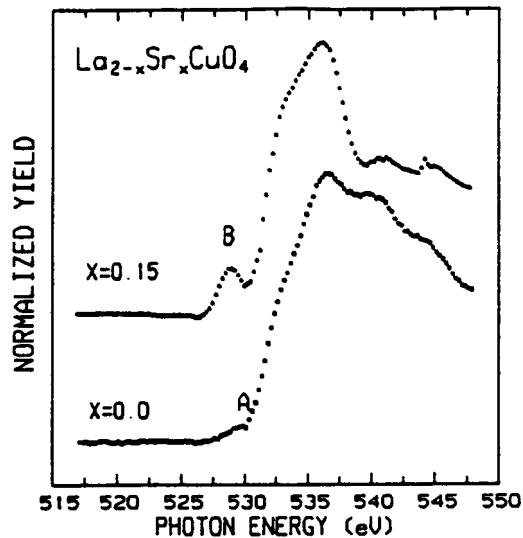


Fig. 1: O K-edge absorption spectra of $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ with Sr concentration $x=0.0$ and $x=0.15$

taken as the more reliable estimate. If we take 529 eV as the position of the XPS O 1s core level in the case of our scraped samples, the pre-edge peak is 0.5 eV lower in energy, and since the core hole is expected to be deeper in binding energy due to the hole in the final state one can argue plausibly that the new feature marked B for $\text{La}_{1.85}\text{Sr}_{0.15}\text{CuO}_4$ can be attributed to a transition into initially empty states near the Fermi level which are dominantly of O 2p character. In contrast, if we take 528 eV for the XPS O 1s core level energy, the unoccupied states related to this pre-edge peak are somewhat above the Fermi level. In the metallic case excitonic effects in the near edge spectrum would be expected to be small and are not thought to affect the results.

Shown in figure 2 are oxygen K-edge absorption spectra of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ with $x=0.0$ and $x=0.15$. The spectrum does not change on going from the undoped insulating to doped metallic state except for a small shift to higher photon energies. It should be noted that before scraping, the pre-edge peak marked A of the Ce doped sample did not shift as compared with that of undoped Nd_2CuO_4 . The same set

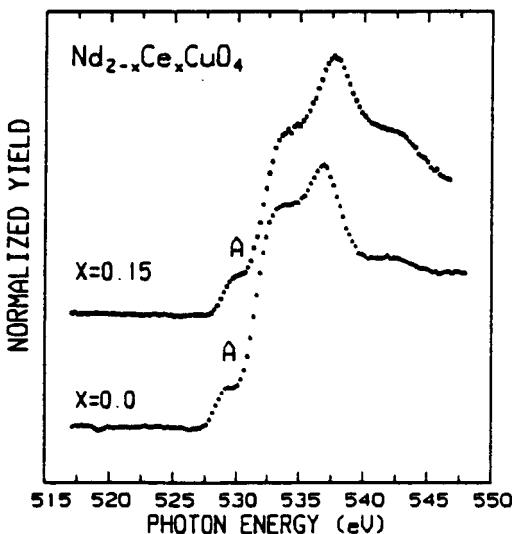


Fig. 2: O K-edge absorption spectra of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ with Ce concentration $x=0.0$ and $x=0.15$.

of samples was also used for the fluorescence emission measurements which are much more bulk sensitive, and the results do not indicate any shift. In view of this, it seems implausible that the shift observed in the absorption spectrum is intrinsic to the bulk material and is thought to be due to some variation of surface stoichiometry upon scraping. Electron energy loss measurements¹⁵ on $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ by Nucker et al. also showed that the pre-edge position of Ce doped material is the same as that of undoped sample. However, they claimed that there is a slight change in the height of the feature. Again, taking the energy position at 529.5 eV of the pre-edge feature for $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ with $x=0.0$ and 0.15 , compared with the XPS O 1s core level which is from 528 to 529 eV, the unoccupied states are located at least 1 eV above the Fermi level. (If one accounts for the core hole, the discrepancy is even larger.) Furthermore, comparing with the case of La_2CuO_4 discussed above, this pre-edge feature of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ could be a hybridized Cu 3d state. The lack of O 2p holes at the Fermi level for superconducting $\text{Nd}_{1.85}\text{Ce}_{0.15}\text{CuO}_4$ is consistent with naive expectations for electron-doping. However, the interpretation made by Nucker et al.,¹⁵ based on the increase in the pre-edge feature for the doped sample, implies the behavior of these samples is similar to the hole doped superconductors.

