
IXRI.-82992
I'RKI'RINT

A Serial Internrocesscr Communications
System MASTER

William Labiak
Phi lin Siemens
Carolyn Bailey

Thi3 Paper Was Preoared for Submittal to
DECUS Conference
Anaheim, California

i April 19, 1980

April 3, 1980

This is ii preprint t>r» paper intended Tor publication in a journal or proceedings. Since
changes may he miide heforc publication, this preprint is made available v>ilh the un­
derstanding time il "ill not he cited or reproduced without the permission of the author.

A KR'.AL INlfRPROCfSSOa COK'UJNJCAT SONS SYSTM

Will Urn Labiak
Lawrence LWerir.ore L a b o r a t o r y

L i ve rmore , C a l i f o r n i a

P h i l i p Siemens
^ Caro lyn B a i l e y

Menlo Ceimputor A s s o c i a t e s
Palo A l t o , C a l i f o r n i a

ABSTRA£L

A serial communications system based on the ElA RS232-C
standard with modem control lines has been developed. The
HlVD-i' interface is used far this purpose. All
handshaking is done with the --smiem tonirnl linos. Th*s
allows totally 'ndepenclent full duplex communication. The
ro'-«;age fomal consists of eight bit data with odd parity
.tiut a sixteen hit checksum on the whole message, A H
roitsimiucatiohs are fuUy interrupt driven, A program was
written to load a program into a remote LSI-ll usinj the
serial line without bootstrap KOM.

IUMJUITUIN or awuint NLTWORK

A l . i r i ie fusiOTi energy exper ii:n>nt, the M i r r o r
i ' l r . i pn i e s t f a c i l i t y , is under c o n s t r u c t i o n at
I ,uvT'(."ice L i v rm ip ro L ^ l i c a ! o r y , This experiment
M i l be computer c o n t r o l l e d , A h i e r a r c h i c a l
r u - p u f e r system has been developed to per fo rm
t h i s f u n c t i o n , fhe top l e v e l i s *he Superv i so ry
fcHitro i and D iagnos t i cs System (SCDS). I t con­
s i s t s «t n ine I n l e r d a t a 3? b i t computers, These
M• '» i - . j ! r rs .ire i n t c r r "tmected through a shared
r -mory . "he ne* t l eve l is th» Local Con t ro l and
ln t r t ;—»n ta t i on Systeri { (CIS) c o n s i s t i n g of 65
' . S i - S i - co-Tpiit^rs cc' incctef j to the I n t e r d a t a
rc" iput . " -s w i t h s e r i a l l i n e s , 'he l .S l -11 's ore
intevf.KOct to the experiment through the tAMAC
systom. Because of the large number of L S I - l l ' s ,
i t is impor tan t t h a t conwunka t i on us ing the
s e r i a l Mnes be e f f i c i e n t and inexpens ive . The
Superv i so ry to Local I n t p r c r a s m m k a t i o o P ro toco l
(SLIP) was developed to accomplish t h i s .

HARDWARE SOFTWARE TRADEOFFS

In order t o improve r e l i a b i l i t y and dPC.rt'<ise
c o s t , the L S I - l l ' s have on ly a CPU, 32K wards of
memory, a Ot.VU - f ? and a CAMAC s e r i a l d r i v e r
i n t e r f a c e , No e ther p e r i p h e r a l s are used. A
method had i-0 bv developed to boo t s t r ap these
computers. Ttir- console ODT prov ides s u f f i c i e n t
c a p a b i l i t y t o load the OCC abso lu te l oader . From
tha t p o i n t , thy system can ut brought up f u l l y .
Th is r e q u i r e d the DLVH-E t c be at the console
adi i ress, however, Die cost of a 8CVU per system
was ^aved,

PROTOCOL OCFlHtTIGN

The r r . T ^ u n i c a t i o n s p r o t o c o l p-nrr ' -ds in the
f o l l o w i n g way. A t r a n s a c t i o n is i n i t i a t e d by the

*Work performed under the auspices of the U.S.
Department o f Cneryy by the Lawrence Ltverrnore
L a b o r a t o r y under c o n t r a c t number W-7405-ENG-48,

