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1. Introduction

Calculation for the Poisson probabilities frequently involves calculating
high factorials which becomes tedious and time-consuming with regular calculators.
The usual way to overcome thls d1ff1culty has been to find approximations by
‘ﬁaking use of the table of standard normal dlstribution.' As indicated in
Johnson and Klotz (1969), by relating the Poisson probability to the Chi-squares
and applying Wilson-Hilferty's normal-distribution approaimation to'the Chi—'
'squére distribution, one has aa aﬁaroximation'for‘the'Poiééon probability;‘ An
often used method is to traasforﬁAPoissons to the standard normal, then obtain
the probabilities from the'standard-normal‘tabie. Along this lina Makabe and
Morimura (1955) suggested an approaimation by using the trivial transformation .
'(x-x)//I‘(X is the Poisson parametef) to transform a Poisson to a standard normal.
In fact, Makabe and Morimura obtained appro#imation for the standard-aorhal prob-
abilities in non-integral form, which lead to an appro:-;,imation for the Poisson
probabilitiea that does not require tha use of the standard—normal table. ;n
general, one may consider with any of the traditional transformations from Poisson
to normal as propoaed noticeably by Tukey (1957), Freeman and Turkey (1950),
Anscombe (1948), and Bartlett (1936). Recently a new transfofmation was proposed
by Kao (1978) that appears to perform beater for this purposa. - In this paper
a class of approximation methods are stated and compared numericaliy, including
an approximation method that utilizes a modified versioa of Kao's t;ansformation.

Now let X be a random variagle that has the pfobability density function |

f(x) defined by
S “A.X . )
f(x) = e "X /x!, x=0,1,2,... (X1>0). @D

Then X is said to have the Poisson distribution with parameter A. Note that

EX= 1, E(X-A)2= A, E(X—A)3= X, and E(ka)4=>3A2+A, etc...
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2. The Traditional Approximations of Poisson Probabilities

Since (X—A)[/x converges in law to standard normal (denoted by N(0,1)) as
A+, it may be shown using Taylor's expansion that for most functions g adﬁitting

the first derivative and g°(A) # 0, (g(X)-g()))/(¥Ag”(A)) converges in law to

aN(O,l’ as Ao, Therefore, in consideration. that g(X) andl/fg’(l) be functionally

independent of A, square-root type dunctions are proposed for g. Then./fg‘(l)

converges to 1/4 as X+, It should be noted here that the approximation is good in

. the sense. that X.is large.. The square-root transformations.available in literature

include t5(X) = 2/k#1/2 (Bartlett (1936)), t A(x)'=zv3'c‘$37§' (anscombe (1948)),

tFT(X5= X + fz;i'(Freeman gnd Tﬁkey (1950)), tTl(X)==2/§.(Tukey (1957)). Such
consideration on g(X) and./xg'())‘as‘prescribed is needed for dealing with Poisson
regression problems, but it is not needed for appro#imating the Poisson probabilities.
In the latter case,ltfansforﬁations'of the forms like log(ifl) (Tukey (1957)), and
l.,SXZ/3 (Rao (1978)) are equally applicable. In what follows the transformation;

from Poisson to standard normal to be investigated are

(1) T, (0 = XN/,
(11) T, (X) = 2(/X - /A + 0.125/¥X),

(iid) TFT(X)

X + /X+1 - /3 - A4+ 0,25/,

(iv)  T,(X) = 2(/X+3/8 - N+3/8 + 0.125//3),

i

V) T, 2/X [log(X+A) - log 2A + 0.1251),

Vi) T (%) = 1.5x213 2223 L L33y 36 s
0
.. _ 1,2/3 _ 1,2/3 |1 1,-1/3 . 1,1/6
(vii) TKO.l(x)-l.S[(x +1.0) (A +10) + 9(" +10) 1/ +5 .