$M_{\text{IV},\text{V}}$ absorption measurements¹¹ of Ce and Nd, which are not shown here, together with other macroscopic studies,⁹ indicate that the Ce ions are in an intermediate valence state between 3+ and 4+ and that the Nd ions remain in the trivalent state. The immediate question is to understand where the doped electrons go. Based on the Cu K-edge studies,¹⁶ Tranquada et al. argued that electrons are located in the Cu d orbital forming a Cu 1+ state. On the other hand, other groups¹⁷ claimed that the doped electrons are delocalized in the CuO_2 plane and a localized Cu 1+ state is not evident. This controversy must be addressed by further experimental and theoretical studies, although we emphasize that both studies indicate the Nd based compounds are indeed electron doped.

The O K-edge absorption spectra of $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ with $x=0.25$, 0.55 , 0.65 , 0.75 and 1.0 are shown in figure 3. The spectrum of

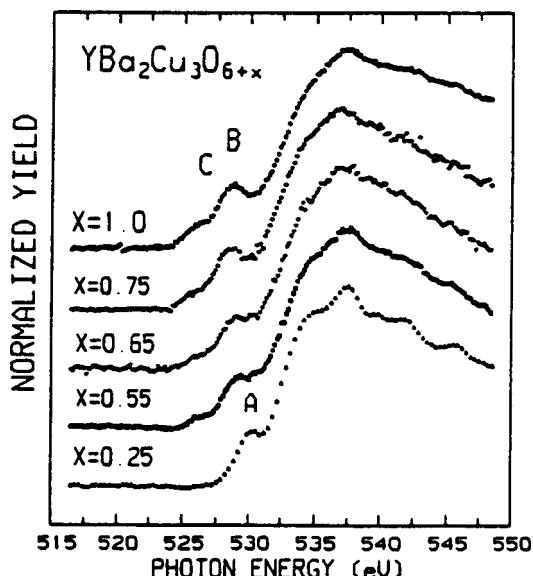


Fig. 3: O K-edge absorption spectra of $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ with oxygen content $x=0.25$, 0.55 , 0.65 , 0.75 , and 1.0

tetragonal $\text{YBa}_2\text{Cu}_3\text{O}_{6.25}$ is similar to that of La_2CuO_4 which is shown in figure 1. The pre-edge peak which emerges at 530.5 eV for this sample can also be interpreted as the oxygen part of the hybridized Cu 3d state which was mentioned previously. As oxygen content increases to $x=0.55$, the crystal structure changes to orthorhombic and the sample becomes superconducting at low temperatures. Two new features appear in the pre-edge region and are marked B at 528.5 eV and C at 527 eV.¹⁸ The intensity of these two peaks visibly increases as the oxygen content increases; while T_c reaches 95 K for $x=1.0$. Peaks B and C were also observed by electron energy loss measurements² on single crystal $\text{YBa}_2\text{Cu}_3\text{O}_7$ for the q vector perpendicular to the c axis (CuO_2 plane) and parallel to the c-axis (Cu-O chain), respectively. However, peak C was not always observed in the polycrystalline samples by other groups^{4,19} using synchrotron radiation. This might be due to sample quality, surface contamination, and/or instrumental resolution.

It is unclear how the double peaked structure in the 1-2-3 compounds should be interpreted. In compounds which have only two-dimensional planes such as $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ and $\text{Bi}_{2-x}\text{Sr}_2\text{CaCu}_2\text{O}_8$ only a single pre-edge feature is seen. It is thus tempting to identify the different features in the 1-2-3 materials with chains and planes.² It seems clear that the lower energy states near 527 eV are the states near the Fermi level and it is reasonable that these should be associated with conduction band states in the planes. However these states have been interpreted as due to oxygen in the chains.² This situation needs clarification, and more single crystal experiments are necessary.

