UCRI- 82992
PREPRINT

O U RSTE ~ RGO R

A Serial Internrocesscr Communications MASII R

System

William Labiak
Philin Siemens
Carolyn Bailey

This Paper Mas Prenared for Submittal to
DECUS Conference
Anaheim, California
i April 19, 1980

April 3, 1980

This is a preprint of » paper intended for publication in a journal or proceedings, Since
changes may be mude before publication, this preprint is made available with the un-
derstanding that it will aot be cited or reproduced without the permission of the author.

an

A STRUAL INTERPROCESSOR COMWHICATIONS SYSTEMH

William Labiak
Lawrence Livermoro Laboratory
Livermare, Calitormia

Philip Siemens
a Carolyn Bailey
5 Menlo Computer Assoctates
i Palo Aito, Catifornia

ABSTRACT.

A serial communications system based on the EIA RS232-C
standard with andem conlrel lines haec been developed. The
PLVYYY-F interface is used for this purpase. Al
Lasdshaking 1s dong with the aodem contral lines, This
allows tatally independent ful) duplex communication. The
recegge formal consists of eight bit data with odd parity
amt 2 sixteen bit checksum on the whale mossage, ANl
rammgnications are fully interrapt deivon. A program was
written to Toad a program into & remote LS1-11 using the
serial line without bootstrap ROM,

DESCRIPTION OF COMPUTER NETWORK
A darne fusion energy oxperiment, the Mirror
fucieon insl Tacilily, is under consiruction at
Lawrence Livermore Laboratory, This experiment
will be computer controlled. A hierarchical
rorputer systom has been developed to perform
thys function, The top level §s *he Superyisory
Contrai and Diagrostics System (SCUS)., !t con-
sists af pine Interdala 32 LIl computers. These
cenpatars are intercoanected through a shared
pate “he npext level is thwe Locat Contrgl gnd
Intryrontation System {1CIS) consisting of 65
©51-11! computers conmacted to the Interdata
compiters with serial Tines, fhe LSI-11's are
interfaced to the cxperiment {hraugh the CAMAC
wystom. Becduse of the larqe pumber of LS]-11's,
it 15 oamportant that comaunscation using the
werial vines be efficient and incxpersive. The
Suporvisory to Local Intercramunication Protocol
{SUIP) was developed to accompiish this.

SOFTWARE TRADIOFFS

in arder to improve reliahiiity and decrease
cost, the LSI-11's have only a CPU, 32% wards of
memory, a DLVI1-E2 and a CAMAC serial driver
interface, No cther peripherals are used. A
method had Lo be developed to bootstrap these
compiters, The consple ODT provides sufficient
rapability o load the {IEC zhsnlute loader, From
tihat point, the system cau ue brought up fully.
This reguired the DLVII-E Lo be al the console
aduress, however, the cost of a 8CV11 per system
was saved,

PROTOCOL DEF INITION

The reosmgnications protecal prasesds in the
following way. & transacticn $s initiated by the

*ork performed under the auspices of the U,S.
Depariment of [nergy by the Lawrence Livermare
Laboratory under contract nymber W-7405-ENG-48.

DISCLAIMER

transimitter setting the request to send (RE2S).
The receiver gets this signal on ils carrier
detoct line. 1f the receiver is ready, it sets
the data terminal ready {DTR} 3ine which js5 con-
nected to the clear to send (CL2S) on the transw
mitter. The transmitter then sends Lhe message
and a 16 bit checksum, When the message is
complote, the receiver calculates the checksum
and compares it with the one transmitted, If it
is correct and no parity errors have occurred, an
Acknawledge (ACK) i scat to the transmitter. If
there was an error, 3 negative acknewledae {(MAK)
is sent. The ACK or HAK is sent by the receiver
clearing ils DTR line ond setting the secondary
transmit lTine high for an ACK anu Tow far a NAK.
The transmitter looks at its sccondary roceiver
ling for the ACK or NAX when it sces CL2S
clearea. The transmitter then clears ROPS which
epds Lhe transaction. If the Lransmitler sees a
HAK, it may retransmit if desired. [Figq. 1, 2)

