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ABSTRACT .

Let X have a beta-binomial(m,p,e) distribution, truncated such that X > t
for t = 0 or 1. Suppose that independent observations of X are available.
A consistent estimator of (p,e) is given, based on the first three sample
- moments. This may be used as a start for maximum 1likelihood estimation or
jackknifing. The standard assumptions fof a C(a) test that X is truncated
binomial do not hold. However a test is proposed based on jackknifing the
~sample variance of X. Some Monte Carlo comparisons are given. For '
moderately small data sets, these comparisons show that (1) the moment
estimator is often superior to the MLE, and (2) the C(a) test is-superior

to other proposed tests, in spite of its lack of theoretical justification.



1. SUMMARY

Suppose that X has a beta—bihomia](m,p,e) distribution, truncated such
that X >t for t = 0 or 1. Suppose also that independent observations of X
are available. The maximum 1ikelihood equations are easy to write down,
but solving them for p and e requires a numerical iteration procedure. A
consistent estimator for (p,e) is presented here, based on the first three
sample moments of X. For small samples, this moment estimaté may give
impossible values, but if it gives possible values it can be used as it is,
or as a basis for jackknifing, or as the starting point for the maximum
1ikelihood iterations.

Diagnostic checks on the model assumptions are suggested. Simp]é
standarized residuals are proposed for investigating whether the data
deviate in some unspecified way from the assumptions. A departure from the
assumptions which is of special interest is e=0, i.e., X is truncated
binomial. This can be tested based on a jackknife confidence interval for
e. Or the C(a) test statistic can be used, even though the assumption for,,
asymptotic optimality of the test does not hold. Or a simple test based on
the sample variance of X can be used. For small or moderate samples, the
significance levels are all based on jackknifing.

Monte Carlo simulations are used to compare the various estimators and
the various tests of e=0. For the range of parameters and sample sizes
considered, these comparisons show the following. Jackknifing the moment
estimator is generally not helpful, and often very harmful. Neither the
maximum 1ikelihood estimator nor the moment estimator dominates the other.
The jackknife confidence intervals for p and e are not reliable for sample
sizes as small as 30. The C(a) test is clearly superior to the other
proposed tests of e=0. '




2. BASIC CALCULATIONS

A random variable Y has a beta-binomial distribution with parameters
m, p, and e if '

T (prre) T (qvre)

- p*tre) g+*re)

POV = k) = (1) =2y 0 (1)
rEO (1 + re)

where m is a positive integer, k is an integer from O to m, and the other
parameters satisfy 0 < p<1l, q=1-p, e >0. The distribution arises if
= has a beta(a,8) distribution and if Y given = has a binomial(m,)
distribution. The parametrization (1) follows Griffiths (1973) and

Tarone (1979), and is obtained by setting

p=E(n) =a/(a *+8)
8 =1/(a +8).

If @ = 0, then Y has a binomial(m,p) distribution.

In this paper X will have a.truncated beta-binomial distribution,”wifh

X >t, where t = 0 or 1. That is, for k > t
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k) / P(Y > t) | (2)

with the distribution of Y given by (1). One way in which this truncated
distribution could arise is as follows (Georgin and Roy 1978.) A system of
m COmponents is occasionally hit by a shock. If a shock hits, then each
componént fails with some probabi1ity m, and the components behave
independently of each other. On any one shock, = is the same for all the
components, but » varies from shock to shock according to a beta
distribution. The variability of = means that the shocks differ in




severity. Under these assumptions, the number of failed components on a
random shock has a beta-binomial distribution. If the shocks themselves
are not observable, but if instead only instances of failed components can
be observed, then the observed failures follow a truncated beta-binomial
distribution with t = 0. Now suppose, in addition, that components can
fail individually, without any shock. I[f these failures cannot be
distinguished from instances when a shock causes just one component to
fa11; then the relevant data set for inference about the shocks has a
truncated beta-binomial distribution with t = 1.

