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ABSTRACT . 

Let X have a beta-binomial(m,p,e) distribution, truncated such that X > t 
for t =· 0 or 1. Suppose that independent observations of X are available. 
A consistent estimator of (p,e) is given, based on the first three sample 
moments. This may be used as a start for maximum likelihood estimation or 
jackknifing. The standard assumptions for a C(a) test that X is truncated 
binomial do not hold. However a test is proposed based on jackknifing the 

sample variance of X. Some Monte Carlo comparisons are given. For 
moderately small data sets, these comparisons show that (1) the moment 
estimator is often superior to the ML~, and (2) the C(a) test is-superior 
to other proposed tests, in spite of its lack of theoretical justification. 
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1. SUMMARY 

Suppose that X has a beta-binomial(m,p,a) distribution, truncated such 
that X ~ t ·for t = 0 or 1. Suppose also that independent observations of X 

are available. The maximum likelihood equations are easy to write down, 
but solving them for p and a requires a numerical iteration procedure. A 

consistent estimator for (p,a) is presented here, based on the first three 

sample moments of X. For small samples, this moment estimate may give 

impossible values, but if it gives possible values it can be used as it is, 
or as a basis for jackknifing, or as the starting point for the maximum 

likelihood iterations. 

Diagnostic checks on the model assumptions are suggested. Simple 
standarized residuals are proposed for investigating whether the data 
deviate in some unspecified way from the assumptions. A departure from the 
assumptions which is of special interest is a=O, i.e., X is truncated 
binomial. This can be tested based on a jackknife confidence interval for 
a. Or the C(a) test statistic can be used, even though the assumption for. 
asymptotic optimality of the test does not.hold. Or a simple test based on 
the sample variance of X can be used. For small or moderate samples, the 

significance levels are all based on jackknifing. 

Monte Carlo simulations are used to compare the various estimators a.nd 
the various tests of a=O. For the range of parameters and sample sizes 

considered, these comparisons show the following. Jackknifing the moment 
estimator is generally not helpful, and often very harmful. Neither the 

maximum likelihood estimator nor the moment estimator dominates the other. 
The jackknife confidence intervals for p and a are not reliable fo.r sample 
sizes as small as 30. The C(a) test is clearly superior to the other 
proposed tests of &=0. 



2. BASIC CALCULATIONS 

A random variable Y has a beta-binomial distribution with parameters 
m, p, and e if 

k-1 m-k-1 
II ( p+re-) . n (q+re-) 

P(Y k) (~) r=O r=O = = m-
II 

r=O (1 + re-) 
(1) 

where m is a positive integer, k is an integer from 0 to m, and the other 

parameters satisfy 0 ~ p ~ 1, q = 1 - p, e 2 0. The distribution arises if 

~has a beta(a,a) distribution and if Y given~ has a binomial(m,~) 

distribution. The parametrization (1) follows Griffiths (1973) and 

Tarone (1979), and is obtained by setting 

p = E(~) = a/(a +a) 

9- = 1/(a +a). 

If e = 0, then Y has a binomial(m,p) distribution. 

In this paper X will have atruncated beta-binomial distribution,-with 

X > t, where t = 0 or 1. That is, for k > t 

P(X = k) = P(Y = k) I P(Y > t) (2) 

with the distribution of Y given by (1). One way in which this truncated 

distribution could arise is as follows (Georgin and Roy 1978.) A system of 
m components is occasionally hit by a shock. If a shock hits, then each 

component fails with some probability ~, and the components behave 

independently of each other. On any one shock, ~ is the same for all the 

components, but ~ varies from shock to shock according to a beta 

distribution. The variability of ~means that the shocks differ in 



severity. Under these assumptions, the number of failed components on a 
random shock has a beta-binomial distribution. If the shocks themselves 

are not observable, but if instead only instances of failed components can 
be observed, then the observed failures follow a truncated beta-binomial 

distribution with t = 0. Now suppose, in addition, that components can 
fail individually, without any shock. If these failures cannot be 

distinguished from instances when a shock causes just one component to 

fail, then the relevant data set for inference about the shocks has a 

truncated beta-binomial distribution with t = 1. 