Supernory Locas Control
Comiitér Computer
firteroatal LS
T — J— Recewer
RUTS et i e i en o Cateses Detect
cLzs o e oTR
RCA o e sttt 3
Resewver =~ T
Careier DEeTt mm mm oo st e RQ7S
DTR S s

AcT e e e SR

Figure 1 frier.Coanection Diagram

Roth the transmitter and receiver must know the
Tength of a messaae before it is sent, If 3
¢ifferent length message is to be sent, the
length of that message may be specified in the
previous message, This can be implemented in
quneral by a short header message followed by a
data inessage,

The transinftter can abort by clearing its RQ2S
line, The receiver may abort by clearing its OTR
line. If the transmitter does not get CL2S after
a certain time or see CL2S cleared at the end of
transmission, it will time out and clear RQ2S.

1€ the receiver does net receive the appropriate
nimher of characters or the carrier cleared after
sending an ACK or NAK, 1t will time out and abort.

Recewe

Aetnowiene

¥e also had to implement a virtual terminal capa-
bility so that we could interact with the remote
from the host‘s terminal. Th{s situation led to
problems because it was often difficult to de-
termine in which machire a bug was occurring

PROGRAMMER TEAM

The software described was designed and coded by
a two person programmer team consisting of a
senior systems level programmer and an entry
Tevel programmer. The senior programmer previded
the design along with periodic support during the
coding and debug phases of the project. The
entry level programmer did the coding, debugging,
and documentation. This arrangement worked well,

ACK 5 Huiter
Jen, ~
s tull
it Comamre
ioes i

ol

Dl
i
3 o

Figure 2 State Diagram

DEVELCPHENT 5YSiiM CONFIGURATION

The system on which the software was develaped
consisted of two computers. One, which we
labeled the hose, wds a reasonable software de-
velopment system runnirg the RT-11 operating
system. The other, labeled the remote, was a
bore hgres system,

The host consisted of a 32K word LSI1-11/2 with
dual floppy disks, a VI-52 CRT terminal, an
LA-180 printer, and DLVI1/E serial line inter-
face. Midway through the project, a 10 Mbyte
cariridge disk was added. MNeedless to say, there
was a noticeable improvement in throughput. We
could do severai more cowpilations per day than
with the floppy disks, and our file management
sroblems were cased since we no longer had to
naintain several floppy disks with our files on
them. The host used the RT-11 V3B operating
system ond tws Janguages -- MACRO-11 and OMS
Pascal-1. T(CO was the orly editor used --
nermally with a screen oriented editing macro.

The remote consisted of a 32K word LSI-11/2 with
a single DLVI1/E which was connected to the
OLVI1/E on the host, The remote DLV11/E was in-
stalled at the crasole terminal address {device
address 177560). There were no other Interfaces
installed on the remote -- no terminals, mass
storage, or bootstrap ROM.

Becouse of the hardware configuration, we first
set about to design and code a down loading pro-
gram so we could load programs into the remote

The junior programrccr's experience previgus o
this project consisted of FORTRAN and PDF-8 as-
sembly language. MNevertheless, Pascal and
MACRO-11 were quite casily learned. We used a
subset of Pascal with only three elcementary data
types (integer, char, and array of char), Within
a couplte of days, working p-ograms were heing
produced, which seems to indicate that Pascal is
indeed a simple lanquage to learn and use,
MACRO-11 programs were likewise produced within a
reasonable time, although they were not speed or
space efficient., It seems that new PDP-11 pro-
grammers, expecially those with only POP-8 ex-
perience, have difficulty at first making
efficient use of the PDP-11's registers.

GENERAL COMMUNICATION ROUTINES

In order to establish two way communications
between a host and some remotes, a set oi general
communication routines were written. These rou-
tines were written in assembly language as Pascal
callable procedures. They were intended to be
used in a stand-alone remite LSI-11 {although
they work equally wel)l with an RT-11 system),

The routines provide six basic functions which
are described below.

Initialization

A procedure called SLIPINIT initializes a number
of parameters concerning the protoco! routines.
An example call is:

http://th.it
http://licr.es

SLIPINIT {TIME, TRYNUM, ERROR).

TIME is an integer argument which sets the time
out period allowable on communication tasks.

