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ABSTRACT 

The major objective of this work is to demonstrate through simulations that 
advanced liquid-metal reactor plants can be operated from low power to full power by 
computer control. Development of an automatic control system with this objective will 
help resolve specific issues and provide proof through demonstration that automatic 
control for plant startup is feasible. This paper presents an advanced control system 
design for startup of the Experimental Breeder Reactor-II (EBR-II) located at Idaho 
Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced 
diagnostics techniques such as neural networks to form an integrated architecture. The 
preliminary evaluations are obtained in a simulated environment by a low-order, valid 
nonlinear model. Within the framework of phase I research, the design includes an 
inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. 
These three nonlinear control modules are designed to follow the EBR-II startup 
trajectories in a multi-input/output regime. They are coordinated by a supervisory routine 
to yield a fault-tolerant, parallel operation. The control system operates in three modes: 
manual, semiautomatic, and fully automatic control. The simulation results of the EBR-II 
startup transients proved the effectiveness of the advanced concepts. The work presented 
in this paper is a preliminary feasibility analysis and does not constitute a final design of an 
automated startup control system for EBR-II. 

xi 



1. INTRODUCTION 

1.1 SCOPE OF ADVANCED CONTROL CONCEPT INTEGRATION IN NUCLEAR 
PLANTS 

Computerized plant status display, consideration of human factors issues in control 
room design, and plant monitoring based on advanced signal processing have gained 
increased applications in nuclear power plants. Developers of new, advanced reactors 
must consider these concepts in the design phase. New and improved control strategies 
may be needed for efficient operation of multimodular plants, including plant startup, load 
following, and steady-state operation. Because of the complex nonlinear nature of 
multimodular nuclear reactor startup dynamics, a need exists for combining control 
strategies and plant monitoring schemes. 

The objective of the present task under the Advanced Controls Program at Oak 
Ridge National Laboratory (ORNL) is to develop and integrate control algorithms and 
signal and command validation strategies and to demonstrate this approach with 
application to the startup of Experimental Breeder Reactor-II (EBR-II). 

Current modular power plants do not have a fully automated startup control 
strategy. Automatic load following control systems for pressurized water reactor (PWR) 
plants are being designed by Mitsubishi Atomic Power Industries (Nakakura and Ishiguro 
1988) in Japan. The primary objective is to control core axial power distribution by load-
following control rods. Automation in Canadian heavy water reactors (CANDU) is the 
most advanced in the industry. The goal is to achieve 100% digital control and protection 
in new plants such as the Darlington units of Ontario Hydro (Carter and Uhrig 1990). 
The "operators provide information to the control system through this control panel. 
Input includes startup rate and the power level to be maintained. The operators adjust 
automatic controller parameters and/or set points." This procedure is a form of 
semiautomated control strategy. Husseiny et al. (1990) proposed a two-level control 
model for operating a typical nuclear plant. One of the conclusions of the Husseiny study 
is that a high-level supervisory fuzzy or rule-based controller provides a "strategy that can 
free the senior operator for important operational tasks other than vigilance and 
attendance to details of equipment or subsystems operation." The operator would be 
responsible for monitoring plant performance and providing global control actions. An 
approach based on a "forward dynamic programming technique was developed and applied 
to the load following control of a boiling water reactor" by Lin et al. (1989). These 
studies indicate a growing trend toward increased automation of power plant operations. 

1.2 SUMMARY OF APPROACH-GENERAL FEATURES 

The integrated control system consists of four major components: 

1. control module, 
2. signal validation module, 
3. command validation module, and 
4. system executive module. 

1 
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Figure 1.1 shows this general structure. Each module has multiple approaches in its 
implementation. The control module incorporates inverse dynamics control, fuzzy logic 
control, and neural network control. The objective of the signal validation system is to 
monitor outputs from sensors; detect and isolate faulty sensors; and if necessary, provide 
an estimation of control and protection system signals. The purpose of the command 
validator is to verify the control signals (input to actuators) and outputs of actuators. The 
system executive module serves as a high-level decision support tool. It analyzes the 
overall performance and selects appropriate modes of control. All these systems are fully 
integrated and provide appropriate information to the operator. 

The definitions of the various components of the above "control engine" are given 
in Sect. 3. T h e integrated system is currently implemented in a V A X 3100 computer 
Work Station and uses the M A T R I X x Software for integration purpose. 

13 SUMMARY OF SIGNIFICANT RESULTS 

Several important milestones have been accomplished during this project. The 
following specific tasks have been completed. 

1. The integrated control system has been developed and demonstrated with application 
to EBR-II startup control. 

2. A n archival of EBR-II startup data has been established. 

3. The signal validation modules—process empirical modeling, neural networks, and 
consistency checking—have been implemented. 

4. A new control methodology, called the reconstructive inverse dynamics control, has 
been developed. In addition, a fuzzy logic controller and a neural network controller 
are available as alternatives. 

5. The command validation module developed in this project introduces a new idea—that 
of verifying control inputs and actuator outputs. 

6. The redundancy in each of the three subsystems provides an effective method for 
switching from one technique to another, as demanded by the availability of process 
signals. This capability is also known as structural fault-tolerance because it 
emphasizes providing reliable control under structural anomalies. 

7. The signal and command validation represented in the S Y S T E M - B U I L D software as 
superblocks provides fast interaction with the control system module. 

8. T h e individual module, the EBR-II model, and the integrated system tests are based 
on startup data from EBR-II. 
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Fig. 1.1. Integratcd-syslem components for advanced plant control. 
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1.4 O R G A N I Z A T I O N O F T H E R E P O R T 

Section 2 provides a brief description of EBR-II, existing control systems, and steps 
in EBR-II startup. The concepts of advanced automation are presented in Sect. 3. The 
integration and implementation of control strategies, signal validation, command validation 
and system executive modules are described in Sect. 4. The results of demonstration using 
EBR-II startup data are also presented. Section 5 presents the performance verification 
o f the new control strategy, which uses a nonlinear model of the EBR-II primary system, 
including the intermediate heat exchanger. The various techniques such as neural 
networks, fuzzy logic control, process empirical modeling, and others are described in 
Sect. 6. The summary and concluding remarks are presented in Sect. 7. 



2. B A C K G R O U N D 

The startup of EBR-II includes a complicated procedure for calibration, status 
verification, and configuration validation. Automation o f the EBR-II startup therefore 
requires a computer-based information system as an operator aid. A recent study 
(Corcuera et al. 1990) presents a startup procedure-prompting system developed in an 
expert system environment. Once the procedure is appropriately followed, control of the 
EBR-II startup is a straightforward task. However, the plant nonlinearities over the 
startup range and the multitude of control variables indicate that the advanced, nonlinear 
multivariate control techniques may perform more efficiently than the conventional, linear 
methods. Furthermore, a supervisory, intelligent system is required to c o p e with abnormal 
equipment and process conditions to maneuver around problems or provide safe routes to 
shutdown. 

2.1 DESCRIPTION OF EXPERIMENTAL BREEDER REACTOR-n 

EBR-II is a liquid-metal fast-breeder reactor located at the National Reactor 
Testing Station in Idaho. T h e original purpose of this facility was to demonstrate the 
feasibility of fast reactors for central station power plant applications. T h e purpose was 
later redirected to provide irradiation services for the development of fuels and structural 
materials. Changes were made in the operating philosophy from that of an engineering 
test facility to that of a high-priority neutron producer. 

The plant included a heterogeneous, unmoderated, sodium-cooled reactor 
[62.5 MW(t)]; an intermediate sodium coolant loop; a steam plant that produces 20 M W 
of electrical power through a conventional turbine generator; and a fuel processing system 
consisting of subsystems for disassembly, decontamination, fabrication, and assembly of fuel 
elements and subassemblies. Both the reactor and the associated fuel recycle facilities 
were designed with the philosophy of providing a highly flexible installation that would 
permit the investigation and evaluation of various core configurations, fuel types, fuel 
element design, and processing techniques. The reactor, primary cooling system, and fuel-
handling system components are submerged in a large primary sodium tank. This concept 
is sometimes referred to as the pool-type design (such as the Phoenix and Super-Phoenix 
liquid-metal reactors in France). A schematic of the EBR-II plant is shown in Fig. 2.1 

2 .2 E X I S T I N G C O N T R O L CAPABILITIES A T E X P E R I M E N T A L B R E E D E R 
REACTOR-n 
The EBR-II control systems are distributed over the subsystems and components 

mostly coordinated from the central control room by plant operators. These controllers 
are designed to function locally, and the global control decisions are made by operators. 
The following describes the local controllers of the EBR-II. 

EBR-II reactivity control is maintained by 12 control rod and 2 safety rod 
subassemblies. A computer-controlled rod-drive system is capable of controlling reactor 
power during steady-state and power change. A n error signal from the reactor power 
reading is the input to the digital computer. T h e on-line computer implements a 
proportional control action to minimize the error reading. The permanent automatic 

5 
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control rod drive system ( A C R D S ) provides a fast-speed automatic mode plus two slow-
speed modes, manual and automatic. 

The primary sodium flow [loop between core and intermediate heat exchanger 
( IHX)] is controlled by the primary pumps, where the pumping rate is continuously, 
steplessly variable from 0 to 100%. N o valves or other control devices are included in the 
main sodium loop. The secondary sodi . ,n loop is controlled by an electromagnetic (EM) 
pump, where the flow is adjustable from 0 to 100% of full flow capacity by varying the 
voltage applied to the pump windings. The actuation signal is adjusted manually from the 
sodium recirculating pump panel. The control task of this actuator includes controlling 
reactor inlet temperature by controlling the bulk temperature in the sodium tank. Since 
the secondary sodium loop constitutes the coupling between the primary and secondary 
systems, the flow adjustment also directly affects the steam pressure and other system 
variables on the secondary side. 

The feedwater temperature is controlled by bypassing some feedwater around the 
last heater, mixing a portion of 480°F feedwater with the 568°F water to maintain 550°F 
input. The bypass valve is manually controlled from the steam panel in the control room. 

The turbine generator is controlled by two circuits. The primary circuit controls the 
speed and load of the turbine, and the secondary circuit controls the turbine stop valve to 
trip ' he turbine when an abnormal condition occurs. 

The main control of the steam generator is performed by the steam drum level 
control. The control system is capable of single-element, four-element, or manual control. 
T h e controller accepts four analog signals: steam drum level, feedwater flow, steam flow, 
and blowdown flow. The actuator is the feedwater valve. 