We will assume that m > t + 3. For if m = t + 2, then X can take only 
two values, so the distribution of X is determined by a single parameter. 

Suppose now that x1 , ... xn are independent observations of a 
truncated beta-binomial random variable, wit~ known m and t and unknown p 
and e. Abbreviate Expression (1) by R(k). Then log L, the logarithm of 
the likelihood is 

n 

~ log p·(xi = 

i=1 

X.) 
1 

n t 

= K + 2:. log R(xi)- n log[l- 2: R(k) J 
i=l k=O 

- n log T 

m-x.-1 

l o g ( p + re) + i 
r=O 

m-1 

log(q + re) - 2: log(l + re) J 
r=O 



defining T. Here K does not depend on p or &. 

There is no low-dimensional ~ufficient statistic for p and &. The 
proof of this assertion is similar to that of Example 2.16 in Cox and 

Hinkley (1974). 



3. ESTIMATORS 

3.1 Maximum Likelihood Estimators 

Differentiation of log L is straightforward. We obtain 

a -
-log L 
ap 

= ~ J x~1 1 
L l L P + ra-
i=1 r=O 

t 

+ n .L R(k) 
k=O 

2. lag L ae- -

+ 

m-x.-1 J i q +1re- --
r=O 

m~-1 __,...:1~]/ T 
L q + re­
r=O 

m-x. -1 m-1 
1 

--) 2 r r 
q + re- ......., 1 + re-

r=O r=O 

m-k-1 m-1 

] 
t [ k-1 

+ n ~0 R (k ) to _p_+.,..;.r_r_e-_ + 2 
r=O 

-- r-
q + re- I 

r=O 

- -r.- - ] I T 
1 + re-

Formally, the maximum likelihood estimates panda- are the solutions of 

a T ap log L = 0 



a 
T ae- log L = 0. 

We have not verified that these equations have a unique solution. Indeed, 

Kleinman (1973) seems unable to verify that the solution is unique in the 
simpler untruncated case. Therefore a numerical procedure for solving the 
maximum likelihood equations should also search at scattered values of p 
and e to see if log L seems to be unimodal. 

3.2 Moment Estimators 

An an alternative to maximum likelihood estimation, one can base 

estimates on the sample moments of X. Let X and Y be related by 
Equations (1) and (2). We first obtain the population moments of X. 

Define the notation 

b(j) = b(b-1) ..• (b-j+1) 

for any real b and positive integer j. Define b(O) = 1. Then a little 

algebra shows that 

P(Y > t) E [ X(j)l 

m 

= 2 k(j) P(Y = k) 

j-1 
TI (p + re) m k-j-1 m-k-1 

= m(j) r=O · I ( m-~) rr (p + je + re) IT ( q + re) I 
j -1 h:t+1 k-J r=O r=O 
II (1 + re) 

r=O 



m-j-1 
II ( 1 + j e + r&) 

r=O 

j-1 
11 ( p + re) 

= m(j) r==O · · 
j-1 

II (1 + re) 
r=O 

m1 -1 
II ( 1 + r& 1 

) 

r=O 

ml 

I I 

(~I) 
h=t-j +1 

where m1 .= m-j, PI = (p + je)/(1 + je), 

So finally 

j-1 (p + re) II 
EX (j) = m(j) r=O P(Y 1 > t-j) 

j-l (1 + r&) P(Y > t) 
II 

r=O 

where 

Y beta-binomial(m,p,&) 

h-1 m1-h+1 
II (pi + r&l) II (ql + r& 1

) I 
r=O r=O 

ql =1-pl, and &1 =&/(1+je). 

Y1 beta-binomial{m-j, fp + j&)/[1 + je], &/[1 + je)). 

In particular, if t=O then 

EX 
. mp 
P(Y > 0) ' 



If t=1, then 

EX = 
[ 

m-2 m-1 J 
mp· 1~ r~O (q + r9) I r~1 (1 + r9) . 