, DISCLAIMER 1

transmitter setting the request to send (RC2S).
The receiver gets this signal on its carrier
detect line. If the receiver is rcuiy, it sets
the data terminal ready {DTS} line which is con­
nected to the clear to send (CL25) on the trans­
mitter. Th*; transmitter then sends tin. message
and a K» bit checksum. When the message is
complete, the receiver calculates the checksum
and compares it with the one transmitted. If It
is correct and no parity errors have occurred, an
Acknowledge (ACK) is sen* to the transmitter. If
there was aft error, a negative acknowledge (NAK)
is sent. The ACK or NAK is sent by the receiver
cleaning its DTR line and setting the secondary
transmit line high for an ACK anu low for a NAK.
The transmitter looks at its secondary receiver
line for the ACK or NAK when it sees Cl.?S
cleared. The transmitter thtn clears RO?S which
ends the transaction. If the transmitter sees a
HAK, it may retransmit if desired. (Fig. 1, 2}

Locti Coni'oS
Comp„t*r
(LSl-U!

HCITS — • *— — — C*<t>r; petMi

r l _ ? s _ . , DTR

RCR

- RQ?S

Figure i trier .-Connection Diagram

Roth the transmitter ond receiver must know the
length of a message before it is sent. If a
different length message is to be sent, the
length of th.it message may ho specified in the
previous message. This can be implemented in
general by a short header message followed by a
data message.

The transmitter can abort by clearing Its RQ2S
line. The receiver may abort by clearing its DTR
line. If the transmitter does not get CL2S after
a certain time or see CL2S cleared at the end of
transmission, it will time out and clear RQ2S.
If the receiver does not receive the appropriate
number of characters or the carrier cleared after
sending an ACK or NAK, it will time out and abort.

We also had to implement a virtual terminal capa­
bility so that we could interact with the remote
from the host's terminal. This situation led to
problems because it was often difficult to de­
termine in which machine a bug was occurring.

PROGRAMMER TEAM

The software described was designed and coded by
a two person programmer team consisting of a
senior systems level programmer and an entry
level programmer. The senior programmer provided
the design along with periodic support during the .
coding and debug phases of the project. The
entry level programmer did the coding, debugging,
and documentation. This arrangement worked well.

Figure 2 State Diagram

IttVlIcrHtNT r,Y5r[^ CONFIGURATION

The system on which the software was developed
consisted of two computers. One, which we
labeled the host., was a reasonable software de­
velopment system running the RT-11 operating
system. The other, labeled the remote, was a
bjre licr.es system.

The host consisted of a 32K word LSI-11/2 with
dual floppy disks, a VT-5? CRT terminal, an
LA-130 printer, and DLVI1/E serial line inter­
face. Midway through the project, a 10 Mbyte
cartridge disk was added. Needless to say, there
w « a noticeable improvement in throughput. We
could do several r̂ ore compilations per day than
w'th the floppy dir.ks, and our file management
problems were eased since we no longer had to
maintain several floppy disks with our files on
them. The host used the RT-11 V3B operating
system and two languages -- MACRO-ll and OMSI
Pascal-]. TfCO was the only editor used —
nciiatly with a screen oriented editing macro.

The remote consisted of a 3?K word LSI-11/2 with
a single DLV11/E which was connected to the
OLVll/E on the hq<t. The remote DLV11/E was in­
stalled at the console terminal address (device
address 177560). There wore no other interfaces
installed on the remote -- no terminals, mass
storage, or bootstrap ROM.

Because of the hardware configuration, we first
set about to design and code a down loading pro­
gram so we could load programs into the remote.

The junior programmer'*; experience previous Co
this project consisted of fORTRAN and PDP-8 as­
sembly language. Nevertheless, Pascal and
MACRO-ll were quMe easily learned. We used a
subset of Pascal with only three elementary data
types (integer, char, and array of char). Within
a couple of days, working p.ograms were being
produced, which seems to indicate that Pascal is
indeed a simple language to learn and use.
MACRO-!1 programs were likewise produced within a
reasonable time, although they were not speed or
space efficient. It seems that new PDP-11 pro­
grammers, expecially those with only PDP-8 ex­
perience, have difficulty at first making
efficient use of the PDP-ll's registers.

GENERAL COMMUNICATION ROUTINES

In order to establish two way communications
between a host and some remotes, a set oi general
communication routines were written. These rou­
tines were written in assembly language as Pascal
callable procedures. They were intended to be
used in a stand-alone remite LSI-11 (although
they work equally well with an RT-11 system).
The routines provide six basic functions which
are described below.