We will assume thatm >t + 3. For if m =1t *+ 2, then X can take only
two values, so the distribution of X is determined by a single parameter.

Suppose now that X1seeeXy are'independent observations of a
truncated beta-binomial random variable, with known m and t and unknown p
and e. Abbreviate Expression (1) by R(k). Then log L, the logarithm of
the 1ikelihood is

I
~
+
oS |
o
«Q
p o]
——
>
-t
o
}
>
vl
le)
7=l
—
—
1
Mr—r
x
=
N
—

i=1 k=0
n X.-1 m—xi-l m-1

=K + ZZ [ jé log(p + re) + 25 log(q + re) - ZE Tog(l + re)]
i=1 r=0 A r=0 =0



defining T. Here K does not depend on p or e.

There is no low-dimensional sufficient statistic for p and e. The
proof of this assertion is similar to that of Example 2.16 in Cox and
Hinkley (1974).



3. ESTIMATORS
3.1 Maximum Likelihood Estimators

Differentiation of log L is straightforward. We obtain

[ X.-1 m=-x.-1

] |
1. 1
- L D> FFw T §Fre |
i=1 r=0 r=0
t k-1 - mk-1
1 1 |
D RE D g ) gEe | T
k=0 r=0 r=0
3 .
75 09 L
n xi—l ' m-xi—l : m-1 ‘ .
2SS et Y e 2T | -
i=1 r=0 r=0 r=0
g k-1 - m—k -1 m-1
. . e
o 25 R(k) p *re * 25 q*tre ji +re 2l
k=0 r=0 r=0 r=0 .

Formally, the maximum 1ikelihood estimates p and e are .the solutions of"

3
T ) log L =‘O




3
T PYy log L = 0.

We have not verified that these equations have a unique solution. Indeed,
Kleinman (1973) seems unable to verify that the solution is unique in the
simpler untruncated case. Therefore a numerical procedure for solving the
maximum likelihood equations should also search at scattered values of p
and e to see if log L seems to be unimodal.

3.2 Moment Estimators
An an alternative to maximum likelihood estimation, -one can base
estimates on the sample moments of X. Let X and Y be related by

Equations (1) and (2). We first obtain the population moments of X.

Define the notation

b0) _ b(bo1) ... (b=j*1)

for any real b and bositive integer j. Define'b(o)

= 1. Then a little
algebra shows that. .

P(Y > t) E [x(j)]
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~where m' .=m-j, p' = (p * je)/(L * je), q' =1 -p', and &' = /(1 + je).
So finally '

. n_ (p*re) .
(3) _ (§) r=0_ - P(Y' > t-])
EXTTT = 32 PY > ©)
' n (1+ re)
where
Y ~ beta-binomial(m,p,e) )
Y' ~  beta-binomial(m-j, [p *+ je)/[1 + je], e/[1 * je]).

In particular, if t=0 then

EX = ol
=P >0)




If t=1, then

m=2 m-1
mp-{lf.4r20.(q *re) [ I (1~ re)} _

EX = PTY > 1)

If t=0 or 1, then

m-1
+

EX(X-1) =

(m-1)p(p_* &)
T Fe) P(Y > 1)

and

m{m-1) (m=2) p(p * e)(p * 2e)
EX(X-1) (X-2) = ST oI+ BT PIT 5 1)

~ The moment estimators presented below are based on the three moments
EX, EX(Z) and EX(3), and the corresponding sample moments. Denote the
sample moments by

for i=1 to 3. Define

dO(Sl’ 52, S

3 = (m-2)s,° + (n-1) (n-2)5, S, - 2(n-1)3; S

dl(sl’ 32, 53) = dO(Sl’ SZ’ S3) + 2mS3 - 2m(m-2)52.




THEOREM. Let X > t have truncated beta-binomial(m,p,e) distribution, with
0<p<.l,ande >0.

