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ABSTRACT

Data obtained from time series analysis has been used for a number of years
for the characterizaton and response prediction of linear sytems. This paper
describes a time series technique for the analysis of nonlinear systems through
the usc of embeddings using delay coordinates or appropiate transformations of
delay coordinates (local singular value decomposition or local canonical variate
analysis). Local lincar approaches are used to characterize the state evolution.
Application of the technique is illustrated for a single degree of freedom oscil-
lator with noninear stiffness, a mechanical chaos beam, and a climatic data
time series. In each application analysis from measured data is emphasized.
State rank, lyapunov exponents, and expeeted iterated prediction errors are
quantified. The technique illustrated should be useful in the analysis of many
forms of experimental data, especially where Che state rank is not excessively
large.

1. Model Theory

Consider a system where the inpul and response time series are sampled with same
ple interval 7. Using an extension of Taken™ theorem  [Blan image of the state is
Duflingoscillator [3] have been reported in the literature.  construeted using delay

coordinates.
w(t) = [yt - )yt - 20) (= Jr)ou(t)u(t - r),u(t 2r),a(t 7)) (1)

For a linear system, this formulation reduces to a linear combination of inputs
and responses (ARMA model). A fundamental problem in applying this technigue
to nonlinecar systems is in the determination of the proper funetional form to use in
Fq. 1. While nnmerous global fnetional forms may be used (polynomials, radial hasis
frctions, ete ), an eflicient means of selecting a proper functional form is throngh
the nse of local techniques, Using points in the neighborhood of the state for which
prediction s desivred we nse a loeally linear , bat globally nonlinenr model,



1.1. Embedding Techniques

Our image of the state space in equation Eq. 1 is formed in a space where each
cocrdinate is one of the delayed u(t) or y(¢) terms. The dimension of the space is
cffectively j + I, or the number of input terms plus the number of response terms,
possibly plus a constant term. This is often a very inefficient representation of the
system state, with a dimension larger than is required. We have used two approaches
to alleviate this dimensionality problem, local local principal component analysis and
local canonical variate analysis. Both approaches provide an estimate of the number
of cffective states using coordinates which are formed from a local lincar combina-
tion of the delay coordinates. The singular value decomposition technique is applied
primmarily to autonomous systems , and the canonical variate analysis technique to
driven systems.

1.2, lterative Prdiclion

The prediction of a given value y(2+ 1) from past values of y(f) and u(t) is useful but
for many purposes incomplete, as we often desire to predict fulure response waveforms
consisting of many individual sample intervals. ‘To achieve this form of prediction we
iteratively predict the response, using successive y(£)’s as past values of the response
as they are computed. First our model is applied Lo solve for y(ty + 7). The y(ty)
computed serves as an input to a succeeding model, which solves for y(1y + 7) These
“ilerative” predictions are repeated many times {or succesively increasing multiples
of ¢ to obtain the estimated response waveshape over long time periods.  All of the
predictions dilustrated in this paper are iterated predictions,

1.3, System Characterizalion

The system is characterized based on the parameters which are obtained from our
local linear maodels. An estimate of state rank, derived from the number of significant,
singular values, an estimate of lincavity or nonlinearity derived from the siccessive
locations of the system poles, the iterated prediction, and estimates of error growth
are obtained from the model

2. Applications

While the techniques illustrated in this paper are applicable to autonomous systems,
we emphasize their application to driven systems, Driven systems ocenr ina wide
variety of disciplines, including physies (mechanical vibrations), hiology (population
cquations), and meteorology (climatic recordn). We discuss input. output modeling
for three oscillatory physical systems: the fiest is o dafling like ozeillator exeited hy
hand limited random noise, the second is a mechanical beam moving in a maguetic
double potential well, and the third is the long term variation in global ice vohinme
(charactorvistic of the jee ages), 1o the fiest case, evidence for gonchnotic hehavior
in presented; m the second case, chaotie behavior elearly oceurs; in the third ease,



the irregular motion is found to be nonchaotic. In addition to the illustrated exam-
ples, we have applied this technique to single and multi- degree of freedom lincar
oscillators (using digitally simulated data), multi-degree ol piccewise lincar oscilla-
tors (using digitally simulated data), single-degrec-of-freedom hysteretic oscillators
(using digitally simulated data), and a six degree of freedom mechanical test system
(using data acquired during a structural vibration test). Additional examples using
various functiona' forms, including applications to a heat exchanger system [l1], ship
rolling [2], a Van DerPol Oscillator [2], have been reported in the literature.

/subsectionAnalog Dulling Oscillator As a generic example of a system driven by
an input acceleration, we consider the following Dufling-like ! oscillator of Eq. 2.