23 EXPERIMENTAL BREEDER REACTOR-II STARTUP OPERATION 

The eleven identified modes of operation at the EBR-II are classified as normal or 
nonroutine operations. The normal operations include plant startup, plant standby, 
reactor restart, steady power, changing power, plant shutdown, and fuel handling. The 
nonroutine operations include reactor scram, anticipatory reactor shutdown, plant 
cooldown, and plant heatup. The startup of the EBR-II is performed in the two modes 
(plant startup and reactor restart) that distinguish the conditions prior to startup. The 
terminology "reactor restart" emphasizes that the most recent shutdown was within the 
past 24 hours and that no reactor loading change has been made. In the plant standby 
situation, all auxiliary systems meet the prestartup requirements. Unless plant standby 
conditions exist, no startup is allowed. 

The startup procedures ( A N L 1985) include raising the safety rods into the core 
and moving the control rods in the order specified in the Reactor Run Plan and 
Authorization. The control rods in the EBR-II contain fuel at the bottom and poison at 
the top. The core is subcritical when the fuel section o f the rods is removed from the 
core. Therefore, criticality is achieved by withdrawing the rods, which removes the poison 
section from the core and replaces the fuel from the bottom. After the control rods are 
calibrated at about 50 kW, power is increased incrementally until the desired power level 
is reached. The primary pumps operate at full power throughout startup. The secondary 
pump flow is adjusted to maintain normal steam pressure in the drum. The steam header 
is pressurized when the primary sodium reaches 620°F. Increase of reactor power is 
regulated to maintain a 10°F/h rise in bulk sodium temperature. The secondary sodium 
flow adjustments also aim at maintaining the primary bulk sodium at 700°F. When the 
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reactor power is stable at 30 M W and adequate steam is available, the steam system is 
operated and the turbine-generator is started. A brief summary of the startup procedure 
including validity checks is shown in Fig. 2.2. Some of the important EBR-II startup 
transients are shown in Fig. 2.3 (personal communication, June 1987 data from 
E. E. Feldman, Argonne National Laboratory, Argonne, Illinois, to B. Upadhyaya, The 
University of Tennessee, Knoxville). Table 2.1 lists 154 measurements that are available 
for further analysis. These data were obtained during a startup following a standby 
condition. The data were sampled every 5 s. 
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Table 2.1. Experimental Breeder Reactor-II process signals 
(154 data channels, 4300 data samples per channel, 

5.0-s sampling interval) 

Signal Sensor tag Signal description" 

1 Rl-NLC-580 Power level (%) 

2 Pl-NI.C-581 Power level (%) 

3 Pl-NLC-582 Power level (%) 

4 P1-BAM-594A Control rod 1 position (in) 

5 P1-BAM-594C Control rod 3 position (in) 

6 P1-BAM-594D Control rod 4 position (in) 

7 P1-BAM-594E Control rod 5 position (in) 

8 P 1 - B A M 5 9 4 G Control rod 7 position (in) 

9 P1-BAM-594K Control rod 9 position (in) 

10 P1-BAM-594L Control rod 10 position (in) 

11 P1-BAM-594M Control rod 11 position (in) 

12 P1-BAM-594N Control rod 12 position (in) 

13 R1-FM-512B Primary pump 2 out flow (%) 

H R1-FM-513B Low-pressure plenum 2 flow (%) 

15 R1-FM-541E Primary total flow (%) 

16 R1-DPT-521A Upper-plenum flow (%) 

17 R1-DPT-521B Upper-plenum flow (%) 

18 R1-DPT-521A Upper-plenum pressure (psia) 

19 R1-DPT-521B Upper-plenum pressure (psia) 

20 R1-PT-522A Primary pump 2 pressure (psi) 

21 R1-TC-540AR Low-pressure plenum sodium temperature (°F) 

22 R1-TC-540AS Low-pressure plenum sodium temperature (°F) 

23 R1-TC-540AV Low-pressure plenum sodium temperature (°F) 

24 R1-TC-540AA High-pressure plenum sodium temperature (°F) 

25 R1-TC-503AA Reactor core exit temperature (°F) 

26 R1-TC-503H Reactor core exit temperature (°F) 

27 R1-TC-503E Reactor core exit temperature (°F) 

28 R1-TC-503D Reactor core exit temperature (°F) 
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Tabic 2.1 (continued) 

Signal Sensor tag Signal description" 

29 R1-TC-503P Reactor core exit temperature (°F) 

30 R1-TC-503K Reactor core exit temperature (SF) 

31 R1-TC-503F Reactor core exit temperature (°F) 

32 R1-TC-503C Reactor core exit temperature (°F) 

33 R1-TC-503T Reactor core exit temperature (°F) 

34 R1-TC-503G Reactor core exit temperature (CF) 

35 R1-TC-503AC Reactor core exit temperature (°F) 

36 R1-TC-503Z Reactor core exit temperature (CF) 

37 R1-TC-503V Reactor core exit temperature (CF) 

38 R1-TC-503Q Reactor core exit temperature (°F) 

39 R1-TC-503Y Reactor core exit temperature (°F) 

40 R1-TC-503N Reactor core exit temperature (°F) 

41 R1-TC-503AB Reactor core exit temperature (°F) 

42 R1-TC-503AD Reactor core exit temperature (°F) 

43 R1-TC-503R Reactor core exit temperature (°F) 

44 R1-TC-503X Reactor core exit temperature (°F) 

45 R1-TC-503W Reactor core exit temperature (°F) 

46 R1-TC-503A Upper-plenum temperature (°F) 

47 R1-TC-521B Upper-plenum temperature (°F) 

48 R1-TC-521C Upper-plenum temperature (°F) 

49 R1-TC-521D Upper-plenum temperature (°F) 

50 R1-TC-521E Upper-plenum temperature (°F) 

51 R1-TC-521F Upper-plenum temperature (°F) 

52 R1-TC-521G Upper-plenum temperature (°F) 

53 R1-TC-521H Upper-plenum temperature (°F) 

54 R1-TC-507CC IHX orifice plate temperature (°F) 

55 R1-TC-507BX IHX orifice plate temperature (°F) 

56 R1-TC-507EF IHX orifice plate temperature (°F) 
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Table 2.1 (continued) 

Signal Sensor tag Signal description" 

57 R1-TC-507CA IIIX orifice plate temperature (°F) 

58 R1-TC-507CG IHX orifice plate temperature (°F) 

59 R1-TC-507AC IHX primary outlet temperature (°F) 

60 R1-TC-507AE IHX primary outlet temperature (°F) 

61 R1-TC-540AM IHX primary outlet temperature (°F) 

62 R1-TC-540AP IHX primary outlet temperature (°F) 

63 Rl-TC-5011 Bulk sodium pool temperature (°F) 

64 R1-TC-501X Bulk sodium pool temperature (°F) 

65 R1-TC-501AA Bulk sodium pool temperature (°F) 

66 R1-TC-501D Bulk sodium pool temperature (°F) 

67 R1-TC-501M Bulk sodium pool temperature (°F) 

68 R1-TC-501V Bulk sodium pool temperature (°F) 

69 R1-TC-501H Bulk sodium pool temperature (°F) 

70 R1-TC-501E Bulk sodium pool temperature (°F) 

71 R1-TC-501N Bulk sodium pool temperature (°F) 

72 R1-TC-501W Bulk sodium pool temperature (°F) 

73 R1-TC-501Z Bulk sodium pool temperature (°F) 

74 R1-TC-501F Bulk sodium pool temperature (°F) 

75 R1-TC-501P Bulk sodium pool temperature (°F) 

76 R2-RT-533AA IHX secondary outlet temperature ("F) 

77 R2-RT-546A IHX secondary outlet temperature (°F) 

78 B2-TC-508A Superheater sodium inlet header temperature (°F) 

79 B2-TC-546H Superheater sodium inlet header temperature (°F) 

80 B2-TC-546J Superheater sodium inlet header temperature (°F) 

81 B2-TC-546L Superheater 710 sodium inlet temperature (CF) 

82 B2-TC-546K Superheater 710 sodium inlet temperature (°F) 

83 B2-TC-546N Superheater 712 sodium inlet temperature (°F) 

84 B2-TC-546P Superheater 712 sodium inlet temperature (°F) 
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Table 2.1 (continued) 

Signal Sensor tag Signal description" 

85 B2-TC-546Q Superheater 712 sodium inlet temperature (°F) 

86 B2-TC-555B Superheater 710 sodium inlet temperature (°F) 

87 B2-TC-546S Superheater 710 sodium inlet temperature (°F) 

88 B2-TC-546BB Superheater 710 sodium inlet temperature (°F) 

89 B2-TC-546U Superheater 712 sodium inlet temperature (°F) 

90 B2-TC-546BC Superheater 712 sodium inlet temperature (9F) 

91 B2-TC-546D Superheater 712 sodium inlet temperature (°F) 

92 B2-TC-546AA Evaporator 701 sodium inlet temperature (°F) 

93 B2-TC-546AB Evaporator 702 sodium inlet temperature (°F) 

94 B2-TC-546AC Evaporator 703 sodium inlet temperature (°F) 

95 B2-TC-546BA Evaporator 704 sodium inlet temperature (°F) 

96 B2-TC-546AE Evaporator 705 sodium inlet temperature (®F) 

07 B2-TC-546AK Evaporator 705 sodium inlet temperature (°F) 

98 B2-TC-546AF Evaporator 707 sodium inlet temperature (°F) 

99 B2-TC-546AG Evaporator 708 sodium inlet temperature (°F) 

100 B2-TC-555E Evaporator 701 sodium outlet temperature (°F) 

101 B2-TC-555F Evaporator 702 sodium outlet temperature (SF) 

102 B2-TC-545AH Evaporator 702 sodium outlet temperature (°F) 

103 B2-TC-555G Evaporator 703 sodium outlet temperature (°F) 

104 B2-TC-555H Evaporator 704 sodium outlet temperature ( T ) 

105 B2-TC-546AD Evaporator 704 sodium outlet temperature (°F) 

106 R1-TC-555K Evaporator 705 sodium outlet temperature (°F) 

107 R1-TC-546AJ Evaporator 705 sodium outlet temperature '°F) 

108 R1-TC-555E Evaporator 707 sodium outlet temperature (°F) 

109 B2-TC-555P Evaporator 708 sodium outlet temperature (°F) 

110 R2-TC-546AR IHX secondary inlet temperature (°F) 

111 R2-RT-533BB IHX secondary inlet temperature (°F) 

112 B2-FM-539 Superheater 710 sodium outlet flow (V) 
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Table 2.1 (continued) 