P(Y > 1) 

If t=O or 1, then 

EX ( X-1) = 
m(m-1)p(p + 9) 
(1 + 9) P(Y > t) 

and 

EX(X-1) (X-2) m(m-1)(m-2) p(p + 9)(p + 29) 
= ( 1 + 9) ( 1 + 29) p ( y > t ) 

The moment ~stimators presented below are based on the three moments 
EX, EX( 2) and EX( 3), and the corresponding sample moments. Denote the 

sample moments by 

1 s. =-
1 n 

for i=1 to 3. Define 



THEOREM. Let X > t have truncated beta-binomial(m,p,9) distribution, with 

0 < p < 1, and 9 ~ 0. 

(a) Suppose t=O. Then 

and 

converge in probability to p and 9~ 

(b) Suppose t=l. 1!. d1 (EX, EX( 2), EX( 3) ). :1: 0, then 

and 

converge in probability of p and 9. 

The proof is given in the appendix. 

In part (b), the assumption d1(EX,fX( 2l,Ex( 3)) ~ 0 seems to be 

true always. A computer calculaion has shown that it is true if p takes 
any of the values 0.0001; 0.9999, or an integer multiple of 0.01 up to 

0.99, if 9/(1+9) takes any of the~e values or the value 0, and if m is any 

integer from 4 through 100. 



For small samples, p* and&* may be impossible, i.e., the denominator 

in the expressions may be zero, or if it is nonzero the estimates may not 

satisfy 0 ~ p ~ 1, & ~ 0. In any of these cases another estimation 
procedu~e ~ust be used. 

Johnson and Kotz (1969) mention the asymptotic efficiencies of moment 

estimators for various other truncated distributions. The·y are 11 remarkably 
high 11 (over 90 percent) for the truncated binomial distribution, (p. 75), 

over 70 percent for the truncated Poisson (p. 106), and 11 Very inefficient .. 
in one case and over 55 percent in another case for the truncated negative 

binomial (p. 137). The efficiency of moment estimation seems to depend 
greatly on the underlying distribution and on the details of how the 
moments are used. The moment estimator presented here performs quite well 
in the Monte Carlo examples of Section 5. 

In the Monte Carlo studies de.scribed below, moment estimates are used, 
when they exist, as the starting points in an iteration sequence to obtain 
the maximum likelihood estimates. 

3.3 Jackknife Estimators 

A jackknife estimator may be constructed, based on either the maximum 

likelihood estimator or the moment estimator. Far less computation is 
required tcr use the moment estimator. In the Monte Carlo trials described 

below, jackknife estimates and confidence intervals are based on the moment 
estimates. 



4. DIAGNOSTIC CHECKS ON THE MODEL 

4.1 Alternate Model: Arbitrary 

Let zk = P(X = k) for t < k ~ m, and let zk be the MLE, obtained 
by substituting the maximum likelihood estimators for p and~ into the 

expression for P(X=k). Let Nk be the number of observations with X=k. 
Conditional on the total number of observations n, Nk is 

binomial (n,zk). So the kth 11 standardized residual 11
; 

u 
k 

= 
[n zk (1- z )] 172 

. k 

has mean and variance approximately 0 and 1. Large or small values of the 

uk•s, or strong patterns, indicate that X is not truncated beta-binomial. 

If the sample size is large, a likelihood ratio test or x2 goodness 
of fit test could be performed. 

4.2 Alternate Model: ~ = 0 

Three tests of 

will be given, all based on jackknife confidence intervals for ·various 

quantities. 

Test based on ·estimate of ~ 

A jackknife confidence interval for ~ can be constructed, based on ~· 
or ~. If the lower end point is positive, H0 would be rejected. 



C(a) test 

H . o· 
test 

In the untruncated case, Tarone (1979) gives the C(a) test for 
. . 

~ = 0. Tarone•.s test is asymptotically optimal (Neyman 1959). 
is based on the statistic 

a 
C =a& log L(p, ~)l~:a . 

A necessary and s~fficient condition for asymptotic optimality 
(Neyman 1959) is that 

The 

(3) 

In the truncated case, Equation (3) does not hold. (In particular, in the 
simplest case, when t=O and m=2, the left side of (3) equals 
-2np/(1-q 2) .) Therefore, this theoretical reason for -using the C(a) test 
is not present. 