Initialization

A procedure called SLIPINIT initialises a number
of parameters concerning the protocol routines.
An example cal1 is:

http://th.it
http://licr.es

SUPINIT (TIKE, TRYNUM, ERROR).
TIME is on integer argument which sets the time
out period allowable on communication tasks.
Time is measured in clock ticks. TRYNUM is the
number of times a message is tried to be sent or
received before an error is reported to the
caller. ERROR is an error flag which is returned
as 0 if no errors occurred during the initial­
ization process.

Send Message
There are three routines used to send messages,
depending upon the degree of concurrency de­
sired. The first is a send and wait procedure
called as:

SENDW (DATA, LENGTH, ERROR).
DATA is the name of a variable (usually an array
or record) containing the characters to be sent.
LENGTH specifies the number of characters to be
sent. ERROR is an error flag which is returned
as zero if there are no errors.
A message transmission nay be started and then
overlapped with the execution of the calling pro­
gram with the SEND (data, length, error) pro­
cedure. The variables arc the same as described
above. Once the message transmission is started,
rontrol returns to Hie caller. Eventually, the
colling program must synchronize with the message
transfixion with the WAITSEND (error) pro­
cedure. WAP SEND will only return to the caller
when thp message has been completely transmitted.

To -nvrkr a completion routine when the menage
has I.pen 'rarsmittPd, the SCNDC (data, length,
error, rmplrtn) procedure it'ay be called. The
variables ore as described above except that
COMf'LRTN is the name of a procedure which will be
invoiced when the message transmission has been
completed. Completion routine procedures are
restricted to be globally accessible procedures.

Recejve Routines

There are a set of three receive message routines
which compliment the three niessage transmission
routines descibod above. They are invoked by:
KECVW (DATA, LENGTH, ERROR)
RECV (DATA, LENGTH, ERROR); WAITRLCEIVE (ERROR)
rtECVC (DATA, ItHGTH, ERROR, COWIRTN)
The arguments arc- the sair-t as described for the
transmission routines.
status R_o_utuies_

The current status of the send jr receive rou­
tines con be determined by using the following
procedures:
SENDST (5TA1E, ESTATE, CNT, RETRY, TINE)
RECVST (STATE, LSTATE, CNT, RETRY, TIME).

These procedures return the five arguments to the
caller. STATE gives the current protocol state.
Send states are:
0 -- idle
1 -- request to send has been asserted, waiting

for clear to send
2 — sending data
3 -- sending checksum
4 — waiting for ACK/NAK
5 -- received an ACK
6 -- received a NAK
7 -- aborting transmission
Receive states are:

0 -- idle
1 -- waiting for request to send from transmitter
2 -- asserted clear to send, waiting for data
3 -- receiving data
4 -- receiving the checksum
5 — sent ACK, waiting for sender to go idle
6 -- sent NAK, waiting for sender to go idle
7 -- aborting receiver
B -- message too short, NAK, waiting for sender

to go idle
LSTATE is simply the last state before the
current one. In this way, one can determine the
particular error state which occurred before
idle. CNT is the number of bytes in the message
yet to be sent or received. RETRY Indicates how
many times the message has been retried due to
errors. TIME indicates how many clock ticks re­
main before the send or receive timer times out.

Error Status
An accumulated error count is kept for certain
receive errors. This accumulated count may be
retrieved by:
ERRSTATUS (PECNT, ORCNT, SHCNT).
PECNT returns the total number of messages with
parity errors, ORCNT returns the total number of
overrun errors, and SMCNT returns the total
number of short messages. This procedure sets
these three counters to zero so that a new
accumulation begins.
AP°,r_t'n-9 A. Transmission
Both the send and receive message operation can
be aborted before completion. This allow- a
higher priority message to be dealt with as
rapidly as possible. The procedures ABORT5END
and ABORTRECEIVE (no arguments are used) ac­
complish these tasks.

Exiting to RT-11 Monitor
Before exitinrj to the monitor (assuming the com­
munication routines are being used with an RT
system), some clean-up work must be done, or
trouble may result. First of all, interrupts
from the remote must be disabled since the moni­
tor does not know wha* to do with them.
Secondly, clock vectors must be restored to the
normal RT-1I configuration, or the system will
crash. A procedure called SLIPX is provided tu
perform this clean up before exit, but the user

must still be careful in how the exit to monitor
is accomplished.

DOWNLOADER

The d< .nloader allowed user programs to be trans­
ferred from the host system into the remote
LSI-11. It consisted of two distinctly different
parts -- the "HOST" system which sent the program
downline and acted as a virtual terminal for the
remote, and the loaders which ran in the remote
to receive the program coming downline.