Let A>0 be given and T be a transformation among (i) through (vii). Then

for k=0,1,2,..., let a, = T(k-0.5), b, = T(k), and ¢, = T(k+0.5). Denote the

k k k

cumulative distribution function of the standard normal by ¢, then we take



¢(e) : for k=0
b1 T 2(c) - #(a)) - for k>0 ' )

to be an approximation for the Poisson probability densities P¥{X=k}.- The special
feature in Makabe and Morimura's approximation is that ‘after doing the trivial
transformation, TMM(X) = (X-A)/YA, they'suggested'using-nk instead of g, , where
N is defined by
32
1 3
a +¢(3b -b ) ]e | /v2n . | (3)

= '[c

n. k-

k

The method that gi&éé approkimation'tb ?oiSson.ﬁrqBability By“relatinggtb :
the xz(Chi-square) distribution basically makes use of the relation that, for
k>0,

P XSk} = P Xy 41y > :2}}.

a

Then apply the Wilson-Hilferty (1931) approximation to the x2 distribution. It

.
E

follows that

p{XSk}? —1—-1"” '“z/zd = 11-0(A),
.r S B /i_ﬁ- Zke u = : Ak,

%)

where

_ X \3/2 1
2 = 3G - L gan e
" Accordingly, for the probability densities we have

P_{x=k} + #(Z ;) - o(Z). : (5)
For the Poisson cumulative probabilities P;{Xsk}. +The ‘approximation

that corresponds to (2) with any transformations (i) through (vii) is
Pr{xsk} ?=¢(ck). , (6) -

In addition to (3) that treats the Poisson probability demsities, Makabe and

Morimura also suggested the following approkimation‘to Poisson cumulatives:



b=

P XSk} £ 0(c) - 8(a) +—I—[(1-ch) exp(-Fc) - (1-a2) exp(~3a0)] (D)

6v2mA
where the transformation that defined the ak's and the ck's was taken to be TMM°
Actually along the same line of (7) oneé may suspect that for any transformation

among the transformations of (i) through (vii) the following approximation to

Poisson cumulatives is applicable:

P, (X} % 0(c,) - o(c,) P [(1-{) (lexp(—%ci) —(l-ci) exp('.%ci)], (8)

6v2ud

Regardihg'the choice of'a'transfofmatipn, TK was aiso shbwn'iﬁ'Kao.(1978)

0
to be more desirable than the others among transformations (i) through (vi). In
fact, as a modified version of TK”'TK (i.e. transformation (vii)) is considered
' 0 0.1 '

a better choice than T, .
K0
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3. The Proposed Approximation

It was argued in Kao (1978) that for large A, the power transformation
T(x) = (x+d)r appeared to be most desirable when r=2/3 was taken, assuming that

~d<<X and 11m d/x=0. By 31mply taking d= 0 one obtains the transformation T, .
: 0

In addition to setting r=2/3, it is now found that b 0 1 should be consideredfor

better approximation result when. A is small, and T is thus prOpdsed. The

k.
0.1
reasoning is to be described in what follows.

We now let T(x) )T w1th d<<X and 1im d/k 0.- Then let ﬁ? AMd.. By,

A->oo

the Taylor's expansion, it can be shown that for large X we have

- BT 2 F + 2r (e s (T + 2 r -D )T,
b, = Var(T(x) » rz‘()‘+d)2(r-l/2). + 1.5 22 @-1)2-r2a) (e+a) 2571 | )
E(T(X)-m)° & r3(3r-2)_(x+&)“'r'2, and A '

{1

e -

E(T(X-m)") 2 3:‘,’_()\-*&)4"2.

e

Therefore, the skewness Y and ﬁhe_kurtosis Y, (cf. Kendall and Stuart (1958))
have the following approximates:

/2 3/2

- 3 \ - 2 .
& u3/u 2 (3r-2) (A4d) and v, = u4/u2_-3 ~ 0. 7(10)

