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ABELIAN SANDPILE MODEL

Michael Creutz

Physics Department 
Brookhaven National Laboratory 
Upton, NY 11973

In this talk I descibe some rather elegant mathematical properties of a simple 
cellular automaton model for self organized criticality. I will discuss how a subset of 
states in this model form an Abelian group. Then I will show how to construct the 
non-trivial state which represents the identity for this group [1]. The number of exact 
results known for this system suggests that it may ultimately be solvable.

While the model discussed below was first presented to illustrate self organized 
criticality [2], this talk is not directly on that subject. Nevertheless, I begin with a 
brief summary of the concept. Ref. [2] argued that strongly dissipative systems can 
drive themselves to a critical state. Unlike conventional critical phenomena, this should 
occur without any tuning of parameters to a critical value.

The prototypical example of this phenomenon is a sandpile. If sand is slowly added 
to a heap on a table, the pile will evolve towards a critical slope. If it is too steep, a 
catastrophic avalanche will flatten it, and if it is too flat, the sand will gradually pile 
up to steepen the pile. Ultimately, the size of an avalanche produced by the random 
addition of an additional grain of sand will be unpredictable. The expected distribution 
of avalanche sizes is a power law.

This concept of a dissipative system automatically becoming critical has been 
applied to many natural phenomena; indeed, it has been looked for in such diverse 
areas as earthquake structure [3] and economics [4]. The idea provides an alternative 
view of complex behavior in systems with many degrees of freedom. It complements 
the concept of “chaos,” wherein simple systems with a small number of degrees of 
freedom can display quite complex behavior. Here systems with many degrees of 
freedom develop coherent behavior involving all length scales.

To illustrate self organized criticality, Ref. [2] introduced a simple cellular automa­
ton model for sand flow. The model uses a finite two dimensional square lattice with 
open boundaries. On each cell i is a non-negative integer zt representing the local slope 
of the sand. The dynamics of this system involves an instability threshold value for
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this slope, which I take to be zc — 4. All cells in the system are updated simultane­
ously in discrete temporal steps. The updating rule is that if any cell has z; > zc, then 
that cell has its value decreased by four and each of its neighbors is increased by one. 
Such an event is referred to as a “tumbling,” many of which can occur simultaneously 
in one updating step. The essential features discussed below are independent of the 
dimensionality and detailed layout of the lattice.

Note that in the interior of the lattice this dynamics locally conserves the total 
“sand” or sum of the z*. Sand is lost only on the open boundaries. Because the 
dynamics involves a spreading, it is easily shown that any configuration will eventually 
relax to a stable state with all slopes less than critical. Recently, interesting geometric 
structures were seen to arise from the relaxation of uniform initial states [5].

After sand has been added to the system for a while, there are some stable states 
which cannot be reached. For example, there is no way to completely clean a sandy 
table to recover the state with all slopes vanishing. For another example, two adjacent 
cells which are initially not empty can never be made so; when one tumbles to zero it 
adds a grain of sand to the other and vice versa. The states which can be obtained 
from a full table have been called “recursive” [6]. A recursive state is defined to be one 
that can be obtained by some addition of sand to any other recursive state followed 
by relaxation to stability. One stxch state is the minimally stable state C* defined as 
having all zt = zc — 1; thus, a general recursive state is any state which can be obtained 
by adding sand to C* and then relaxing.

Ref. [6] showed that the number of recursive states is given by the determinant of 
the lattice Laplacian. Whereas an N site system has 4jV stable states, for large N the 
number of recursive states approaches 3.2102 .. .N. Ref. [6] also showed that in the self 
organized critical ensemble, each recursive state is equally likely; this ensemble serves 
as the analog of the Boltzmann distribution for a conventional statistical system.

Define tq to represent the operation of adding a grain sand to cell i followed by a 
relaxation of the system back to stability. Ref. [6] pointed out the remarkable fact that 
these operators all commute with each other. The proof uses the linearity of toppling 
on the slopes z; and the fact that a toppling decreases the slope only at the active site. 
For a detailed discussion see Ref. [1].

