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1. Introduction 

Calculation f o r  t h e  Poisson p r o b a b i l i t i e s  frequently involves ca lcula t ing 

high f a c t o r i a l s  which becomes tedious  and time-consuming with regular  calculators.  

The usua l  way t o  overcome t h i s  d i f f i c u l t y  has been t o  f ind  approximations by 
. . . . 

making use  of t h e  t a b l e  of s tandard normal d i s t r ibu t ion .  A s  indica ted  in  

Johnson and Klotz (1969), by r e l a t i n g  t h e  ~ o i s s o n  p robab i l i ty  t o  t h e  Chi-squares ' 

and applying Wilson-Hilferty's normal-distr ibution approximation t o  t h e  Chi- 
. . 

square d i s t r i b u t i o n ,  one 'has  an approxbkt ion '  for '  the .  ~ o i s s o n  probability.' An 

o f t e n  used method is t o  transform Poissons t o  t h e  standard normal, then obtain 

t h e  p r o b a b i l i t i e s  from t h e  standard-normal'table. Along t h i s  line Makabe and 

Morimura (1955) suggested an approximation by.using t h e  t r i v i a l  t ransfornat ion 

(x-A) /& ,(A is  the  Poisson parameter) t o  t rans£ o m  a Poisson t o  a standard normal. 

I n  f a c t ,  Makabe and Morimura obtained approximation f.or t h e  standard-normal prob- 

a b i l i t i e s  i n  non-integral form, which lead t o  an approximation f o r . t h e  Poisson 

p r o b a b i l i t i e s  t h a t  does not  r e q u i r e  t h e  use  of the  standard-normal table.  In  

genera l ,  one may consider with any of the  t r a d i t i o n a l  t ransformations from Poisson 

t o  normal a s  proposed noticeably by Tukey (1957), Freeman and Turkey (1950), 

Anscombe (1948), and B a r t l e t t  (1936). Recently a new transformation was proposed 

- by Kao (1978) . that  appears t o  perform b e t t e r  f o r  t h i s  purpose. . I n  t h i s  paper 

a c l a s s  of approximation methods a r e  s t a ted  and compared numerically, including 

an approximation method t h a t  u t i l i z e s  a modified version of Kao's transformation. 

Now l e t  X be a'random v a r i a b l e  t h a t  has t h e  p robab i l i ty  densi ty  function 

f (x) defined by 

-A x 
' f ( x )  = e h /x!, x=0' ,1,2 ,... ( 0 0 ) .  (1) 

Then X is sa id  t o  have t h e  Po i s son .d i s t r ibu t ion  with parameter, A .  No'te t h a t  

2 3 4 - 2  
EX= A,  E(X-A) = A ,  E(X-A) = A ,  and E(X-A) = 3A + A ,  e t c . .  . 



2. The Trad i t iona l  Approximations of Poisson P r o b a b i l i t i e s  

Since (x-A)/,& converges i n  law t o  standard normal (denoted by N(0,l)) a s  

A*, i t  may be shown using Taylor 's  expansion t h a t  f o r  most funct ions  g admittirig 

t h e  f i r s t  d e r i v a t i v e  and g'(X) # 0, , ( g ( ~ ) , - g ( ~ ) ) / ( , 6 g ' ( ~ ) )  converges in law t o  . . 

0 a ,  A .  Therefore, in  cons ide ra t ion  that g(k) and , f i g m ( ~ )  be f u n c t i b a i l y  

independent of A,  square-root type dunctions are proposed f o r  g. Then ,figa.(1) 

converges t o  1 /4  as A*. It should be  noted he re  t h a t  t h e  approxba t ion  i sgood  Iln 

... the sense.  t h a t  X .%is large . .  The 'square-root . t ransformations.  a v a i l a b l e  in literatvre : 
. . .  . . . . . . . . . 

inc lude tB(X) = 2- ( B a r t l e t t  (1936)), tA(X) = 2 m  (Anscornbe (1948)) , 

