LBL-16008

e

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Accelerator & Fusion
Research Division

Presented at the 12th International Conference
on High-Energy Accelerators, Fermi National
Accelerator Laboratory, Batavia, IL,

August 11-16, 1983

LIE ALGEBRAIC METHODS FOR PARTICLE TRACKING
CALCULATIONS

D.R. Douglas and A.J. Dragt

August 1983

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISTRIBUTION OF THIS DOCIHATRT 1S HRLIMITED



LEL--16008
DE84 004310

LIE ALGEBRAIC METHODS FOR PARTICLE TRACKING . .LCULATIONS*

David R. Douglas

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Alex J. Dragt

University of Maryland
College Park, Maryland 20742

August 1983
DISCLAIMER

‘This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Governmenl nor any ageacy thereof, nor asy of their
employees, makes any, vlrnnly. expmu or implied, or assumes any legul liability or responsi-
bility for the ful of any inf product, or
process disclosed, wlqwumuuutnswn\mdﬂmnmﬁmm:mnmuhummdnﬁm.Rdh
ence herein 10 any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise docs not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors cxpressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

*This work was supported by the Director, Office of Energy Research, Office
of High Energy and Nuclear Physics, High Energy Physics Division, U. S. Dept.

of Energy, under Contract No. DE-AC03-76SF00098.
DISTRIBUTION DF THIS Ducua:'m&umm



LIE ALGEBRAIC METHODS FOR PARTICLE TRACKING CALCULATIONS*

David R. Douglas
Lawrence Berkeley Laboratory, University of Caiifornia, Berkeley, California 94720

Alex J, Dragt
University of Maryland, College Park, Maryland 20742

1. Introduction

A study of the nonlinear stability of an acce-
lerator or storage ring lattice typically includes
particle tracking simulations. Such simulations
trace rays through linear and nonlinear lattice ele-
ments by numerically evaluating linear matrix or im-
pulsive nonlinear transformations, For large “at-
tices with many nonlinear elements, this can be in-
efficient because of the necessity of evaluating a
separate transformation for each group of linear
elements and every individual nonlinear element.
Moreover, the validity of the impulsive approxima-
tion for nonlinear elements can be questioned.
Also, *“linear* elements are really not linear,
finally, one must exercise caution to insure that
the transformations employed are exactly canonical.

Using the mathematical tools of Lie groups and
algebras, one may construct a formalism which makes
explicit use of Hamilton's equations and which
allows the description of groups of linear and non-
lmnear lattice elements by a single transformation.
Such a transformation will be exactiy canonical and
will describe finite length linear and nonlinear
elements through third (octupole) order. It is pre-
sently possible to include effecis such as fringing
fields and potentially possible to extend the for-
malism to include nonlinearities of higher order,
multipole errors, and magnet misalignments.

We outline this Lie algebraic formalism and its
use in particle tracking calculations. A computer
code, MARYLIE, has been constructed on the basis of
this formalism. We Jescribe the use of this program
for tracking and provide examples of its application.

I1. Lie Algebraic Termninologyl

The behavior of a particle in an accelerator
lattice is described by the transfer function of that
lattice. This function relates tueé valuec of the
coordinates and momenta § = {x, Pxs¥sPys -pt) of
a particle at some reference location in ge lattice
to their values I = (x,px,yp .1, Pt) at any

other location. We write the dependence of T on 3
as follows:

T =tle) (1)

and note that this function may be dbtained by solv-
1rg Hamilton's equations using the particle distance
1. on the reference point, aleng the design orbit, as
the independent parameter. The 6-tuple £ is then
taken as the initial condition for the calculation.
The variables x and y are the usual transverse coor-
dinates; t is the arrival time deviation from the
synchronous particle arrival time, and -py is the
energy deviation.

The transfer function (1) is a canonical trans-
formation. As such, it admits several representa-
tions. A common method of representation
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15 that of expanding (1) in a Taylor series in & and
reading off the coefficients of monomials in the ex-
pansion. These are the familiar matrix elements of
matrix calculations. Alternatively, one may use the
language of Lie algebras to represent {1) in a com-
putationally useful tashion.