Actually it may be further shown that 74==0((A+d)-1) irrespective of the value
~of r by a detailed Taylor expansion. Since the normally-distributed random
variables have zero skewness and kurtosis, the most desirable vaule for r in

this regard in 2/3. Furthermore, after setting r=2/3, we then have

Var(r(x>):»%'(m>'l/3 F2Z- D OH) /3‘

It is therefore expected that, in view of the variance value, by taking d==1/3

to obtain the corresponding transformation Tk» instead of taking 4 = 0 to
0.33
obtain TK one .would have the transformation T closer to standard normal.
0 ‘ . ' _ 0.33



Nevertheless, since such consideration is in the sense of approximation, 4 = 1/3

is not precisely tbe value of d to produce .the best result. It is found numerically
that the best value for d is around the neighboring value d =.0.1. Now, for a
-given d,' we define the ;ransfo;'pation IKa b;_r

T, (%) = 1,5[(x+d)2/3-_(>‘+d)'1/f3]/,(x+d)1/6. ' - (11)

d

Then, in line with (2) and (6), there corresponds the approximation A, defined '

by
¢(1’K (k+0.5)) for k=10 _
A, (=) = d < o 12)
4 8(T_ (k+0.5)) - 8(T, (k-0.5)) for k>0
K K
d d ,
From the foregoing discussion, it is proposed to"have AK as the best approximation
‘ 0.1 '

for- the Poisson probability. Naturally, we define for the cumulatives corresponding.

to (12) by

AKd(XSk) = ¢('1‘Kd(k+o.,5))° | _ (13)



4., Numerical Comparison of Approximations

To make comparison on the accuracy of the various approximations, we use

measures d , D , d
s’ s

rs’ and Drs as the accuracy indicators.  For an approximation

- A(X=k) to approximate P¥{X;k}, and value A(X=k) to approximate P;{Xsk}, define

d'S = max 'P {x=k}__ R(X=k) l’
Osk<w © |

‘4= max le{x=.k}"A'(X=k) DU

s Osk<mol! ‘

>

P {X=k}
r

D_ = max IP?{XSk}-K(XSk)I;

0=k<e
and
D__ = max lPr{XSk}—A'(XSk)
Osk<e © P {X=k}

ds and DS are called the Smirnov errors (respecti&ely for the density and the.'

cumlative). drs and Drs are correspondingAly called the relative Smirnov errors.
The traditional appro#imation obtainedAby applying the Wilson-Hilferty

approgimhtion to the x2 distribution as indiéated by (4) and (5) will be denoted

by B.... The Makabe-Morimura's approximation as indicated by (3) and

WH
. 1 2 1 2
P_{X=x} = ¢(c,) - ¢(c, ,) + —— (1-c;) exp(~-3¢c,) ' ‘ (15)
r k - TS 2% . |

will be denoted by BMﬁ' For the approximations tha; are derived by making a
transformation from Poisson to normal and followed by using (2) aﬁd (6), they will
.be denoted by A 3nd'proper subscripts. For instaﬂée? A.FT denotes the
approximation that corresponds to the transformation TFT'

It should be noted that the Poissonfx2 relation immediately befbre (4) may



-8

be replaced by
. _ . .o 2 .
P_{X=k} = P _{X=k+0.5} = Pr{x2k+3>21} ‘ (16)

~ However, the numerical rgsults show that using the right-hand side pf (16) a
worse result is obtained. Such fact is not shown in any of the tables prmfided°
Regarding the values of & g* one finds that with each of the'approximation'methods"
'dr is attained by some k at the rlght tail of the Poisson dlstribution, while D
4s attained at the left tall.. They are thus not' as practlcal as’ d and D. fof ’
indlcatlng the accuracy of approx1mations. Nevertheless; the consistence of almost
everywhere between the facts as shown by (drs’Drs) and the facts as shown by (do’Do)
in all the tables reinforces the conclusions'to be 'stated in what follows. In ad-
dition, it is found that Ap, 1is very poor compared dith the appro#imations in Table 2,
and is therefore not considered in that table. Furthermore, it should be noted that
if (7) or (8) replaces (6) for the cumulatives with the A approiimations; the
accuracy is considerable decreased. | |

