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A LAGRANGIAN THREE-DIMENSIONAL FINITE-ELEMENT 
FORMULATION FOR THE NONLINEAR FLUID-STRUCTURAL 

RESPO:r-.lSE OF REACTOR COMPONENTS 

by 

R. F. Kulak and C. Fiala 

ABSTRACT 

This . report presents the formulations used in the 
NEPTUNE code. Specifically, it describes .the finite-element 
formulation of a three -dimensional hexahedral element for sim­
ulating the behavior of either fluid or solid continua. Since the 
newly developed hexahedral element and the original triangular 
plate element .are finite elements, they are compatible in the. 
sense that they can be combined arbitrarily .,to simulate complex 
reactor. components in three-dimens.ional space. Because rate­
type constitutive relations are used in conjunction with a 
veloci.ty-strain tensor, t~e formulation .is applicable to large 
deformatioll. problems. This development can be used to sim.­
ulate (1) the fluid adjacent .to. reactor components and (2) the 
concrete fill found in large reactor head closures. 

. . . 
An algorithm is presented for integrating the elasto-

plastic constitutive equations. It uses. a subincrementation pro­
cedure and a yield-surface return scheme so that the end-·of­
step stress state lies on the yield surface. 

The new element formulation was verified by compari­
son with problems having closed-form analytical s elutions. The 
dynamic response of a concrete-filled deck structure which is 
one of the major components of a large Pool-type Liquid Metal 
Fast B r~ed.er Reactor was investigated .for a hypothetical core­
disruptive accident. Also, the hydrodynami~ element vias. used 

. to simulate the fluid in a study of the fluid-structural interaction 
of a Pool Re.actor In-tank Component. 

I. INTRODUCTION 

The safety evaluation of reactor components often involves the analysis 
of various types of structural/fluid elements: beams, plates, three-dimensional 
solid continua, three-dirt:lensional fluids, etc. The explicit version of SADCAT 1 

contained a 'nat, triangular plate. lel.ement that was used for the analysis of 
-hexcans and simple .models ·of head closur.es. 

7 
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Presented here is the development of a hexahedral finite element that 
can be used to simulate either a fluid or a solid in three-dimensional space. 
Thus, this element can be viewed as being both a hy~rodynamic element and 
a solid element. This element can interact with the original SADCAT 
triangular -plate element to solve coupled fluid- structure interaction problems 
with a unified treatment. Also, this element can be used to simulate the pre­
cracked structural effects of concrete. 

With the current goal of developing a 1200-MWe reactor, it is neces­
sary to assess the structural integrity of several of its main components. One 
of these components is the deck structure. Two recent studies 2

•
3 reviewed 

basic design concepts of large LMFBR's. These studies indicated that for 
both the pool- and loop-type deck structur~, concrete would be one of the com­
ponents of the deck. Generally, the deck itself is a composite of beams, plates, 
and concrete. Consequently, to.model the concrete as a structural element, 
one must use a three-dimensional solid continuum element. 

Other corhponerits that may be susceptible to structural damage during 
. a hypothetical core-dis:ruptive accident (HCDA) are the in-tank components 
suspended from the deck of a 'pool-type reactor. In. particular, these compo­
nents ·are the primary pumps and intermediate heat exchangers. Because 
these components are immersed in the large sodium pool, a me.aningful struc­
tural analysis must include the interaction between the structural components 

·and its ·surrounding fluid. Here it is necessary to simulate the fluid media 
with a hydrodynamic element. Also, note that both the deck structure and the 
in-tank component must be analyzed in three .dimensions. 

A three-dimensional hexahedral finite element was formulated so that 
it could represent either a hydrodynamic element or solid continuum element. 
Since both the hydrodynamic and solid ele.ments are finite elements, they can 
be combined arbitrarily with the original plate finite element to represent.· 
complex, three-dimensional reactor structures . 

./ 

A nonlinear elastoplastic constitutive algorithm was developed for use 
with the solid and plate elements. This algorithm is ·applicabl~ for metals 
whose behavior can be treated by an isotropic hardening theory. A subin­
crementation procedure is used in conjunction with a yield- sur face return 
scheme to ensure that the consistency condition is satisfied. The number of 
subincrements needed per time step is automatically determined based upon 
the inner product between the beginning-of-step normal to the yield surface 
and an estimated end-of-step normal. The algorithm can treat problems in 
which the material undergoes plastic behavior during the first time increment. 
In addition, reversed loading problems can be. handled. 