However, C can be used anyway. Direct algebraic computation shows that 

E [ .2.log L(p,~)~ J = 0 p ,~=0 a~ ~=O 

\ 

when t=O or 1. Therefore, C should be compared to 0. With a small or 
moderate data set, a jackknife confidence interval can b~ constructed for 

EC. If the lower end of the interval is positive then H0 would-be 
rejected. 



Test based on sample variance of X 

It is well-known that the (untruncated) beta-binomial(m,p,e) 
distrib~ti6ri has a larger varian~e than does the binomial(m,p) 

distribution. If the variances of the two truncated distributions also 
have this relation, then the sample variance can be used to distinguish 

between the distributions. In fact, the situation is as follows. 

Let VB(p) and VBB(p,e) denote the variance of a truncated 
binomial(m,p) and truncated beta-binomial(m,p,e) distribution, 
respectively, both truncated at the same t > 0. From (1), it is clear that 
as e ~cc, P(Y=O) ~ 1-p and P(Y=m) ~ p. The~efore, EX ~ m and EX 2 ~ m2, 
so VBB(p,e) ~ 0. Therefore, VBB(p,e) < VB(p) for some values of e. This 
inequality is the reverse of what might naively have been expected. 

However, the relevant comparison is not between VB(p) and VBB(p~e) 

with the same· p. Rather, to investigate whether the distribution is 
binomial or beta-binomial, in one case we would estimate p with e assumed 

to be 0, and in the other case we would estimate both p and e. ·The two 
estimates of p would be different~ Let a0 be the maximum likelihood 

estimator of p, assuming e:O. It is the so 1 ut ion of 

where s1 is the sample mean of X, as before. Suppose now that X is 
really truncated beta-binomial (m,p.,e), and let Po be the 1 imit of a0 as 

n ~oo, i.e~, the solution of (4) with s1 replaced by EX .• To decide if 
9=0, we compare the truncated binomial(m,p0) and the truncated 

beta-binomial(m~p,e) distributions. So the relevant variances to compare 
are VB(p0y and VBB(p,e). 

(4) 



Suppa se that 0 < p < 1, et > 0. If m ~ t ~ 3, t=O or 1, and m ~ 100, 

then computer calculations indicate that VBB(p,et) > VB(p0). The 

calculations were performed on a CDC 176, letting p and et/(1 + et) each take 
values 0.0001, 0.9999 and all integer multiples of 0.01 up to 0.99. A few 

typical plots of VB and VBB are shown in Figures A-C. 

This justifies use of the sample variance to test whether et=O. Let 

s2 = s2 - s1(s1 - 1) be the sample variance of X. Let VB(p
0

) be 
the estimated variance of X obtained by substituting the MLE Po into the 
expression for the variance of a truncated binomial random variable. For a 
small or moderate sized sample, contruct a (one-sided) jackknife confidence 
interval based on 

- 1. 

If the lower end point is positive, reject the hypothesis et=O. 



5. MONTE CARLO RESULTS 

5.1 Description of the Procedure 

Monte Carlo experiments were performed as follows. For the values of 
t, m, p, and 9 of interest, psendorandom samples of the desired size were 
generated. Ninety-six such experiments were performed corresponding to. the 
following values: 

t~O or 1 

m=5 or 20 
p=0.1,0.5, or 0.9 

9=0, 1/3, 1, or 3 
sample size = 10 or 30. 

The number of samples generated in an experiment varied from 1300 to 5000. 

This is because the samples and corresponding estimates were stored, so 
that the calculations for a particular sample .would not have to be repeated 

whenever the sample ~eoccurred. Sampling was contintied until 5000 samples 
or 1300 distinct samples were obtained. A few replications i.ndicate that 

this many samples gives numerical results which are accurate to one or two 
significant figures. This is adequate for the comparisons made. Each 
sample was generated as a multinomial sample, using the IMSL (1979) 
subroutine GGMLT. 