(a) Suppose t=0. Then

il 2 4
p* = [2(m-2)$," - $,55 - (m-1)5;531/ dg(Sy5 Sps S3)

and

o* = [(m-1)$,55 - (M-2)5,° 1/ dg(Sq, Sy S3)

converge in'probab11ity to p and e.

(b) Suppose t=1. If d,(EX, ex{2) ex(3)y 4 0, then

. 2 1, 4 e
p* = [Z(m—Z)S2 - 5233 - (m—3)SlS3 - Z(m—Z)SISZ] / dl(sl’ 52, 53)

and

o* = [(m—l)31$3 - (m—2)522+ (m—-2)$132 - ms3] / dl(sl’ SZ’ 53) -

converge in probability of p and e.
The proof is given in the appendix.

In part: (b), the assumption dl(EX,EX(Z),EX(3)) # O‘seems'to be
true always. A computer calculaion has shown that it is true if p takes
any of the values 0.0001; 0.9999, or an integer multiple of 0.01 up to
0.99, if o/(1l%e) takes any of these values or the value 0, and if m is any
integer from 4 through 100. |



For small samples, p* and e* may be impossible, i.e., the denominator
in the expressions may be zero, or if it is nonzero the estimates may not
satisfy 0 < p <1, e >0. In any.of these cases another estimation
procedure must be used.

Johnson and Kotz (1969) mention the asymptotic efficiencies of moment
estimators for various other truncated distributions. They are “remarkably
high" (over 90 percent) for'the truncated binomial distribution, (p. ' 75),
over 70 percent for theAtruncated Poisson (p. 106), and "very inefficient"
in one case and over 55 percent in another case for the truncated negative
binomial (p. 137). The efficiency of moment estimation seems to depend
greatly on the underlying distribution and on the details of how the
moments are used. The moment estimator presented here performs quite well
in the Monte Carlo examples of Section 5.

In the Monte Carlo studies described below, moment estimates are used,
when they exist, as the starting points in an iteration sequence to obtain
the maximum 1ikelihood estimates.

3.3 Jackknife Estimators

A jackknife estimator may be constructed, based on either the maximum
1ikelihood estimator or the moment estimator. Far less computation is
required to use the moment estimator. In the Monte Carlo trials descf}bed
below, jackknife estimates and confidence intervals are based on the moment
estimates.



4., DIAGNOSTIC CHECKS ON THE MODEL
4.1 Alternate Model: Arbitrary-

let z, = P(X = k) for t < k <m, and let 3, be the MLE, obtained
by substituting the maximum 1ikelihood estimators for p and e into the
expression for P(X=k). Let N, be the number of observations with X=k. -
Conditional on the total number of observations n, Nk is
binomia](n,zk). So the kth "standardized residual",

.. Ne.mn 2 1
K [z (1-2)]°

has mean and variance approximately 0 and 1. Large or small values of the
Uk's, or strong patterns, indicate that X is not truncated beta-binomial.

If the sample size is large, a likelihood ratio test or x2 goodness
of fit test could be performed.

4.2 Alternate Model: o =0
Three tests of
HO: e‘= 0
wf]] be given, all based on jackknife confidence intervals for various
quantities. '

Test -based on-estimate of e

A jackknife confidence interval for e can be constructed, based on e*
or e. If the lower end point is positive, HO would be rejected.




C(a) test

In the untruncated case, Tarone (1979) gives the C(a) test for ‘
HO: o = 0. Tarone's test is asymptotically optimal (Neyman 1959). The
test is based on the statistic :

C = — 1og L(p, Ie—O

A necessary and sufficient condition for asymptotic optimality
(Neyman 1959) is that '

Ep,e:O [ T ae log L(p,e le 0 } =0. : (3)

In the truncated case, Equation (3) does not hold. (In particular, in the
simplest case, when t=0 and m=2, the left side of (3) equals

-2np/(1—q2).) Therefore, this theoretical reason for -using the C(a) test
is hot present.