The above formulations are incorporated in a computer program and 
given the name NEPTUNE, which is })ased upon the quasi-acrony!n obtained. 
from Nonlinear Elastic Plastic Three -dimensional Fluid Structure Interaction - - - - -
Cod~. It is the first three-dimensional fluid-structure interaction code de-
veloped at ANL. 



II. THREE-DIMENSIONAL FINITE-ELEMENT FORMULATION 

A. Governing Eq-q.ations . 

We will here deriv~ th~ finite -eleme~t equations for a single element 
based upon the principle of conservation of mechanical energy. The resulting 
form can be used to represent either a Lagrangian hydrodynamic or solid 
continuum element. The principle of c·onservation of mechanical energy for 
an el~ment is given iri integral form as 

where 

and 

c:i" f iPv·v'.' dV +. f cr .. €· .. dV- /T·V· dS. 
dt . l 1 . lJ 1J . . s . 1 1 v . . v . 

p = density, 

f pFivi dV = 0, 
v 

.(1) 

vi, T i' Fi · = components of velocity, sur face traction, and body fore~ 
(per unit mas$), respectively, 

oij' ei) =.components. of Cauchy stress and velocity-strain tensors, 
respectively. 

The velocity-strain_tensor (rate-of-deformation tensor) is defined by . 

. 1 ( . e .. = 2 v .. + v .. ), 
1J 1,J J,1 (2) 

where the comma denotes a spatial derivative. Note that e .. is not a strain 
rate. The first two term~ of Eq. 1 represent the time rate 

1
&f change of the 

kinetic and internal energies of the element, respectively; the last two terms 
. are the rates of work done on the element. Equation 1 is valid for any type of 
material, and there is no restriction on the "size of the deformation gradients. 
Both th~ stress and velocity-strain tens<;>rs can be divided into hydrostatic 
and deviatoric components 

and 

where 

0"·· = s .. - pt> .. 
1J 1J 1J 

= deviatoric components of the stress and velocity- strain· 
tensors, respectively, 

(3) 

(4) 

9 
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and 

p, ekk = hydrostatic pressure and cubical dilatation, :respectively. 
. . 

'· Using' the above ··re'lations in Eq. 1, we have 

.i_J lpv·v· dV ·_ f.pek·k··dV + IS· ·e··· dV - f T·.v· dS - f PF1·v1· .dV = o. (5) dt z 1 1 . 1J 1J 1 1 .. v v v . s v 

The second integral on the left-hand side o! Eq. 5 represents a contribution 
due to the hydrostatic behavior of the material, and the third int~gral repre­
sEmts a contribution due to the deviatoric behavior of the material. Thus, for 
an inviscid fluid, the third integral is not calculated, but for a solid continuum~ 
both integrals must be evaluated. 

In the finite-element method, the velocity field for. each element is ap­
proximated by 

(6) 

where v1 is th~ velocity in the ith direction, cp1 is the shape function for the 
Ith_ node, and dil .is the velocity of the Ith node in the ith direction. Using the 
above approximation for the velocity in the conservation of mechanical energy 
expression Eq. 5, we have 

f Tkcp(ikl dS .- f pFkcpidki dV = 0 . (7) 
.s v 

where 
.. 

\. = i ( Cf>r · 6 · k + Cf>r · 6 · k) - ~ Cf>r k 6 · · . ·J 1 . ,1 J. , 1J 
{8) 

and oij is the Kronecker delta: 

-
Taking the indicated time derivatives, we obtain for a single finite. 

element 

d. (m .·d.. + fint,h + fint,d fT fb ) _ 0 ki IJ kJ ki . kl \ ~ ki - kl - , 

·where the element's consistent mass is given by 

mu = f PCf>rCf>J dV ', 
v 

(9) 

{10) 



the' hydrostatic internal·nodal:..force matrix by 

fint,h = 
kl -f PCf>r k dV, v .. 