" + 2wn(y’ — y0) + Wiy — ¥0) + awd(y — y0)2 + fuwi(y — ¥O)|ly —y0| =0  (2)

The input is the acceleration " ? yo” and the response is y”. lere, w, is the
natural frequency of the linear restoring force, ¢ is the dampirg coellicient, and «
and A are the cocllicients of the antisymmetric and symmetric nonlinear restoring
orces. The behavior exhibited by a driven Dulling systen, is characteristic of many
of thenonlinearities encountered in practice, especially those behaviors encountered
in strongly oscillatory systems with relative low energy dissipation (damping).

Figure Fig. | compares the iterated prediction and measured response of the non-
linear time series model for this case of the strongly nonlinear driven Dufling oscillator.
Seven thousand training points were used to formulate this local linear model,which
is significantly superior to the best lincar model we lound. The acerage iterated pre-
diction error is computed oves a range of 300 samples (about 2.5 seconds) and fonnd
Lo be 0.62 for the best linear model and 0.32 for the nonlinear (in this case, local
lincar) model. ‘The local state rank of the system consistently ranges from three to
four, indicating that relatively few state variables are required to model the system,
Ay we suceesively model different sections of the time series the pole locations of
the local linear model vary drastically with time, indicating the presence of a strong
nonlinearity.

In this particular example, we hypothesize that this particular Dulling oseillator,
driven by this particular input sequence, is essentially nonchaotie, sinee a reasonable
long, term prediction is apparently possible. To quantify the acenracy of long term
predictions, the two separate effects deseribed in the theory section must be consid
cred, the effective lyapunoy exponent of the system, and the potential effects of the
aceundation of errors in the delayed terms nsed o estimating the state of the system,
Iigure Fig, refdufling ere illustrates the propagation of an infinetisimal ervor

"Phe Dulling oveillator in nannlly written s n differentinl equation with a cubie term. Hepeto
simplify the nnalog cirenitry, we une gly| instead of - which although not cubie, dovs preseeve the
antisymmetrie nature of the eubic nonlinearity

TAhough the teem gAY doen ot explicitly appear in equation Fq. refdulling, saeeessive int.ogea
tiom of 0" determines g0’ and 0 sod these do appear,
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Figure 1: Response Time llislories for a Strongly Nonlinear Duffing Oscillator (Mea-
sured Data),the Corresponding Nonlincar modcl( Iterated Prediction- - - - - ), and the
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Figure 20 Error Propagation for the Nonlinear Dufling Oscillator, Assuming an
Infinitisimal Frvor al the Start of the levated Prediction Range,



The propagation of the error clearly illustrates the effect of a negative lyapunov
exponent. In contrast, the iterated prediction error grows and decays in a complex
manner

For chaotic systems, even approximate long term prediction is usually impossible,
however, for input-output systems, depending on how directly the response depends
on the input, iterated prediclions can sometimes give quite reasonable results. The

cxample in the next section is a case for which long term prediction of the system
response is not possible.

2.1. Bcam moving in a doublc polential well

As our next illustration of the application of nonlinear time scries analysis to driven
systems we choose a system which is clearly exhibiting chaotic behavior, the “chaos
beam” described by Moon [1]. In this example, discussed in detail by Hunter [5],
an experimental oscillator was built which exhibited chaotic transitions between two
stable states. Mcasured acceleration and strain data from this system constitute the
inpul. and output time serics.

Typical predicted and mom.lro(l response time scrics for Lhis system are shown in
IFigure Fig. refelasassimm:. *Unlike the case in the previous section, chaotic behavior
of the system leads the predicted and measured response to rapldly diverge. The
iterated prediction error is essentially unity.
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Figure 3 Time nstory of the measured and ilerated model predictions for the chaos
beam.

As in the previous case of the Dufling Oscillator the model indicates a local state
rank of three to four.  As we sweep through the model a drastic variation in the



location of the model poles occurs, indicating a strongly nonlinear system. The
variation in the pole locations changes in a manner different from that in the Dulffing
Oscillator case and there is the possibility that this variation in pole locations may
be used to characterize the form of the nonlinearity.

We examine the error growth rate for this model of chaos beam behavior and
quantify the results in Fig. ref.chaos-errs. In contrast to the Dufling Oscillator illus-
trated above, il is clear that the error growth rale implies a chaotic system with a
positive lyapunov exponent. The estimated iterative prediction error is dominated
by the eflect of the positive lyapunov exponent until the errors reach values near the
mecan value of the time series itsell. At this point the effective error saturates. IFor
this system, long-term iterated forecast error provides a poor measure of model va-
lidity. Even for a very good model, small errors will grow exponentially in time. The
model will be incapable of predicting which well the beam will be in at some time
far in the future. llowever, part of what is desired [rom an input- output model is
knowledge of how the response will depend on the input in terms of various statistical
averages, I'igure I'ig. ¥ shows the power spectra of ilerated and measured response
time series. Although the model is not good at making long-term forecasts of the
specific time history response, it does successfully predict the power speetrum.
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Figure 41 Growth of an Iifintesimal Evvor Over The Time Jtange Hlustrated.