(x) = fi + (Freeman and %key (1950)) , tZ1(x) = 2& (Tukey (1957)). Such 

considera t ion 'on g(X) and ,Jj;gq(~) a s  ,prescr ibed is needed f o r  dealing wi th  Poisson 
. . 

regress ion problems, but it i s  not. needed f o r  approximating t h e  ~ o i s s o n  probabi l i t ies :  

In t h e  la t ter  case,  t ransformations of t h e  forms l i k e  log(~+X) (Tukey (1957)), and 
2 /3 

1.5 X (Kao (1978)) a r e  equally applicable.  In what follows the transformations 

from Poisson t o  standard normal t o  be inves t igated  a r e  

( i )  Tmi(X) = ( x - A ) / ~ ,  

( i i )  TT1(X) = 2 ( K -  f i + 0 . 1 2 5 / & ) ,  

- - (iii) T~=(X) = fi+ JX+1- fi- A X +  n . 2 5 / K S  

(iv) Tg(X) = 2(JX+3/8- -+ 0 . 1 2 5 / m ,  

(v) T~~ (x) = 2.A [Zog(X+A) - log  2~ + 0.125 x 1 , 

(vi)  T (X) = 1.5 (x2I3 - A2I3 + / A l l 6 ,  and 
Kb Q 

Let X>O be given and T be a transformation among ( i )  through ( v i i ) .  Then 

f o r  k =  0,1,2, .  . . , l e t  a k =  T(k-0.5). bk= T(k) , and c k =  T(k+O.5). Denote t h e  

cumulative d i s t r i b u t i o n  function of t h e  standard normal by 9, then w e  take  



@(ck> f o r  k=O - - 
'k 9(ck) - @(ak) f o r  k > ~  

t o  be an approximation f o r  the  P o i s s o n  p robab i l i ty  d e n s i t i e s  P,{x=~I. . The s p e c i a l  

f e a t u r e  in  Hakabe and Morimura's approximation is t h a t  . a f t e r  doing t h e  t r i v i a l  

t ransformation,  T MM (X) = (x-A) 1.6, theyf sygges ted  using .nk i n s t d d  of Ck, where . , 

nk 
is defined by 

' 9  

. . 
. . 

The 'method t h a t  gives approximation t o  Poiison p r o b a b i l i t y  by relating , t b  . , . . . 
' 

2 
t h e  x (Chi-square) d i s t r i b u t i o n  b a s i c a l l y  makes use  of t h e  r e l a t i o n  t h a t ,  f o r  

Then apply t h e  Wilson-HiVerty (1931) a p p r o & i a t i o n  t o  t h e  X2 d i s t r i b u t i o n .  .. It . 
. . -  

follows t h a t  c- .. 

where 

Accordingly, f o r  t h e  p robab i l i ty  d e n s i t i e s  we have 

P { ~ = k }  + - @(Zk). 
r 

For t h e  Poisson cumulative.~~probabilities P: r {x&}. (The .approximation 

t h a t  corresponds t o  (2) wi th  any transformations ( i )  through ( v i i )  is , 

In  addi t ion  t o  (3) t h a t  t r e a t s  t h e  Poisson p robab i l i ty  d e n s i t i e s ,  Makabe and 

Morimura a lso  suggested t h e  following approximation t o  Poisson cumulatives: 



where t h e  transformation t h a t  defined the  a 's and t he  c 's was taken t o  be T 
k k MM* 

Actually along t he  same l i n e  of (7) one may suspect t ha t  f o r  any transformation 

among t h e  ttansf ormat ions  o'f . (i). 'through ' (vi i)  t he  f ollowirig approximat ion t o  

Poisson cumulatives is applicable:  

. . .. . . . . . . 
~ e ~ a r d i n * '  t h e  choice of a transformation, T was a i s o  shown 'in' Ka. (1978) 

Ko 
t o  be  more des i rab le  than t h e  o thers  among t rans fomat ivns  (i) through (vi).  In  

f a c t ,  as a modified vers ion of T 
TK (i.e. transformation ( v i i ) )  is considered 

