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SECTION 1 

INTRODUCTION 

The feasibility of economically and accurately applying Lagrangian 

explicit finite-difference (EFD) techniques to the analysis of the thermo

mechanical response of radioactive wastes placed in salt repositories is 

demonstrated by the work described in this report. Three numerical simula

tions of the Project Salt Vault (PSV) experiment (References 1 and 2) were 

carried out, using STEALTH"'< 2D (Reference 3), a two-dimensional EFD code. 

One calculation did not include a model for creep, while the other two.cal

culations used a general model in which creep was included·. As expected, 

when creep was included, it resulted in significantly .more piltar shorten

ing and room convergence than when it was not included. The first of the 

creep simulations (as well as the non-creep simulation) was designed to 

demonstrate the applicability of the EFD method. The second creep simula

tion was performed to evaluate the sensitivity of certain numerical para

meters, such as zone size and boundary nearness. 

The development of a sophisticated model for creep (see Appendix A) 

capable of being calibrated by data from a laboratory experiment was one of 

the major accomplishments in this contract. In particular, for the simula

tions that were performed, the parameters of the creep model were based on 

data obtained from laboratory pillar experiments performed for Project Salt 

Vault. These data were surprisingly useful. 

Numerical data are presented that compare the results of the three 

simulations to the results of the Project Salt Vault experiment. In the 

simulations which included creep, the room closure data are in excellent 

agreement with the shape and magnitude of the experimentally measured floor 

and roof closures. Temperature histories were also compared at several lo

cations and these data were also in agreement with the experimental values. 

~·( 

~olids and Ihermal hydraulics code for ~PRI ~dapted from 1agrange 
!OODY and _!!EMP. Developed for Electric Power Research Institute 
by Science Application::;, Tnt:. umlt!r Contract RP-307. 
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Further refinement of the creep model can be achieved by further cali

brating creep parameters to different laboratory experiments now underway 

at Sandia Laboratories, Albuquerque (SLA) and Lawrence Livermore Laboratory 

(LLL). Additional optimization studies involving zone size, density scaling 

parameters, etc., can improve accuracy and efficiency. However, the .results 

presented in this report leave no doubt that explicit finite-difference tech-

.niques can be used to efficiently calculate the long-term thermomechanical 

response of salt repositories. 

This report contains a description of the simulations performed .(Sec

t:ion_2), and a d-iscussion of cl').e computed result:s (Section 3). Cortclusions 

are presented in Section 4. Details of the material model and numerical 

. equations are located ·in Appertdixes A, H, and C. 
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2.1 BACKGROUND 

SECTION 2 

FORMULATION OF THE PROBLEM 

.Project Salt Vault was a feasibility study of radioactive waste dis

posal in an underground salt formation. It included a large-scale experi

ment performed in an inactive salt mine at Lyons, Kansas. For the experi

ment, a new mining level consisting of five rooms was excavated at about 

1000 ft (304.8 m) depth and approximately 15 ft (4.57 m) above an existing 

level (Figure la). Heat sources were arranged and activated so that the 

imposed heating was essentially symmetric about vertical plane A-A in Fig

ure la. Rooms 1 and 4 each contained a circular array of heaters in the 

middle of their respective rooms. The array heaters were activated on 

day 1, boosted in power after 434 days (62 weeks), and turned off 142 days 

(20 weeks) later. Rooms 2 and 3 contained a row of heaters along the cen

tral pillar which were turned on twelve months after the array heaters, and 

were left on for the remaining eleven months of the experiment. 

It is possible to consider the entire salt mass and other rock media 

surrounding the mine in defining the geometry for the EFD simulation if 

"displacement discontinuity" (DD) models are attached to the EFD boundaries. 

However, for demonstration purposes, this was not thought to be necessary. 

Approximations can be made in choosing the locations of the boundaries and 

the associated bouridary values in order to simulate the far-field.* Other 

possibly more important approximations were made because the simulations were 

performed using two-dimensional symmetry. In particular, the heat sources 

were idealized to be compatible with the two-dimensional formulation of a 

three-dimensional problem. Furthermore, because the heat loads and geome

try were nearly symmetric with respect to the vertical plane separating 

rooms 2 and 3, only one-half of the region was computed -- the part containing 

rooms 3 and 4. The selection of the mesh, the boundary conditions, the heat 

sources, and the material properties are discussed next in some detail. 

*The sensitivity calculation was used to verify the choice of boundary 
lucaLiuus autl values • 
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2.2 FINI1'E-DIFFERENCE GRID 

A two-dimensional plane-strain geometry was chosen such that the rooms 

(and pillars) are infinitely long. The cross section (section B-B, Figure 

la) represents a vertical cut through the rooms and the pillars. The over

all dimensions of the two-room grid for two of the three simulations are 

107.7 ftX160.0 ft (32.83mX48.77m), as shown in Figure lb. Room3 is 

40 ft (12.19 m) wide and room 4 is 30 ft (9.14 m) wide. All rooms are 14 

ft (4.27 m) high. There are 468 grid points and 425 cells in the mesh. 

The vertical line (the y-axis) r~presents the plane· of symmetry (section A-A, 

Figure la) so that room 1 and 2 are a mirror image of rooms 4 and 3, respec

tively. The pillar between rooms 2 a~d 3 is 20 ft (6.10 m) wide. The pil

lar be.tween rooms ~-and 4 is 30 ft (9.14 m) wide. The two darkened areas, 

consisting of 4 cells each, represent the pillar heaters and the array 

heaters. 

The mesh for the sensitivity calculation is shown in Figure lc. The 
major mesh differences are (1) the top and bottom horizontal boundaries are 

farther from the rooms and (2) the pillars each contain one extra zone in 

the vertical direction. 

2. 3 INITIAL AND :BOUNDARY CONDI'I'lONS 

The entire grid, including the rooms, for all three calculations is at 

an initial ambient temperature of 23°C. The initial state of stress, on the 

other hand, is not explicitly defined. Instead, an overburden calculation 

is performed that simulates instantaneous and simultaneous excavation of the 

rooms, and the stresses and stress concentrations are allowed to develop to 

their static equilibrium values. For the first two calculations, the bound

ary stresses on the top and at the bottom of the grid. are the overburden 

stresses for those elevations based on 1 psi/ft of depth below the surface. 

The floor of the rooms is assumed to be 986 ft (300.5 m) below the ground 

level. Accordingly, boundary stresses of 937 psi (6.462 X 106 Pa) on top 

5 
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and 1045 psi (7. 205 X 106 Pa) at the bottom are specified. For the grid 

shown in Figure lc, the overburden was computed from slightly different 

top and bottom boundary conditions. The top boundary used a stress based 

on the pgh value for a depth, h, of 922 ft (281 m) and an average overburden 

density of 145 lb/ft3 (2318 kg/m3
). This led to a stress of 927 psi 

(6. 392 X 106 Pa). The bottom boundary did not use stress, but instead was a 

vertically rigid and horizontally free roller boundary. 

Horizontally rigid (but vertically free) mechanical boundary condi

tions are assumed for the left and the right edges of both grids. The left . . 

boundary condition is an exact representation of a plane of symmetry and 
. . 

the right boundary condition is an idealized approximation of an infinite 

horizontal extent. The temperature·boundary conditions are isothermal on 

the top and on the bottom, and adiabatic on the left and un the. right. The 

left temperature boundary condition is exact (due to symmetry) and the other 

three are idealized. For the period of the present simulation (23 months), 

these are considered to be fairly accurate. 