Figure 4(a) shows the 0 K-edge absorption spectra of $\text{YBa}_2(\text{Cu}_{1-x}\text{Zn}_x)_3\text{O}_7$ with $x=0.02$, 0.04 and 0.16. Surprisingly, the intensity of peaks B and C is not significantly reduced as the Zn concentration increases to 16%; while T_c is suppressed entirely at about 10% Zn substitution which can be seen in figure 4(b). In other words, T_c

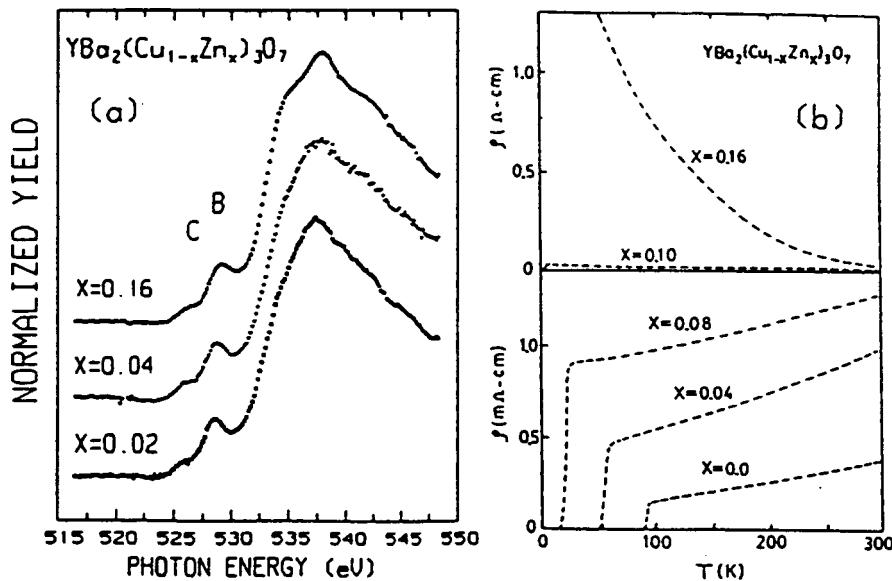


Fig. 4: (a) 0 K-edge absorption spectra of $\text{YBa}_2(\text{Cu}_{1-x}\text{Zn}_x)_3\text{O}_7$ with Zn concentration $x=0.02$, 0.04, and 0.16. (b) Resistivity vs. T for various Zn concentrations in $\text{YBa}_2(\text{Cu}_{1-x}\text{Zn}_x)_3\text{O}_7$.

does not correlate with the density of O 2p holes and this is in contrast to the case of $\text{YBa}_2\text{Cu}_3\text{O}_{6+x}$ with different oxygen content. This behavior is in good agreement with that of $\text{EuBa}_2\text{Cu}_3\text{O}_7$ and $\text{EuBa}_2(\text{Cu}_{1-x}\text{Zn}_x)_3\text{O}_7$ which has been reported previously.¹⁹

At $x=0.10$, the critical concentration for the complete suppression of superconductivity, there is a dramatic increase of the resistivity and a switch from metallic to semiconducting-like behavior. For $x>0.10$, the resistivity data cannot be fit to a simple thermally activated behavior with one characteristic energy scale.²⁰ Anderson localization can lead to a variable range hopping expression for the resistivity given by $R(T)=A\exp[(B/T)^{1/4}]$, and which fits the experimental data in a crude way. This may suggest that the conduction is due to phonon-assisted variable range hopping and the electronic states are localized at the Fermi level by disorder in this system, and thus superconductivity is suppressed dramatically.

From the viewpoint of chemical bonding,²¹ it has been known for some years that Cu with a 2+ valence state forms fourfold coordinated bonds with a sp^2d configuration. This type of bond configuration forms the square planar lattice found in the high T_c superconductors. Zn however would have no d involvement in the bonding and this would change the local symmetry and could lower T_c dramatically. For the case of Ni, which is magnetic, similarly to the Cu case, sp^2d four-fold coordinated bonds with oxygen are formed and thereby the bonding symmetry is not seriously affected. This would explain why Ni doping in $\text{YBa}_2\text{Cu}_3\text{O}_7$ has less effect on T_c , when compared to Zn.

CONCLUSION

We show that the pre-edge features of Sr doped La_2CuO_4 and $\text{YBa}_2\text{Cu}_3\text{O}_7$ are different from those for undoped La_2CuO_4 and $\text{YBa}_2\text{Cu}_3\text{O}_6$.⁵ However, the O K-edge spectra of $\text{Nd}_{2-x}\text{Ce}_x\text{CuO}_4$ barely change from the undoped to the Ce doped superconductor. So far there is no well accepted mechanism to explain the significant depression of T_c by Zn substitution for Cu in $\text{YBa}_2\text{Cu}_3\text{O}_7$. The absence of changes in the density of O 2p empty states near the Fermi level, along with drastic changes in the resistivity implies that the states probed in the near edge measurement become localized with Zn substitution.