Let f and g be two functions of £. The Poisson
bracket {PB) is a function of & defined by the fol-
Towing collection of derivatives:
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We view the PB as a product of the functions f and
g. Under this product, this set of functions forms

a Lie algebra.

fny function f = f(§) generates a Lie operator,
denoted by :f:, whicn acts on functions of £. is
operator, acting on an arbitrary function g, is de-
fined by the rule

if: g= [f,q] .

Powers of Lie operators are defined by iterated PB's:

g=9
: g =[f.0]

f:%g = :f:(f,q] = [f, [f,0]]
and so on.

We may construct sums of Lie operators. [n
particular, we may define the Lie transformation

generated by f as the following infinite series:

= ofsD . 1
Z_%]'—ﬂ—:l*:f:*’z-!—:f:

Lie transformations may be used to define can-
onica) transformations. For any f = f(g), the foi-
lowing transformation, defined using a Lie trans-
formation, is canonical:

T-eif g g*[ﬁs]’%[f, (f.al+... .

Conversely, the faciorization theorem teHs us that,
under quite general conditions, a canonical trans-
formation such as (1) may be written as a product of
Lie transformations. Soecifically, there exist
hanogeneous polynomials fz,f3,f4, ... of degree
2,3,4, ... in the components of § such that the fol-
lowing transformation reproduces Eq. (1).

_ =(e:f‘z: e:f3: e:f4: ).5 )

Moreover, if the infinite product in (2) 1is trun-
cated at the nin term, the resulting transforma-
tion remains canonical, and will reproduce all terms



in (1) tu those of o-der a:
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Given the Hamiltonian for the motion of a par-
ticle in a particular beamline elament, it is possi-
ble to compute the polynomials fy exnlicitly. Oae
may therefore represent single-e?meﬂt transforma-
tions accurately through nonlinesrities of high or-
der. This has been done, for a variety of elements,
for nonlinearities of third order (fg is known).
It is possible to combine these single-element
transformations through use of the Campbell-Baker—

Hausdorff theorem. This theorem describes when and

how it is_possible to combine two Lie transforma-

tions e'': and e'9" to produce a single Lie
transformation e2h:. The product

e:f: &f9 . e:h:

of two Lie transformations 1is thereby defined.
Using this theorem, we may combine multiple trans-
formations for single elements to produce a single,
canonizal, nonlinear transformation descridbing the
transfer function through a collection of elements.

Lie algebraic methods therefore allow the con-
struction of a canonical transformation which repre-
sents the transfer furction of an entire lattice ac-
curately through nontinearities of third order. It
is then possible to numerically evaluate this trans-
formation in a completely canonical fashion, This
allows tracking of single particle coordinates
(ray-traces) for repeated passes through a lattice.

111, Applications to Tracking

The Lie algebraic formalism outlined above has
been implemented in the FORTRAN language program
MARYLIEZ (the Maryland Lie Algebraic Transport and
Tracking program). MASVTUIE represents the exact
transfer function for single elements using a third
order, compietely canonical, approximation of the
following form.

T =e 2 e £ (3)
The program can combine such transformations far a
collection of individual elements to provide a sin-
gle transformation for the collected elements. This
“collective" transformation is also of the form (3)
and therefore faithfully represents ail effects
through those of third (octupole) order in compo-
nents of §£. Finally, given numerical values for an
initial ray §, MARYLIE can evaluate (3) to obtain
numerical va\ues for £ in a manner which is canoni-
cal to all orders, The ray traces are, therefore,

completely symplectic.