For long- term 1:dmulation::;, say of 30 years, more realistic boundary 

descriptions are necessary. For example, the total height of the finite

difference grid may have to be increased~ or thermally interactive grids on 

the top and on the bottom may have to be added on. All boundary conditions 

of the three calculations are summarized in Figures lb and lc. 

2.4 IDEALIZATION OF THE HEAT SOURCES 

The physical size, as well as the geometric arrangement of the pillar 

heaters and the array heaters, have to be compromised in order to describe 

them by means of cells in a finite-difference grid. In the experiment, 

there were 22 pillar heaters buried under the edges of the pillar along the 

length of the room and the array heaters were arranged in a circular pattern 

and buried in the center of the room, as described in Reference 1. In the 

idealized geometry for the finite-difference calculation, pillar heaters, 
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as well as array heaters, are all represented by infinitely long square 

prisms. This is considered to be a good approximation of the pillar heaters, 

since their arrangement is essentially two-dimensional even in .the experi

ment. The power output of the idealized pillar heater is computed by divid

ing the actual pillar heater output by the spacing between the heaters. The 

array heater output is a more crude approximation because of the three-dimen

sional nature of the heater arrangement with respect to the assumed plane 

strain geometry of the grid. Sample calculations of the pillar and array 

heater output. are given in Appendix B. 

2 . 5 · MATERIAL MODELS 

The nominal material p~operties for salt are presented in Table 1. An 

arbitrary yield limit of 14,500 psi (1.0 X 108 Pa) is specified and salt is . 

assumed to be elastic-perfectly plastic. The creep model is discussed in 

Appendix A. The sources of these data are also identified in Table 1. A 

temperature-dependent thermal conductivity model is used. The specific heat 

capacity is assumed to be a constant. 

2.6 NORMALIZATION OF THE GENERALIZED CREEP MODEL TO LYONS SALT 

The creep model, represented by Eq~.(A-6a) through (A-6c) in Appendix 

A, requires input values for the parameters A, a~ b, and, c. To be consistent 

with McClain's model (Reference 1), the values selected for a, b, and c were 

a=0.3, 

b = 9.5' 

c = 3.0. 

·In McClain's model, the coefficiene A applies. to circular pillars of Lyons 

salt with a 4:1 width-to-height ratio (W/H = 4) and a size scale of the order 

of inches. In addition, these pillars had a particular structure adjoining 

the top and· bottom which was an integral part of the experiments. (S.ee Fig

ure A-1 of Appendix A.) 
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TABLE I. NOMINAL MATERIAL PROPERTIES 

Material Property Numerical Value 

Young's modulus, E 6. 895 X 109 Pa 

(1 X 106 psi) 

Poisson's ratio, v 0.4 

Mass density, p 2161 kg/m3 

(135 lb/ft3
) 

Density scaling factor 9.8889 X 1016 

Bulk modl:lus, B 1.14917 X 1010 Pa 

_(1.67 X 106 _psi_) 

, Shear modulus, G 2.4625 X 109 Pa 

(3. 57 X 106 psi) I' 

Specific heat capacit~f, CIP 930.97 J/kg °K 

(0.222 Btu/lbm °F) 

Thermal conductivity, K K(e)** in J/(s•m•°K) 

\ 

Linear co~fficient ~f thermal expansion, Ot 4.0 X 10-6 (m/m)/°K 

[22.2 (j.j.in./in.)/°F] 

Convective heat transfer coef=icient, he 5.886 J/(s•m2 ·°K) 

[1.04 Btu/~hr•ft2 ·°F~ 

* Chosen such that tee stable mechanic~l ~~me ~tep is one-half to one-fourth of the 
stable thermal t~me step. 

*:*K(S) =6.109-2.514EX10·-2 9+7.153X10-Ee-c -8.2:93Xl0-8 93 where 9 is in °C. 

Conversion factor: 1J/(s-m·°K) = 0.578 Btu/(hr•ft•°F) 

.. 

• • • 

Source 

ORNL-4555, p.302 

ORNL-4555, p.302 

ORNL-4789, p.34 

derived* 

derived 

··-
derived 

ORNL-4789, p.34 

ORNL-4789, p.33 

ORNL-4555, p.266 

ORNL-4789, p.67 
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The generalized creep model, employing stress-strain invariants, re

quires a generalized value of A which does not depend on the geometry. This 

value can be determined from uniaxial stress experiments. Since these were 

not available, the creep dat'a for different width-to-height ratio pillars 

were extrapolated to W/H = 0, corresponding to uniaxial stress. This proce

dure is described next. 

Figure 12.25 of Reference 1 provides laboratory pillar shortening data 

for the cases W/H = 2, 3, and 4 for Lyon's salt at 22.5°C with an applied 

load of 4000 psi. These data suggest that. the elastic contribution to the 

pillar strain was about 0.67%, and this·value was subtracted from each of 

the three cases to estimate the creep contribution. The resulting creep 
nat 

strain versus time was converted to natural strain by e = log(l + 6x/x ) 
XX 0 

where 6x/x corresponds to the engineering strain. Then enat was con-
o XX 

verted to the second invariant of strain deviation by assuming 

nat 
e 
yy 

to arrive at 

nat 
e zz. 

= -enat12 
XX 

Point values of enat versus time are plotted on log-log scale in the upper 
XX 

diagram of Figure 2 for the three cases, W/H = 2, 3, and 4 (temporarily ig-

noring the case W/H = 0). These data points were then smoothed by ehe indi

cated straight-line fits corresponding to a t 0 •3 power law. The smoothed 

data were then re-plotted in the lower diagram of Figure 2 and extrapolated 

to the case W/H=O, as shown. The resulting W/H=O data were then plotted 

in the upper diagram of Figure 2 and smoothed by the t 0 · 3 straight-line fit 

to arrive at the estimated creep response for the uniaxial stress case. 

The generalized creep model was then exercised in a subsidiary computer 

simulation to obtain a fit with the constructed W/H = 0 data. Th~ resulting 

value of A was larger than NcClain' s value. by a factor of 3. 5. This new 

11 



.-. 
~ -s:: 
'M 

CIS 
1.1 
.w 
Cll 

.-1 
CIS 
1-l 
;::1 
.w 
CIS 
:z 

-6 

-5 

-4 

··3 . 

-2 

-1 

0 

0 

s:: 
'M 
!11 
1-l 
.w 
Cll 

.-1 
CIS 
1-l 
;::) 

-10 

~ -1.0 
:z 

2 

W/H 

----

3 4 

W/H="O -- )( 

102. 

Hours 

800 hours 
600 
400 
300 
200 

'100 
.. 

50 

2 -- 0 
3-- ~ 
4-- m 

Figure 2. Construction of uniaxial stress creep for Lyons salt at 22. 5°C 
with 4000 psi. 

12 

• 

• 

• 



value was then employed in the full-scale simulation of the Lyons mine ex

periment.with no further normalization. The relatively good agreement that 

was obtained in the subsequent PSV simulations suggests that the size effect 

is small going from these laboratory experiments to the full-scale Lyons mine. 