However, C can be used anyway. Direct a1gebraic computation shows that

Epeo[—-1ogL(pe)l=0]=O

when t=0 or 1. Therefore, C should be compared to 0. With a small or
moderate data set, a jackknife confidence interval can be constructed for
EC. If the‘Tower énd of the interval is positive then HO would- be
rejected.



Test based on sample variance of X

It is well-known that the (untruncated) beta-binomial(m,p,e)
distribution has a larger variance than does the binomial(m,p)
distribution. If the variances of the two truncated distributions also
have this relation, then the sample variance can be used to distinguish
between the distributions. In fact, the situation is as follows.

Let VB(p) and VBB(p,e) denote the variance of a truncated
binomial(m,p) and truncated beta-binomia](m,p,e) distribution,
respectively, both truncated at the same t Z 0. From (1), it is clear that
as & »», P(Y=0) > 1-p and P(Y=m) » p. Therefore, EX > m and Ex2 > m2,
so VBB(p,e) » 0. Therefore, VBB(p,e) < VB(p) for some values of e. This

inequality is the reverse of what might naively have been expected.

However, the relevant comparison is not between VB(p) and VBB(p,e)
with the same p. Rather, to investigate whether the distribution is
binomial or beta-binomial, in one case we would estimate p with e assumed
to'be 0, and in the other case we would estimate both p and . -The two
estimates of p would be different! Let.ﬁO be the_maximum 1ikelihood

 estimator of p, assuming e=0. It is the solution of

5, = mp { 1 - ;g; (mgl) o qm';'k} // [ 1 - ;é () pK qm'k] T4

where 51 is the sample mean of X, as before. -Suppose now that X is
really truncated beta-binomial(m,p,e), and let Po be the Timit of p0 as

n e, 1.e(, the solution of (4) with S1 replaced by EX. To decide if
e=0, we comparé the truncated binomia1(m,p0) and the truncated

beta-binomial(m,p,e) distributions. So the relevant variances to compare
are VB(p;) and VBB(p,e).




Suppose that 0 < p< 1, & > 0. Ifm > t +3, t=0 or 1, and m < 100,
then computer calculations indicate that VBB(p;e) > VB(pO). The
calculations were performed on a COC 176, letting p and /(1 *+ &) each take
values 0.0001, 0.9999 and all integer multiples of 0.01 up to 0.99. A few
typical plots of VB and VBB are shown in Figures A-C. |

This justifies use of the sample variance to test whether e=0. Let
52 - S = S1(S; - 1) be the sample variance of X. Let VB(BO) be
the estimated variance of X obtained by substituting the MLE 60 into the
- expression for the variance of a truncated binomial random variable. For a

small or moderate sized sample, contruct a (one-sided) jackknife confidence
interval based on

If the lower end point is positive, reject the hypothesis e=0.



5. MONTE CARLO RESULTS
5.1 Description of the Procedure

Monte Carlo experiments were performed as follows. For the values of
t, m, p, and & of interest, psendorandom samples of the desired size were
generated.  Ninety-six such experiments were performed corresponding to. the
following values: '

t=0 or 1

m=5 or 20 ’ .
p=0.1,0.5, or 0.9

e=0, 1/3, 1, or 3

sample size = 10 or 30.