2.2 Climatic Dala Time Series
Ax another example of the nonlinear modeling of input output time servies, we consider
an application involving long term climatie data, specifically the long term, rather
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Figure 5: Measured Response Spectrum () and Model Spectrum (- - -)

complex variation of global ice volume. The modeling of a geologically derived time
series presents a difficult problem, since geologic time series are often noisy, and event
timing may be uncertain.

The total solar encrgy inc'dent on the upper atmosphere over a 24 hour period
varies with time of day, latitude, and season. Changes in the tilt of the carth’s axis
(obliquity), the scason in which the Northern hemisphere is tilted most away from
the sun (precession) and in the shape of the carth’s orbit (eccentricity) change the
effective solar energy received in a given month at a given location. Over millennia
the encrgy received from the sun, termed solar insolation, varies about 20 percent at
latitudes above 45 degrees North. Figure In 1941, Milkanovich postulated that the
summer insolation at relatively high northern latitudes was a determining factor in the
evolution of the ice ages. Winters at these latitudes are always cold enough for snow
to accumulate. A critical factor in the development of ice sheets is summer melting,
as consistent incomplete summer melting leads to ice sheet growth. Recently Iimbrie
etal. [6,7] showel that common frequency components with periods characteristic of
precession, whose period is 21,000 years, and obliquity, whose period is 411,000 years,
are strongly present in the ice volume time series illustrated in Figare 19g. 6. They
also pointed out that the dominant component in the ice volume time series; whose
period is 95,000 years, is absent from the solar insolation time series.

While components with a 95,000 year period are absent from the insolation time
series, they are present in the envelope of the series. A dominant variation in ec-
centricity, with a period of about 100,000 years. modulates insolation signal, causing
regions of low variance to occur about every 00,000 years. 11 is our contention thal



regions of low variance in the insolation signal correspond to glacial periods.

Using our modeling process, we apply the methods of time series analysis [?] to
the insolation and ice volume time series. A systematic search of possible nonlin-
car and linear models was made for data from two ocean cores, V28-238 and V18-
239. A cross validation procedure based on successively selecting segments of the ice
volume time series for prediction, while training on the cemainder of the series, was
usced. Iterated predictions over a period of about 90,000 years were made, suflicient
to predict about one ice age into the future, These results were compared to those
obtained using simulaled insolation and ice volume time series whose power spectra
were identical to those of the actual time series but with randomized phases. Nonlin-
car models, and in a few cases, linear time series models, gave results whose average
iterated prediction errors were between threc and five sigma bclow those obtained for
the simulated time series. The best models were nonlinear. 20 lagged values ol solar
insolation (about 60,000 years) were used for the model input ard between 4 and 20
lagged ice volume values (12,000 to 20,000 years) as lagged response values. Local
singular value decomposition indicated that the solar insolation-ice volume system
has approxirnately three significant state variables.

Since solar insolation datla are available for the future, nonlincar forecasting tech-
niques can be applied to predict the next ice age. Lor this prediction eccentricity
tuned data was used from core V28-239. Except for the last 60,000 ycars, the entire
past insolation and ice volume data scts were used for training. In Figure IMig. G,
measured and predicted ice volume for the last 150,000 years are compared. Contin-
ucd iteration of the model is then used Lo predict a future peak in global ice volume,
occurring, as shown in 'igure IMig. 6, in about 40,000 ycars.

3. Conclusions and Future Work

We lave illustrated a method for the analysis of nonlinear systems which makes use
of a segment o[ the input and response waveforms for the system (training data) to
build a system model. This model provides, through geometry of the pole locations
in the z plane, an estimate of the degree of nonlinearity of the system. Error growth
rate and iterated prediction errors are esiimated. [Future time series responses of the
system under study are predicted. Further application of this model formulation to a
greater varicty of nonlinear systems is planned. Some features of the model inclade:

I. Training data used must explore the same regions of the state space as those
for which response prediction is desired. Extrapolation to unexplored regions of the
state space is limited. 2. The number of significant singular values gives an estimate
of the state rank of the system. 3. The algorithim gives an indications of regions of
the state space where prediction may be diflicult.

At this point the technigue Iooks promising for the detection of nonlinearity in
dynamic systems and for the prediction of the time series response (for non chaotic
regions) or the response statisties (for chaotic regions). The use of this technigue is
not. limited to data from mechanical oscillators but may be applied to a wide variety
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Figure 6: Prediction of the nezt ice age, assuming no human-induced effects. Shown
arc the ice age data up to the present (—), and the ilerated predictions (O) starting
from about 150,000 years in the past end continuing into the fulure.

of systems of low Lo moderate state rank where input and response time series are
available.
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