Signal Sensor tag Signal description" 

113 B2-FM-539 Superheater 712 sodium outlet flow (V) 

114 B2-FM-538 Evaporator 704 sodium inlet flow (V) 

115 B2-FM-538 Evaporator 705 sodium inlet flow (V) 

116 S2-FM-516 Secondary pump inlet flow (%) 

117 B2-PT-527 Superheater sodium inlet pressure (psi) 

118 P3-PT-501A Turbine inlet pressure (psi) 

119 P3-FT-587 Blowdown flow ( Ibjh) 

120 S5-LT-596 Steam drum level (in.) 

121 B3-PT-505 Steam drum pressure (psig) 

122 P3-FT-590 Steam drum feedwater flow (Ib^/h) 

123 B5-PT-594 Steam drum feedwater flow ( I b j h ) 

124 B5-PR-503 Steam drum feedwater pressure (psi) 

125 P5-TC-552 Steam drum feedwater temperature (°F) 

126 B5-RTT-1600 Steam drum feedwater temperature (°F) 

127 B5-TC-555S Evaporator 701 feedwater temperature (°F) 

128 B5-TC-555T Evaporator 702 feedwater temperature (°F) 

129 R1-TC-555V Evaporator 703 feedwater temperature (°F) 

130 B5-TC-555W Evaporator 704 feedwater temperature (°F) 

131 B3-TC-546AZ Evaporator 704 feedwater temperature (°F) 

132 R1-TC-555X Evaporator 705 feedwater temperature (°F) 

133 R1-TC-546AS Evaporator 705 feedwater temperature (°F) 

134 B3-TC-546AT Evaporator 705 feedwater temperature (°F) 

135 R1-TC-555Z Evaporator 707 feedwater temperature (°F) 

136 B5-TC-555AA Evaporator 708 feedwater temperature (°F) 

137 B3-TC-555AB Evaporator 701 steam outlet temperature (°F) 

138 B3-TC-555AC Evaporator 702 steam outlet temperature (°F) 

139 B3-TC-555AD Evaporator 703 steam outlet temperature (°F) 

140 B3-TC-555AE Evaporator 704 steam outlet temperature (°F) 
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Table 2.1 (continued) 

Signal Sensor tag Signal description" 

141 B3-TC-555AF Evaporator 705 steam outlet temperature (°F) 

142 B3-TC-555AH Evaporator 707 steam outlet temperature (°F) 

143 B3-TC-555AK Evaporator 708 steam outlet temperature (°F) 

144 B3-TC-546AU Superheater 710 steam inlet temperature (*F) 

145 B3-TC-546AV Superheater 712 steam inlet temperature (°F) 

146 B3-TC-546AW Superheater 710 steam outlet temperature (°F) 

147 B3-TC-555AN Superheater 710 steam outlet temperature (°F) 

148 B3-TC-546AX Superheater 712 steam outlet temperature (*F) 

149 B3-TC-555AQ Superheater 712 steam outlet temperature (°F) 

150 B3-PT-520 Superheater outlet pressure (psig) 

151 P5-FT-580 Superheater outlet flow (Ibn/h) 

152 P3-PT-588 Turbine inlet steam flow ( Ibjh) 

153 P3-PT-501B Turbine inlet steam pressure (psig) 

154 P3-TC-545 Turbine inlet steam temperature (°F) 

"IHX = intermediate heat exchanger. 



3. ADVANCED AUTOMATION CONCEPTS 

Automatic control systems can improve overall performance as well as increase the 
reliability and availability in system operations. Recently, interest has increrased in 
automating nuclear power stations to reduce human involvement and operating errors 
during routine reactor operations. The existing commercial power plants make use of 
automatic control with applications continuously extending toward new goals. However, it 
has not yet been possible to implement an automatic control that can incorporate all of 
the routine modes of operation of a nuclear reactor. This limitation is due to the large 
variations in conditions and configurations among the different modes of operation and 
the complexity involved in the corresponding procedures. The available technology 
requires operator intervention for discrete-event control between the different modes of 
continuous processes. 

The design presented in this paper has a general architecture applicable to any 
mode of plant operation. The primary goal has been to develop an intelligent 
environment to integrate control, diagnostics and monitoring aspects. The proposed 
system, however, includes modules that require a set of specific knowledge of the 
operation (mode). Thus, it is a general design that can be tailored for a specified task. A 
high-level decision-making system can be incorporated to supervise goal switching 
(i.e., from startup to steady state) to enlarge the scope of operations. Section 3.1 
describes the details of the integrated control system, its general architecture, and its 
application to a particular task, namely the automation of EBR-II startup. 

3.1 DEFINITION OF CONTROL ENGINE 

The conceptual environment including the necessary functional blocks is shown in 
Fig. 3.1. This architecture is called the Integrated Control System (ICS) which 
incorporates innovative concepts in monitoring, diagnostics, and control. The ICS is 
equipped with artificial-intelligence (Al ) methods for decision making, verification, and 
validation. Advanced control methods are used for a multivariate, nonlinear plant control. 

3.1.1 Signal Validation 

This function block contains multiple methods for processing raw sensor data and 
generating validated data prepared for specific use. It is envisioned that multiple 
validation techniques will be used concurrently to observe the data. An intelligent 
supervisor then evaluates the outcomes of the various techniques to arrive at a validity 
parameter. Data sample and validated parameter are broadcast to a specified destination. 

3.1.2 Command Validation 

The objective of the command validation block is to determine the accuracy o f the 
command generated by the control system or by the operator and to validate the resulting 
output o f the actuator system. A command validator as a distinct function is a relatively 
new concept to process control. It parallels, to some extent, sensor signal validation. The 
overall command validation involves verification of control signal input ( to actuator) and 
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Fig. 3.1. General architecture of the integrated control system. 
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actuator system output (plant response). For illustration, the classic example of a 
command validator is the conflict resolver circuit of a traffic-light controller. Should the 
timers and phase sequencers produce simultaneous green lights at an intersection, the 
conflict resolver overrides the situation to produce flashing red or yellow lights. 

A definition of the requirement for valid control strategy is that the controller's 
output to the actuator and the actuator's output must remain within certain bounds of a 
desired strategy or trajectory. The procedure for command validation consists of 
(1) identifying faulty control signals, (2) isolating plant component malfunction, and 
(3) quantifying the control signal's variation from the nominal value. 

3.13 Configuration Validator 

This function block identifies the current plant mode and subsystem operability 
status. The data generated consists of current mode of each subsystem, current status of 
each piece of equipment (e.g., in-operation, available/unavailable, undermaintenance, and 
faulted), and look-ahead status (i.e., planned outage). 

3.1.4 Strategy Validator 

This function block determines whether the current strategy in use by the control 
system (or operator) is valid for the conditions of the plant and the desired objective. 
This form of validation answers questions such as (1) D o e s the current strategy suit the 
current configuration of the system? (2) Are there any expected critical points in the 
chosen strategy? (3) Are there any alternative strategies in case of anomalies? and (4) Are 
the future control actions appropriate for the current operation? 

3.1.5 Direct Control Algorithm 

This function block houses the continuous control algorithms for all systems 
employed during the operation. The control algorithms must be robust to handle the wide 
range of conditions and parameter variations encountered during operation. This block 
contains algorithms that operate in parallel and use different sets of plant measurement to 
provide an alternative control solution in case of corrupted signals feeding into the on-line 
algorithm. Provided the outputs of all other control algorithms are valid and jump 
conditions exist, the on-line algorithm can be shifted to one that is not affected by the 
measurement corruption. This block also includes different algorithms for different modes 
of operation (such as steady-state control and startup control). The direct control block 
and the guidance block differs only between the manual and automatic modes of control. 

3.1.6 Mode Selector 

T h e mode selector controls the discrete changes required by the specifics of an 
operation(s). It can change the mode of the direct control algorithm block or the plant 
directly by actuating pumps, motors, aligning block, and isolation valves to distinct 
configurations. The mode selector's task includes on-line manipulation of parallel-control 
algorithms in case of anomalies in the measurement or command set. 
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3.1.7 Performance Analyzer 

This function block identifies failures and deteriorating performance in the major 
components and subsystems of the plant. Performance of various systems is tracked and 
compared with tolerance limits. Various tests can be performed to detect long-term 
problems such as bearing wear, tube leak, and heat-exchanger fouling. 

3.1.8 l i f e b o a t System 

The lifeboat concept is that of a simple controller employing a simple algorithm 
designed to bring the specific system under its scope of control to a preestablished safe 
and stable state. The lifeboat system is implemented on separate hardware from the 
remainder of the startup control system. Thus, hardware (or software) failures in the 
principal controller are captured by the lifeboat and not allowed to propagate through the 
process. Because the lifeboat is functionally upstream from the actuators, it is reasonable 
that the lifeboat module also functions as a local hand-automatic (H/A) station. 

3.1.9 Decision Support 

This block contains the information system to support the operator's decision-
making process. Included in the block are the procedure prompting system and an 
intelligent planning system. The decision support system provides also an advanced 
operator interface for monitoring the key variables of the plant and the status of each 
block of the ICS. 



4. APPLICATION T O E X P E R I M E N T A L B R E E D E R REACTOR-II S T A R T U P 

This section describes a preliminary ICS design for the EBR-II startup operation. 
The ICS, as shown in Fig. 4.1, includes some of the major function blocks explained 
earlier. Detailed structures of these blocks are explained in the following text. The 
control design and simulation studies use the software systems MATRIXx and SYSTEM-
B U I L D (ISI1989) . The ICS blocks are developed with the use of S Y S T E M - B U I L D 
model building blocks. These details are also provided in the following sections. 