The "HOST" portion of the riownloader and large
portions of the remote were written in Pascal in
a top-down fashion. Because of the intimate
nature of the software \ ith the hardware, how­
ever, we made use of some non-standard features
in OMSI Pascal-1 (like the ability to reference
an absolute memory location).
The "HOST" riownlaader program consisted of the
following procedures.'

begin

send break;

turn remote interrupts off;

send I command;

send absolute loader (ABSLDR);

send protocol loader;

send user file

end.

Sejid Br_«ak

The remote's serial interface (DLV-ll/E) was
strapped such that when a "BREAK" was received,
the remote would be halted and a bus initialize
signal generated. Line "BREAKs" are generated
differently, {'"'ending on the characteristics of
the host's serial interface. With the LSI-11
host using a DLV-ll/E interface, a "BREAK" was
generated by setting bit 0 in the XCSR registe<-
to a 1 and then sliding 3 null characters to
insure that the line was in a hrnok condition
long enough for the renote to detect it.

Upon receiving a break, the remote sent a
sequence of characters back to the host. Several
tens of character times after sending the
"BREAK," the host checked the last character it
had received from the remote. If it was an "0"
character, the "BREAK" was assumed to have
worked. If not, the "BREAK" was sent again.
After a total of three tries, a fatal error was
reported on the host's terminal.

Turn Remote Interrupts Off

Because the clock vectors in the remote had not
been set, it was necessary to turn the remote's
interrupts off so no clock interrupts would
occur. T o accomplish this, the host first opened
the remote's PSW by sending an "R5/" downline.
The remote should reply with the contents of its
PSW followed by a space . If this last charact­

er was not a space , then the "RS/" was resent
up to three times before a fatal error was
reported. With the PSW resister opened, the host
sent "200 cr " to turn the remote processor's
interrupts off and close the PSW. Again, the
remote sent back a character string, and the host
checked the last character to insure that it was
an "P" character.

L Command

Ue initially used the L command of the IS1-11/2
in the download process. The I command, of
course, is a built-in feature of the LST-ll/2's
micro-code. When this command is sent to the
remote, the remote enters a boot loader mode
which is normally used for loading paper tapes.
The host, however, can emulate a paper tape
reader and send the remote a character stream in
the expected boot format.

The host sends the string "177560L" to the re­
mote, which then enters boot loader mode. The
host then sends an AB5LDR to the remote. When
the ABSLDR has completely loaded, it autostarts
and immediately sends a one character ACK/NAK
message to the host. HOST will try to load the
ABSLDR three times before reporting a fatal error.

ABSLDR was written in assembly language rather
than Pascal because the constraint of using the
boot loader format -equired it to be small.
After the ACK/NAK, ABSLDR waits to receive a pro­
gram in standard ,LDA (absolute binary) format.
1 his format essentially consists of a number of
blocks consisting of header, data, jnd checksum.
If any of the calculated block checksums do not
agree wfth the transmitted checksums, an internal
error flag is set. When the whole program has
been received, the ABSLDR will again send an
AC.;/NAK character to the host. The whole purpose
of the ABSLDR is to load a larger loader program
which operates under the SLIP protocol.

All but a few small modules of the protocol
loader were written in Pascal. We were concerned
about the sire of the loader, but it required
less than :0SS bytes, which was acceptable in our
applicatiens.

The protocol loader was totally position inde­
pendent. When started, it immediate ly relocated
itself into high memory, overlaying the ABSLDR.
The protocol loader then handshakes with the host
according to SLIP protocol rules. Messages are
fixed at 256 bytes long. One byte of the block
is a flag byte; the rest are data in standard
.LDA (absolute) format. The flag byte is used to
indicate end of message If a checksum error
occurs (either in the protocol checksum or in the
absolute binary {.LDA) data black checksum), the
protocol loader NMK'S and requests retrans­
mission. At the end of the message, the protocol
loader starts the received program if the
Starting address is even, or waits for another
program to be downloaded if the starting address
is odd.

IS1-U Hoi»t

The LSI-11 "HOST" program allowed a user at an
RT-11 system to download a program into a remote
LSI-11 and then interact with that remote through
a v i r tua l terminal f a c i l i t y . Since characters
were received from the remote (19.2 Kbaud) faster
than they could be printed on a terminal (t yp i ­
cal ly 9600 baud), a small r ing buffer (IK bytes)
.was j$ed. Al l characters typed at the host's
keyboard, except for four control characters,
were passed through to the remote. Characters
from the remote were passed through to the host's
terminal, except for an "$" character which was
changed to an "&" character. This was done so
the user would not get confused about which
LSI-11 was in console ODT state. The control
characters were:

control

control

control

com to)

Send a "BREAK" to the remote.