·, 

the deviatoric internal nodal-force matrix by 

fint,d _ 
ki f S .. G1 .. k dV, 

lJ lJ v 

and the external nodal-load matrices by 

and 

. ' 

( 11) 

( 12) 

( 13) 

( 14) 

Sinc.e Eq: 9 .must. be valid for arbitrary motions, it must be true for 
arbitrary dkl; thus, the term in .parenth.eses must vanish. The general equa­
tion of motion of a finite element is given by 

( 15) 

The formulation of this equation differs from the usual.approach be­
·cause the 'internal ~odal fo·r.ces are divided into hydrostatic and deviatoric 
parts. It should also be pointed out that Eq. 15 is identical to the form used 
in SADCAT. Thus, the above formulation is compatible with the earlier for­
mulation and can be directly incorporated into the code. Equation 15 is the 
equation of motion of a single finite element; however·, the global form of the 
equations of motion for the entire structure can be obtained by adding, in a 
consistent manner, the equations of motion for .all the elements. Since"this 
procedure is well known, it is not presented here. 

B. Hydrodynamic Element 

We will now develop the specific .form of the internal nodal force matrix 
for a hydrodynamic element. The element is an eight-node hexahedron (see 
Figs. 1 and 2). This element has a node located at each of its eight corners. 
The element shape functions q>i_ used here are the trilinear 'functions described 
by Zienkiewicz: 4 

(16) 

11 
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where s. 11. and c; are the natural coordinates ofthe element {Fig. 2). For 
example, the shape function for node l is 

Cfl1 = t{l + s){l +,11){1- c). ( 17) 

I 
X 

~2 L: , .· 
Fig. 1. Arbitrary Hexahedron in Global 

(x, y. z) Coordinate System 
Fig. 2. Hexahedron after transformation 

into Local Natural (f. 71. {;) Coor­
dinate System 

We are primarily interes.ted in problems in which the fluid can be· 
treated as inviscid; thus, there are no shear stresses, which means that the 
deviatoric internal nodal fordes are ·zero. · Therefore, only the hydrostatic 
internal nodal forces need to be computed. 

The method for. computing the hydrostatic internal nodal forces· pro­
posed by Kennedy and. Belytschko5 will be f<;>llowed. From Eqs. 9 and 11 the 
following relatio~· for the rate ~f internal work f~r an element' is giv.enby 

-f pe.kk dV = d int,h k.I k.I . ( 18) 
v 

Now we treat the pressure field'within each element as ·a constant that. 
reduces the inte'gral in Eq. 18 to the form · 

fpekkdv = 
v 

. 
= pV, (19) 

where V is the rate-of-volume change. This change can be expressed .in linear 
form by 

where Hkl ~epends only upon the nodal coordinates . 

. From Eq.s. 18-20 we obtain the following expression for the hydrostati~ 
internal nodal forces 

(21). 



·~· . We obtain the form for these forces by determining Hkl from Eq. 20, 
.as follows: First, the.expression for the volume of a.generic element is de­
termined, and second, the temporal derivative of the volume give·s the form 
for Hkl. Because: of th~ difficulty in computing the volume of an element 
arbitrarily oriented in the global-coor.dinate system, we transform the .element 

. into its natural-coordinate. system. Thus the volume, V, of the element is 
giv~n by 

· V =. J dx dy dz = J J d~ dl] dt;;, (22) 

v -o· 

where jJ is the Jacobian of the transformation from the global (x, y, z) ·system 
to the natural (s, l], t;;) system. The final expression for the volume is obtained 
here by evaluating the right-most integral in Eq. 22 with a one-point iritegra­
t:j.on scheme at the· center of the hexahedron. The above procedure gives the . . -
following form for the hydrostatic internal nodal forces 

+ XjNL(XkPJ - XkKM)] • (23) 

where, for example, XjPJ is de fined to be 

xjPJ = xjP- xjJ. (24) 

Here XjP is the jth component of the coordinate of node P. The appropriate 
node numbers are given in the permutation table (Table I). 