Recent accomplishments at EBR-II include automatic power increase capability 
between 20 and 62.5 MW(t) using Bailey digital controllers. However, no supervisory 
approach exists to coordinate multi-input/output (MIMO) control, diagnostics, and 
validation for the startup operation. Some areas are reported to be potentially open for 
advanced methods (personal communication, 1988 letter from G. Lentz, Argonne National 
Laboratory, Argonne, Illinois, and May 1988 meeting with R. Kisner, Oak Ridge National 
Laboratory, Oak Ridge, Tennessee). These areas are 

1. startup reactivity monitoring capability to determine control rod worth and 
movement and core configuration (such systems must compare these 
measurements and calculations against limits); 

2. technical specification (tech spec) monitoring system that determines from 
measurements whether a tech spec has been violated and to a limited extent 
whether the plant is approaching a tech spec limit; and 

3. any other system that leads improved performance, reduced cost, and improved 
safety. 

The objectives in designing an advanced control system may 

1. increase availability by reducing operator error and plant trips; 
2. reduce startup time [currently requires 1 week to bring balance-of-plant (BOP) from 

ambient to hot standby, 4 h to bring the reactor to zero power conditions, 4 h to bring 
reactor and BOP to power operation, and 9 h to bring the turbine-generator on line 
(may be parallel with other BOP startup activities)]; 

3. decrease crew size [current crew size is —12, of which 8 are actually active: 4 operators 
are required for reactor startup (2 console, 1 plant watch, 1 helper), > 4 operators are 
needed for BOP startup]; 

4. minimize highly repetitive operations; 
5. avoid penalties to help operators eliminate tech spec violations; and 
6. lower operator stress by implementing effective plant diagnostics and alarm priority 

systems. 

4.1 S T A R T U P A U T O M A T I O N S T R A T E G Y 

EBR-II startup is primarily controlled by two actuators, the control rod bank and 
E M pump (sodium loop between the secondary side of IHX and sodium side of the steam 
generator). Several discrete-event control actions are on the steam side of the reactor, 
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Fig. 4.1. Advanced control system for Experimental Breeder Reactor-II startup. Phase I systems in 
MATRIXx environment. 
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most of which consist of one-time actions. These actuators are not remotely controlled, 
and the control action is taken manually by a plant technician who, in some cases, walks to 
the physical location of the actuator. Therefore, the steam side of the EBR-II reactor is 
by no means suitably equipped for automation. System upgrading for remote control on 
the steam side is considered unnecessarily costly since EBR-II is a small-scale test reactor 
and the existing operations are verified to b e efficient. Thus, the automation control task 
is reduced to a somewhat limited scale consisting of controlling only the two actuators as 
stated above. 

When the automation task is constrained to o n e part of the system, the control task 
may become quite complicated or sometimes impossible, depending o n the nature of 
subsystem couplings. Fortunately, the couplings between EBR-II subsystems do not 
impose difficulty for the startup task, in particular. The automation strategy for the ICS 
implementation consists of imitating a previous startup that is considered as the reference. 
The imitation simply means that the state variables of the EBR-II primary side should 
follow the trajectories of the reference startup (desired behavior). In addition, the output 
from the primary side to the steam side should agree with the demand (the reference 
trajectory) in the existence of a boundary condition(s) that represent the downstream 
effects on the primary system. 

The corresponding coupling in the EBR-II reactor takes place in the piping 
between the I H X and steam generator. The IHX secondary outlet piping carries liquid 
sodium to the steam generator. Accordingly, the requirement includes following the 
demand that represents the energy output o f the primary system. Energy is characterized 
by temperature and mass flow rate. Thus, demand is stated in terms of the secondary 
sodium temperature and flow rate. Other important state variables include the reactor 
power, core exit temperature, bulk sodium temperature, I H X primary outlet temperature, 
and primary flow. According to the control technique, some of these variables are 
selected for trajectory following. However, the controllers are expected to perform such 
that all state variables are within the desired boundaries. 

4.2 SIGNAL VALIDATION 

Operational records of the EBR-II indicate several measurement problems 
encountered in the past. Especially nonredundant measurements such as the secondary 
sodium flow may sometimes provide misleading information because of sensor degradation 
or additive noise. Thus, an on-line signal validation capability is necessary for a fault-
tolerant control strategy. Table 4.1 lists 16 different measurements that are important to 
design and implement the ICS. Table 4.1 indicates the redundant and nonredundant 
measurements. This distinction plays a major role in the signal-validation strategy. 

4.Z1 On-line Signal Validation Strategy 

The strategy consists of creating a set of base signals. Signals obtained from a 
redundant-measurement set are called base signals. A generalized consistency-checking 
(GCC) routine verifies the validity of the base signals. In case of an abnormal reading in 
the set, the corresponding signal is disqualified. The output of the G C C is a reading 
averaged over the redundant readings that are normal. 

Validation strategy includes empirical models to estimate the measurements from 
the nonredundant sensors. The empirical models are developed off-line from a data set 
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Table 4.1. Selected signals from Experimental Breeder Rcactor-II data acquisition 
system (to implement integrated COD trot system for automatic startup) 

Tag Base signal" Redundancy Used by* 

P l -NLC Reactor power 3 RID,Fuzzy,PA,SV,CV 

R l - T C Core exit temperature 20 RID,Fuzzy,NNET, 
SV,CV,PA 

R l - T C IHX primary inlet temperature 5 SV.CV.PA 

R l - T C IHX primary outlet temperature 4 RID,SV,CV 

R l - T C Bulk sodium temperature 13 RID,SV,CV,PA 

B2-TC SU sodium inlet temperature 5 PA 

B2-TC EV sodium outlet temperature 7 PA 

Tag Signal1 Redundancy Used by* 

P1-BAM594M Rod position 1 CV 

R1-FM-512B Primary sodium flow 1 RID,PA 

R1-TC-540AT HP plenum temperature 1 N i « 2 T 

R2-RT-533AA IHX secondary outlet 
temperature 

1 RID,Fuzzy,NNET 

R2-TC-546AR IXH secondary inlet temperature 1 RID,PA 

S2-FM-516 Secondary flow 1 RID,CV,PA 

(no tag) EM pump voltage 1 CV 

B3-PT-S05 Steam drum pressure 1 PA 

P3-FT-588 Turbine inlet flow 1 PA 

"Definitions (column 2): 
E M = electromagnetic. 
E V = evaporator. 
HP = high-pressure. 
I H X = intermediate heat exchanger. 
S U = superheater. 

^Definitions (column 4): 
R I D = reconstructive inverse dynamics controller. 
Fuzzy = fuzzy controller. 
N N E T = neural network controller. 
CV = command validation block. 
SV = signal validation block. 
P A = performance analyzer block. 
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obtained during a previous startup at EBR-II. This data set includes the base signals. 
Thus, the empirical models are developed by using only the base signals because the 
redundant measurements are more reliable than the nonredundant ones. The base signals 
of this application are indicated in Table 4.1. 

The signal validation block (SVB) shown in Fig. 4.1 includes two different routines 
that check the validity of the signals independently. The first routine uses a nonlinear, 
process empirical modeling (PEM) technique previously developed (Upadhyaya et al. 
1987). The second routine uses a well-known artificial neural network paradigm called the 
backpropagation network (BPN). This routine was also previously developed for 
diagnostic purposes (Upadhyaya, Eryurek, and Mathai 1989). Thus, the SVB includes two 
models (PEM and BPN) for each nonredundant measurement. 

Development of the empirical models stated above includes off-line computations. 
The PEM routine uses a nonlinear curve-fitting method and is known to provide efficient 
results. PEM is suitable for rapid updating since the development process takes relatively 
short CPU time. BPN is a learning algorithm that requires off-line training. The training 
period can be long, thus it is not easily updated. However, BPN is robust against 
abnormal situations and is also known to be a powerful generalization tool. The different 
characteristics of the two methods cover a variety of anomalies so that the fault-tolerance 
can be handled by at least one of the two routines. More detailed information on 
empirical modeling techniques are given in Sect. 6. 

During the on-line implementation, the SVB receives the 16 selected signals. It uses 
the base signals as the inputs to the models to estimate the rest of the measurements. A 
comparison takes place between the estimated value and the actual reading. If the 
deviation exceeds a predefined band, the SVB disqualifies the corresponding signal. The 
estimation results obtained from the empirical models compared with the actual data are 
shown in Figs. 4.2a-4.2f. As can be seen from these figures, the SVB functions favorably. 

43 COMMAND VALIDATION 

As described in Sect. 4.2, the purpose of command validation is to provide an 
intermediate confirmation stage before the commands are sent to the plant actuators. 
From the practical point of view, the command validation is the same as the signal 
validation, except the signals to be validated are obtained from the operator, controller, 
and/or actuator. The concept of command validation covers the failure possibilities of the 
command-generating components such as the hardware, software and operator. 

In application to the EBR-II startup, the command validation task includes two 
signals, (1) control rod position and (2) voltage applied to the EM pump (determines 
secondary sodium flow). The command validation block (CVB) shown in Fig. 4.1 uses two 
empirical models for each command. The routines used for the CVB are the same as 
those used in the SVB. Similarly, the empirical models in CVB are developed off-line 
from the available EBR-II startup data. The strategy consists of using the base signals to 
estimate the commands, which are compared with the actual commands. When a large 
deviation occurs between the estimated and actual command, CVB disqualifies the 
corresponding command. Figures 4.3a-4.3f show the CVB estimates of the commands 
used in the EBR-II startup. 

Figure 4.4 shows the MATRIXx/SYSTEM-BUILD implementation of the PEM 
routine for the estimation of reactor power signal. An example to the BPN 
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Fig. 4.2a. Process empirical model for power, input signals are reactor exit temperature and 
intermediate heat exchanger primary outlet temperature; modeling error is 2.11%. 
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Fig. 4.2b. Backpropagatioo network m o d d for power; input signals are reactor exit temperature and 
intermediate heat exchanger primary outlet temperature; modeling error is 2.14%. 
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Fig. 4.2c. Process empirical model for intermediate beat exchanger ( I H X ) secondary outlet 
temperature; input signals are reactor exit temperature and IHX primary outlet temperature; modeling error is 
0.067%. 
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BPN IHX Secondary Outlet Temp. Prediction 
+ PREDICTED — ftCTUAL 

Fig. 4_2d. Backpropagalioo network model far intermediate beat exchanger (IHX) secondary outlet 
temperature; input signals are reactor exit temperature and IHX primary outlet temperature; modeling error is 
0.071%. 
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Fig. 42a. Process empirical model of secondary sodium Dow; input signals are reactor exit temperature 
and bulk sodium tank temperature; modeling error is 4.54%. 
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Fig. 42.t Backpropagatioc network mode] of secondary sodium flow; input signals are reactor exit 
temperature and bulk sodium temperature; modeling error is 2.23%. 
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Fig. 4 3 a . Process empirical model for control rod position; input signals are power and reactor outlet 
temperature. 
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Fig. 4 3 b . Backpropagatioo network model for control rod position; input signals are power and reactor 
outlet temperature. 
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Fig. 43c. Backpropagatioo network model of secondary sodium Bow; input signals are electromagnetic 
(EM) pump voltage and E M pump delta F. This model is used for actuator output validation. The detectable 
anomaly is the EM pump failure. 
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Fig. 43d. Proccss empirical model of secondary sodium flow; input signals are electromagnetic (EM) 
pump voltage and EM pump delta P. 
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Fig. 43c. Process empirical model of electromagnetic pump voltage; input signals are reactor exit 
temperature and bulk sodium temperature. 
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Fig. 4.3L Backpropagatioo network model of electromagnetic pump voltage; input signals are reactor 
exit temperature and bulk sodium tank temperature. 
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Fig. 4.4. MATRIXx reconstruction of the process empirical model. 
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implementation is also shown in Figs. 4.5a-4.5c. In this example, the BPN estimates the 
secondary sodium flow for command validation. 