ACKNOWLEDGMENTS

We thank the staff of the National Synchrotron Light Source at Brookhaven National Laboratory where x-ray absorption measurements were performed. This work is supported by U.S. Department of Energy under Contract No. DE-AC02-76CH00016. Work at the University of Houston is supported by DARPA Grant No. MDA 972-88-G-002 and NSF Grant No. DMR 8616539. Work at Temple University is supported by NSF Grant No. DMR 8892401.

REFERENCES

1. See for example, K. C. Hass, *Solid State Physics*, vol. 42, 213(1989) and references therein.

2. N. Nucker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Temmerman, *Phys. Rev. B* 37, 5158 (1988); N. Nucker, H. Romberg, X. X. Xi, J. Fink, B. Gegenheimer, and Z. X. Zhao, *Phys. Rev. B* 39, 6619 (1989).
3. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, and M. Suenaga, *Phys. Rev. B* 35, 7187 (1987); P. Steiner, V. Kinsigner, I. Sander, B. Siegment, S. Hufuer, C. Politis, R. Hoppe, and H. P. Muller, *Z. Phys. B* 67, 487 (1987).
4. P. Kuiper, G. Kruizinga, J. Ghijsen, M. Grioni, P. J. M. Weijs, F. M. deGroot, G. A. Sawatzky, H. Verwij, L. F. Feiner, and H. Petersen, *Phys. Rev. B* 38, 6483 (1988).
5. M. F. Hundly, Z. Zettl, A. Stacy, and M. L. Cohen, *Phys. Rev. B* 35, 8800 (1987); N. P. Ong, Z. Z. Wang, J. Clayhold, J. M. Tarascon, L. H. Greene, and W. R. McKinnon, *Phys. Rev. B* 35, 8807 (1987).
6. C. S. Jee, D. Nichols, A. Kebede, S. Rahman, J. E. Crow, A. M. Ponte Goncalves, T. Mihalisin, G. H. Myer, I. Perez, P. E. Salomon, P. Schlottmann, S. H. Bloom, M. V. Kunc, Y. S. Yao, and R. P. Gurtin, *J. Super. L*, 63 (1988).
7. Thomas J. Kistenmacher, *Phys. Rev. B* 38, 8862 (1988).
8. Y. Tokura, H. Takagi, and S. Uchida, *Nature*, 337, 345 (1989).
9. H. Takagi, S. Uchida, and Y. Tokura, *Phys. Rev. Lett.* 62, 1197 (1989).
10. P. Kuiper, G. Kruizinga, J. Ghijsen, G. A. Sawatzko, and H. Verwij, *Phys. Rev. Lett.* 62, 221 (1989).
11. A. Krol, C. S. Lin, Z. H. Ming, C. J. Sher, Y. H. Kao, C. L. Lin, S. L. Qiu, J. Chen, J. M. Tranquada, Myron Strongin, G. C. Smith, C. T. Chen, F. Sette, Y. Ma, C. W. Chu, Gang Cao, and J. E. Crow, submitted to *Phys. Rev. B*.
12. J. H. Weaver, H. M. Meyer III, P. J. Wagner, D. H. Hill, Y. Gao, D. Peterson, Z. Fisk, and A. J. Arko, *Phys. Rev. B* 38, 4668 (1988).
13. S. L. Qiu, C. L. Lin, M. W. Ruckman, J. Chen, D. H. Chen, Y. Xu, A. R. Moodenbaugh, Myron Strongin, D. Nichols, and J. E. Crow, *AIP Proc. #182*, p. 365 (1989).
14. D. E. Fowler, C. R. Brundle, J. Lerczak, and F. Holtzberg, to be published.
15. N. Nucker, P. Adelmann, M. Alexander, H. Romberg, S. Nakai, J. Fink, H. Rietschel, G. Roth, H. Schmidt, and H. Spille, *Z. Phys. B* 75, 421 (1989).
16. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, G. Liang, and M. Croft, *Nature*, 337, 720 (1989).
17. E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, *Phys. Rev. B* 40, 2617 (1989).
18. The previous report by our group showed that two features were at 528 eV and 529 eV which are due to different photon energy calibration.
19. M. L. denBoer, C. L. Chang, H. Petersen, M. Schaible, K. Reilly, and S. Horn, *Phys. Rev. B* 38, 6588 (1988).
20. See for example, Myron Strongin, R. S. Thompson, O.F. Kammerer, and J. E. Crow, *Phys. Rev. B* 1, 1078 (1970).
21. "The Nature of the Chemical Bond," 3rd ed., Linus Pauling, Cornell University Press, 1960.