Ko 0.1 
a b e t t e r  choice than T 



3. The Proposed Approximation 

It. was argaed i n  Kao (1978) t h a t  f o r  large.  A ,  t h e  power transformation 

r 
T(x) = (x+d) appeared t o  be most d e s t r a b l e  when r = 2 / 3  was taken, assuming t h a t  

dcCA a p d l i m  d/A = 0. By simply . . taking d =  0, one obta ins  t h e  transformation TK . 
.A+= . . 0 .  - - 

I n  addi t ion  t o  s e t t i n g  r =  213, it  is now found that b =  0 .1  should be considered f o r  

b e t t e r  approximation r e s u l t  when: X is  small, and T is thus proposed. The 
.kO. l  

reasoning is t o  be described in what follows. 
. . .' . . . '  

~ e . n o v  l e t  T(x) =' (x+d)'. with df<A and l i m  d/X = 0.. - Then let v = M.. . By . . . 

1-bE. 

t h e  Taylor 's  expansion, it  can be shown t h a t  f o r  l a r g e  X w e  have . ' 

Therefore, t h e  skewness y3 and t h e  kurtos ' is  y4 (c f .  Kendall and S t u a r t  (1958)) 

. . have t h e  following approximates: 

y3 = p3/p:l2 3 (3r-2)(A+d) 
-312 

and y4 = Y4/"-3 2 .0 .  

Actually it may be f u r t h e r  shown that y 4 = 0((~+d)-') i r r e s p e c t i v e  of t h e  value 

of r b y  a d e t a i l e d  Taylor expansion. Since t h e  normally-distributed random 

var iab les  have zero skewness and kurtosis, t h e  most des i rab le  vaule  f o r  r i n  

t h i s  regard i n  213: Furthermore, a f t e r  s e t t i n g r i  213, w e  then have 

It i s  the re fo re  expected t h a t ,  i n  view of t h e  var iance  value,  by taking d = 1 / 3  

t o  obta in  t h e  corresponding. transformation T ins tead of taking d = 0 t o  
kO. 33 

obtain T one .would have t h e  transformation T c lose r  t o  standard normal. 
, K0.33 



Nevertheless, s ince  such considerat ion is i n  the  sense of approximation, d = 113 

is not  p rec i se ly  the  value of d t o  produce t h e  bes t  r e s u l t .  It is found numerically 

t h a t  t h e  bes t  value f o r  d is around t h e  neighboring va lue  d '= .0 .1 .  Now, f o r  a 

given d, we def ine  t h e  transformation T by . _  . . _  .Kd . . 

Then, in line with ( 2 )  and (6) ; there corresponds t h e  approximation defined 
. . . - . %, . . . . 

by . .: - .  . . 

( (kM.5)) f o r  k= 0 
Kd 

(1 2) 

4(T (kM.5)) -4(T (k-0.5)) for k > O  
Kd Kd 

From t h e  foregoing discuss ion,  i t  i s  proposed t o  .have & as t h e  bes t  approximation 
0.1 

f o r -  t h e  Poisson probabi l i ty .  Natural ly,  we  de f ine  f o r  t h e  cumulatives correspondingi 



4. Numerical Comparison of .Approximations 

To make comparison on t h e  accuracy'of  t h e  various approximations, w e  use  

measures d S, Ds, drs, and D a s  the' .accuracy indica tors .  For an approximation 
r s - 

' A(X=k) t o  approximate P={x=~) ,  and value  %(x*) t o  approximate P > x ~ ~ I ,  d e f i n e  

and 

D = max 
r S 

. . O&<- P {X*I 
r. 