2.7 HEAT LOSSES 

Convection losses at the room walls are estimated by assuming that the 
. 0 

rooms are maintained at the ambient temperature of 23 C. Equation (1) gives 

the heat loss in Joules in an increment of time, ~t, for a cell with a sur

face area, S, 

Q =- h X (e - 23°) X S X ~t . convection c (1) 

In addition, heat is lost through the ·isothermal boundaries. 

2.8 DENSITY SCALING AND DYNAMIC RELAXATION 

Although Lagrange explicit finite-difference programs may be used to 

compute the static equilibrium or the quasi-static response of a system, they 

can be very expensive in terms of computer costs unless special techniques 

are employed. In problems of a static or quasi-static nature, the dynamic 

response due to stress-wave propagation is not important. It is the long

term or steady-state solution that is desired. Fortunately, techniques have 

been developed that can reduce the calculational time necessary to achieve 

steady state or equilibrium by compromising the detail (i.e., dynamic re~ 

sponse) but without compromising the accuracy of the final solution. These 

techniques will be referred to collectively as dynamic relaxation techniques. 

Some background material on dynamic relaxation method·s and their successful 

use in the past is presented in Appendix C. 

Because time is an explicit variable, some stability criterion must be 

used in determining a stable time step. The Courant stability criterion is 

ue:ed for stress-.wave propagation, such that ~t :::; (~1-/c;) . where M is a 
m1n 

13 



typical zone dimension and ct is the sound speed. For diffusion stability, 

the time step is controlled by the condition that 6t~ 6t2 /2et, where et is 

the thermal diffusivity. For a given zone size, the thermal time step is 

generally orders of magnitude larger than the mechanical time ·step. It is 

for this reason that special techniques, such as density scaling, are used 

to make the two time steps similar. 

The specific heat is defined on a volumetric basis so that scaling the 

density does not affect the.thermal characteristics of the material. The 

concept of density scaling is valid for quasi-static problems in which'the 

effects ·of momentum may be ignored. A density scaling factor of 9.89 X 1016 

was chosen, which makes the mechanical time step one-half to one-fourth 

(depending on temperature and cell dimensions) of the stable thermal time 

step for this problem. A dynamic relaxation factor that is consistent with 

the new "system frequency" response must also be chosen. This is generally 

done by first running the problem without dynamic relaxation for a period 

long enough to identify the lowest frequency of the system. In STEALTH 

formulation of the input, the dynamic relaxation factor, w
0

, can be esti

mated by using the fonrrula, 

where T is the longest period of oscillation of the system. 
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SECTION 3 

DISCUSSION OF RESULTS 

3~1 ROOM AND PILLAR DEFORMATIONS 

Figure 3 is a duplicate of the mesh shown in Figure lb except that it 

contains rm-1 and column numbering data to facilitate a discussion of the 

output from the first two calculations. The vertical lines labeled Columns 

3, 9, 13, and 19 run along the pillar walls. The horizontal lines contain

ing the room floors and roofs are, respectively, Row 11 and Row 13. A bench

mark grid point (Column 26, Row 11) was selected as a moving reference with 

which to measure floor uplift and roof sag. This was necessary because of 

the substantial time-dependent grid distortion that prevailed over the en

tire grid. 

Figure 4 displays the total heat versus time in the grid and provides 

a time schedule for changes of input power. Creep was not turned on until 

standard day 806, after stress equilibrium was computed from hydrostatic 

overburden boundary conditions following the instantaneous excavation of 

the rooms. 

Figure 5 displays the vertical distortions on a magnified scale for the 

top and bottom of the grid, and the roof and floor rows of the rooms. A 

slight point-to-point mesh oscillation isapparent at day 806, which becomes 

much.larger at day 1500 for the case of creep. This "zigzag" effect can 

be eliminated by the proper application of a technique known as triangle 

artificial viscosity (Reference 4). The technique was not applied in this 

simulation. The sensitivity calculation described later showed that the 

zigzag effect could he reduced significantly by fixing the bottom boundary. 

The motion of the benchmark point was different with creep than without 

creep. The corresponding floor lifts and roof sags were established by em

ploying the appropriate benchmark. It should be noted that the left neighbor 

15 
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point of the benchmark lifts more than the chosen benchmark. If this neigh

bor point is used as an alternate benchmark, then the subsequent floor lift 

at day 1500 with creep will be reduced by about one centimeter, while the 

roof sag will be. increased by this amount. This will. be reiterated in the 

discussion that follows. 

Profiles of the array-room floor uplift are displayed and compared to 

experimental data in Figure 6. The co~puted results with creep tend to be 

higher, and are about one centimeter higher at the last tim~. If the alter

nate benchmark is used, the agreement is even better. This alternative bench

mark will also bring the array-room roof sag. into better agreement with the 

experiment. This will be seen later. However, it must be recalled that tb.e 

creep model was turned on simultaneously with the array power, with no past 

history to retard the day 806 creep strain rate. It should also be noted 

that simulated nominal array•room width is smaller than that of the real 

array-room, which tends to retard the uplift. Finally, the 2D simulaticn of 

the 3D geometry cannot be expected to be correct without normalization. 

Therefore, the computed and expertmental comparisons may be fortuitous to 

some extent. 

Figure 7 displays the computed array-room floor uplift versus time for 

the seven grid points of the floor. 'The top diagram locates the points of 

the floor. The middle diagram displays the results without creep, while the 

lower diagram gives the results with creep on a different vertical scale., 

The dashed lines in these diagrams indicate where. the path details are un

certain because of a lack of intermediate printout data. 

It can be noted that the uplift without creep is almost constant from 

day 900 to 1200, with values A, B, C, and D as indicated. The 1.4 factor 

power boost then results in an approximate 1.4 factor in the uplift after 

a time lag. The power-off condition then results in negligible uplift at 

day 1500. The alternative benchmark point without creep has only a small 

effect on these results. 
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The uplift with creep has a different character and is about five times 

as large as that without creep when the array power is on. The slight re

covery after the arrays turn off is due to the thermal contraction. 

Figure 8 displays the array-room roof sag computed with creep, along 

with experimental data for the indicated gages. The zigzag character of 

the computed result is accentuated by the vertical magnification. Neverthe

less, it is annoying and should be eliminated in the future by the means 

mentioned earlier. The one-centimeter downward correction that would apply 

for the alternative benchmark would bring the computation into excellent 

average agreement with the experiment. However, previous remarks apply and 

the agreement may be fortuitous. 

Figure 9 displays the computed floor uplift with creep in room 3 (and, 

by symmetry, in room 2) next to the heated pillar. The 2D simulation of this 

region should be more accurate than that of the array room because of the 

heat source geometry. However, the results show computed values that are 

* lower than the experiment when comparing to room center measurements. The 

results would be still lower if the alternative benchmark point were employed. 

This raises the question of the proper 2D benchmark for the true PSV case. 

Referring back to Figure 5, it can be noted that the general floor pro

file through the total grid tends to raise as the heated pillar is approached 

from the right. Similarly, the roof profile tends to sag even more. The re

sult is that ,the room 3 roof sag is larger than the floor uplift when either 

the reference or alternative reference point is used. This is not realistic 

for the true PSV case and further thought is required to resolve this nor

malizing problem. Nevertheless. the shape and magnitudf'. of t.hP.. r:omputed floor 

uplift must be considered to be satisfactory with respect to demonstrating 

computational capability. 