For each sample, the moment, jackknifed moment, and maximum likelihood 

estimates of p and 9 were calculated. Jackknife confidence intervals were 
also calculated for p and 9, based on the pseudovalues of the moment 

estimators, as described more fully below. The th~ee tests of 9=0 

mentioned in Section 4 were performed. Another set of quantities was also 

estimated, based on the three estimates of (p,a), and ~onfidence intervals 
were calculated based on the pseudovalues of the moment estimates. These 

quantities were 
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k-1 k-1 J 
Ak = r~O (p + ra-) / [ r~O (1 + ra-) P(Y > t) 

for t < k < 4. The quantities Ak are of natural interest in the shock 
example of Section 1. In that example, if the shocks occur with rate ~. 

then observed failure instances occur with rate A = ~ P(Y > t), and a 

particular set of k components fails with rate AAk. 

Jackknife confidence intervals were not calculated by assuming a 

normal distribution for the pseudovalues, since the distributions were 
often highly skewed. Rather, from a sample of size n, the ith and 

(n + 1- i)th ordered pseudovalues were used as a confidence interval with 
nominal level 1 - (2i - 1)/n. This nominal level is based on a continuity 

correction. In this way, 90 percent intervals were found, using n=10 and 
i=l, or n=30 and i=2. One-sided tests of H

0
:a-=0 were based on such 

intervals, with a nominal significance level of 0.05. 

For some samples, the estimatei of Section 3 were impossible or 
undefined. In such cases, the following estimates were used. (a) If every 

element of the sample had value t+l, then the moment estimate and MLE of p 
and a- were set to 0. (b) If every element of the sample had value m, then 
the moment estimate and MLE of a- were set to 0, and the moment estimate and 
MLE. of p were set to 1. (c) If the moment estimates were impossible (-i.e., 

violating 0 ~ p ~ 1, a-~ 0), or if they were undefined (because 

d0 (s1,s2,s3), resp~ d1(s1,s2,s3), was zero), then the 
following procedure was followed. In Equation (A1), resp (AS), a- was set 
to 0, the population moments were replaced by the sample moments, and the 

results was solved for p*. Then p was set to p* in (A2), the population 
moments were replaced by the sample moments, and the result was solved for 

e*. If this e* was negative, it was set to 0. (d) If the jackknifed 
moment estimates were impossible, i.e., violating 0 ~ p ~ 1 or a-~ 0, then 

the moment estimates were used. 



·····---·--···-··--·····---------

The maximum likelihood estimates were found using the IMSL (1979) 

conjugate gradient subroutine ZXCGR, starting at the moment estimates. 

5.2 Conclusions 

Of course, all the conclusions given below are valid only for the 
range of m and sample size considered. 

Estimators of p and e 

The jackknifed moment estimator should not be used. In terms of mean 
squared error, it is never much better than the simple moment estimator, it 

is usually worse, and sometimes much worse. 

Neither the moment estimator nor the maximum likelihood estimator 
dominates the other, in terms.of mean squared error. If e=O, then the 
moment estimator seems slightly preferable. If e=1 or 3, then the MLE is 
better when p=.1, and the moment esti~ator is much better When p~.s or .9. 
If e=1/3 and if m=S or the sample size is 10, then the pattern is usually 
like that for larger e. If e~1/3 and m=20 and the sample size is 30, then 

the MLE is preferable. Tables 1 through 3 give more details. 
) . 

The confidence intervals, based on the pseudovalves from the 
jackknifed moment estimators, are not reliable. The frequency that the 

interval covers the true value is often much less than the nominal level of 
90 percent, although it does improve when the sample size increases from 10 
to 30. Table 4 gives examples. 

Estimators ·of Ak 

Jackknifing the moment estimator of Ak is slightly worse than using 
the moment estimator itself, in terms of mean squared. error. The moment 

estimatoi and maximu~ likelihood estimator seem about equally good, with 
the MLE slightly better in most cases. 



The jeckknife intervals for Ak are generally conservative, except in 
the two cases when (p,a) = (.1,0) or (.9,3). In these two cases the 

observed coverage frequencies were low. 

Tests of H
0

: a=6 

The C(a) test is clearly superior to the other two. All three tests 
have size which is less than the nominal value of .05. However, the C(a) 

test has far better power. If the sample size is 10, no test has very good 
power. Table 5 shows one case with sample size 30. 



APPENDIX 

The moment estimator theorem is proved here. 