Download a user specified program
into the remote, The user is
prompted for a file specifica­
tion. The file supplied must be
in ,LDA format.

Normal exit to the RT-1I monitor.
The current state of the remote is
unchanged.

Load another program into the
remote using the protocol loader.
The initial bootstrapping with the
ABSLOR, etc., H bypassed. This
Is valid unly if the previously
loaded file did not start
execution,

SCDSJiost
After the total system was up and running using
an LSl-li host with the LSI-11 remotes, the host
program (written in Pascal) was moved to the
Perkin-Elmer machines. This was not as straight­
forward as one would like. The Pascal in use on
the Perkin-Elmers was not standard, so quite a
few changes were required. In addition, it was
essentially impossible to implement a virtual
terminal. Finally, an unforseen hardware inter-
action required a major change in the download
procedure. This can be described as follows.

The SCDS host system interface required the
0LV-11/E to have its Data Terminal Ready (DTR)
signal asserted before it could send any charac­
ters to the remote. This required a small modi­
fication to be made to the DLV-ll/E so that its
DTR signal would be initialized high (asserted)
whenever a hus initialize signal occurred. We
encountered no problems with this scheme while
debugging with the LSI-11 host (it. had no such
hardware restrictions and could send characters
even if the remote's DTR signal was not as­
serted). However, we hit an immediate problem
when we moved the system to the SC05 host.

The problem can be described as follows. During
the download processing, the host would send
"1775601" causing the remote to^enter its paper
tape boot loader microcode. At this point, DTR
would be cleared, and the host could no longer
transmit characters to the remote.

It rapidly became apparent that the LSI-11
micro-code to execute the L command did writes
into the DLV-ll/E receiver control status
register and cleared the DTR bit. Thus, we could
not use the L command to load the AtlSLDR, but
rather had to load it via console 00T as a series •
of octal words.

TECHNIQUES OF GENERAL INTEREST
Some of the techniques in these programs may be
of general .interest. These will be described
below.
Posting Reguest_5
Generally, for each state in the state diagrams,
(Fig. 2) we 'implemented a code sequence. Each
code sequence would be entered upon the occur­
rence of a particular event, in order to simpli­
fy the programming, we adopted a convention which
we called posting requests for these events.
When a request was posted, it designated which
event was desired and the address of the code
sequence to go to when that event occurred.
Macros were written which handled the posting of
these requests. The generated code to handle
those requests was handled fn various ways.

For in^ance, in the message transmission rou­
tine, there were three code sequences used to
service the transmitter huffer empty interrupt.
These were: (a) send another data character, (b)
send first byte of the checksum, and (c) send the
last byte of the checksum. We defined a macro
.PXBUF as follows:

.MACRO
MOV

.ENDM
.PXBUF A
M I X V E C

where XVEC was equated to the transmitter vector
address. Invoking .PXBUF then sets the vector to
point to a new interrupt service routine.
Requests for service upon the occurrence of a
receiver or modem interrupt were handled dif­
ferently. Here, posting a request set the inter­
rupt service routine address into a pointer
word. When the particular event occurred, a JSR
through the pointer ward was performed. The
interrupt service routine executed and then
exited via an RTS PC. These requests could also
be cancelled, in which case the occurrence of the
event was simply ignored.

Posting timer requests was similar, except a
timer value was specified in addition to the rou­
tine address. When the timer expired, the speci­
fied routine was invoked.

As an example, here are some short code fragments
illustrating the use of these macros.

;Start a message transmission by asserting
request to send

.PRCLl *CL?S1

.TTIMR TIME,TIM!

;Kere wc- request that when
;clear to send goes to 1, the
;interrupt service routine at
;CL2S1 is invoked

;Start a timer with a value of
;TIME ticks. If it times out,
;invoke the code ot TIH1.
;This insures that we do not
;hang if we never see clear to
;send asserted

M::di'm Vector[nq

A modem interrupt occurred whenever one of the
three mod°m lines changed state (cither a zero to
one or a one to zaro transition}. Ho were only
interested in changes on two of the lines --
Carrier Detect and Clear to Send. Modem inter­
rupts from other sources were ignored. Since we
needed to know which bit caused the interrupt and
in which direction its transition was, wo main­
tained a copy of the modem line states at the
last interrupt. 3y comparing the current modem
line state with the lest state, we could tell
what line caused the interrupt.