Several exact results follow from this observation. In particular, Ref. [6] showed 
that if we restrict ourselves to the recursive set of states, then these operators a; are 
invertable. Thus, given a recursive configuration C', there is a unique recursive C such 
that diC = C. Because of this property, the operations of adding sand generate an 
Abelian group.

I now define an operation of addition between states. Given stable states C and 
C" with corresponding slopes z; and z', I define the state C ® C" to be that configura­
tion obtained by relaxing the configuration with slopes z; -|- z'. By construction, this 
definition is commutative.

Now consider restricting oneself to recursive states. Since the process of adding 
a state to another can be decomposed into a set of individual sand additions, and 
because those additions are invertable on recursive states, this addition of states is 
itself invertable. Indeed, under ® the recursive states themselves form an Abelian 
group, which is isomorphic to the group generated by the cq.
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One of the fundamental properties of any group is the existence of an identity 
element. Thus, among the recursive states there must exist a unique configuration I 
which when added to any other recursive state C relaxes back C. This is a property 
also possessed by the state with all z; = 0, but that is not a recursive state.

Intrigued with the existence of this special state, I set out to find it. To proceed, 
I use the identity that adding four grains of sand to any site forces a tumbling and is 
equivalent to adding one grain to each neighbor. Thus the operation on a recursive 
state of adding four grains to one site and then removing one from each of its neighbors 
leaves the state unchanged. In terms of the operators a, we have the statememt

a, aj1 = 1
jGn(i)

where n(i) denotes the nearest neighbors of site i.

Now consider applying this combined operation to all sites of the lattice. Any 
site in the interior will receive four grains but then have them taken away when the 
operation is applied to the neighbors. Only at the edges will things not balance. Thus 
we are led to consider adding one grain to all edge sites and two to the corner sites. 
On any recursive state this addition will relax back to the starting state.

This leads me to consider the non-recursive state Jq defined to have z; = 1 on the 
edges, two on the corners, and zero elsewhere. This state when added to any other 
state C will leaves that state unchanged if and only if C is recursive. In adding it to a 
recursive state, it can also be shown that each site of the entire lattice tumbles exactly 
once.

The state Jq itself is not recursive (except on the smallest lattices) because it 
has a large empty region in the center. I now consider combining this state with itself 
iteratively until it becomes recursive. Thus I define /„ = In-\ ©Ti-i- For large enough 
n I will have In = In-i — I, the identity I am searching for. The resulting state has 
a rather interesting structure, with patterns exhibiting many different scales. For a 
picture of this state on a particular lattice, see Ref. [1].

I now briefly mention a few other exact results. First, consider some arbitrary 
addition of sand to a recursive state. After this addition, follow the progress of the 
avalanches, and define an “avalanche region” to be the set of sites which have tumbled. 
A rather remarkable result is that this region must be simply connected. That is, if 
we construct any closed curve of sites in the avalanche region, this can be deformed to 
a point without moving any part of the curve through sites which have not tumbled. 
This implies a rather subtle correlation in recursive states, and is not in general true 
for an arbitrary state. This result is independent of the amount and distribution of 
sand used to start the avalanche, and remains true if at later times more sand is used 
to enlarge the avalanch region. It makes an amusing computer game to take a recursive 
state and try to create an untumbled island in the midst of an avalanche. Such islands 
always die away before the avalanche reaches stability.

Second, if C is itself recursive, on adding I the amount of sand lost at the edges 
must equal the sand contained in J, and is independent of C. In fact, a much stronger 
result is true: the number of topplings on any given site i during this relaxation is 
itself independent of C.

Third, if we start an avalanche with a single grain of sand at a site k steps away 
from the boundary, then the ensuing avalanche can cause no more than k tumblings at
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any given site. A related result is that an avalanche started with a single grain at any 
site can give at most k tumblings to another site k steps from the edge. In particular, 
such an avalanche can tumble the edge sites at most once.

To conclude, I have presented some amusing mathematical results for a simple 
model of avalanches in a sandpile. While many interesting cellular automata models 
are known, it is quite rare that so many precise results can be obtained. While exact 
expressions for the critical exponents have yet to be found, this multitude of results 
suggests that the model may indeed be solvable. Indeed, this may become an “Ising 
model” for self-organized criticality.
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