PROOF. (a) If t=O then 

EX( 2) /EX = (m-1) (p + e) I (1 + e) (A1) 

EX( 3)/EX( 2) = (m- 2)(p. + 2e)/(1 + 2e) (A2) 

Solving for p and e yi~l~s equations which are identical to th~ equations 
in part (a) of the theor~~' except the population moments EX(i) appear in 

'· 
place of the correspondin~ sample moments Si. It is tedious but direct 
to show that 

I 

I 

. '; ·~. ~ 

f: :· 

which is nonzero if 0 < p < ~~~;\i Therefore p and e are continuous functions 
·• 1"1' 

of the moments. Therefore,':qy,well-known results in probability theory, p* 

and a* converge to the corr~~a~nding functions of the population moments,. 

i.e., to p and a. 

(b) If t=1, then the analogue of .Equation (A1) becomes very 

cumbersome. An easier ~ethod is to imitate Rider (1955) and introduce a 
third variable, and to solve three equations, as follows. Let X > 1 be the 

truncated version of Y. Then 

EY = mp (A3) 

EY( 2) = m (m - 1) p (p + e) I (1 + e) (A4) 



To obtain equations in terms of the moments of X, observe that 

1 00 

EY = I · k P(Y = k) + P(Y > 1) I k P(x = k) 
0 2 

= P(Y = 1) + P(Y·> 1) EX 

and 

EY( 2) = P(Y > 1) EX( 2) 

Substitute these expressions into Equations (A3) and (A4). From 

Equation (1) calculate that 

P(Y = 1 ) = · mp [ 1 - P ( Y > 1 ) ] • q + mp + {m - 1) e 

Substitute this, sdlve the two resulting equations to eliminate P(Y > 1), 

and obtain finally 

EX - mp = EX( 2) (1 + e) - (m - 1) (p + e) EX. (.A5) 

Thi's is one equation which p and e satisfy. The other equation is 
Equation (A2). Solving Equations (A2) and (A5) yields equations which are 
identical to~those in part (b) of the theorem, except that they are in 
terms of EX(i) instead of s.. Here the assumption has been used that 
d1(EX, EX( 2), EX(J)) is no~~ero. So, as in part (a), p* and e* 

converge to p and e. 
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True e 

S=l/3 

9=5 

TABLE 1. Mean Squared Errors of Estimates of p and e, when 
t=l, m=5, sample size = lOa 

True p . 

p = .1 p = . 5 p = .9 

.0062 .0001 .016 .019 .004 

. 0075 .0038 . 026 .729 . 008 

.0063 .0015 . 042 .072 .013 
MOM MOM MOM 

. 096 . Q99 .031 0.13 .021 

.·142 .472 . 053 4.66 . 043 

. 054 .094 . 084 0.55 .151 
MLE MOM MOM 

.25 0.81 .073 0.9 .018 

. 30 4.22 .090 16.0 .054 

.11 0.62 .129 3.3 .212 
MLE MOM MOM 

.45 7.6 .15 8.4 .018 

.47 23.2 . 15 34.6 . 056 

.21 7.9 .18 31.1 .151 
MLE MOM MOM 

. . . . . . 

0.69 
5.66 
2.62 

3.5 
36.0 
28.9 

6.7 
57.4 
63~7 

11.5 
60.4 
67 .. 0 

a Each column of three numbers contains the mean squared errors of the 
moment estimator, jackknifed moment estimat6r, and maximum likelihood 
estimator, respectively. I~ each cluster of six numbers, the left column 
corresponds to estimators of p, the right column to estimators of e. The 
best estimator of (p,e) is indicated in each case by capital letter~.MOM, 
JK, or MLE. If the estimators are all about equally good, ANY is written. 



~~-.. ------------------------------~------------

TABLE 2. Mean Squared Errors of Estimates of p and 9, when 
t=1, m=20, sample size = 30a 

True p · · 

True 9 p = .1 p = . 5 p = .9 

9=0 .00060 .00021 .00044 .00012 .00015 . 00010 
. 00072. . 00487 . 00044 .00013 .00015 . 00011 
.00094 .00043 .00039 .00008 .00015 .00010 

MOM MLE 
.. 