The number of samples generated in an experiment varied from 1300 to 5000.
This is because the samples and corresponding estimates were stored, so
that the calculations for a particular sample would not have to be repeated
whenever the sample reoccurred. Sampling was continued until 5000 samples
or 1300 distinct samples were obtained. A few replications indicate that
this many samples gives numerical results which are accurate to one or two
significant figures. This is adequate for the comparisons made. Each
sample was generated as a multinomial sample, using the IMSL (1979)
subroutine GGMLT. | '

For each sample, the moment, jackknifed moment, and maximum 1ikelihood
estimates of p and e were calculated. Jackknife confidence intervals were
also calculated for p and e, based on the pseudovalues of the moment
estimators, as described more fully below. The three tests of e=0

~mentioned in Section 4 were performed. Another set of quantities was also

estimated, based on the three estimates of (p,e), and confidence intervals

‘were calculated based on the pseudovalues of the moment estimates. These

quantities were



k-1
Ak = ? (p * re) /’[ rEO (1 + ré) P(Y > t)]

for t < k < 4. The quantities A are of natural interest in the shock
example of Section 1. In that example, if the shocks occur with rate u,
then observed failure instances occur with rate x = u P(Y > t), and a

particular set of k components fails with rate *Ak'

Jackknife confidence intervals were not calculated by assuming a
normal distribution for the pseudovalues, since the distributions were
often highly skewed. Réther,'from a sample of size n, the ith and
(n + 1 - 1i)th ordered pseudovalues were used as a confidence interval with
nominal level 1 - (2i - 1)/n. This nominal level is based on a continuity
correction. In this way, 90 percent intervals were found, using n=10 and
i=1, or n=30 and i=2. One-sided tests of HO:e=O were based on such
intervals, with a nominal significance level of 0.05.

~ For some samples, the estimates of Section 3 were 1mpdssib1e'or ,
undefined. In such cases, the following estimates were used. (a) If every
element of the sample had value t+1, then the moment estimate and MLE of p
and e were set to 0. (b) If every element of the sample had-va]ue m,‘then
the moment estimate and MLE of e were set to O, and the moment estimate and
MLE of p were set to 1. (c) If the moment estimates were impossible (i.e.,
violating 0 < p <1, &> 0), or if they were undefined (because
d5(S1,55,53), resp. dl(Sl,SZ,S3),4was zero), then the
following procedure was followed. In Equation (Al), resp (A5), e was set
to 0, the population moments were replaced by the sample moments,'and the
results was solved for p*. Then p was set to p* in (A2), the population
moments were replaced by the sample moments, and the result Was solved for
o*. If this e* was negative, it was set to 0. (d) If the jackknifed
moment estimates were impossible, i.e., violating 0 < p < 1 or e > 0, then
the moment estimates were used.




The maximum 1ikelihood estimates were found using the IMSL (1979)
conjugate gradient subroutine ZXCGR, starting at the moment estimates.

5.2 Conclusions

Of course, all the conclusions given below are valid only for the
range of m and sample size considered.

Estimators of p and e

The jackknifed moment estimator should not be used. In terms of mean
squared error, it is never much better than the simple moment estimator, it
is usually worse, and sometimes much worse.

Neither the moment estimator hor the maximum 1ikelihood estimator
dominates the other, in terms of mean squared error. If e=0, then the
moment estimator seems slightly preferable. If e=1 or 3, then the MLE is
better when p=.1, ahd the moment estimator .is much better when b:.S 6r'.9.
If e=1/3 and if m=5 or the sample size is 10, then the pattern is usually
Tike that for larger e. If e=1/3 and m=20 and the sample size is 30, then
the MLE is preferable. Tab}es 1 through 3 give more details. ‘

The confidence intervals, based on the pseudovalves from the N
Jackknifed moment estimators, are not reliable. The frequency‘thét the
interval covers the true value is often much less than the nominal level of
90 percent, although it does improve when the sample size increases from 10
to 30. Table 4 gives examples.

Estimators ‘of Ak

Jackknifing the moment estimator of /-\k is slightly worse than using
the moment estimator itself, in terms of mean squared error. The moment
estimator and maximum 1ikelihood estimator seem about equally good, with
the MLE slightly better in most cases.




The jeckknife intervals for Ak are generally conservative, except in
the two cases when (p,e) = (.1,0) or (.9,3). In these two cases the
observed coverage frequencies were low.