TABLE I. Permutation Table 

I J K L M N p 

1 2 3 4 5 6 8 
/ 

2 3 4 1 6 7 5 

3 4 1 i 7 8 6 

4 1 2 3 8 5 7 

5 8 7 6 1 4 2 

6 5 8 7 2 1. 3 

7 6 5 8 3 2 4 

8 7 6 5 4 3 1 

13 
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--------- -----

Equation 10 defines the c-onsistent mass matrix for the·,hydrodynamic 
element. ·It is a 24 x 24 nondiagonal matrix. Whep. the consistent mass matrix 
is used i.'n the equations. of motion (Eq. 15), they become a s~t of coupled equa­
tions whose· solution requires matrix inversion. To circumvent matrix inver­
sions, we will use ·a diagonal mass matrix, which is formed by lumping the 
masses at the nodes. Now the equations of motion become uncoupled, and their 
solution is quite. efficient. Note that the triangular plate element was also 
formulated with a diagonal mass matrix. In the explicit version of SADCAT, 
the equations of motion az:e integrated using an explicit central-difference 
temporal integrator. The numerical-studies of Kreig and Key6 showed that , 
the combination of a diagonal mass matrix and ¢e explicit central-difference 
time-integration method leads to accurate and economical solutions. 

C. ·Continuum Element 

The fluid element was formulated by considering only the hydrostatiC 
(mean) components of stress and strain rates, which gave the formulation for 
the hydrostatic, internal nodal-force matrix. In this section we will develop 
the formulation for the deviatoric, internal nodal-force matrix that is obtained 
from the deviatoric components of the stress and strain rates. The combina­
tion of the hydrostatic and devi~toric internal forces provides the capability 
for modeling three-dimensional solid continua. 

by 
The deviatoric internal nodal force for an element was given (Eq. 12) 

fint,d = 
ki f S .. GI. 'k dV, v lJ lJ 

(25) 

where the coefficient Glijk is a function of the element shape functions cpm as 
defined in Eq. 8 .. 

To determ.ine the form for the deviatoric internal forces, we must 
evaluate the integral on the right-hand side of Eq. 12. Because a closed-form 
analytical expression is not tractable, we performed a numerical integration. 
Barlow7 has indicated that there exist optimal point~ for calculating ·accurate 
stresses within a finite elem~nt. For the eight-node. hexahedron used here, 
this optimal location is rt the origin of the local natural-coordinate system 
(s, T], C). Therefore, the numerical integration required in Eq. 25 was per­
formed using a one-point (optimal) integration scheme. Also; the integration 
was performed in the local natural-coordinate system because of nuinerical 
efficiencies. Therefore the deviatoric internal nodal forces are given by 

fint,d = 
kl J S .. GI. 'k dV = . lJ lJ 

v 
f S .. G 1 .. k}dO. 
0 lJ lJ 

( 

(26) 



, E':'iiluating the right-most integral in Eq. 26 gives the following expr,es­
sion for the c.omponents of the deviatoric internal nodal forces.: 

_+ XjLN(XkJP - XkKM)]sii + [xkPJ(XiKM - XiNL) 

+. X.kKM(XiJL - Xip~) + Xk~N(X~JP - XiKM)]sij 

+ [XipJ(XjKM - XjNL) + XiKM(XjJL- XjPN) 

+ XiLN(XjJL- XjKM)]Sik}· (27) 

The internal nodal forces for a solid continuum element are given by the sum 
of the hydrostatic. and deviatoric nodal forces 

fi.nt =· fint,h + fint,d 
kl kl kl (28) 

. A diagonal-mass matrix is also used for the solid continuum element. 

D. Constitutive Relations 

In this section we will describe the constitutive equations used to rep­
resent the material response of the following material types: fluid, concrete, 
and elastoplastic solid. 

where. 

1. Fluid 

The state of stress in a deforming fluid is given by 

p = thermodynamic pressure 

f· · = tensor-value function. lJ 

(29) 

The thermodynamic pressure .is determined by the kinetic equa­
tion of state, ·which is of the form· 

p· = p(p; T), (30) 

15 
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where p is the density an~ T. is the, .absolute temperature. For the class of 
problems we are interested.in, we can consider the fluid to be isotropic. 
Furthermore, we are-interested in problems in which the wave:-propagation 
aspect dominates, so we can neglect the viscous behavipr of the· fluid. Thus, 
the· stress state becomes isotropic and· is given by 

aij = -pOij· (31) 

Now the equation of state (Eq. 30) for our frictionless fluid ·reduces· 
to 

p = p(p). 

The explicit form used in the code is 

p = Kt:.p' 
: Po 

(3:2) 

(33) 

where K is the bulk modulus of the fluid and the zero subscript refers to the 
. ot.iginal state. 