4.4 CONTROL GUIDANCE 

The control guidance block (CGB) houses three different nonlinear controllers 
operating in the M I M O regime. The two actuating signals are the control rod position 
and the E M pump voltage that drives the secondary sodium flow between the IHX and 
the steam generator. As described earlier, the three controllers operating in parallel 
provides a fault-tolerant operation. The design differences among the controllers are 
made carefully to distribute the capabilities over the alternative control systems. This logic 
helps confine the anomaly propagation through only o n e controller, thus isolating others 
from the external disturbances. The design also aims at building robustness within each 
control system against abnormal situations. 

The ICS interface with the EBR-II actuators (including the operator) has three 
modes: (1) manual control, (2) semiautomatic control, and (3) full-automated control. In 
the manual mode, the control block directly interacts with the operator. It provides a set 
of suggestions for the adjustment of the control variables. In the semiautomatic and full-
automatic modes, the control block is manipulated by the operator to send the control 
signals directly to the plant actuators. The distinction between the semiautomatic and full-
automatic modes is determined by the frequency of operator intervention. The scope of 
this work does not include the specifics of the full-automatic and semiautomatic modes. 

Parallel operation of the three controllers includes the use of three adaptive models 
(on line) of the plant. In the parallel mode, all of the controllers are active including the 
two that are fed back from the adaptive models and the one that interacts with the plant. 
Note that the adaptive models are capable of accurately representing the plant dynamics. 
Detailed information on adaptive modeling is given in Sect. 6. 

4.4.1 Reconstructive Inverse Dynamics Controller 

The background of the reconstructive inverse dynamics (RID) control design is given 
in Sect. 6. The underlying principle includes creating the inverse dynamics of the process 
from a model-based, adaptive paradigm (Berkan et al. 1989). R I D is a nonlinear 
technique and yields accurate trajectory-following control. It is inherently robust against 
modeling errors and unknown dynamics. Thus, the instability problem often experienced 
in model-reference control techniques can be avoided provided such discrepancies are 
within the acceptable limits. The R I D method can be enhanced with an adaptive routine 
that further reduces the effects of uncertainties. 

The EBR-II startup control task consists of a M I M O design with control rod position 
and secondary sodium flow as the actuating signals. T h e R I D controller design uses two 
trajectories to be followed: (1) reactor power and (2) IHX secondary sodium outlet 
temperature. These trajectories are obtained from the available startup data. Figure 4.6 
shows the R I D design of rod reactivity to follow the reactor power and secondary sodium 
flow to follow the IHX secondary outlet temperature, and it illustrates the implementation 
in the MATRIXx/SYSTEM-BUILD environment. 

In the R I D technique, all available measurements (that are adequate to represent the 
inverse dynamics) are used in the feedback loop. An on-line model is incorporated with 
the control system to provide estimates of the unmeasured state variables such as 
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Fig. 45b. Expanded view of the fifth hidden neuron. 
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Fig. 45c. Expanded view of the output layer neuron. 
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power 

Fig. 4JS. Reconstructive inverse dynamics control imptementation in MATRIXx/SYSTEM-BUILD 
environment. Output 1 corresponds to rod positioning, and output 2 corresponds to secondary sodium flow. 
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precursor concentration, fuel temperature, cladding temperature, and IHX wall 
temperature. The on-line model also provides corrections for the uncertainty in reactivity 
and heat transfer coefficients. The final design used in simulations does not include 
adaptive features, because the performance is satisfactory without complicating the control 
system (see Sect. 5). 

4.43. Fuzzy Controller 

Use of fuzzy logic in control is briefly presented in Sect. 6. Fuzzy control has become 
increasingly popular in industrial applications, mainly because <<f the simplicity in 
implementing a nonlinear control law that can handle imprecise information. In 
application to the EBR-II startup, the fuzzy paradigm is considered to provide a reliable 
control solution that does not rely on an on-line model. Also, it uses only three 
measurements from the plant: the reactor power, core exit temperature, and IHX 
secondary sodium outlet temperature. Because only the latter measurement is 
nonredundant, this control module is quite isolated from measurement anomalies. 

Automation of the EBR-II startup procedure with a fuzzy controller requires a 
trajectory-following strategy for both rod reactivity and secondary sodium flow. Unlike the 
steady-state control of dynamic systems, the trajectory-following control presents some 
difficulties when employed within the fuzzy control paradigm. A new approach that 
employs fuzzy control in the feedback loop is used. The fuzzy control block includes a 
truth table identifying the state and control variables in a common phase plane. The table 
is constructed from a data set previously recorded during a successful startup of EBR-II. 
In the feedback loop, the fuzzy block shown in Fig. 4.7a provides correction to the startup 
commands (fixed trajectories) to ensure that the plant states remain within the phase 
plane of the table. Figure 4.7a shows the MATRIXx/SYSTEM-BUILD blocks 
representing the EBR-II model, fuzzy controller, and correction block "wire." The interior 
of the fuzzy block is shown in Fig. 4.7b, where input channels 1, 2 and 3 correspond to the 
on-line readings of the three measurements stated above. The outputs of fuzzy blocks are 
equally weighted to yield the final form of the control signal. 

4.43 Neural Network Controller 

A brief description of the artificial neural networks, particularly the backpropagation 
network (BPN), is given is Sect. 6. Recent advances in neural networks have made it 
possible to design control systems for dynamic systems. The BPN paradigm, when 
designed as a controller, does not use an on-line model. Thus, it provides another reliable 
control solution after fuzzy controller. Development of the BPN module requires off-line 
training that can be complicated, in general. It also requires data preparation and careful 
data operations. 

In application to the EBR-II automated startup task, the BPN module is considered 
to provide a short-cut solution with a high degree of robustness. It is designed to use only 
three measurements, similar to the fuzzy controller. However, the measurement set is 
chosen differently to yield a maneuvering capability around the problems in power 
measurement that affect both fuzzy and RID controllers. The three measurements that 
the BPN module uses are the core exit temperature, IHX secondary sodium temperature, 
and high-pressure plenum inlet temperature. Note that it is impossible to avoid using 
nonredundant measurements from the IHX to implement startup control successfully. 
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The use of neural networks for the trajectory-following control imposes a difficulty 
just like that in the fuzzy control paradigm. The problem is that the BPN controller can 
produce control output for only the current state of the plant but not the future state. 
Therefore, the desired future states of the plant must be introduced to the control system 
to drive the plant toward higher power levels by simply imitating the operator's actions in 
a previous startup. The trajectories of the two control variables are introduced to the 
plant every fifth time point. During the remaining time period, the plant states are fed 
back to the BPN controller to provide regulative (corrective) control action around the 
new future state. 

The BPN controller is trained by using the startup data shown in Fig. 2.3. Training 
requires normalization of the data. Each of two BPN algorithms is trained to predict one 
control variable. The training data set includes normalized signals from the core exit 
temperature, IHX secondary sodium outlet temperature, and high-pressure plenum inlet 
temperature. 

The choice of a proper network architecture constitutes a major problem in neural 
network applications. The number of hidden-layer neurons determines the prediction 
capability of the network. The optimal number of hidden-layer neurons is an unknown 
that can be determined through only intuition. A large number of neurons slow down the 
training, and sometimes solutions may never converge. Thus, the BPN architectures are 
designed to contain a minimum number of hidden-layer neurons, provided the 
performance is acceptable. Another difficulty in handling large networks appears in the 
implementation stage. The MATRIXx/SYSTEM-BUILD environment is not designed 
particularly to contain networks with a large number of connections. Thus, the design 
philosophy in this application is to obtain a neural network controller with reasonable size 
and performance. The BPN algorithms include three hidden-layer neurons for the 
reactivity control and five hidden-layer neurons for the secondary sodium flow control (as 
shown in Fig. 4.8). Off-line training results indicate that the BPN controller efficiently 
produces the expected control actions given the plant states. The simulation results are 
given in Sect. 5. 

4.5 PERFORMANCE ANALYZER 

The performance analyzer shown in the general architecture of Fig. 3.1 includes 
several vitally important diagnostics tasks. In this application, its function is concentrated 
on the recognition of plant behavior. Because the work presented in this report is based 
on computer simulations oniy, additional functions of the performance analyzer are 
omitted. The omitted functions include determining the component status and wearing 
effects. 

Recognition of the plant behavior is an important diagnostics task when the plant is 
subject to unanticipated transients. During scheduled normal operations, the behavior-
recognition task determines the degree of consistency in following the planned operation. 
The ICS design includes a performance-analyzing routine to determine whether the 
startup trajectories are followed properly by the ICS control actions. The routine uses a 
data set previously recorded during a successful startup operation. A multidimensional 
phase plane is developed to correlate all state variables of the plant for a given power 
level. Figure 4.9 illustrates the phase plane for only three state variables. The minimum 
distance between the current plant state R' and the desired state R determines the quality 
of performance. Recognition of the current operation is calculated percentagewise from 
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the normalized distance. When the minimum distance is zero, recognition is 100%. The 
lower bound of this measure is 1 to correspond to a 0% recognition. This calculation is 
repeated every time point the measurements become available. The ring shown in Fig. 4.9 
is a linguistic evaluator and can be adjusted through experience. In this application, the 
recognition level below 90% is considered to be medium performance. WTien 
performance is in the medium range, the mode selector intervenes the control system and 
evaluates the candidate controllers for continuation of the ICS implementation. Note that 
this function provides an anticipatory trip-avoidance capability, mainly because of the 
recognition of a deteriorating range that may drag the plant into abnormal regimes during 
later stages of the operation. 