Time is measured in clock ticks. TRYNUM is the
number of times a message is tried to be sent or
recoived before an error is reported to the
caller. ERROR is an error flag which is returned
as 0 if no errors occurred during the initial-
izatton process,

Send Message

There are three routines used to send messages,
depending upon the degree of concurrency de-
sired. The first ts a send and wait procedure
called as:

SENDW [DATA, LENGTH, ERROR).

DATA is the name of a variable {usually an array
or record) containing the characters to be sent.
LENGTH specifies the number of characters to be

sent, ERROR is an error flog which is returned

as zero {f there are no errors.

A message transmission may be siarted and then
ovorlapped with the execution of the calling pro-
gram with the SEND (data, length, error) pro-
cedire. The variables are the same as described
above, Once the message transmission is started,
control returns to the caller. Eventually, the
calling program must synchronize with the message
transmission with the HALTSEND {error) pro-
cadiure. WAIISEND will only return to the caller
when the message has been completely transmitied,

¢ a completion routine when the mes.age
‘rarsmitied, the SENDC (data, length,
vrror, craplrtn) procedure may be called. The
variables are as described above except that
COMPLRTN is the name of a procedure which will be
invoked when the message transmission has been
completed. Completion routine procedures are
restricted to be globally accessible procedures.

Receive Routines

There are a set of three reccive meSsage routines
which compliment the three messege transmission
routines descibed above. They are invoked by:
RECVW (DATA, LENGTH, ERROR)

RECV {DATA, LENGTH, ERROR); WAITRECEIVE (ERROR)
RECYC (DATA, LENGTH, ERROR, COMPLRTN)

ents are the sare as described for the
sion routines.

the ar
transmis

Status Routines

The current status of the send ur receive rou-
tines can be determined by using the following
procedures:

SENOST (STA1E, LSTATE, CNT, ACTRY, TIMC)

RECVST (STATE, LSTATE, CNT, RCTRY, TIME).

These procedures return the five arguments to the
caller. STATE gives the current protocol state.
Send states are:

0 -- idle

1 -- request to send has been asserted, waiting
for ciear to send

-- sending data

-~ sending checksum

waiting for ACK/NAK

-= received an ACK

received a NAK

-- aborting transmission

~wowmawn
1
1

Receive states are:

-- idle

-- waiting for request to send from transmitter

-- asserted clear to send, waiting for data

-~ receiving data

receiving the checksum

~- sent ACK, waiting for sender to go idle

-- sent NAK, waiting for sender to go idle

-- aborting receiver

~- message too shert, NAK, waiting for sender
to go idle

NN BWR—O
i
1

LSTATE is simply the last state before the
current one, In this way, one can determine the
particular error state which occurred before
idle, CNT is the number of bytes in the message
yet to be sent or received. RETRY indicates how
many times the message has been retried due to
errors. VIME indicates how many clock ticks re-
main before the send or receive timer times out.

Error Status

An accumuloted error count is kept for certain
receive errors. This accumulated count may be
retrieved hy:

ERRSTATUS (PECNT, ORCNT, SMCNT).

PECNT returns the total number of messages with
parity errors, ORCNT returns the total number of
overrun errors, and SMCNT returns the total
number of short messages. This pracedure sets
these three counters to zero so that a new
accumulation begins.

Aborting A Transmission

Both the send and receive message operation can
be aborted before completion. This allows a
higher priority message to be dealt with as
rapidly as possible. The procedures ABGRTSEND
and ABORTRECEIVE (no arguments are used) ac-
complish these tasks.

Exiting to RT-11 Monitor

Before exiting to the monitor (assuming the com-
munication routines are being used with an RT
system), some clean-up work must be done, or
trouble may result, First of all, interrupts
from the remote must be disebled since the moni-
tor does not know wha' to do with them.
Secondly, clock vectors must he restored to the
normal R7-11 configuration, or the system will
crash. A procedure called SLIPX is provided to
perform this clean up before exit, but the user

must stilt be careful in how the exit to monmitor
is accomplished.