Our first version did actual compares a: d
branches to iloeorlo what transition caused an
interrupt, but this code had more overhead in it
than w:- wished. We finally arrived at a branch
taMe^unfiq-jratinn (similar to a CASE
s'.ru'turp). This was the bnst we could do for
pro< losing speed, although we still wished for
soi'rtMng better. A skeleton of this code is
shown below*

.Both character ready and modem interrupts vector
her;

SRMINT: TSTB n*SCSR ;Check for character
;ready

BPL SMDOX ;Branch if no
jcharacter is ready

;Sci'vic? the character which is ready

PUSH
MOV

SWAB

ASR

BIC

BIS

LASTMD: 0
JMP

RO ;Save RO on the stack
P*RCSR,R0 ;set copy of RCSR into

;R0
RO ;set modem bits to low

;byte
RO ;shift right

#PC3f),R0 ;Kecp new modem state
;0 000 000 000 ONH 000

(PC}A,R0 ;0r in old modem state
;0 000 000 000 ONN LLO
;RO now indexes into a
;16 entry branch table

PATABL(RO) ;Go to the proper
;service routine

ATABL: S,EXIT ;No change
S.CARO ;Carrier went to 0
S.CL20 ;Clear tb send went to 0
S.CARO ;Both carrier and clear to

;send went to 0
J.CAR1 ;Carrier went to a 1
S.EXIT ;No change

S.CARO: B1CB f?,LASTMD ;Update last modem
;interrupt state
;Go to particular
;service routine

S.CL20: DICE *4..LASTMD '.Update last modem
;interrupt state
;6o to particular
;service routine

S.CAR1: BISB C?,LASTMD ;Update last modem
;interrupt state
;Go to particular
;service routine

T i mer_s_

It was necessary to put time-out periods on some
of the communication tasks. If an operation did
not complete within the allotted time period,
then some error was indicated. Only two timers
were required, one for the transmit process and
one for the receive process. These timer rou­
tines were interesting in that they were trans­
parent to any other clock routines in the machine.

It was assumed that the user's program would set
up the clock vector as required for its use and
then call the protocol communication initializa­
tion routine. This initialization routine would
insert the timer routines between the clock vec­
tor and the user's clock service routines by
saving the current clock vector and then setting
the vector to point to the communication timer
service routines. The tiner service routines
would not dis™»iss via an RTI but would jump to
the user's clock routines with the PSW set
properly. These routines were used with the
RT-11 operating system with the restriction that
before program exit the clock vector had to be
restored to normal.

Speed Techniques

Some considerable effort was expended in order to
make the general communication routines as fast
as possible. The techniques we used should be
generally applicable. First of all, we noted
that absolute addressing modes on the LSI-11/2
execute faster than relative addressing modes
(source and destination times are approximately
15% faster). Therefore, we assembled all the
routines with the MACRO-11 directive -ENABL AHA
which causes absolute addressing to be the de­
fault instead of relative.

It should he obvious that effectively using the
resisters leads not only to the fastest code, but
also to the smallest. Although we kept this in
mind while writing the code, we nevertheless were
able to improve performance in an iterative
manner by repeatedly checking the code for places

where we could rearranqi
use of t(?3 resistors.

the code to make better

The critical Arcs', were tho^e code sequences
executed during at: interrupt. Qur original
design 904] called tor full duplex communication
.it %00"batid. This meant we would be handling
two interrupts per millisecond (one for the
transmitter and one for the receiver}* A short
code sequence from the receive character inter­
rupt service routine wiH illustrate some speed
techn igues.

RRBUF: .PRBUF *RRBIIFl

KOV &5HuRT,R.IlMR

RR^uri; MOV #0,$RTH"R
TIMCZ-- HRBUF1+2

MOV B*«8UF,-(5P)
8PL PCONT
KOV (SP),QCaG

rrof.'T: DEC (PC)*

Rtifn 0

uro RSLIP
MOVB (SP+^(PC)4

:niijfl; 0
INC P*RBUrl

Set up next
character
ready interrupt
to yo to RRRUfl
Set up a timer to
detect if the
i:i"ssaye is shorter
than we expect.
if timer enpirns,
go to SHORT
Reset the timer to
i t s ini t i . i l value
An i n i t i a l i s a t i o n
routine se ts
RRBUF1+2 to
its initial value
save character on
the stack
Branch if there is
no error
Save the error for
rater
tlecrcmi'nt the char
counter for this
message
Immediate
addressing is
fastest here
Branch if done
Store the
character in the
buffer
Pointer into the
buffer
Increment the
buffer point

Note that while the techniques illustrated above
&ay be fast, they are not necessarily good pro-
gr.uisning practice from other points of view.
Nevertheless, we were able to achieve full duo lex
transmission at 19,2K baud -- the equivalent of
one interrupt every ?S0 microseconds.