The pillar convergences of rooms 2 and 3 are compared to the computed 

results with creep in Figure 10. The upper diagram locates the experimental 

* Floor uplift measurements taken at the front and back of the room 
are lower than the comparable measurements made at the room center. 
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gages and the computational points. Though the magnitude of the results at 

day 1500 are similar, the time dependencies are different, pointing out the 

substantial error associated with the computed creep startingrabruptly at 

day 806. The zigzag effect is also pronounced, as can be seen in the com

parisons of Columns 2 and 3, and Columns 9 and 10. The lower diagram con

tains two references to the same gage response. Presumably, the Figure 11.81 

data from ORNL-4555 (Reference 1) has a normalized base line rather than an 

absolute one. 

Figure 11 compares room 1 and room 4 pillar convergences to the results 

computed with creep. The gages and computation points are located in the 

upper diagram. The computed results in the lower diagram are substantially 

lower than the experiment, presumably due to the shorter time for creep to 

accumulate strain in the calculation. The zigzag effect of Columns 12 and 

13 ·is large. Columns 19 and 20 do not show this, This may be due to the 

observation that Columns 19 and 20 along the floor profile were both buckled 

downward at a transition of "zigzag" to "zagzig". 

figure 12 displays horizontal deformation on grill cnlnmns 1, q, 11, 

and 19 along the pillar walls and extending well into the roof and floor. 

The upper diagram displays standard day 806 and day 1500 with creep. The 

lower diagram displays the net deformation measured from !lay 806 for day 

135'1 and day 1500 \lithout creep; and to day 1500 with cre.ep. It is appar

ent that the pillar walls do not contain enough computational points for a 

satisfactory simulation of pillar thickening. The three points defining the 

entire height of the pillar do not provide even a full cycle of 7.ie7.A8 to 

allow for a reasonable estimate of pillar average thickening. This must be 

recalled in evaluating the results that follow. 

Figure 13 displays experimental and computational data with and with

out creep for the thickening of the heated pillar from day 806 to day 1500. 

The computed result without creep is small. The result with creep is larger 

than that of the experiment. The discrepancies are not unexpected in view 

of earlier remarks. 
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Figure 14 provides corresponding displays for the pillar thickening in 

rooms 1 and 4. Again, the discrepancies are not serious in view of earlier 

comments. Future simulations should contain a minimum of five points to de

fine the pillar height if reasonable pillar thickness contours are required. 

The vertical distortions around room 3 ar~ displayed in Figure 15 for 

the case of creep. A different reference point was employed for this room 

and it was based on the following arguments. 

The roof and floor profiles labeled A, B, and C in Figure 15 occurred 

before the pillar heaters were turned on at day 1170. Therefore, the res

ponse of room 3 up to this time was dominated by the large creep rate fol

lowing the simulated excavation at day 806. To first order, the driving 

stress field around room 3 at early times was symmetrical about a·horizontal 

plane through the pillar half-height. Thus, the roof sag and floor lift 

should have approximately a mirror symmetry until the pillar heaters are 

activated or until the array room heat effects reach room 3. It can be con

firmed that the assumed stationary point of Figure 15 provides almost per

fect mirror symmetry for contours A, B, and C in room 3 and in the heated 

pillar. 

At later times, the rate of roof sag continues to diminish as the creep 

rate decreases. In contrast, the floor continues its vigorous rise (floor 

profiles D, E, and F) due to the activation of the pillar heaters on day 1170. 

. 3.2 THERMAL RESPONSE 

Computed temperature contours around the pillar heaters and the array 

heaters are compared with the corrccponding PSV clrpcrimcntal contours in 

Figure 16. There is good quantitative agreement and an excellent qualita

tive agreement. The quantitative differences may be attributed to (1) the 

three-dimensionality of the experiment, (2) idealized convection model, and 

(3) the fact that the computed contours around the array heaters are shown 

for day 1353 instead of day 1382 when the array heaters were turned off. 
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Temperature time histories at specific locations (i..e., gage locations) are 

compared in Figures 17 and 18. Once again, good agreement is seen between 

the experimental data and the computed results. 
'· 

The convection losses to the rooms amounted to 51%.of the total heat 

input (by the heaters) in a period of 23 months. The losses through the 

isothermal boundaries were 34% of the total heat. Therefore, the amount 

of heat remaining in the grid at the end of 23 months was about 15% of the 

total heat supplied to the grid. Note that the actual heat conducted at 

these artificial boundary locations would be a fraction of the 34% quoted 

above ;L:t; the boundaries were placed farther o\lt, 

3.3 SENSITIVITY ANALYSIS 

The sensitivity of the results to selected variations in input was es

tablished by repeating the creep calculation in a new grid, shown in Figure. 

lc. The selected input features are 

• Two zones were added to the top of the grid to raise the top 

horizontal boundary by 14. ft (4.267 m) and two zones were added 

to the bottom to lower the bottom horizontal boundary by 16.32 

ft (4.974 m). The boundaries were moved farther out in order 

to assess the influence of boundary nearness on the clo.sure of 

the rooms. 
. ,· 

• The two zones modeling the pillar height were replaced by 

three zones tu providt! more accuracy for room convergence. 

• The bottom ctt"occ bound.:!.ry condition v'i'ac replaced by a 

horizontal roller (vertical velocity= 0) bo'!lndary in order 

to eliminate the float effect seen in the previous runs. 

In addition, two minor errors were discovered i} the original calculation 

and were corrected in the sensitivity analysis. The first error was that' 
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the difference between the applied stresses on the upper and lower bound

aries was based on one psi per foot of grid height, rather than on the 

product of mean density, height, and gravity. This error contributed to 

the annoying float effect, but did not affect the stresses in the vicinity. 

of the rooms. The second error consisted of a misplaced bracket around 

the gravity term in the acceleration equation. This also enhanced the float 

effect but, again, was harmless with respect to room convergence. 

The results of the sensitivity calculation showed that the more distant 

boundaries had very little effect on the rooms. The effect on temperature 

in the zones surrounding the rooms can be observed in Figures 19 and 20. 

The zoning of the original and sensitivity grids is identical in these fig

ures except in the pillars. Taking this into account, it can be seen that 

the differences are a fraction of a de.gr.ee. The temperatures above the 

rooms remain close to ambient (23°C) because of the mitigating effect of the 

room ventilation. The room ventilation effect is not as effective below the 

rooms and the temperature difference approaches several degrees at greater 

depths. This is due to the different locations of the bottom isothermal 

boundaries. 

The differences in the stresses around the rooms can be substantial at 

any fixed time due to different phasing of the mechanical oscillations of 

the two grids. However, the average values were comparable. This is seen 

in Figures 21 and 22. These figures display the equivalent* stress/~ 

versus time in the original and sensitivity grids in the middle of the floor of 

room 3 at a depth of 2.5 ft (0.76 m). It can be seen that the details are 

different but that the average values are similar. It should be recalled 

that dynamic relaxation was employed only in the initialization calculations 

to establish equilibrium during instantaneous excavation at day 806. The 

inclusion of dynamic relaxation after day 806 would probably be advantageous 

with respect to damping the oscillations shown in Figures 21 and 22. 