DOWNLOADER

The dc.nloader allowed user programs to be trans-
ferrod from the host system into the remote
LS1-11, It consisted of two distinctly different
parts -- the "HOST" system which sent the program
dawnline and acted as a virtual terminal for the
remote, and the loaders which ran in the remote
to receive the program coming downline.

The "HOST" portion of the downloader and large
portions of the remote were written in Pascal in
a top-down fashion. Because of the intimate
nature of the software v ith the hardware, how-
ever, we made use of some non-standard features
in OMSI Pascal-1 (like the ability to reference
an absolute memory location).

The “"HOST" downloader prageam consisted of the
following procedures:

begin
send break;
turn remole interrupts off;
send L command;
send absolute loader (ABSLDR);
send protocol loader;
send user file
end.
Send Broak

The remote's serial interface (DLV-11/E) was
strapped such that when a "BREAK" was received,
the remate would be halted and a bus initialize
signal generated. Line "BREAKs" are generated
differently, ¢~-ending on the characteristics of
the host's serial interface. With the LSI-11
host using a DLV-11/E interface, a "BREAK" was
generated by setting bit 0 in the XCSR register
to a1 and then srading 3 rull characters to
insure that the line was in a hreak rongitign
long enough for the remote to detect it.

Unon receiving 2 break, the remote sent a
sequence of characters back to the host. Several
tens of character times after sending the
“BREAK," the host checked the last character it
had received from the remote. If it was an “@"
character, the "BREAK" was assumed to have
worked. [f not, the "BREAK“ was sent again.
After a total of three tries, a fatal error was
reported on the host's terminal.

Turn Remote Interrupts Off

Because the clock vectors in the remote had not
been set, it was necessary o turn the remote‘s
interrupts off so no clock interrupts would
octur, Yo accomplish this, the host first opened
the remote's PSW by sending an "RS/" downline
The remote should reply with the contents of 1ts
PSW followed by a space . If this last charact-

er was not a space , then the “RS/" was resent
up to three times before a fatal error was
reported. With the PSW resister opened, the host
sent “200 cr " to turn the remote processor's
interrupts off and close the PSH. Again, the
remote sent. back a character string, and the host
checked the last character to insure that it was
an "@" character,

L_Command

We initially used the L command of the LSI-11/2
in the download process. The L command, of
course, is a buitt-in feature of the LST-11/2's
micro-code. When this command is sent to the
remote, the remote enters a boot loader mode
which is normally used for loading paper tapes.
The host, however, can emulate a paper tape
reader and send the remote a character stream in
the expected boot format

The host sends the string "177560L" to the re-
mote, which then epters boot loader mode. The
host then sends an ABSLOR to the remote, When
the ABSLOR has completely loaded, it autostarts
and immediately sends a one character ACK/NAK
message to the host, HOST will try to load the
ABSLDR three times before reporting a fatal error.

ABSLOR was written {n assembly language rather
than Pascal because the constraint of using the
boot loader format -equired it to be small.

After the ACK/NAK, ABSLDR waits to receive a pro-
gram in standard ,LDA (absolute binary) format
Tnis format essentially consists of a number of
blocks consisting of header, data, and checksum,
1f any of the calculated block checksims do not
agree with the transmitted checksums, an <nternal
error flag is set. When the whole program has
been received, the ABSLDR will again send an
AC../NAK character to the host. The whole purpose
of the ABSLOR is to load a larger loader program
which operates under the SLIP protocoel.

Protocol | nader

A1) butl a few small modules of the pratocol
loader were written in Pascal. We were concerncd
about the size of the loader, but it required
less than i083 bytes, which was acceptable in gur
applicaticns.

The protocol loader was totally position jnde-
pendent. When started, it immediateiy relocated
itsel? into high memory, overlaying the ABSLDR.
The protaocol loader then handshakes with the host
according to SLIP protoco} rules. Messages are
fixed at 256 bytes Tong. One byte of the block
is a flag byte; the rest are data in standard
.LDA (absolute) format. The flag byte is used to
indicate end of message If a checksum error
occurs {either in the protoco! checksum or in the
absolute binary {.LDA) data block checksum), the
protocot loader NeK's and requests retrans-
mission. At the end of the message, the protocol
Joadur starts the received program if the
starting address is even, or weits for another
prog;gm to be downloaded if the starting address
is odd.