ANY 

9=1/3 . 028 0.046 .0063 .028 .0011 .041 
• 050 1. 267 . 0051 .103 . 0010 .022 
.008 0.024 .0040 .. 019 .0009 .003 

MLE MLE MLE 

9=1. .12 0.49 . 029 0.44 . 013 4.1 
.14 14.33 . 032 54.06 . 018 264.8 
.02 0.16 ~ 03 7 0.61 . 038 23.5 

MLE MOM MOM· 

9=3 .29 5.2 .08 4.8 .012 15.0 
.36 141.3 .11 314.8 • 026 455.1 
.07 1.7. .11 9.1 .198 731.6 

MLE MOM MOM 
...... 

a See footnote for Table 1. 



m 

m=20 

MOM 
(MLE) 

MLE 
MLE 

MOM 
MLE 
MLE 
MLE 

MOM 
MLE 
MLE 
MLE 

ANY 
MLE 
MLE 
MLE 

TABLE 3. Best Estimators of (p,e)a 

·t = 0 

MOM 
MOM 
MOM 
MOM 

ANY 
MLE 
MOM 
MOM 

sample ·size·= 10 

MOM 
MOM 
MOM 
MOM 

ANY 
(MOM) 

MOM 
MOM 

MOM 
MLE 
MLE 
MLE 

MOM. 
MLE 
MLE 
MLE 

sample size ~ 30 

t = 0 

MLE 
MOM 
MOM 
MOM 

ANY 
MLE 

MOM or MLE 
MOM 

MLE 
MOM 
MOM 
MOM 

ANY 
(MLE) 

MOM 
MOM 

MOM 
MLE 
MLE 
MLE 

MOM 
MLE 
MLE 
MLE 

t = 1 

MOM 
MOM 
MOM 
MOM 

ANY 
MOM 
MOM 
MOM 

t = 1 

MOM 
MOM 
MOM 
MOM 

MLE 
MLE 
MOM 
MOM 

MOM 
MOM 
MOM 
MOM 

ANY 
MOM 
MOM 
MOM 

JK 
MOM 
MOM 
MOM 

ANY 
MLE 
MOM 
MOM 

a Each cluster of twelve abbreviations is a GOndensation of a table like 
Table 1 or Table 2. The. numbers are omitted, and the best estimator.s are 
given, in the same arrangement as in Tables 1 and 2. Parentheses 
indicate that the best estimators for p and e differed, .but that the 
indicated choice seemed somewhat better. 

') 



TABLE 4. Observed Frequency that Confidence Intervals for p and e 
Cover True Valuesa 

True e True·p 

e=l/3 

e=l/3 

p = .1 p = .5 

a~ t=1; m=5, sample size = 10 

.67 

.99 

.34 

.11 

.28 

.26 

.22 

.18 

.90 

. 94 

.80 

.38 

.54 

.31 

. 32. 

.19 

b~ · t - 1, m = 20, sample size - 30 

.99 
1.00 

.76 

.63 

.61 

.60 

.53 

.51 

1. 00 
1.00 

1.00 
1.00 

.94 

.89 

. 61 

.62 

p = .9 

.98 

.98 

.85 

.38 

.71 

.19 

.44 

.05 

1.00 
1.00 

1.00 
.95 

.95 

.89 

.68 

.24 

a In each pair of numbers, the. upper number corresponds to p, the lower 
number to e. The nominal confidence coefficient was .90 in each case. 



True p 

p;,.1 

p=.5 

p=.9 

TABLE 5. Observed Frequency that H0 : s=O is Rejected, 
for t=1, m=20, sample size = 30a 

- -Basis -of test 

. . . . . ' . 

Estimate of s C(a) test Variance of X 

.00 .00 .00 

.03 .93 . 09 

. 03 1.00 .01 

. 04 1. 00 .05 

.00 .00 .00 

. 00 1. 00 .00 

.02 1.00 . 01 

. 04 1.00 .03 

.00 .00 .00 

.00 .77 .00 

. 04 .54 .02 

.24 .49 • 23 

a Each column of four numbers gives the frequency that H0 is 
reject~d, at four values of s: 0, 1/3, 1 and 3. A good test would have 
th first number < .05 and the other three numbers large. 
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