T-Bit Problem

Periodically, we v/ould find that we could r.ot yet
fmr down In .idcr to run in the rpnote. TMs was
often true after the remote had been powered up.
An examination of memory would show that our pro­
gram had been wired out and memory would be
filled with a particular repeating pattern.
Ihf Mrchh*m was finally traced to the following.
The LSI-U/2 can pownr up with the T~bit "sortof
si't." We say "sort of set" because if you ex­
amine the PSW with the OUT ec^^rd RS/ you will
find the T-Jnt on, but in f,jct no trace traps

will occur until after the first interrupt
occurs. That is, after power up, the PSW n.ay
show the T-bit on, but no trapvwill occur until
after the first interrupt. When the first inter­
rupt occurs, the PSW with the T-bit on is pushed
onto the stock, and the interrupt service routine
fs executed, ^hen the interrupt fs dismissed
with the RTI instruction, the PSW is reloaded
with a pop from the stock, and now the T-bit is
"reaUy" on. A trace trap then occurs with a
vector H location 14, Since v*e did not expect
trace traps, we had not initialized the vector,
50 it contained whatever it was sot to at power
up.

Interestingly, it was not a random valu^. After
power up, memory consistently contains alternate
words of all zeroes and all ones. (This also
occurs with memory systems other than those manu­
factured by DCC.) Thus, location 14 contained a
0 and 16 contained 177777. When the first trace
trap occurred, the old PC and PSW were pushed
onto the stack, the new PC was set to 0, and the
new PSW set to 377. Note that the T-bit was
still set, so instead of executing the in­
struction in location 0, another trace trap
occurred. Continuous trace traps now occurred
until the stack pointer decremented down through
0 and a double bus error occurred. Memory, from
the initial stack pointer value (we set out stack
pointer to high memory during the loading pro­
cess) down to location 0 was filled with alter­
nate- words of 0 and 3/7. We protected ourselves
agairtst this occurrence by the foUowing;

,A>£CT
. = 1<J
CUBIT

CLT8.T: MOV «\"W)t?(SP)
RTI

;Jnitialf:e the
;T-bit vector

;Hoplace old C5W
;which had "i-bit set
;with new one with
;T-bit cleared

PHOHICMS WITH BAI1 SACK PLANF
This corm-jnications system was first developed
for co"T!:infcat icfis b»tween two LSJ-II's. This
system can be used between any two LSI-IPs, and
the cGxiyn?cat fens place no restriction on the
address of the DLVU-E, An interesting hardware
problem occurs, however, if the BAll-Nt chassis
is used. This chassis has a 9 A « backplane with
nine C-bus slots and nine slots for the RLVI1
controller board to board interconnect. If a
system with CPU, memory, terminal interface,
floppy disc, RLOl hard disc, printer interface,
OLVll-r for communications, and bootstrap is used
there are no extra Q-bus slots, yet there are
seven unused backplane connectors. Many other
applications require more than nine Q-bu5 slots.
It would be very desireable to have an 8 x 4
backplane with sixteen Q-bus slots and an RLOl
controller on a single quad board. The BA11-NF.
chassis is excellent electrically and mechani­
cally, and if it hM a larger capacity backplane
it would be used more. As it is, other sources
K'ust be uspd.

http://initi.il

ore o-eus INTERFACE CHIPS REFERENCES

Whi le deve lop ing the cc^Tum cat ions programs, a 1 . ^•iSJl0S.t?D',\Pr Processors D i g i t a l Equip-ont
p r cb l f j n w i t h the DCC03 i n t e r r u p t c o n t r o l ch ip was C o r p . , rfayrurtf, .'1A (7978)
found . Occas iona l l y , the t r a n s m i t t e r dene i n t e r -
rup t would not occur. This was t racked down w i t h ?. Memories and P e r i p h e r a l s D i g i t a l Equipment
t e s t programs and a log ic ana l yze r . Once in a f o r p i , Waynard, ffi" (1978}
w h i l e the UART would send out the t r a n s m i t t e r
done but the DC003 would not send the i n t e r r u p t
r e q u e s t . The output of the UART has a very long
r i s e t ime and sometimes i t i s too s low f o r the
UC0D3 i n t e r r u p t i npu t . The problem is solved by
b u f f e r i n g t h i s s igna l th rough e x t r a gates on the
M V l l - i - . Th is is the c o r r e c t i o n suggested i n an
fCO g iven by DEC a f t e r we p o i n t e d the problem out
to them, i t is suggested t h a t the DC003 ch ip be
d r i v e n by TTL c i r c u i t s in any d e s i g n . NOTK'k