The remaining figures display either spatial profiles at indicated 

times, or displacements referenced to the day 806 position. Figure.23 com

pares horizontal profiles at day 1500 in the original and sensitivity grids. 

-;'c 
See Appendix A for equivalent stress. 
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Figure 19. Temperatures at day· 1500 in the zones surrounding room 3 in the 
original grid (top) and the sensitivity grid (bottom). 
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Figure 20. 
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The zigzag effect in the old grid is markedly reduced in the sensitivity 

grid. This is due to the fact that the. sensitivity grid employed a bottom 

roller boundary condition in place of the bottom grid stress boundary con

dition. This new boundary condition also prevented the new grid from float~ 

ing and no benchmark assumptions had to be employed to obtain relative dis

placements. Figure 23 is a summary comparison of the creep data in Figure 5. 

Figure 24 compares vertical profiles at day 1500 in the two grids. 

Again, it can be seen that the new grid is much smoother with respect to 

the zigzag effect. Figure 24 is a summary comparison of the creep data in 

Figure 12. 

Figure 25 compares roof and floor contours around room 3 at day 806 

and day 1500' for the two grids. Ignoring the zigzag difference, it can be 

seen that the new grid hJs slightly less room convergence. This is probably 

due. to the finer zoning in the pillars and not to the small stress and tem

perature differences. 

Figure 26 compares the array room floor uplift and roof sag for the two 

grids. It is not clear whether or not there is a significant .diffe;rence in 

the room convergence . 

. Figure 27. compares the pillar wall horizontal displacements for the two 

grids. Now the zoning effect is obvious. The original grid tended to buckle 

with its single intermediate point achieving a large displacement. The sensi

tivity grid with its two points re.spondec:l more smoothly and with less dis

placement, in better agreement with the experimental data. 

The overall assessment of the sensitivity results indicates that 

1. The original and ccnsitivity bounci.<~ries were both sufficiently 

distant with respect to stress and temperature at the room 

locations. 

2. The bottom roller boundary condition is superior to the pre

vious stress condition because it eliminates the zigzag effect 

as well as the float. 
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3. The finer zoning in the pillars resulted in less horizont.f 

displacement which probably accounts for the slightly smal 

convergence in room 3 in the sensitivity ·g;~;id comp~red t•· 

original grid. 

In summary, none of the variations produced major response differen~es. 

The finer pillar zoning and the bottom roller boundary cond,ition resui •··~d, in 

a smoother response and hence are recommended for future cases. 

. ' 
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SECTION 4 

CONCLUS~ONS 

The simulation of the Project Salt Vault experiment as described in 

this report demonstrates the applicability of the explicit finite-differ

ence technique to be of predictive value for simulating the thermomechanical 

response of nuclear waste repositories. Both thermal-elastic and thermal

elastic-creep models were successfully employed and the simulation data were 

compared to measured values derived from the Project Salt Vault experiment • 
. , 

Agreement with PSV floor heave and roof fall measurements was exceptionally 

good in both shape and magnitude, considering the non-essential limitations 

that were employed for expediency. It is believed that these results are 

unique in that no other contractor has ever predicted these measurements 

with such a complete set of realistic models. 

The explicit calculational technique which was demonstrated was used in 

a strictly "predictive" mode. That is, all material property data, boundary . 

conditions, zoning, etc., for the simulation were determined~ priori. Then, 

a predictive simulation was performed in which no parameters were tuned, in 

order to achieve the agreement shown in this report. This, it is believed, 

clearly demonstrates the power of the explicit fini,te-difference method. 

Since thiswas a demonstration calculation, only certain sensitivities 

were explored. Therefore, it is reconunended that the following items be ex

plored before full three-dimensional modeling is underlaken.: 

1. The time-dependent excavation sequence should be modeled. 

2. 

In this simulation, all four rooms should be included . 

The creep model should be calibrated to additional experi

mental data, if available. 
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3. For demonstration purpose's, the zoning was chosen to be 

particularly coarse. In future simulations, at least 

the sensitivity to more finely zoned pillars should be. 

investigated. 

4. No attempt was made to optimize the computing efficiency· • 
... 

For example, it is possible to increase the efficiency of 

the solution of the creep equations. In addition, an al~ 

ternate method of density scaling that essentialty allows 

one to use a variabl~ (rather than a fixed) density ·scaling 

factor should enhance the equilibration of stresses. 

so 
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A.l INTRODUCTION 

APPENDIX A 

CREEP MODELING 

A creep model·has been developed which, when given constitutive con

stants for salt derived from laboratory salt pillar experiments and used 

in conjunction with an EFD code, gives excellent agreement with data from 

a field test called Project Salt Vault (PSV). The PSV numerical simula

tions using the creep model applied to salt are reported in the main body 

of this report. This appendix contains a discussion of the physical and 

theoretical basis for the model as well as a description of the numerical 

procedure used to integrate the creep formulas. 

A.2 PHYSICAL AND THEORETICAL BASIS FOR THE MODEL 

The laboratory pillar experiments of Lomenick, reported in Reference 1, 

provided the basis for both the SAl model and the Starfield-McClain (S&M) 

model of Reference 2. The experimental configurations were small-scale 

mock-ups of cylindrical salt pillars, as shown schematically in the diagrams 

of Figure A-1. The time-dependent strain of the pillar height, defined by the 

gap distance, x, was obtained for different conditions of temperature and 

average vertical stress in the pillar. The :temperatures ranged from about 

20 to 200 degrees Centigrade. The vertical stress ranged from zero to about 

· 4.14 X 107 Pa (6000 psi) and was defined by the ratio of the load to the cross

sectional area of the pillar. 

The vertical stress was applied suddenly in all of these experiments 

and was not varied during a given experiment. It would have been desirable 

if the stress had been changed while creep was occurring in some of the ex

periments. This was not done, and assumptions had to be employed to model 

this feature. The S&M and SAl models employed different assumptions and, 
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consequently, pr~dict different creep responses for stress changes, as will 

· be seen later. Fortunately, the temperature ~ changed while creep was 

occurring in some of these experiments. Consequently, the S&M and SAI 

models are identical with re'spect to this feature. 

The diagrams of Figure A-2 illustrate a case of constant temperature . 

Figure A~2(a) shows the applied conditions. The pillar creep strain,· e:x, and 

creep strain rate, E:x, are shown schematically in Figures A-:2(b) and A-2(c), 

and can be fit by the forms 

(A-la) 

(A-lb) 

where a; b, and c are material constants, while the value' of A depends on 

the geometry as well as on the material; t is time; e .is temperature; and 

ax is·the vertical pillar load in stress units. 

The· diagrams of Figtire A-3 display a case with a temperature jump at t 1 • 
. . 