4.6 MODE SELECTOR 

As stated previously, the integrated control system shown in Fig. 4.1 is a simplified 
version of the general design shown in Fig. 3.1, which is appropriate for determining the 
feasibility of the conceptual design at a preliminary level. The mode-selector block of the 
ICS system shown in Fig. 4.1 also includes the performance-analyzer block. 

In this application, the mode-selecting logic is designed to initially activate the RID 
controller since this technique yields accurate trajectory-following control (see Sect. 5). 
The mode-selecting logic is constructed on top of this initial status. The causes for a 
mode change from the initial status, described by Nakakura and Ishiguro (1988), are 

IA. input measurement(s) is/are corrupted, 
IB. command(s) is/are unacceptable, 
IC. performance is low, 
ID. operator intervenes (not applicable in manual control), 
IE. emergency system intervenes (not applicable in manual control). 

Note that 1A, IB, and 1C are obtained from the signal validator, command 
validator, and performance analyzer respectively. These causes are connected by an OR 
gate. Intervention by the emergency system or operator is not applicable in manual 
control where the ICS output is observed by only the operator as guidance. Thus, such 
intervention capability already exists and the ICS does not need to process this 
information. 

The transition to any secondary mode due to an anomaly requires a broadening in 
the logic tree. The two remaining control systems are to be checked for their availability. 
The availability check includes the following verifications: Is the candidate controller 

2A. affected by the detected signal anomaly? 
2B. generating acceptable commands? 
2C. able to take over (jump condition)? 

If the measurement anomaly is unavoidable by both remaining controllers, the ICS 
enters into the invalid range: a halt condition is declared. An identical reasoning applies 
to the commands being generated by the two candidate controllers at the time of anomaly 
detection. The verification 2C determines the magnitude of the disturbance that will 
affect the system when the controllers are switched. Although the candidate controllers 
generate acceptable commands at the time of anomaly, the transition is not allowed in 
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case of anticipated unacceptable jumps. When the secondary verifications are satisfied by 
the two candidates, the closeness becomes the criterion. The closeness is calculated from 
the jump condition, which is a measure of distance between the control variables and their 
expected values. 

In case of continuing anomalies, the third and other transitions are possible. 
However, the third and other transitions are confined within the fuzzy and neural network 
controllers. When the abnormality is detected through the command validator and 
performance analyzer, but not by the signal validator, the third and higher transitions can 
include the RID controller since the on-line model will not be affected. 

It is important to note that the error margins (acceptable band of signals) can be 
kept small to enhance the anticipatory failure detection. However, the band thickness, if 
not properly chosen, may cause several unnecessary transitions between the controllers. 
Thus, adjustment of the band thickness plays an important role in building fault tolerance. 

Figures 4.10a and 4.10b show the implementation of mode-selecting logic in the 
MATRIXx/SYSTEM-BUILD environment. Figure 4.10a shows the details of the super 
block "command logic" shown in Fig. 4.10b. The rod reactivity and sodium flow control 
signals are evaluated in the upper and lower parts of Fig. 4.10a respectively. For every 
controller, a corresponding "command-logic" superblock exists. The output of the 
command-logic superblock is 1, indicating abnormality and zero for normal operation. In 
Fig. 4.10b, the outputs from these blocks are connected to an OR gate. The OR gate's 
second input comes from the performance analyzer. Thus, the performance analyzer itself 
has the capability of disqualifying the on-line control implementation. The superblock 
"mode" provides a signal transmission path for the control signals to reach actuators. 
Other inputs to superblock "mode" include similar signals from the signal validator block. 
The signal validator has an equal weight in disqualifying the on-line controller. The 
superblock "final control" receives control signals from the controllers and functions as a 
bridge to the actuation channel. The superblock "on-line model" chose the coupling of 
the on-line model with the two standby controllers, and the third one is coupled to the 
plant. 

4.7 FAULT TOLERANCE 

The ICS architecture shown in Fig. 3.1 represents a fault-tolerant strategy to 
maneuver around those problems that may cause reactor trips in conventional systems. 
Trip avoidance is an important issue because the availability of the power output must be 
maximized for economy. The fault-tolerant capability in ICS is designed such that the 
problems are solved in an anticipatory fashion before their effects reach to the point of 
reactor trips. It is important to note that the definition of fault tolerance does not include 
avoidance maneuvers in the vicinity of the prescribed safety limits. 

In application to EBR-II autostartup control, the fault-tolerance strategy deserves 
special attention, mainly because the startup operation is quite complicated compared with 
other modes of operation. An average startup at EBR-II requires 8 h. An automated 
control system at EBR-II subject to the full load of control and diagnostics tasks is 
required to maintain high performance throughout the startup and transition to steady 
state at full power. The duration of the normal startup transient is long enough for the 
plant abnormalities to build up. Furthermore, the startup mode represents the case where 
the actuators are used extensively. In the most dynamic mode such as startup, component 
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failure possibilities are higher than in steady-state or standby conditions. Thus, the ICS 
design concept includes a fault-tolerant logic to resolve some of the likely problems. 

The ICS includes signal and command validation blocks, whose major contribution 
to the fault-tolerant strategy is the fault-detection capability. In addition, such a capability 
can be performed fast enough that the anomalies are not allowed to propagate. For 
example, the signals used in control systems are analyzed on-line to check their validity. 
Anomalies are detected promptly, and the relevant systems are warned. The lack of such 
a capability often causes plants to operate under abnormal regimes without detection up 
to the point where the severity of the anomaly requires emergency systems to intervene. 
A similar logic holds for the command validation task. Bad commands are not allowed to 
affect the system. Thus, the validation blocks function like an early-failure-detection 
system. However, early detection does not complete the fault-tolerant logic since the 
question of "what to do next" must be answered. 

The decision of what to do after anomaly detection constitutes one of the most 
significant issues. This problem is solved in the ICS design by creating a redundancy in 
control systems that operate in parallel. The redundancy built into the ICS not only 
introduces a software-fault tolerance but offers a number of solutions in case of anomalies. 
The control block houses three different controllers that (1) use different sets of plant 
measurements, (2) use different control laws, and (3) have different robustness 
characteristics. A signal anomaly can be bypassed by activating one of the controllers that 
does not use the corrupted signal. This solution holds if the anomaly is caused by the 
measurement system. Similarly, if the on-line controller starts generating unacceptable 
commands, the alternative control systems takes over. A safety measure is also built into 
this type of implementation. This measure indicates whether the jump condition from one 
controller to the other is acceptable. The ICS fault-tolerant logic cannot resolve 
equipment malfunctioning, because it is not generally an expected capability from any 
control system. In addition, the multiple anomalies occurring simultaneously may not be 
avoidable. The ICS is designed to declare a halt situation when the severeness of the 
anomaly exceeds the designed tolerance capacity of the ICS. In such cases, the operator 
and the emergency systems are warned. Note that the emergency systems and the ICS 
operate independently with an overriding protocol that disqualifies ICS under any 
conflicting situation. 

Figure 4.11 shows the fault-tolerant feature of the parallel control system interacting 
with the validation blocks. The three controllers use different sets of measurements. The 
mode selector continuously receives status information from the signal and command 
validators. In case of anomalies, the destination of the corresponding signals are 
inactivated. The Y/N flags in the figure correspond to permissions to activate/inactivate 
the controllers. The performance analyzer is also linked to the network. Its output 
determines the overall recognition of the operation. When no signal or command 
anomaly is present, the ICS is expected to drive the plant around the predetermined 
trajectories. These trajectories are obtained from the previous startup data. If the plant 
response shows unrecognized behavior, the performance analyzer can declare a halt 
situation. 

The fault tolerance built into the ICS system can also include the software/hardware 
failures which, in a simulated environment, requires isolating redundant control algorithms 
from each other by using different computers. This feature is not included in the scope of 
this work. 
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From SENSORS To ACTUATORS 

Fig. 4.11. Structural tault-toferanoe nature of the integrated control system. 



5. SIMULATION RESULTS 

The ICS design is performed entirely in the MATRIXx/SYSTEM-BUILD 
environment with a VAX 3100 machine. The simulation environment includes a 
nonlinear, valid model representing the EBR-II plant. The EBR-II model is coupled to 
the ICS to test the startup capability. First simulation includes the RID controller to start 
up the reactor. The diagnostic systems continuously evaluate the performance and the 
validity of commands. The simulation results show that the RID performance is 
outstanding, with an average recognition of —97%. During the simulation, all the 
commands are validated, and the mode selector remained silent. The candidate controllers 
(fuzzy and neural network controller) are tested for the same task. The startup responses 
show that the fuzzy controller (with 96% recognition) and the neural network controller 
(with 93% recognition) also yield satisfactory trajectory-following, while the mode selector 
remains silent during each separate simulation. The simulation results in the range of 
0-35% power level, compared with the operator-driven EBR-II data (dotted lines), are 
shown in Figs. 5.1a-5.1g. 

Figure 5.1a shows the power response controlled by three different controllers and 
by the operator during startup. The figures include the core exit temperature (Fig. 5.1b), 
bulk tank temperature (Fig. 5.1c), IHX secondary sodium outlet temperature (Fig. 5. Id), 
in-core sodium temperature (Fig. 5.1e), control rod motion (Fig. 5.1f) and secondary 
sodium flow (Fig. 5.ig). 

5.1 QUALITATIVE EVALUATION 

The responses shown in Figs. 5.1a-5.1g indicate that the three controllers 
accomplish the startup task quite efficiently. However, the differences in their 
performances as well as their advantages should be mentioned. 

The RID controller is designed to follow two trajectories (core exit and IHX 
secondary outlet temperatures). These trajectories are taken from the operator-driven 
startup data shown in the figures by dotted lines. Figure 5.1b and 5.1d indicate that the 
trajectories are followed so closely that they cannot be distinguished in these figures. The 
other state variables also strongly agree with the actual data. Note that the control rod 
motion taken by this controller in Fig 5.1f is almost identical to the operator's actions. 
However, the secondary sodium flow in Fig. 5.1g is controlled more abruptly. The 
difference in flow control between the operator and RID controller exhibits itself in the 
power response as a small delay because of the deviation in reactor inlet temperature (and 
tank temperature of Fig. 5.1c). It is important to note that the RID controller is tuned 
extra tightly to accomplish efficient trajectory following. 