Two I n t e r r u p t s On Same Vector Problem Mns report u.is prepared .is an assmm' «i wnrk spnnsured h. die Ihmed
- • • • - - • - - — S u i o (.merriment. Neither tin- United Stales nor the l.'nited Stales

As wo began to use the t lLV-11/E, i t became ap- liepamneni »•! r n e n n . nor any <>i their cmplo>cvs. wu an> .if their
parent tha t i t was not designed to be used in the umw.k ims. Mibenntrdeiors. ur their employees, makes any wiirr:nit>.
n .inner wo intended to use i t . Both charac te r espre>- MI implied, i.r av ium-.m> ICK.II liahiln> <u responsibility l«»r the
ready and modem i n t e r r u p t s were handled through . I S U H . K \ . o-mpli'ieiwsN m uwfulm-ss „ i aiu mMnr..i i i i in. .ippjutiiN
thy sane v c t o r , and t h i s p resented some problems ps-dmi »r ptoa-vs I I M I U M - I I . .M leptesens ihat i-v ,w- M „ I I I I I mi: in:rm.v
s ince both cou ld be o c c u r r i n g s i m u l t a n e o u s l y . psnateh nuned ru-lits
F i r s t of a l l , we wanted to process charac te r . , .
ready i n t e r r u p t s as e f f i c i e n t l y as p o s s i b l e , hut l l l " n , ' I M ' i

, , ; J ' " ' T " ! . " I ' J I ' K \ \ l ^ Z ^ ^ ' i ^ l ^ w V ^
since we always had to check to see i f i t was a -ou.miiu-.id.,t.,,ii ..i i h e p ^ d m . , u tin L ni N I » < aim i m I ..s
nodem i n t e r r u p t , we added a d d i t i o n a l overhead Uepjrum-m ,.i I nere> ...MIL- .AJUS. , , , , <.I . . i i u rs i iu t >V.A\ K s.uubk
i n t o each charac te r i n t e r r u p t . Secondly , the
s tandard DLV- l t /E c lea rs the modern i n t e r r u p t f l a g
whenever the RCSR is r e f e r e n c e d , c i t h e r by a DATT
(read) or DATO (w r i t e) c y c l e . Th is means tha t i n
the process of s e t t i n g or c l e a r i n g one of the
ciodi'iii u m t r o l b i t s , a modem i n t e r r u p t cou ld be
I n s t . The p r rb lcm was f i n a l l y so lved by another
small n n i i i f i c u o n to the D1V-11/E such that the
r»odern i n t e r r i .D t f ld t) would be c l e a r e d on ly by an
e x p l i c i t i n s t r u c t i on , {One o f the programmable
baud r a t e b i t s in the XCSN was used s ince p r o ­
grammable baud ra tes were d i s a b l e d .)

In g e n e r a l , i t is riot a good idea to have s i m u l ­
taneous ly o c c u r r i n g i n t e r r u p t s go ing through the
i-a:ne v e c t o r , i n t e r r u p t p r o i f s s i n g overhead goes
up, j n d in srire cases. l i k e the D L V - l l / E , f o o l ­
proof rode rcay be i.r.possible to w r i t e ,

CONCLUSION

i t took n ine months to develop t h i s s o f t w a r e .
The hardware problems which cropped up took about
2^. percen t of the tiir-e to i d e n t i f y and s o l v e .
The system has been running r e l i a b l y f o r almost
one y e a r .

C'jn™un i c i j t i ons between two computers is always
d i f f i c u l t t o accompl ish, but once a system i s
r u n n i n g , a p p l i c a t i o n s are easy. Many programs
us ing these communications procedures have been
w r i t t e n and arc running s u c c e s s f u l l y .

ACKNOWLEDGEMENT

We would l i k e to thank P.R. McGoldr ick f o r
deve lop ing the p ro toco l and 0. M. Putner f o r h i s
a i d in t e s t i n g w i t h the I n t e r d a t a computers.

http://Ick.iI