I 
' 

ds and Ds a r e  c a l l e d  t h e  Smirnov e r r o r s  ( respect ive ly  f o r  t h e  dens i ty  and t h e  

cumulative). d and D a r e  correspondingly c a l l e d  t h e  r e l a t i v e  Smirnov e r ro r s .  
rs r s 

The t r a d i t i o n a l  approximation obtained by applying t h e  W i l s o n - ~ i l f e r t y  

- - approxim;ltion t o  t h e  X2 d i s t r i b u t i o n  as indica ted  by (4) and (5) w i l l  be denoted 

by BWH. The Makabe-Morimura's approximation a s  ind ica ted-by  (3) and 

w i l l  be  denoted by Bm. For t h e  approximations t h a t  are derived by making a 

transformation from Poisson t o  normal and followed by using (2) and ( 6 ) ,  they w i l l  

be d e n o ~ e d  by A 3nd proper subscr ip ts .  For ins tance ,  +T denotes t h e  

approximation t h a t  corresponds t o  t h e  transformation T 
FT' 

1t.. should be noted t h a t  t h e  Poisson-? r e l a t i o n  immediately befbre  (4) may 



be replaced by 

However, t h e  numerical r e s u l t s  show t h a t  using t h e  right-hand s i d e  of (16) a 
i 

worse r e s u l t  is obtained. Such f a c t ' i s  no t  shown i n  any of t h e  t a b l e s  provided, 
1 

Regarding t h e  values  of d one f i n d s  t h a t  with each of t h e  approximation methods . rs ' 
d is a t t a i n e d  by s0me.k a t  t h e  r i g h t  t a i l  of t h e  Poisson distribution, while D rs 

. . . . . . 
rs . . 9 '  

i s  a t t a i h e d  a t  t h e  l e f t  tail .  They a r e  thus  xi02 as p r a c t i c a l  a s d s  and Ds f o r '  - 

ind ica t ing  t h e  accuracy of approx imat io~s ,  Nevertheless, t h e  consistence of almost 

everywhere between t h e  f a c t s  a s  shown by (d ,DZs) and t h e  f a c t s  a s  shown by (d ,D ) r 6 0 0 

in a l l  t h e  t a b l e s  r e i n f o r c e s  t h e  conclusions t o  be - s t a t e d  in what follows. I n  ad- 

d i t i o n ,  it is found t h a t  !T2 is very poor compared wi th  t h e  approximations i n  Table 2, 

and is the re fo re  not  considered in t h a t  table .  Furthermore, it should be noted t h a t  

i f  (7) o r  (8) rep laces  (6) f o r  t h e  cumulatives wi th  t h e  A approximations, t h e  

accuracy is considerable decreased. 

It appear s i n  T a b l e l t h a t  except f o r  A a s  s m a l l a s  0 . 4 , $  is d e f i n i t e l y  
0.1 

b e t t e r  than is  placed t h e  t h i r d  among t h e  t h r e e  approximations 

throughout t h e  X values. Therefore, + is f u r t h e r  compared with t h e  o ther  A 
0.1  

approximations in ~ a b i e  2 including htn' $T, % , A A  According t o . ' ~ a b l e  2 ,. t h e  A 

approximations a r e  a l l  d e s i r a b l e  and q( s tands  out  t o  be t h e  b e s t  f o r  a l l  cases. 
0.1 

I n  Table 3, t h e  t h r e e  approximations Bm9 Bm, and + a r e  compared. It i s -  
0.1 

obvious t h a t  t h e  Wilson=Hilferty approximation and t h e  Madabe-Marimura approximation 

are very poor compared with fk . I n  f a c t ,  they a r e  a l s o  very poor approximations 
0.1 

compared wi th  any A transformations considered in Table 2. ,It may be claimed t h a t  

Bm is s u b s t a n t i a l l y  b e t t e r  than Bm. From Table 3, it i s  seen t h a t  t h e  use of 

Wilson-Hilferty approximation should be prevented. Although in a l e s s  strong sense, 

t h e  use of B should a l s o  be prevented. In  a list of Wilson-Hilferty approximation 
MM 



t o  t h e  Poisson .probabil i ty d e n s i t i e s ' f o r  var ious  X values ,  t h e  support  ( i .e .  t he  

smal les t  s e t  of k values t h a t  t o g e t h e t ' . a t t a i n  almost the  t o t a l  ' p robab i l i ty )  r e l a t i v e l y  

has a very shor t  range, even when X is la rge .  In  general ,  when t h e  t r u e  values of 

t h e  Poisson p robab i l i ty  d e n s i t i e s  a r e . u s e d ,  it shows a support t h a t  approximately 
. . . . . .  . . . .. . 