Tests of H.: 6=0

The C(a) test is clearly superior to the other two. -All three tests
have size which is less than the nominal value of .05. However, the C(a)
test has far better power. If the sample size is 10, no test has very good
power. Table 5 shows one case with sample size 30.




APPENDIX
The moment estimator theorem is proved here.

PROOF. (a) If t=0 then
e - el te) /(1% e) | | (A1)

ex(3/ex(@) 2 m - 2)(p. + 20)/(1 + 20) | (h2)

Solving for p and e yig]&s equations which are identical to the equations
in part (a) of the theorem, exéept the population moments EX(i) appear in
‘place of the_correspondin@ sample moments Sj. It is tedious but direct.

to show that

4
I

(o, e, g3y n b1 -2l (o o)L op)
| AL e)® (1 +20) PY > t)

. "i"
)

d9

: B ‘

which is nonzero if 0 < p < liz Therefore p and e are continuous functions
of the moments. Therefore,}é&zwe]l—known results in probability theory, p*
and e* converge to the correﬁﬂbnding functions of the population moments,

’

i.e., to p and e.

(b) If t=1, then the analogue of‘EqUation (Al) becomes very
cumbersome. An easier method is to imitate Rider (1955) and introduce a
third variable, and to solve three equations, as follows. Let X > 1 be the
truncated version of Y. Then ‘

EY =mp . (A3)

EY(Z) =m(m-1)p (p+te)/ (1 +e) (A4)



To obtain equations in terms of the moments of X, observe that

BV <3 K P(Y = K) *P(Y > 1) Tk P(x = k)
0 2
= P(Y = 1) + P(Y> 1) EX
and
ev(@ _p(y 5 1) ex(@

Substitute these expressions into Equations (A3) and (A4). From
Equation (1) calculate that _

PUY = 1) = 755 ey [1-P(Y> 1]

Substitute this, solve the two resulting equationS-tO‘e11minate P(Y > 1),
and obtain finally

X -mp = EX2) (1+6) - (m-1)(p +e) EX. ()

Thi's is one equation which p and e satisfy. The other equation is

- Equation (A2). Solving Equations (A2) and (A5) yields equations which are
identical to those in part (b) of the theorem, except that they are in
terms of EX(T)lihstead of 51' Here the assumption has been used that
dl(EX, EX(Z), EX(3)) is nonzero. So, as in part (a), p* and e*

converge to p-and e.
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TABLE 1. Mean Squared Errors of Estimates of p and e, when
t=1, m=5, sample size = 10a

......... ..,...A.True,pu,
True e - = p=.1 S p = .5 - p=.9
6=0 .0062 .0001 .016 .019 .004 0.69
.0075 .0038 .026 .729 .008 5.66
.0063 .0015 .042 .072 .013 2.62
MOM . MOM MOM
e=1/3 . 096 .099 031 0.13 021 3.5
142 472 .053 4.66 .043 36.0
.054 .094 .084 0.55 .151 28.9
MLE | MOM MOM
o=1 .25 0.81 .073 0.9 .018 6.7
.30 4.22 .090  16.0 .054 57.4
11 0.62 129 3.3 212 63.7
MLE MOM’ MOM
6=5 .45 7.6 .15 8.4 .018 11.5
.47 23.2 .15 34.6 .056 60.4
.21 7.9 .18 31.1 .151 67.0

MLE ‘ MOM MOM

@ Each column of three numbers contains the mean squared errors of the
moment estimator, jackknifed moment estimator, and maximum 1ikelihood .
estimator, respectively. In each cluster of six numbers, the left column
corresponds to estimators of p, the right column to estimators of e. The
best estimator of (p,s) is indicated in each case by capital letters. MOM,
JK, or MLE. If the estimators are all about equally good, ANY is written.