The fuzzy control results show a strong agreement with the RID and operator 
actions. The system responses are also consistent with the startuo data. The trajectory of 
the IHX secondary outlet temperature is followed with more error when compared with 
the RID performance. However, this error is negligible for all practical purposes. The 
fuzzy controller is not dependent on a model, and it is very simple to implement. Thus, 
the trade-off between the RID and fuzzy controllers represents a bargain between the 
performance and complexity. 

The neural network controller yield lei<M preferable strategy because of 
deviations in system responses wiH ' ! i the desired behavior. However, the neural 
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Fig. 5.1a. Power change during startup at Experimental Breeder Reactor-IL (1) Operator-driven actual 
data. Comparison of actual data with the simulation results of (2) fuzzy controller, (3) neural network 
controller, and (4) reconstructive inverse dynamics controller. 
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Fig. S.lb. Core exit temperature change during startup at Experimental Breeder Reactor-EL 
(1) Operator-driven actual data. Comparison of actual data with the simulation results of (2) fuzzy controller, 
(3) neural network controller, and (4) reconstructive inverse dynamics controller. 
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Fig. 5.Id. Intermediate beat excbanger-secondaiy outlet temperature cbange during startup at 
Experimental Breeder Reactor-H (1) Operator-driven actual data. Comparison of actual data with the 
simulation results of (2) fuzzy controller, (3) neural network controller, and (4) reconstructive inverse dynamics 
controller. 
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Fig. S.lc. In-core sodium temperature during startup at Experimental Breeder Reador-IL 
(1) Operator-driven model response. Comparison of operator-driven model with the simulation results of 
(2) fuzzy controller, (3) neural network controller, and (4) reconstructive inverse dynamics controller. 
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Fig. 5.1L Rod motkn during startup at Experimental Breeder Reactor-H. (1) Operator-driven actual 
data. Comparison of actual data with the simulation results of (2) fuzzy controller, (3) neural network 
controller, and (4) reconstructive inverse dynamics controller. 
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Fig. S.lg. Secondary sodium flow control during startup at Experimental Breeder Reactor-IL 
(1) Operator-driven actual data. Comparison of actual data with the simulation results of (2) fuzzy controller, 
(3) neural network controller, and (4) reconstructive inverse dynamics controller. 



71 

network design was restricted to a simple structure because of the difficulty in 
implementing control design in this particular simulation environment. Although the 
performance is the poorest among the others, the commands generated by this controller 
lie in the valid region, and the overall performance is reasonable. Note that the network 
for the rod reactivity control includes only three hidden-layer neurons. Similarly, the 
network for the secondary sodium flow control includes five hidden-layer neurons. 
Increasing the number o f neurons in these networks will most likely improve the 
performance. Fuzzy controller is relatively easier to update compared with the neural 
networks approach. Depending on the changes in operational conditions or system 
configuration, new fuzzy rules can be added or old ones can be removed. With neural 
networks, updating may require challenging off-line training. 



6. DESIGN TOOLS 

6.1 PROCESS EMPIRICAL MODELING 

One of the common techniques for signal estimation is based on empirical modeling 
of the process provided all the important measurements are available. The signal 
validation capability embodied within the ICS is taken from a previous work (Upadhyaya 
et al. 1987) that provides an algorithmic method for nonlinear, empirical modeling. The 
empirical model represents a critical signal as a function of a set of other measurements 
that influence the behavior of the variable under consideration. The functional form of 
the fit is, in general, nonlinear and has the form 

Xi mfi(*v ' •*«) W 

where y>j is the state variable to be monitored, and x = (jfj, x2, • • •, x„) is the vector of 
subsystem variables that influence y,. A previously developed software system (Upadhyaya 
et al. 1987) uses a modified version of the nonlinear curve-fitting technique first proposed 
by Desrochers and Mohseni 1984. 

The general nonlinear steady-state system predictor has the form 

y = CQ + £ C^(x) . (2) 
i - l 

After choosing the functional <p;(x), the coefficients (Cc, C\, • • • , CN) are 
calculated by the least-squares procedure. Each <p, is a nonlinear term or cross product of 
the components of x. The number of possible cross-product terms is a function of the 
polynomial order and the number of components in x. To handle the nonlinear models 
and reduce the number of terms or even the order of the model, several theories exist. 
Desrochers and Mohseni's method (1984) is used for these purposes. Detailed 
information about the analytical development and the algorithm is given in Upadhyaya 
et al. (1987). 

6.2 NEURAL NETWORKS: BACKPROPAGATTON PARADIGM 

The use of neural networks for signal validation or control has several advantages. 
Defining a functional form relating a set of process variables is not required. The 
functional form employed in neural network paradigms is nonlinear. Once the network is 
completely trained, the estimation of the desired variable is efficiently interpolated during 
implementation. Both steady-state and transient system behavior can be predicted. The 
state estimation is less sensitive to measurement noise compared with model-based 
techniques. 

One of the analog neural networks, the backpropagation network (BPN), is 
obtained from a previous work (Upadhyaya, Eryurek, and Mathai (1989). BPN is a 
multilayer, fully connected heteroassociative network. A typical network configuration for 
signal validation is shown in Fig. 6.1. The number of processing elements (PEs) in the 
input layer corresponds to the number of input signals. In this case, the output layer has 
only one element, the signal to be predicted. The number of PEs in the intermediate 
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Fig. 6.1. Topology of a three-layer backpropagation network. 
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layer depends on the problem. The BPN algorithm computes the weights between pairs 
of processing elements such that the difference between the actual output and the 
network output is minimized in a least-squares sense. 

The algorithm used to train the network uses the generalized delta rule (Upadhyaya, 
Eryurek, and Mathai 1989). The algorithm is outlined below. 

1. Assign a random value r in the range [+1, -1] to all the connection weights 
and bias 6? to all processing elements. 

2. Present the normalized input vector x to the first layer of the network and 
propagate it to the output layer as 

= 
1 

1
 U e ^ f ? * r + ° f ) ' 

after which, each PE in the network will have an associated value. 

(3) 

3. For each PE at the output layer, the local error between the desired value and 
the actual value is computed by 

6f =xf(l -*/)(/, ~ x f ) - (4) 

where p denotes the output layer. 

4. For each PE in the hidden layers, starting at the layer below the output layer 
and endirg at the layer above the input layer, the local error is found by 

<5? -*/<i - x f ) E/srXr1 • (5) 

5. Compute all the connection weight correction as 
Aco?j = a dp} xrl (6) 

and the bias correction as 

A Of = adf . (7) 

6. Update all the weights by adding the weight corrections to the old weights. 

7. Update all the PE bias values by adding the bias corrections to the previous bias 
values. 

8. Repeat step 2 until the error between the desired and actual value of the 
output is sufficiently small. 
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63 FUZZY LOGIC 

In actual practice, system operations often deviate from prescribed definitions and 
set points. Many control problems arise from this mismatch between design and practice. 
Actual solutions require an appropriate interpretation of the inexactness and the 
uncertainty that abounds the real systems. Fuzzy logic is descriptive, relies on emulating 
the operator of a process, and provides a framework for integrating artificial intelligence 
with control. Most important, it uses uncertainty as a tool to handle uncertainty. 

The central notion in fuzzy logic (Zadeh 1983) is that of a linguistic (fuzzy) variable 
whose values are words or sentences in a synthetic language, appropriately represented by 
membership functions. A linguistic variable includes an adjective-like term (and its 
antonym), a modifier and a connective. The fuzzy control policy is represented as a finite 
collection of rules, called fuzzy productions (FP). FPs describe the dependence of one 
fuzzy variable on another. Their canonical form of the z'th r R 1 ' is 

is A), -••,(X„isAi„) , (8) 

then => Y = ao + + • • • + a'JCn , (9) 

where R is the ilh rule; A\ is a linguistic value of A) in R\ Y' is the control variable, and at, 
are adjustable parameters. The truth value of the antecedent of R' is given as 

w, - A w A • • • A A m , 00) 

where Aj(Xj) is the grade of membership of Xj in A'j. The aggregated value of control Y is 
a normalized linear combination given by 

W.Y + ••• + WY .... Y = _ ! !!_ . (11) 
W, + •• • + W 

1 ft 

The equation above suggests a weighted vote in the control logic. Generally, in a 
fuzzy production system, all rules are considered to be "fired" with different strengths. 
Rules that fire strongly contribute significantly to the final conclusion. 

6.4 INVERSE DYNAMICS AND CONTROL 

Consider a plant dynamics described by 

x = F(x, u) , O2) 

where x and u are state and control variables respectively. The control is solved from 
Eq. (12) to yield 

u = F'(x. x) , (13) 

where i indicates the inverse dynamics with respect to the solution of control u. The 
dynamic equilibrium of control is defined as 
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u^ = F'(x, x = 0) . (14) 

The definition of the reconstructive control is given by 

un - i = -*(x -*,) , (15) 

where k is a tunable gain and xd is the demand. The dynamic equilibrium of control given 
by Eq. (14), when appended to the open-loop system of Eq. (12), cancels the forward 
dynamics denoted by F. The second segment of the total control given by Eq. (15) 
reconstructs the forward dynamics in the desired form. Following the definitions in 
Eqs. (14) and (15), the total control given in Eq. (13) can be rewritten as 

u = Giu^uJ . (16) 

An alternative way of constructing the RID law includes the definition of a 
performance error E(t) given by 

E(t) = * > ( / ) -«„(/)] - kx[x(t) -xd(t)] , (17) 

where ku and kx are weights for the error terms. The control u is then solved from the 
above to satisfy the dynamic condition of E(t) = 0 at all times. Note that the dynamic 
equilibrium ueq(t) always works in the opposite direction with respect to the state variable 
x(t); thus, the condition E(t) = 0 can be satisfied only if x(l) — xd(t) = 0. By letting 
E(t) = 0 in Eq. (17) 

"(0 = %(') "*[*(') "*,(<)] = + "„(') • (18) 

The parameter k is an adjustable quantity. The RID control is specifically designed 
for trajectory-following control applications. Thus, it is assumed that the open-loop system 
operating at steady state is in stable condition, that is, u(0) = 0) and x(0) = *j(0) at 
the beginning of the transient. 