has a range wi th  cen te r  a t .  X and a radius..of 3.fi, and t h e  support appears symmetric 

wi th  t h e  cen te r  a t ,  X as A becomes large. ' :  However, i r r e s p e c t i v e  of t h e  magnitude of 

A, t h e  support t h a t  corresponds t o , .  t h e  Wilson-Hilferty . approximation is always sub- 
. . . . . . . . 

. . 
s t a n t i a l l y  k h i f t e d  t o  t h e  l e f t ' a t id  it  has  a r ad ius  of l e k s  than ,& . and it. is un- . . 

symmetric even when, X is large .  On t h e  other .  hand, ' the  support  t h a t  corresponds 

t o  t h e  Makabe-Morimura approximation is about t h e  same as . tha tcor respond ing  t o  t h e ' t r u e  
. . 

Poisson p robab i l i ty  dens i t i e s .  Nevertheless, i t  is l a r g e l y  unsymmetric, and some- 's 

t imes t h e  Makabe-Morimura approximation becomes negative. The support  t h a t  cor- il 

responds t o  any of t h e  A approximations almost completely coincides  wi th  t h e  t r u e  

support. Such preceding f a c t s  provide some i n s i g h t  about t h e  reasons of poor 

performance of t h e  Wilson-Hslferty approximation and t h e  Makabe-Morimura approximation. 

I n  Table 4 a list of t h e  t r u e  PoTsson p robab i l i ty  d e n s i t i e s  and t h e i r  cor- 

responding q< va lues  f o r  var ious  X va lues  is  p r e s e n t e d ' t o  show t h e  extent  of ac- 
0.1 

curacy of $ . It undoubtedly p r o v e s t h a t  q( . approximates ' the Poisson prob- 
- 0.1 0.1 - 

a b i l i t i e s  very c lose ly .  



5. Conclusions 

Approximation t o  Poisson p r o b a b i l i t i e s  appears t o  be r a t h e r  accura te  i f  it 

is obtained by f i r s t  using a power transformation t o  transform t h e  Poissons t o  

t h e  standard normal, then re fe r ing  t o  t h e  standard-normal t a b l e  t o  f i n d  t h e  end 
. . . . .  . . 

. . r e s u l t .  Especia l ly  t h e  approximation q( which is basedon the yuwer' trans- 
0.1 

formation (x+o.u''~ &tperforms those  t h a t  are based on t h e  fquare-rpot typo 

transformations as proposed in l i t e r a t u r e .  The t r a d i t f o n a l  Wilson-Hilferty ap- 
. . 

p.roximation and ~akabe-~orfmuraap~roximatfon a r e  ejirremely . pour ,&bared with + . U: 

0-1. 
The approximation q( is a very c l o s e  approximarfun for Llre Poisaon probobi l l t i a s  

0.1 
even for va lues  of A as small  as 0.4. U P  of such f a c t s  are proved numerically wi th  

dSs Ds. drSi and Drs as t h e  measures of e r r o r .  



Table 1 

Values of the Smirnov errors and the 're la t ive  Smirnov errors of approximations 

using ( X + C ) ~ ' ~  - type transforgations (c =' CI,0.1,1/3) for  di f  f e r h t ,  i ts .  



Table 2 

Values of the Smirnov errors d and D in the form of d (D ) of the approximations s S s S 

derived by using transformation from Poisson to the standard normal. 
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Table 3 

Values of the Smirnov errors and the r e l a t i v e  Smirnov errors of the Wilson-Hilferty 

approximation (B ), the Makabe-Morimura approximation  and 4( (using .WII 0.1 
transformation T ). 

Ko.l. : 



Table 4 

Values of the Poisson probability density p and its approximation p by using 
A 

q( a t  representative X ' s  f o r  different, A values: 
0.1 
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