The observed response can be fit as an overlay of two constant temperature 

cases with a time shift to provide creep strain continuity at t 1 • The creep 

strain and its rate after t 1 can be fit by the forms 

(A-2a) 

(A-2b) 

where the value of A provides creep strain continuity at t 1 • Hence, A can 

be obtained from Eqs. (A-la) and (A~2a) as follows, 

. The previous exp:r:essions can then be genP.ral.ized for continuous temperature 
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Figure A-2. Schematics of constant temperature case. 
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changes (with constant stress) by the differential expressions 

be 
X 

dex = bt dt + 

By definition, a finite change of creep strain requires a finite time inter

val and the sum of the terms in the bracket is identically zero. Thus, the 

SAl and S&M pillar models for constant stress with tP.mp~r;=~t·ure changes can 

be expressed as 

(A-3a) 

(A-3b) 

where 

t 

I 
• 

(t:- X) ~ ~ dt • 

The SAl and S&M models depart for .the case of variable stress. In anal

. ogy to the variable temperature case, the SAl model assumes ·that the response 

for variable temperature as well as for variable stress can be expressed as 

[ 
· dcr J aex dt + -aex dA. + hex dee + ce ~ 

t-A. t-A. x a 
X 

57 

(f 

• 

• 



• 

• 

• 

The sum of the terms in the bracket.must be zero by creep strain continuity. 

Then the SAI pillar creep model for variable temperature and stress becomes 

X(t) = A.
0 

+ 

t 

J (ta-X) 

t 
0 

(A-4a) 

(A-4b) 

(A,-4c) 

The analogous treatment of 9 and ax in the SAI model is not present in 

the S&M model. The S&M model assumes that a change of stress (at constant 

ternpe.rature) occurring at T produces a ·change of creep strain at t ~ T, 

according to 

or 

E: (t :?: T) 
X 

The generalization for variable·stress and temperature results in the S&M 

pillar creep model, 

(A-5) 
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It can be shown that the SAl and S&M pillar creep models of Eqs. (A-4) 

and (A-5) are identical for constant stress cases.* In addition, they con

verge to the same result for variable stress cases as time unfolds beyond 

the last stress change. The S&M model predicts infinite creep rate at 

stress jumps applied during creep, in contrast to the SAl model. Both 

models predict finite creep rate at temperature jumps applied during creep. 

Stress jump experiments would be required to select the most accurate model. 

A.~ NUMERICAL CONSIDERATIONS 

The steps to implement the SAl model numerically are: 

• Generalize the SAl pi.ll;:~r model for geometric invari

ance for application to arbitrary configurations. 

• Include the relations for stress relaxation due to 

creep strain. 

• Express the total model {n appropriate difference 

form for inclusion in a time-explicit, finite

cl.i.ffeLelll:t! code. 

In order to generalize the SAl pillar model [Eq.(A-4)], the pillar creep 

strain, Ex, nrust be replaced by an Pquivalant dcviatoric straiu, /3 <..::: e::.> , so 

that 

<e> 

where cij are the deviatoric strain components, and the pillar load, crx, 

* when a constant value of cr is applied suddently ~t t 0 • 
X 
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must be replaced by an equivalent deviatoric stress, ·.[3 < s> , so that 

<s> 

where sij are the deviatoric stress components. Assuming that creep is 

purely deviatoric, the invariant form of the SAl pillar model becomes 

< ecr> = A[t :. A(t)Ja [e(t)]b [ < s(t) > Jc (A-6a) 

<ecr> cr 
= a < e > I (t - A) , . (A-6b) 

t 

A(t) A J (t ~h) [b 
e . < s> J = + -+ c < s> dt 0 e (A-6c) 

to 

where A is now a material constant that does not depend on the geometry. 

The superscript cr indicates that Eqs. (A-6) are for creep strain. These 

equations are useful only if e and < s> are applied conditions. In par

ticular, they_ do not handle cases of applied total strain. These latter 

cases correspond to stress relaxation due to the conversion of elastic 

strain into creep strain. Before addressing this effect, it is helpful to 

o1.1tJ.inP. a numerical method, developed by Wilkins (Reference 3), used to re

lax stress by plastic flow. The extension of this method to creep flow can 

be derived by analogy. 

The Wilkins approach involves the following steps. Compute deviatoric 

stress components from components of total deviatoric strain, assuming 

elastic theory. From Hooke'r. Law, the rate of change of deviatoric stress 

is directly proportional to the deviatoric strain rate, 

.ee .tot 
s:ij = m~ eij (A- 7a) 

where m = 1 when i ~ j and m = 2 when i = j. ~ is the elastic shear modulus. 
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The computation of the deviatoric stress requires that Eq.(A-7a) be _integrated, 

ee 
s .. (t ) 

1J n 
:::; .ee 6 s .. (t ) + s. . t 

1J 0 1J 
(A-7b) 

where 6t = t - t , t is new time, and t is old time. The stress n o n o 
ellipsoids before and after the computation of the new deviatori~ stress 

in Eq. (A-7b) are shown schematically in Figure A-4(a). These d~viatoric stress 

components are called the equivalent-elastic deviatoric stress, s~:(t ), 
1J n 

and are used to define a "trial" state of stress, .[3 <see (tn) > , which 

can be compared to the yield stress, Y(tn). If the trial state exceeds 

the yield surface defined by Y(tn), then all of the equivalent-elastic 

deviatoric stress components are reduced by the same factor, 

a :::; ----------------- . (A-7c) 

Equation (A-7c) is a statement of the non-associative Prandtl-Reuss flow 

rule. The resulting deviatoric stress components and the corresponding 

plastic flow components are derived from the definition of total devia

toric strain rate as follows, 

. tot .e ·P e .. - e .. + eij l.J l.J 
(A-Sa) 

.ep 
U'Sc;!p (t ) 

.tot 
::; . -. 

e .. :::; 2.l + 
ij n 

l.J 2j.L 2j.L 

. • tot .Pp 
+ ep ( ) :l~e .. .. s 0 • (1~ 0 • Ln l.J l.J l.J 

.ee • ep 21-1e~ 0 50 0 = s 0 0 + 1J 1J l.J 
(A-8b) 

where a in the above equations is the constant-of proportionality relating 

the rate of plastic strain to the instantaneous stress deviator in simple 

plastic theory. 
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(a) 

Previous state at time t
0 

Equivalent-elastic state 
at time tn 

sxx 

Stress deviator ellipsoid before and after elastic update. 

Equivalent-elastic state 
at time tn 

After plastic flow 

(b) Plastic adjustment by the Prandtl-Reuss assumption (not essential 
to the creep model) . 

After plastic flow 

After creep flow 

(c) Creep adjustment by the Prandtl-Reuss assumption (essential to 
the creep model). 

Figure A-4. Update of stress deviators by elastic -plastic, and creep 
adjustments. 
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Equation (A-8b) can be rearranged as follows, 

s~~ = s~: 
~J ~J 

In words, Eq. (A-8c) is 

[ 

· Final J 
(elastic-plastic) 
state of stress 

2 ·P IJ.e .. 
~J 

[ 

Trial J 
( equi vale~t-elastic) 

state of stress . [ 

Adjus"ted ] 
(plastic) 

state of stress 

(A-8c) 

(A-9) 

The elas~ic-plastic stress deviator, s:~. can be eliminated from Eq.(A-8c) by 

using Eq. (A-7c) in the following form,_ 

Ct = 
s~~ (t ) 

1,1 n 
ee 

s .. (t ) 
l.J n 

Thus, Eq.(A~Sc) becomes 

etsee 
ij 

.ee :; s .. 
1J 

( . ee = z,e· P .. 1 - et) s. . r-
l.J ~J 

. ep 
s .. 