The RID design is performed in the subsystem level. A given system is decoupled 
according to the distribution of demands and control variables. Each control variable is 
designed to follow one demand. Thus, for every control-demand pair, a corresponding 
subsystem is defined. In case of MIMO systems, the control-demand pairs (and their 
corresponding subsystems) are selected according to the best strategy determined by the 
nature of the physical system. Among the many possibilities, the control-demand 
couplings fit one of the following most frequently encountered subsystem definitions. 

A Control law of direct path 
Consider the following coupled nonlinear systems. 

i x = f ( x v X , U l ) (19) 

where 

xx = state variable of subsystem 1, 
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(20) 
X = F{X, xv U) , 

ux = control variable of subsystem 1, 

X — state vector of the coupled subsystem, 

U = control vector of the coupled subsystem. 

Note that the control vector U does not include uv 

The control law of the direct path defined for a given demand dx on the state 
variable xx is given by 

"i =/-1(*i» x v X ) , 

where 

(21) 

x\ - ~k(xx - dx) (22) 

and f 1 denotes tf 3 inverse dynamics. 

B. Control law of indirect path 
Consider the following coupled nonlinear subsystems. 

xi ~ f\ (•*!> x2> X) , 

X2 = fl(XV X2' U2' X> U ) ' 

X = F(xv x2, X, U) . 

(23) 

(24) 

(25) 

As it can be seen from Eq. (23), a demand on xx can be satisfied only through the 
control of a coupled subsystem provided the combined subsystem is controllable. Suppose 
that the controllability condition exists fo. the combined subsystem given by Eqs. (23) and 
(24), then the control law of the indirect path for the control-demand pair of (u2, dx) is 
given as follows. 

x2 - f ? ( x v xv X) 
(26) 
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xi = . 
(27) 

"2 = (*1> XT X2> X> U ) 
(28) 

X2 ~ ~X2) • 
(29) 

As seen from Eqs. (26-29), the control u2 forces the solution of state x2 to match 
the dummy state x'2. The dummy state x\ is defined as the inverse dynamics of the state 
equation (23) where xx follows the demand dx. 

The term "indirect path" indicates that the control and demand are distributed over 
more than one state equation. Several different ways of defining the dummy state(s) can 
be used. The demand may also be assigned to an output equation where the control 
appears in the state equations. Thus, the generalization of the indirect path control law 
can not be carried out any farther than the above unless the system equations are 
explicitly defined and the strategic choices of demand-control pairs have already been 
made. 

C. Adaptive phase, on-line model usage 

The above derivation is based on the assumption that the open-loop dynamics is 
well defined through the system equations used to derive the RID control law. Once the 
control law is derived, the controller uses the plant state (measurements from the plant) in 
a feedback arrangement. 

In general, not all the plant states used in the controller are measurable. The 
missing state variables are estimated by using an on-line model. However, the state 
estimation using models often includes errors that may significantly degrade the controller 
performance. Besides the estimation errors, the system equations used to design the 
control law, may not be adequate either. Thus, the RID design includes an adaptive 
design phase where a correction term is added in the control to compensate for the 
mismatches between the plant and model. In case of uncertain dynamics, tuning the 
adaptive controller before the on-line implementation requires testing where the available 
plant measurements are used. If none of the plant states used in the RID control law are 
available as measurements, the adaptation cannot be accomplished (the system is not 
observable). The adaptive control can be designed in numerous ways depending on the 
properties of the system under consideration. The following section describes the 
treatment of mismatches between the plant and model dynamics. 

D. Unknown dynamics 

Assume that the given system dynamics is known to be partially unknown and the 
modeling effort does not yield accurate results. Consider a subsystem given by 
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= fi(*v * uv O 
(30) 

where A!"is the coupling state vector and gx is the unknown dynamics. A model describing 
the same subsystem is given by 

* T , . (31) mi = s\(mv M, uv gm) , 

where gm is the correction to the unknown dynamics g^ The RID design for the control 
u, is 

u, = s?(mv mv M, *J 
(32) 

where jj1 indicates the inverse dynamics of the model. Assume that the plant states are 
measured. Then the control given above will be implemented in the following form. 

- h?{xv xv X,gm) . ^ 

Note that the inverse dynamics is denoted by hJ"1 because an estimate gm is used. The 
design also includes 

i, = - d j , P4) 

where dl is the demand. The design is completed by the prediction of gm. The unknown 
dynamics can also be treated as another control variable. The inverse dynamics solved 
from Eq. (31) is 

* "jr# \ (35) 
8m "Pi (mv mv M> ui) ' 

where mx'\s replaced by proportional and integral error 

= - k J m i ~xx) ~ki\imi • (36) 

The integral error takes care of the accumulative error and can be omitted, 
according to the problem. 

The adaptive design can also be derived for the indirect path designs. It is 
important to note that the sensitivity of gains kx , km , and k,, with respect to the unknown 
dynamics, strictly depends on the nature of the uncertainty. The above derivation may 
also be used for parameter tracking. Figure 6.2 shows a block diagram of the RID 
control. 
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6.5 NONLINEAR MODELING OF EXPERIMENTAL BREEDER REACTOR-H 

A previously developed linear model of EBR-II (Upadhyaya et al. 1989) is modified 
to take into account the nonlinearities. The modified model includes only the primary 
system. The primary system model consists of the reactor core, sodium tank, and 
intermediate heat exchanger. The model employs the state-space technique using 18 str" 
variables. 

Figure 6.3a shows the implementation using SYSTEM-BUILD blocks. The three 
superblocks (core2, ihx2, and tank) are connected to another superblock called "adapt." 
This block includes five adaptive routines to match the model dynamics with the plant 
response. The five outputs from the adaptive block provide corrections to the reactivity 
and heat transfer coefficients of the model. The adaptive model uses on-line 
measurements from the plant. A second, entirely isolated, version of this model is stoo 
developed to provide the same corrections. The second model does not use any on-line 
measurement; instead, it uses a set of look-up tables. These tables include phase-plane 
relationships between the corrections and state variables. The tables are developed from 
data from the previous EBR-II startup. The validation of the model can be seen in 
Figs. 5.1a-5.1g. 

Figures 6.3b and 6.3c show the core and IHX models respectively. The interior of 
the adaptive block is shown in Fig. 6.3d. The adaptive routines are developed by using 
the RID method for unknown dynamics. The isolated adaptive model is generated after 
an operator-driven simulation, where the corrections are obtained and tabulated. 

6.6 E X P E R T SYSTEMS 

The ICS design introduced in this work uses several logical prepositions to yield 
fault-tolerant operation. In its present form, the ICS also makes use of heuristic 
knowledge at the preliminary level. Although an expert system development is not in the 
scope of this work, the following discussion clarifies the areas where an expert system 
would be useful. 

The implementation of the fault-tolerant logic can be enhanced by a supervisory 
routine that monitors the plant status in a wider range than the current ICS design. This 
enhancement requires an expert system environment in which the heuristic knowledge can 
be processed appropriately. As a supervisory routine, the expert system can also provide a 
link between the continuous control and startup procedure (or to the procedure 
prompting system). Note that several verifications in the standard procedure must be 
performed during startup. 

The capacity of such a supervisory system can be extended to include more detailed 
tasks. For example, the signal and command validation blocks include routines developed 
off-line. These routines may have to be modified because of new plant conditions. The 
supervisory routine can be designed to conduct on-line training of the BPN and PEM 
modules and to modify the membership functions of the fuzzy controller. One of the most 
important capabilities an expert system can provide is the anticipatory control (Tsoukalas, 
Lee, and Ragheb 1989) that further enhances the fault-tolerance capability of the control 
system. 
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Fig. 63b. Nonlinear cote model of the Experimental Breeder Reactor-II plant in MATRIXx. 
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7. SUMMARY AND CONCLUDING REMARKS 

In response to the increasing interest in automated nuclear reactor operations, a 
collection of advanced methods in diagnostics and controls as well as development of an 
integrated environment for automation is presented in this report. The integrated control 
system (ICS) architecture is a new concept within this context. It offers validation of plant 
information before and after it is processed for control purposes. The ICS concept also 
includes new control techniques that are easier to implement on-line compared with 
conventional techniques. 

A particular application of the ICS is considered for automation of the EBR-II 
startup operation. The ICS design includes signal and command validation tasks that use 
artificial neural networks and process empirical modeling techniques. The control module 
of the ICS houses three different controllers running in parallel. These controller designs 
use reconstructive inverse dynamics, fuzzy logic, and neural network paradigms in a 
MIMO regime. Another diagnostic module provides a measure of the performance 
(performance analyzer). A mode selector unit facilitates the choice of appropriate 
techniques from the control, signal validation, and command validation modules. The 
mode selector evaluates the outputs produced by four other modules to determine the 
best strategy for startup control. Its primary function is to maximize the performance by 
safely maneuvering around the problems. The primary function of the mode selector is 
often referred to as fault tolerance. A subset of the inputs received by the mode selector 
contains information about the anticipated events of the plant. Thus, the anomalies are 
not allowed to propagate in time without detection, and the preventive actions are taken 
well before the plant enters an undesired regime. 

The simulations presented here use a valid nonlinear model of EBR-II. The range 
of the startup transients is chosen long enough to show the nonlinear effects. The results 
indicate that each controller of the ICS is capable of performing automated startup at 
EBR II. This conclusion can be verified by comparing the (operator-driven) actual plant 
data with the simulation results (Figs. 5.1a-5.1g). The simulations included all logical 
interactions of the command validator and performance analyzer. None of the commands 
are rejected by the command validator during simulations. The simulations do not include 
hypothetical sensory failures because of an infinite number of hypothetical cases. The 
prediction capability of the signal validator is found to be very effective, as illustrated by 
separate runs (Figs. 4.2a-4.2f). The implementation using the MATRIXx/SYSTEM-
BUILD software package imposes no real-time problems. This application is observed to 
be faster than the actual startup at the EBR-II by a factor of 24. 

This study should be considered as a feasibility analysis rather than as a final control 
design for the EBR-II automated startup. The proposed concept is potentially open for 
further enhancements. Improvement in monitoring and diagnostics will extend the scope 
of useful tasks. The use of expert systems is very important when much heuristic 
information processing is required. 
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