From the equation of mass conserva~ion for a Lagrangian element 
we have· 

pV - PoVo. (34) 

In terms of the element volume, the. pressure is given by 

. (Vo ) p=Ky--1-. (35) 

The above form of the equation of state for a fluid element is coded in the pro­
gram. Other forms, when needed, can be readily incorporated. 

2. Concrete 

The material response of concrete is taken to be linear elastic. 
The reason for choosing this material model was the nature of the problem 
we are interested in solving. The problem is to determine the dynamic re­
sponse of a pool-type deck structure. This structure is a composite of beams, 
plates, and concrete fill. The concrete fill is primarily a r.adiation shield. 

Jt·s effect on the' ultimate. stru.ctural integrity of the deck is believed to be of 
second-order importance because of the likelihood of cracking under the ex-

. treme lo~d conditions of a core-disruptive accident. However, since the struc­
tural effect o.£ the concrete will affect the dynamic response of the deck, it 

· should be included in the model. Also, although the above material model 
cannot treat the postcracking phenomenon, it can provide valuable information 
as to the locations of cracks and the time at which the onset of cracking occurs 
in the concrete fill. 



The constitutive equation for concrete is of the form 

cr{j, = cijkl ekl' 

in which the Jaumann stres.s rate crY. is defined by 
lJ 

'i1 • • 
cr.. = cr. . - cr. w . - O"J·nWn1·, .. lJ lJ· lm mJ 

wh~re the spin tensor wkl is given by 

(36) 

(37) 

(38) 

The stress ·rate 'can be separated into hydrc;>static and deviatoric 
components given by 

where 

'il·· = cr .. 
lJ 

1 • . 'i1 
3 crkkf>. ·: + S .. ' lJ lJ 

crkk = -3p. 

In terms of these components, the constitutive relation becomes 

and 

'i1 s .. = 2Ge .. , 
lJ lJ 

(39) 

(40) 

( 41) 

( 42) 

where K and G are the bulk and shear moduli, respectively, for concrete. 

Since the internal forces (Eq. 27) depend on the total stress values 
and the constitutive relations only provide the stress rates, we must obtain 
the total stresses at. the curre.nt time from the s~resses. at the previous time 
step and the current stress increment. The stress increment is obtained .from 
the stress rates by 

(43) 

and 

(44) 

The total stre~ses at the current time step are given by 

, 
crkk(t + ~t) = akk(t) + ~crkk (45) 
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·and 

·.: (46) 

To determine the' onset of cra'ckingin the concrete fill, we ·must 
choose a~d utilize a simple criterioh. A crack is said to in:ltiate when a prin­
cipal stress equals or exceeds a maximum tensile value ermt· Thus the onset 
of cracking occurs when 

(47). 

. wher.e err, ern, and ernr are the eigenvalues of the stress tensor erij· 

The abov~ treat~ent of concrete aliows us to a:ccount for the struc­
tural effect of concrete and to identify the location and time at which cracking 

. -7' 
occurs. The treatment of postcracking behavior is not considered. 

3. Elastoplastic Solid 

/ 

I 

The stress-strain-rate relations for an elastoplasticsolid are 
presented below. The form used is limited to metal.plasticity. 

To begin, we must define several conce.pts and terms. Earlier 
we divided the velocity strain, stress, and Jaumann stress rate into dilata­
tional and deviatoric parts (Eqs. 3, 4, and 39). Now we will further divide the 
deviatoric velocity strain into elastic an~ plastic parts, given by 

e·. = e~. + e"?.. (48) 
lJ lJ lJ 

The dilatational stress is related to the velocity strain through 
Eq. 41 and the. stress-rate deviator is related to the velocity-strain deviator 
by the hypoelastic t:elation 

e?.). , lJ .. . ( 49) 

The plastic velocity strain is determined from .a potential-flow 
law by 

.p 
e .. 

lJ 

· of 
= "'as .. ' 

lJ 

where ~ is. a ·constant of proportionality ~nd f is a yield function. 

In our work we are _using ~ von Mises _yield. function given by 

f = S· ·S· · - R 2(€ ) = 0 lJ lJ . p 

(50) 

(51) 



where R is the radius of a .hyper sphere in ninespace. It is related to a 
universal- re,sponse function by 

{52) 

where a 0,_c~n ~e in~erpreted as the yield stress for a.uniaxial specimen. The 
accumulated pla-stic strain is defined in terms of the plas~ic velocity strain 

as 

(53) 

where 

iP = (te~_eY )112 

lJ lJ 
{54) 

During_ plastic loading the stress must lie on the yield surface, 
which leads to the consistency condition given by 

f = 0. (55) 

In terms of our yield function the consistency condition is given 

. 'i1 •. 
f = S· .s .. - RR = 0 lJ lJ . 