LS1-11 Host

The L§1-11 "HOST" program allowed a user at an
RT-11 system to downlpad a program into a remote
L§1-11 and then interact with that remote through
a virtual termina} facility. Since characters
wore received from the remote (19.2 Kbaud) faster
than they could be printed on a terminal {typi-
cally 9600 baud}, a small ring buffer (1K bytes)
wvas vsed. A1l characters typed at the host'’s
keyboard, except for four control characters,
were passed through to the remote. Characters
from the remote were passed through to the host's
terminal, except for an “@" character which was
changed to an “"&" character, This was done so
the user wauld not get confused about which
LS1-11 was in console ODT state. The control
characters were:

control B
Send a "BREAK" to the remote,

control
Download a user specified program
into the remote, The user is
prompted for a file specifica-
tion. The file suppiied must be
tn ,LDA format,

control %

Rormal exit to the RT-11 monitor,
The current stale of the rempte is
unchanged.

contral F

Load another program into the
remote using Lhe protocel loader.
The initial bootstrapping with the
ABSLOR, ctc., s hypassed. This
is valid unly {if the previously
loaded file did not start
execution.

SCDS Hast

After the total system was up and running using
an LS1-11 host with the LS1-11 remotes, the host
program {written in Pascal) was moved to the
Perkin-Elmer machines. This was not as straight-
forward as one would Jike. The Pascal in use on
the Perkin-Elmers was not standard, so quite a
few changes were rejuired. In addition, it was
essentially impossible to implement a virtuat
terminal., Ffinally, an unforseen hardware inter~
action required a major change in the download
procedure. This can be described as follows.

The SCOS host system interface required the
DLV-11/E to have its Data Terminal Ready (DTR)
signal asserted before it could send any charac-
ters to the remote, This reguired @ smal)) modi-
fication to be made to the DLV-11/€ so that its
DTR signal wonld be initialized high (asserted)
whenever 2 bus initialize signal occurred. We
encountered no problems with this scheme while
debugging with the LSI-11 host (it had no such
hardware restrictions and could send characters
even if the remote's DTR signal was not as-
sertedj. However, we hit an immediate probiem
when we maved the system tg the SCDS host.

The problem can be described as follows, Ouring
the downioad processing, the host would send
"177560L" causing the remote to,enter its paper
tape boot loader microcode. At this point, DIR
would be cleared, and the host could ro longer
transmit characters to the remote.

it rapidly became apparent that the LSI-i1
micro-code to execute the L command did writes
into the DLV-11/E recetver cantrol status

register and cleared the DTR bit., Thus, we could
not use the L command to load the AJSLOR, but
rather had to load it via console ODT as a series .
of octal words.

TECHNIQUES OF GENERAL INTEREST

Some of the techniques in these programs may be
of generai dnterest, These will be described
belaw,

Posting Requests

Generally, for cach state in the state diagrams,
(Fig. 2} we ‘mplemented a code sequence. Each
code sequence wouild be entered upon the occur-
rence of 2 particular event. in order to simpii-
fy the projranming, we adopted a convention which
we called pasting requests for these events,

When a request was posted, it designated which
event was desired and the address of the code
sequence to go to when that event occurred,
Macros were written which handled the posting of
these requests. The generated code to handle
thase requests was handled fa variaus ways.

For fni*ance, ia the message transmission rou-
tine, there were three code sequences used to
service the tronsmitter buffer empty interrupt
These were: {a) send another data choracter, (b)
send first byte of the checksum, and {c) send the
1ast byte of the checksum. We defined a macro
.PXBUF as follows:

«MACRO PIBUF A
MOV A,B4XVEC
~ENDM

where XVEC was equated to the transmitter vector
address. 1lnvoking .PXBUF then sets the vector to
point to a new interrupt service routine.

Requests for service upon the occurrence of a
receiver or modem interrupt were handled dif-
ferently. Here, posting a request set the inter-
rupt service routine address into a pointer

word. When the particular event occurred, a JSR
through the pointer word was performed. The
interrupt service routine executed and then
exited via an RTS PC, These requests could also
be cancelled, in which case the occurrence of the
event was simply ignored.