It appears in Table 1 that except for X as small as 0.4, AKO L is definitely
better than AK and AK1/3 is placed the third among the three approximations

throughout theAA values. Therefore, AK is further compared with the other A
0.1

approximations in Table 2 including AMM’ AFT’ ATI,AA.”‘According to Table 2, the A

approximations are all desirable and AK stands out to be the best for all cases.
0.1
In Table 3, the three approximations BWH’ BMM’ and AK ‘are compared. It is-
0.1
obvious that the Wilson—Hllferty approx1mat10n and the Madabe~Marimura approximation

are very poor compared with AK . In fact, they are also very poor approximations
: 0.1
compared with any A transformations considered in Table 2. It may be claimed that

BMM is substantially better than BWH' From Table 3, it is seen that the use of
Wilson-Hilferty approximation should be prevented. Although in a less strong sense,

the use of BMM should also be prevented. In a list of Wilson-Hilferty approximation



to'the Poisson probability densities for various X values, the support (i.e. the
smallest set of k values that together attain almost the total'probability) relatively
has a very short range, even when A is large. In general, when the true values of

the Poisson probability densities are.QSed, it shows a support that éﬁpro*imately'

has a fgﬁge‘with center at A and a fa&ius;of 3/5; ané thé Subéorf appearé s&mmetrié

with the center at A as A becomes large.  However, irrespective of the magnitude of

A, the support that corresponds to.the Wilson-Hilferty approximation is always sub-

stantially shifted to the left and it has a radius of less than /X . and it is un-

symmetric even when A is large. On the otherAhand;’the subport that corresponds
to the Makabe-Morimura approkimation is about the same as that corresponding to the true
Poisson probability densities. Nevertheless, it is lafgelyiﬁnéymmetric, and soﬁe-
times the Makabe-Morimura approximation becomes negétive. The'support that cor-
responds to any of the A approximations almost completely coincides'with the -true
support. Such preceding facts provide Some insight about the re#sons of poor
performance of the Wilson—Hilferty appro#imation and the Makabe-Morimura app:oximat;on.
In Table 4 a list of the true Poisson probability densities and their cor-
réspoﬁding AKo . values for various_i values is presented to show the extent of ac-

curacy of AK - It undoubtedly proves that AK - approximates the Poisson prob-
- : 0

0.1 .1

abilities very closely.

ey
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5. Conclusions

Approximation to Poisson probabilities appears to be rather accurate if it
is obtained by first using a power transformation to transform the Poissons to
the standard normal, then refering to the standard-normal table to find the end

result. Especially the approximation Ak which is baséd'on the power'frans—
0.1
/3 :

formation (X+O.l)2 outperforms those that are based on the square-root type

transformations as proposed in literature. The traditional Wiléon&Hilfercy ap-

proximation and Makabe-Morimura.approximation are extremely pour vuupared with A @

» o S ‘ L o 0.1

The approximation AK is a very close approximarion for Llie Poisson probabilities
. 0.1 .

even for values of A as small as 0.4, All of such facts are proved numerically with

d ,D,d , and D as the measures of error.
s’ 7s’ "rs rs



‘Table 1

Values of the Smirnov errors and the relative Smirnov errors of approximations

using (x+c)2/3-type transformations (c=0,0.1,1/3) for different A's.
: ds(drs) . : "Ds(Drs)' o
A : ' - ' ‘
% *o.1 A"-‘113 %, *o.1 Al(1/3‘

0.4 .0157 .0246 ~ .0487 .0087 .0246 . 0487
0 (.086) - (.133)  (.525) " (.013)  (.037)  (.073)

0.8 .0222 .0136 .0270 .0188 .0136 .0320
(.147) (.090) (.674) (.093) (.030) (.040)

2 .0126 .0031  .0163 .0126 .0035  .0163
(.101)  (.049)  (.330) ~ (.093)  (.023)  (.121)

4 .0030 .0008 .0057 .0039 .0013 0084
(.199)  (.116)  (,249)  (.166) ~ (.042)  (.249)