MARYLIE thus contains remedies for certain de-
ficiencies which can be present in other tracking
programs. First of all, it is completely canoni-
cal., No spurious damping cor growth of emittance
{phase space) will occur. Secondly, it incorporates
the nonlinear aspects of the so-called linear ele-
ments ({drifts, dipoles, and quadrupoles). Thirdly,
it uses finite length nonlinear elements. This is
an advantage in circumstances where impulsive appro-
ximations are questionable. Finally, a single
transformation may be employed for groups of linear
and nonlinear elements. This avoids the ineffi-
ciency inherent in providing each nonlinear element
with an individual transformation,

1t is at this last point, however, that caution
must be exercised. It is widely known from ex-
perience with tracking simulations, and with the

well-kxnown programs TRANSPORT and TURTLE, that nor-
linear lattice elements of a given order “cross-
couple” to generate effects of even higher order.3
The program TRANSPORT does not accurately describe
all such effects because it omits all matrix pro-
ducts beyond second order. TURTLE, since it tracks
elements-to-element, does (numerically) retain these
effects.

MARYLIE presentis truncates products of Lie
transforrations to the form (3). Hence, cross-
couplings of fourth and higher order are elimina-
ted. The number of elements which can be described
by a single traisformation is therefore limitec.
Criteria to guantitatively specify this 1imit have
not yet been developed, Experience with tracking
simulations for different types of storage rings in-
dicates, however, that low emittance, very strongly
focussing rings (with strong linearities) require
more care in this respect than do large emittance
rings with weaner focussing and nonlinearities.
Two contrasting examples are given below. In the
case of gently focussing hign energy lattices, such
as one proposed for the SSC, it should be possible
to track for many superperiods using a single trans—
formation.5

1v.  Examples

A. Lawrence Berkeley Laboratory Advanced Llight
Source

This proposed electron storage ring is to serve
as a dedicated synchrotron radiation’ source for the
National Center for Advanced Materials.t The 12
cells comprising the lattice consist of strongly fo—

cussing pairs of quadrupele triplets. Ring para-
meters are as follows:
Circumference 182.4 n
€lectron energy .9 to 1.9 GeV
Nominal tunes (H,V) 13.78, 7.78
Emittance 6 ax10-§ m-rad
Natural chromaticities -32.0, -17.5
Maximum quad. gradients 22.9 T/m
No. sextupoles 48

The high chromaticity, low emittance and large
quadrupole gradients are characteristic of strongly
focussing rings. With activated sextupoles, only a
single superperiod may be tracked using one canoni-
cal transformation. Truncation errors are observa-
ble if a larger number of elements are described
using a single mapping. (Even so, this is an ad-
vance over other methods, as each superperiod con-
tains four sextupoles. We therefore describe four
nonlinear elements using a single transformation).
Figure 1 illustrates the result of a MARYLIE bucket
height caltculation.

B. Los Alamos LAMPF 11

One lattice under consideration for a proposed
fast cycling synchrotron at Los Alamos would accele-
rate protons from the LAMPF linac to 32 GeV. This
lattice of 60 cells (each consisting of 4 combined-
function bends and 4 sextupoles) has nominal tunes
of 10.25 (horizontal} and 11.25 (vertical)}. This
lattice can be successfully tracked using a second
order matrix based code, provided the tracking is
carried out element to element. If, however, single
element maps one combined to compute the second or-
der transfer function for an entire cell, and if
this cell transfer function is used in tracking, the
result exhibits a suprious growth in the single~
particle phase space. Figure 2 1illustrates this
growth in the vertical phase space during 200 turns
of cell-to-cell tracking. This effect is purely an
artifact of the tracking procedure. It is due to



the fact that second order matrix transformations
for collections of elements are, in general, omly
through second order (even though the transforma-
tions for individual elements may be exactly canoni-
cal).

Figure 3 shows the result of tracking with
MARYLIE for 48000 turns. This matches the result of
tracking elament-to-element using the matrix code,
but was performed using a transfer function des-
cribing 120 cells. Because MARYLIE ‘s completely
symplectic, no spurious growth of the vertical phase
spce is seen; because it it third order, it is pos-
sible to track 2 complete turns per transformation
without loss of relevent cross-couplings amongst
elements.

We therefore conclude that there are cases for
which it is very important to maintain the symplec-
tic condition to higher than second order.
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Fig.1 Bucket Acceptance of ALS For a
500MHtz., 3MV r.f. system, the anticipated

acceptance is +5%.

This run shows that,

due to lattice effects, the bucket is
asymmetric and has an acceptance of -4,7%
to +3.9%.
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