Posting timer requests was similar, except a
timer value was specified in addition to the rou-
tine address. When the timer expired, the speci-
fied routine was invaked.

As an exampie, here are some short code fragments
illustrating the use of these macros

;Start a message transmistion by asserting
request to send

:6ﬁCLl aCL2s1 sHere we reguest that when
;clear to send goes to 1, the
sinterrupt service routine at

;CL2SL s invoked

JTTIMR TIME,TIML jStart a timer with a value of
JTIME ticks, If it times out,
iinvoke the code at TIMI.
;This insures that we do not
ihang if we never sce clear to
;send asserted

A modem interrupt cccurred whenever one of the
three modem lines changed state (either a zero to
one or a one Lo zero transition). We were only
interested in changes on two of the lines --
Carrier Detect and Clear to Send. Modem inter-
rupts from other sourccs were ignored, Since we
needed 1o know which bit caused the interrupt and
in which direction its transition was, we main-
tained a copy of the wmodem line states at the
last interrupt. 3y comparing the current modem
Vine state with the last state, we could tell
what Yine caused the interrupt

Our first version did actual compares ad
branches to decnde what transition caused an
interrupt, but this code had more overhead in it
than ws wishod, MWe finally arrived at a branch
tabloatonfiguration {similar to a CASE
stru-ture}, This was the boest we could do for
proce<sing speed, clthough we still wished for
sorething better, A skeleton of this code is
shawn bolow.

,Bath character ready and modem interrupts vector
her 2

SRMINT: TST8 f*RCSR ;Check for character
jready

;Branch if no
;character is ready

BPL $MDDX

;Service the character which s ready

&MODX: PUSH RO ;Save RD on the stack
Moy QERCSR,RO ;sect copy of RCSR into

;RO

;set modem bits to low
;byte

;shift right

N RO
ASR RO

BIC #RC30,R0 ;Xeep new modem State
;0 000 000 QOO ONN 000

BIS {PC}+,RG ;0r in old madem state
;0 000 000 000 ONN LLO
;R0 now indexes inte a
;16 entry branch table

LASTHD: 0
JMp OATABL(RO) ;Go to the proper
;service rautine

ATABL: S.EXIT ;No change

$.CARO ;Carrier went ta 0

$.cL20 ;Clear tb send went to O

$.CARO ;Both carrier and clear to
;send went to O

$.CARL ;Carrier went to al

$.EXIT ;Na change

$.CARO: BICB #2,LASTMD ;Update last modem
yinterrupt state
ey ;Go to particular
jservice routine

$.CL20: HBICB #4 LASTMD ;Update last modem
;interrupt state
. ;6o to particutar
sservice routine

$.CAR1: BISB #2,LASTMD ;Update Tast modem
jinterrupt state
s 3Go to particular
yservice routine

Timers

[t was necessary to put time-out periods on some
of the communication tasks. If an operation did
not complete within the allotted time period,

then same error was indicated, Only two timers
were required, one for the transmit process end
one for the receive process, These timer rcu-
tines wore interesting in that they were trans-
parent to any other cltock routines in the machine,

1t was assumed that the user's program would set
up the cluck vector as required for fte use and
then call the protocol communication initfaliza-
tion routine, This initialization routine would
insert the timer routines between the clock vece
tor and the user's clock service routines by
saving the current clock vector and then setting
the vector to point to the comaunication timer
service routines. The timer service routines
would not dismiss via an RTI but would jump to
the user's clock routines with the PSW sat
properly. These routines were used wilh the
RT-11 operating system with the restriction that
befare program exit the clock vector had to be
restored to normal.

Speed Techniques

Some considerable effort was cxpended in aorder to
make the general communication routines as fast
as possible. The techniques we used should be
generally applicable. First of all, we noted
that absolute addressing modes on the LSI-11/2
execute faster than relative addressing modes
{source and destination times are approximaiely
15% faster). Therefore, we assembled all the
routines with the MACRO-11 directive .ENABL AMA
which causes absolute addressing to be the de-
fault instesd of relative.