TABLE 2. Mean Squared Errors of Estimates of p and e, when
t=1, m=20, sample size = 302 '

True p---
True o p=.1 . p=.5 - - p=.9
6=0 .00060 .00021  .00044  .00012  .00015 ~.00010
, .00072° .00487  .00044 .00013  .00015 .00011
.00094 .00043  .00039 .00008  .00015 .00010
MOM MLE ANY v
e<1/3 .028 0.046 .0063 .028  .0011 .041
.050 1.267 .0051 .103 .0010 - .022
.008 0.024 .0040 019 .0009 . .003
MLE MLE o MLE
o=1" .12 0.49 .029 0.44 .013 4.1
.14 14.33 .032 54.06 .018 264.8
.02 0.16 .037 0.61 .038 23.5
MLE MOM . MOM:
6=3 .29 5.2 .08 4.8 .012 - 15.0
.36 141.3 o1 314.8 ° .026 - 455.1
.07 1.7 11 9.1 198 731.6
MLE MOM MOM

a See footnote for Table 1.



TABLE 3. Best Estimators of (p,e)d

m t =0 - t =1
- m=5 MOM MOM MOM MOM MOM .  MOM
A(MLE) MOM MOM MLE MOM MOM
MLE MOM MOM MLE MOM MOM
MLE MOM MOM MLE MOM MOM
m=20 ‘ MOM ANY ANY MOM - ANY ANY
: MLE MLE (MOM) , MLE MOM MOM
MLE MOM MOM MLE MOM MOM
MLE MOM MOM MLE MOM MOM .

Samp]es1ze=30 e e e e

t =,O t =l ......

m=5 - oM MLE MLE oM MOM K
< MLE MOM MOM MLE  MOM MOM
MLE MOM MOM MLE MOM MOM
MLE MOM MOM MLE MOM MOM

m=20 ANY  ANY ANY MOM MLE ANY
MLE MLE (MLE) OMLE MLE MLE
MLE  MOM or MLE  MOM MLE MOM MOM
MLE MOM MOM MLE MOM MOM

a Each cluster of twelve abbreviations is a condensation of a table like

- Table 1 or Table 2. The numbers are omitted, and the best estimators are
given, in the same arrangement as in Tables 1 and 2. Parentheses
indicate that the best estimators for p and e differed, but that the
indicated choice seemed somewhat better.




TABLE 4. Observed Frequency that Confidence Intervals for p and e

Cover True Values?@

True o True p
p = .1 p = p = .9
a. t=1;, m=5, sample size = 10
e=0 .67 .90 .98
.99 .94 .98
" e=1/3 .34 .80 .85
11 .38 .38
e=1 .28 .54 71
.26 G31 .19
=3 .22 .32 .44
.18 .19 - .05
b. -t =1, m= 20, sample size = 30
o=l .99 1.00 1.00
1.00 1.00 1.00
e=1/3 .76 4 1.00 1.00
.63 1.00 .95
=1 .61 .94 .95
.60 .89 .89
8=3 - .53 .61 .68
.51 .62 .24

a In each pair of numbers, the upper number corresponds to p, the lower
number to e. The nominal confidence coefficient was .90 in each case.




TABLE 5. Observed Frequency that Hy: e=0 is Rejected,
for t=1, m=20, sample size = 302 ,

True p - Estimate of 8 -~ C(a) test Variance of ‘X -
p=.1 : .00 .00 .00
| 03 .93 .09
.03 1.00 .01
.04 ' 1.00 .05
p=.5 » .00 .00 .00
.00 1.00 - .00
.02 1.00 : .01
.04 1.00 .03
p=.9 .00 .00 .00
' .00 ' g7 .00
.04 ‘ .54 ' .02

.24 .49 , .23

a tach coTumn of four numbers gives the frequency that Hy is
rejected, at four values of o: 0, 1/3, 1 and 3. A good test would have
th- first number < .05 and the other three numbers tlarge.
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Figure A. Variance of beta-binomial(m,p,6)

and binomia1(m,p0) when m=5,
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