10  .0007 .0003  .0014 - .0014  ..0006  .0033
(1.000)  (1.000) (.546)  (1.000) (1.000)  (.546)

50 .0002 . 0002 .0002 .0005 .0004 . 0009
(1.244) (1.276) (1.352) (1.000) (1.000) (1.000)

100 .0001 = .0001 .0001 ~  .0004 .0004 .0006
(2.072) (2.440) (2.493) (1.000) (1.000) (1.000)
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Table 2

Values of the Smirnov errors dS and Ds in the form of ds(DS) of the approximations

derived by using transformation from Poisson to the standard normal.

A AMM AA A'?'T AT]. . ﬁ(o .1
0.4 ..1275  .0470 - .0472 0371 0246
(.1073)  (.0235) (.0256) (.0371)  (.0246)

0.8  .UBLU  .0497 - .0471 ,0200 - .0L36
(.0810 . (.0436)  (.0408) (.0179  (.0136)

2 0535 .0183 .0198 L0410 - .0030 -
(.0446)  (.0275) (.0288  (.0273)  (.0035)

4 .0260 .0118 .0119 .0139 - .0008
(.0325) (.0181) (.0190)  (.0150) (.0013)

10  .0110 .0045- .0047 .0055 .0003
(-0209)  (.0108)  (.0112) (.0102)  (.0006)

50 .0020 . ,0010 .0010 .0009 -0002
(.0095) (.0047) (.0047) (.0048 (.0004)

100 .0010 .0005 .0005 . 0005 .0001
(.0067) (.0034) (.0034) (.0034) (.0004)
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Table 3

Values of the Smirnov errors and the relative Smirnov errors of the Wilson-Hilferty
approximation (B, ) the Makabe-Morimura approximation (B, ),and AK (using

“WH MM 0.1 »
). ‘ T

transformation T

L
a@y ()
B B = B B .
A wu e T .1
0.6 ° .3295° - .5016  .0246  .3295  ©.1320 .. .0246

(1.000) (.955) (.133) (.492) (.166) (.037)

0.8 .5491 .3875 .0136 .5491 .1117 .0136
(1.222) (1.408) (.090) (1.222) (.249) (.030)

2 ..3079 - .1425 .0030 .5791 .0622  .0035
(2.004) = (2.096) (.049) (2.004)  (.366) (.023)

4 .3314 .1062 .0008 .5269 .0362 .0013
(1.951) (3;220) ©(.116) . (1.216)  (1.361)  (.042)

10 .3067 .0988 ..0003 © .4317 .0224 .0006
(2.626) (226.8) (1.000) (1.000) (466.3) (1.000)

50 .1825 .0934 0002 .3696 ,0101  .0004
(3.306)  (1059)  (1.276)  (1.000)  (19657)  (1.000)

100 L1345  .0924 .0001 .3518 - .0072 . .0004
(3.408) (384.4) (2.440) (1.000) (1823) (1.000)
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Table 4 .

Values of the Poisson probability denSity p and its approximation 5 by using.

A at representative X's for different A values.
0.1 : :

A
X -0 1 2

0.4 p .6703 .2681 .0536

T p L6457 . .2843 ¢ .0607
X 0 1 2 3 4

0.8 p .4493 .3595  .1438  -,0383 = .0077
p  .4357  .3644  ,1489 - ,04612  ,0084
X 0 1 2 3 6

2 p .1353  .2707  .1804  .0902  .0120
p .1322  .2706  .1812  .0913  .0126
X 0 2 4 6 8

4 p .0183  .1465 .1954 L1042 .0298
p ..0175 .1461 .1952 .1043 .0303

, X 4 8 11 14 17

10 p .0189 J1126 1137 .0521 .0128
p .0192 ° .1124 .1138  .0519 .0130
X 37 43 50 ' 57 63

50 p .0102 .0363 .0563 ° .0330 .0105
p .0103  .0361 .0565 .0329 .0106
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