It should be obvious that effectively using the
resisters leads not only to the fastest code, but
also to the cmallest., Although we kept this in
mind while writing the code, we nevertheless were
able to improve performance in an iterative
manner by repeatedly checking the code for places

whare we couid rearrenge the code to make better
use of the resisters,

The critical areas were those code sequences
executed during av interrupt, Our original
design goal ¢alled tur full duplex communication
at 9600 baud. This meant we would be handling
two interrupts per millisecond (une for the
transmitter and one for the receiver}. A short
code sequence from the receive character inter-
rupt service routine will illustrate some speed
technigues,

RRBUF: PRBUF #RRBUF1 15el up next
scharacter
yready interrupt
1ta 4o ta RRBUF]
ROV FSHORT,R.TINR ;Set up a timer to
idetect if the
Jressage s shorter
sthan we expect,
JIf timer cxpires,
;90 to SHORY
sRaset the timer to
sits initial value
sAn initiadization
iroutine sets
sRRBUF142 to
yits inittal value
MOV RERBUE,~{SP} ;savc character on

RRBUNTS MOV #0, SRTIMR
TINCZ~ RABUFL+?

sthe stack

ZhL PLONY sBranch if there is
;ho error

MoV (SP),QPELG ;5ave the error for
i later

PCONT: DEC (pche :Uocroment the char
scounter for this
imussage
RCIRY D s Inmediate
;addressing i
ifastest here
2rQ RSLIP :Branch if done
HOVR (SP+,B{PCY 3Store the
jcharacter in the
shuffer
wgulls 0 ;Fointer into the
yhutfor
iIncrement the
sbuffier point

NG BERBUFY

Note ihat while the techninues illustreted ahave
may be fast, they are not necessarily goad pro-
gremuing practice from other noints of view.
Movertheless, woe were ahle ta achieve full cduplex
transmission at 19.2K haud -- the ~quivalent of
onc interrupt overy 730 ®microsrconds.

T-8it Problem

Periodically, we would find that we could rut get
tur downinader to run in the remote. H15 was
often true after the remote had heen powered up.
An exsmination of memory would show that our pro-
gram had been wired vut and memory would be
filied with a particular repeating pattern,

The problem was finally traced to the following.
The LS1-11/2 can power yp with the T-bit "sort of
set." We say "sort of sat” begause if you ex-
anine the PSW with the ODT comwand RS/ you will
find the T-bit on, but in fact no trace traps

will occur untid after the first interrypt
accurs. That is, after power up, the PSW may
shiow Lhe T-bit on, but no traps will occur until
after the first interrunt. When the first inter-
rupt occurs, the PSH with the T-bit on is pushed
onto the stack, and the interrupt service routine
is execated, Whea the interrupt s dismicsed
with the RTI instruction, the PS¥ is reloaded
with a pop from the stack, and now the T-hit is
“really” on. A trace trap then occurs with a
vectar to location 14, Since we did not expect
trace traps, we had not inftialized the vector,
so it contaited whatever it was set to at power
up.

interestingly, it was not a random value, After
power up, memary consistontly contains atternate
words of all zeroes and all ones, {This also
occurs with memory systems other than those many-
factured by DCC.) Thus, lacation I4 cantained a
0 and 16 contained 177777, Mhen the first trace
trap accurred, the old PC and PSW were pushed
onta the stack, the new PC was set to O, and the
now PSW sel to 377, fote that the T-bit was
stit]l set, so instead of executing the in-
stryction {n iocalion @, another trace lrap
oceurred. Contfnuays trdce traps now accurred
until the stack pointer decremented down through
0 and a double bus error octurred. Memory, from
the initral stack painter value {we set out stack
pointer to high momory during the loading pro-
coss) down to location O was fillaed with alter-
nate words of 0 and 377, We proLected ourselves
against this occurrence by the following:

JASECT

.= 4 sInitialice the
1T-bil vector

cLYBIT

340

CLTB,/T: MOV #340,2(5P) sRoplace old 05K
subich had T-bit set
RTI swith new one with
;T-bit clvared