= _lJ. 
.ee 
sij 

ee p 
(1 -r.f}s .• (t) = 21J.c

1
j dt; 

l.J u 

It·can also be shown that 

ee 
( 1 - o) <-s ( t ) > 

n 

(A-10) 

(A-lla) 

(A-ll b) 
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The elimination of 1- ct in Eqs. (A-lla) and (A-llb) results in the equations 

ee 
s .. 

1.] 
(A-12) 

which are equivalent to the assumption that plasticity shrinks the stress 

ellipsoid without changing its eccentricity or orientation. These remarks 

·are illustrated in Figure A-4(b). More general models of plasticity allow. for 

rotations and distortions of the stress ellipsoid, and these are not.pre

cluded in the discussion that follows. 

·If·we assume that creep strain relaxes the· stress ellipsoid in the 

same non-associative manner described above, then the corresponding creep 

· equations are 

. cr 
e .. 

l.J 

ep 
s .. 

1.] (A-13) 

where s ~~I< s ep> is employed to account for general plastic response that 
l.J 

does not necessarily· obey Eqs. (A-12). This is consistent with the assumption 

that pla8tic relaxation of stresses qccurs instart.tly, while creep relaxation 

requires time. Thus, the plastic adjustment is made first, followed by a 

creep adjustment based on the stresses that resulted from the plastic cor

rection. Then, by di:n:!cL actalogy to the. previous rHRctission [Eq. (A-8c)], the 

final deviatoric stresses, s .. (t ) , are 
l.J n 

s .. (t ) 
ep 2 .cr d = s .. (t ) IJ.eij t, l.J n. l.J n 

) 

ep [ 1- 21-L< e0 r> dt/< s*"'P >] (A-14a) = s .. (t ) 
l.J n 
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< s ( t ) > = < s ep ( t ) > - 2~ < e cr > d t 
n n 

The final adjustment due to creep is displayed in Figure A-4(c). 

If the heat generated by creep during the stress adjustment is either 

(a) neglected or (b) not added until a~ter the adjustment, then we have 

enough independent equations to pel;'tQ1:lll the stress-strain ailjnstmPnt, How• 

ever, the method nrust be center.ed properly to avoid systematic errors that 

cari occur in difference equations. The· method used by SAI is described next·. 

Previous expressions can be used to construct the difference equations, 

< s(t ) > - < s(t ) > 
< s (t) > n 0 = dt 

< EJ ep ( t ) > ~ < s ( t ) > 
2 .c-- • cr ~ n . . o = dt - 1.1. , e -

\ 

(A-14b) 

~ s ep ( t: n) > - < s(t ) > 
0 

a .. .1. b 
2~ a A(tn - A.) [a (tn)J 

c 
[< s(tn)>] (A-15) = 

dt 

( t - A.) 
- _.;;.;n __ 

a 

a 
- 2~ c A( t - A.) 

n 

-

(A-16) 
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Using the following conventions, 

Knowns 

t = old time 
0 

t. = intermediate time (t ~ t. 
~ 0 

~ = half time (t +t )/2 o n 

t = new time n 

dt = full time step = t - t n 0 

A = A(t ) 
0 0 

s = < s (t ) > 
0 0 

·sep = < sep (t ) > 
n n 

R = eb (t ) 
0 0 

R. = 9b(t.) 
~ ~ 

R = eb (t ) ~ = eb(th) n n 

~ = (R - R ) /dt n o 

Unknowns 

s. = < s(t.)> 
~ ~ 

s = < s (t ) > n n 

X. = A.(t.) 
l. 1 

A = A.(t ) n n 

the difference equations can be expressed as 

S(t. ,A. ,s. ,R.) = 
~ ~ ~ ~ 

~(t. ,A. ,s. ,R.) 
~ ~ ~ ~ 

sep - s. 
n ~ 

dt 
a-l 

- 21J. a A ( t . - A. ) 
~ ~ 
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These equations can be solved by a fourth-order Runge Kutta scheme as des

cribed below. The fourth-order Runge Kutta method involves four successive 

estimates of s and X. The first estimates are 

sl = s(t
0

,X
0

,s
0

,R
0

) 

~1 
. 

= X(t
0

,X
0

,s
0

,R
0

) 

sl (th) = so + s1 dt/2 

Xl(th) = Ao + X1 dt/2 • 

The second estimates are 

52 = s(t11 ,X1 ,s1 ,~) 

~:a = ~(th 'Xl 'sl ,~) 

S;a (th) = so + 82 dt/2 

"-a (th) "" "-o + A.2 dt/2 . 

The third estimates are 

83 = S (th, h:a, S;a ,~) 

A.3 - ~ ( th' A.2 '::.:a •Fn) 

s~ (t ) = s + 83 Cit .. n 0 

. 
X3 (tn) = Ao + X3 dt • 
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The fourth estimates are 

84 = s ( tn, A.3 , s3 ,Rn) 

~4 = ~(tn,A.s ,ss ,~) 

s4(~) = so + 54 dt 

A.4 (tn) = A.o + A. 4 dt. 

The final estimates are 

where the errors in s and A. are estimated by 

Es I <ss- s2)/(s.a- s1)l if 
. 

1: = sa sl 

= 0 otherwise 

I ( ~ 3 - ~a) I ( ~2 - \ ) I 
. 

EA. = if A a 1: A.l 

= 0 otherwise. 

The SAl model used the criterion that Es and EA. could not exceed 2%. 

If this value was exceeded using a full time step, then the calculation was 

repeated with sub-time steps that reduced the error to 2% or less. Though 

the 2% ·criterion is frequently used in the Runge Kutta method, it is prob

ably more conservative than is warranted for the Project Salt Vault sinrula

tion. The trade .. off of accuracy versus computer costs was not assessed. 
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It should be emphasized that the present SAI creep model is based on 

limited data, applicable to salt repository conditions, and may not be 

valid under different conditions. The modeling method, however, is not 

constrained by the particular creep law that was selected. For example, 

the temperature dependency, eb, is a satisfactory description in the lim

ited cases of the Lomenick experiments. The dependency, exp(-K/9) is 

equally satisfactory with respect to the Lomenick experiments and probably 

has a larger range of validity because of its agre~ment with dislocation 

theory (Reference 4). Either form can be handled with ease by the model

ing method that has been presented. If necessary, the effects of dila-
' tancy on creep ratc.may also be incorporated without difficulty. 

69 

• 

• 

• 



• 

• 

• 

• 

REFERENCES 

1. R. L. Bradshaw and W. C. McClain, "Project Salt Vault: A Demonstration 
of the Disposal of High-Activity Solidified Wastes in Underground Salt 
Mines," ORNL-4555, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 
1971 . 

· 2. A. M. Starfield and w. C. McClain, "Project Salt Vault: A Case Study in 
Rock Mechanics," Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 10, 
1973 (641-657). 

3. M. L. Wilkins, "Calculation of Elastic-Plastic Flow," UCRL-7322, Rev. 1, 
Lawrence Radiation Laboratory, Livermore, California, January 24, 1969. 

4. Hugh C. Heard, "Steady-State Flow in Polycrystalline Halite at Pressure 
of 2 Kilobars," Flow and Fracture of Rocks, Geophysical Monograph Series 
Vol. 16, 1972 . 