PROEIIMS WITH BAL1 BACK PLANE

This ¢ ications syslem was first developed
for commumnicaticns between two LSI-11's, This
system can be used between any two LSI-11's, and
the comnunications place na vestriction on the
address of the DLVI1-E. An intercsting hardware
probiem nccurs, however, if the BAl1-NE chassis
is vsed. This chassis has a 9 x & backplane with
nine C-bus slots and nine slots for the RLV11
controller board to vaard intarcanaect. 1f 2
system with CPU, memory, terminal interface,
floppy disc, RLO1 hard disc, printer interface,
DLVII-f for communications, and bootstrap is used
there are no extra Q-bus slots, yet there are
seven unused backplane connectors. Many gther
applications require more than nine Q-bus slots.
It would be very desireable to have an 8 x 4
backplane with sixteen Q-bus slots and an R(LOI
controller on 3 single gquad board. The BATI-NE
chassis ¥s excellent electrically and mechani-
cally, and if it had a larger capacity backpliane
it would be used more, As it is, other sources
st be used.

http://initi.il

0EC Q-BUS IKTERFACE CHIPS

While deveieping the cameunications programs, a
preblem with the DCCO3 interrupt control chip was
found. Occasionally, the transmitter done inter-
rupt would not occur. This was tracked down with
test programs ond a logic analyzer. Once in a
while the UART would send out the transmitter
done but the DCO03 would not send the interrupt
request. The cutput of the UART has a very Tong
rise time and sometimes it is tno slow for the
0C003 interrupt input. The probiem is solved by
buffering tnis signal through extra gates on the
DIVIL-E, This is the correction suggested in an
FCO given by DEC after we pointed the probiem out
to them, it is suggested that the 0C003 chip be
driven by TTL circuits in any design.

Two Interrupts On Same Vector Prohlem

As we began to use the DLY-11/€, it became ap-
parent that it was not designed to be used in the
manner we intended to use it, Both character
ready and modem interrupls were handled through
the same yector, and this presented some preblems
since both could be occurring simultaneously,
First of all, we wanted to process character
veady interrupts as efficriently as possible, but
sinco we always had to check to see 1f it was a
modem interrupt, we added additional overhead
into vach character interrupt. Sccondly, the
standard BUV-11/E ¢lears the modem interrupt flag
whenever the RCSR s referenced, either by a DATI
{read) or DATO {write) cycle. This means that in
the process of setting or clearing one of the
modem control bivs, a modem interrupt could be
Inst, The preblem was finally solved by another
small madificaton to the DLY-11/€ such that the
modemn interript flag would be cleared only by an
explicit inetrection, {Cne of the proarammable
haud rate bits in the XCSR was used since pro-
gramuable baud rates were disabled.)

In genaral, it is not a good idea to have simul-
taneously occurring interrupts going through the
wame vector. Interrupt processing overhead goes
up, und in sare cases, like the DLV-11/E, fool-
preof code may be impossible to weate,

CONCLUSTON

it tock nine months to develop this software.

The hardware problems which cropped up took about
2% percent of the time to identify and solve.

The system has been runcing reliably for almost
ane yedr.

Communications between two cemputers is always
difficult to accomplish, but once a system is
running, applications are casy. Many programs
using Lhese communications procedures have been
written and are running successfully.

ACKHOWLEOGLMENT
We wouid like to thank P.R. McGoldrick for

developing the protoce) and D. N. Putner for his
aid in testing with the Interdata computers.

REFERENCES

1. Microcgmpiter Processors Digital Equiprent
1cre a)

Corp., Haynard, WA |

2. Memories and Peripherals Digital Equipment
Torp., ¥aynard, WA~ (1978}

NOTICL

This report was prepared as an aecoun® of work sponsored by the tinited
States Govermament. Neither the United States nor the United States
Department ot Fnergy . nor any of their employees, nor any of thei
cantractars, subcontracton, ar their employees, makes any waeranty .
evpress or mplied, of aswmes any el lability ar respansibality for the
acctnand, completeness ar usefudnes ol gnymtomaian. appacitus

: toar provess disclosed, o gepresents that ey use wonld notinznnee

privately owned niehis

Reteremee by g cumpany ar prsduct name does ot anphy approval
recnminendation ol the product by the Universiny o Calgtoimia or tie vs
Deportment ab Fnery o e exdlusien ot others thatnaay be sutable

http://Ick.iI