70 



• 

• 

• 

APPENDIX B 

SAMPLE HEATER OUTPUT CALCULATIONS 

B.l PILLAR HEATERS 

The modified·pillar heater·was simulated as a "line" source with a 

strength of 0.164 kW/m. This number was obtained by dividing the average 

experimental output .of 3 kW by the length of the room (60 .ft). Since sym

metry between Rooms 2 and 3 was assumed in the simulation, there were, in 

essence, two modified pillar heaters in the 2D simulation, each with an out

put of 3 kW, but spread alo~g the room length. 

The twenty-two pillar heaters of PSV were modeled as two symmetrically 

placed "line" sources. n.e total output of 11 heaters on each side was di

vided by the length of the room to give 0.902 kW/m of the line source. A 

sample calculation is given below: 

Modified heater output = 3 kW 

Room length = 60 ft = 18.3 m 

Modified heater output/length = 164 W/m 

Pillar heater output = 1.5 kW per heater 

Number of heaters on each side = 11 

Total output on each side = 16.5 kW 

Pillar heater output/length = 902 W/m 

B.2 ARRAY HEATERS 

In the experiment, the floor heaters were arranged in a circular array 

such that each canister was approximately 5 ft away from a neighboring can

ister. In order to convert this arrangement to some equivalent arrangement 

in 2D, these heaters were first assumed to lie along a straight line with a 

5-ft spacing. Then; in a manner similar to the pillar heater output compu

tation~ the total output of the seven heaters was divided by the 30-ft 
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length to obtain the output of a "line" source on a per unit length basis, 
,~:..,·.} > l 'i '; ~ ... 

as shown below. 

:-;· 1 ~.t.:::··,· .. ,1,, .~umbet; o;.arr~y;;:,he?ter,s·.,= 7._·: ;. • !' ··.k ........ ,. 

: • ·•· t- · .•·• .c·.r.:en·gi:h · of··tHe · st~aight ·ur;:e "cs~~ent-,;,;'jo" it' J··9:1s rri · '' 
t ·:~~ · ·· -' 1_~~-- j · ~ ,.tf.~.1. ·; ... • · : . ~r·· · _:~ t~ • • .-· :::; ·,. \ • :.t':::\-.,1!.·, 

-•. • o. ,I 

.... 

Total array heater output = 10.7 · kW · ., 

Boosted total array heater output =.14.98 kW 
, : " · l · ; · J .. 1 ~., ', r ·, \• r • • , •• • • ·_, r 1 

.··,~A~ray.:heJ.;t~_r,;~u~pu-ta·~~gth ~,;1.·17 kW/P\. ·.! 
- - .. . . - . - . - . . -· .. --- -·-· - -
Boosted array heater output/length = 1.64 kW/m 

"!b._ .. I. 
!- ( ,. 

' t_ ,\ l ·.' ;-r-..!. ~\ 
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APPENDIX C 

DYNAMIC RELAXATION 

Lagrange explicit finite-difference computer programs to compute non

linear deformation, static equilbrium, or quasi-static motion have been used 

by several investigators (References 1, 2, 3) with encouraging results. How

ever, computer costs for these applications were unreasonable for engineer

ing use. Most recently, the stress relaxation techniques (Reference 3) were 

modified (Reference 4) in such a way as to retain excellent numerical accu

racy while reducing computer costs significantly. This method has since 

been interpreted (Reference 5) as a version of the dynamic relaxation method 

(Reference 6), which has also been applied to small-strain, elastic finite

element computer codes (Reference 7) • 

The equations of motion are modified as follows, 

I:Fx = m(x + * x). (C-1) 

where ~ is a dimensional damping coefficient, x is the acceleration resulting 

from the externally applied forces, Fx, and x is the velocity that results 

from integrating x with critical damping applied. In. terms of stress, Eq.(C-1) 

becomes (for a one-dimensional case) 

(C-2) 

where~' is~~~. ~·(or~') is chosen to critically damp the lowest funda

mental wavelength of the grid. For linear elastic problems, it is a rela

tively simple matter to determine the damping (or relaxation) factor from a 

modal analysis or a dynamic excitation without damping. Even for mildly non

linear systems, the latter techqnique can be used. For strongly nonlinear 

systems, an appropriate relaxation factor is far more difficult to compute and 

often requires considerable judgment. 

73 



The calculational form of the dynamic relaxation equation comes from 

solving Eq.(C-2) for acceleration (including gravitation), 

.. n 
X (

bcr n 

= p~ bxxx) 
1 'n' .n + 

- .!.L.... X Sx 
pn T 

(C-3) 

Integrating Eq. (C-3) ~Tith respect to time and making the following substi-

tutions, 

JL _ _]_ 
m 

.n .n+~ + .n-~ X X 
X 

2 

yields 

-~~ .n-~ [ 1 (bcrxx)n ] 
X - X = pn -g;z- + ~ ( 

.1l.'i'~ .n-%) 
X +X • (C-4.) 

Solving £q.(~-4) for new velocity and defining the relaxation factor, w, to 

be 

Ul 
__]__ 

2mT 

results in 

(C-5) 

where 
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An existing two-dimensional Lagrange explicit finit.e-difference com

puter program (Reference 8) was modified to do st.atic calculations using 

the dynamic relaxation technique. A number of test calculations were made, 

including those that could be compared to classical solutions (References 3 

and 9). The results of these computer runs showed excellent agreement with 

the analytic solutions and computer costs were minimal. Next, the modified 

code was applied to soil slope stability problems that could be compared 

with Bishop's method (Reference 10). Preliminary results are dramatic .in 

that the failure region matches· the limit circle derived from a factor of 

safety equal to one. Figures C-1 through C-4 (taken from Reference 11) show 

the results from a calculation of the failure of a 6.0° slope of cohesionless 

Mohr-Coulomb soil with a 25° friction angle·. The problem began with the 

slope completely excavated, overburden specified, and gravity acting. The 

mesh plots show the slope failing, the vector plot shows the slope motion, 

and the contour plot is for vertical stress. 

The results shown here indicate clearly the feasibility of the dynamic 

relaxation technique in adapting the explicit methods to solve static or 

quasi-static problems. Although a very rudimentary initial geometry and 

material descripti~n have been used so far, the method is completely general 

and can be used to calculate cases of arbitrary initial topology, complex 

layering, saturated or porous geologic material models, inclusion of struc

tures such as dams or underground openings, and other features. Small-strain 

linear assumptions need not be used in this approach. However, nonlinear 

large-strain material models are only as good as the in-situ data they are 

supposed to represent. Time-varying boundary· conditions such as sequential 

excavation have been tried and work well • 
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Figure C-1. Mesh plot at time = T0 , cycle 0. 
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CONTOUR LE1/ELS 

A -5.5 E-6 
B -5.0 E-6 
C -4.5 E-6 
D -4.0 E-6 

• 

E -3.5 E-6 
F -3.0 E-6 
r,. -2.5 E-6 
H· -2.0 E-6 ..----"· -~------<.-

~·-------~~-------------J----

K =~ :g ~:; , ~ _________;, ----- ----------
IJ -1.5 E-6 ~:<: 

L 0.0 /// 

. ~HC - ~ r.-C:--:~~~F-G-1 
--K-;/j H/~ e-E--1 

------.:-- i 
I 

H / ~------c-----c----! 

----- c /// ///' ---- • I 
1--------/ /// --------------·--·----r:l--

Figure :c-4. Contour of-vertical stresses at time= T
3

, cycle 600. _ 
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