(56) 

Since our hardening function only depends on the accumulated plastic strain, 
its temporal derivative is given by 

dR...:. 
R = --ep. 

dep 

By using Eqs. 50, 51, and 54, we obtain the form 

. A2 dR . R = --RA.. 
3d­ep 

(· 

By using Eqs. 49-51, 56, and 58, we solve for ~.which is given by 

A. = 
s. ·e·. lJ lJ 

l + -- ---- 2R2 .( l dR) . 
G../6 dep · 

{57) 

{58) 

{59) 

With X.kno'wn we ca~ determine the. plastic strain rate {Eq. 50) and use it in 
Eq. 49 to find the stress rate. 
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E. _Elastoplastic Constitutive Algorithm· 

The above equations are in differential form and must be integrated 
to yield total-s.tress values. The numerical method used for this integration 
is presented .below. A prime objective of the algorithm is to integrate the 
differential equations so that the stress state satisfies the consistency condi­
tion (Eq. 56) exactly. ·Also, the algorithril mus·t be able to determine the var-
ious loading-unloading processes.· · 

During a time step a mate.rial may strain in any of the following 
regimes: 

1. Loading 

2. Unloading 

3. Unloading- reloading. 

The following plastic-loading relations determine the ty.pe of loading: 

0£ . 'il --s .. < o 
asij lJ 

cH 'il -:::.-s .. = o 
vSij lJ 

0£ 'il . 0 --s .. > 
as .. lJ 

lJ 

uri.loadirlg, 

neutral loading •. (60) 

loading. 

I 

The loading regime occurs when the beginning-of-step stress state is 
either inside the yield sur face or on the. yield surface and the end-of- s~ep 
stress state lies on the yield surface. The unloading regime is when the 
beginning-of- step stress lies on the yield sur face and the end-of- step stress 
is inside the yield sur face. The unloading- reloading regime occurs when the 

·strain increment is such that both the beginning-of- step stress and the end­
of-step stress lie on the yield surface, but the loading path during the step 
traverses through the elastic region bounded by the yield surface. 

To describe the algorithm used to obtain the stress increments, we de­
fineS~~) as the beginning-of-step stress state (Fig. 3),S~. a.s the estimated 

~ . . ~ . . 

~:t:ld-of-'step stress state, and S~~> a~ the end-of-step ·stress state. The algo-
. ·~ 

rithm firstcomputes the end-of-step stress· state based on the assumption 
that the loading process will be elastic; thus the. first estimate of end-of-step 
stress is give_n by 

S~. = S~~>+ 6S~ .. 
lJ lJ lJ 

(61) 



where the elastic deviatoric- stress increment is obtained by evaluating Eq. 49 
with the plastic strain rate equal to zero and the~ using Eq. 44. Now if both' 
the initial stress states?' and the end-of-step stress state sfj are within the 
elastic region bounded b..) the yield s·urface then s'!'. is the exact end-of-step 

lJ 
stress S~~) (see Fig. 3). On the other hand, if s2 >is in the elastic region and 
s{j is ouf1ide the yield surface, then the step mJst be divided into two parts: 
elastic and elastoplastic. Th~ treatment of the elastic part is identical to the 
previous case> The plastic part is discus sed in general below. 

Fig: 3. Stress Space Showing Stress States, Yield Surfaces, and Normals Used 
in the Constitutive Algorithm. The yield surfaces are shown as circles 
for illustrative purposes and are in reality hyperspheres in ninespace. 

We now describe the formulation used to obtain the end-of-step stress 
when plastic loading occurs. To begin, we assume that the stress state has 
be~n advanced to the yield surface and consider this stress to be the stress 
s{J'.in :the following. discussion. We note that the quantity O£jasij is the nor­
mal vector to the loading surface, say, gij· Therefore Eq. 50 can be restated 
as 

·p e .. 
lJ 

= ~g ... 
lJ (62) 

At the beginning of the step the normal gij) is known. Now we must' 

determine the change in plastic-strain increment l!le~. that occurs during the 
lJ 

step. This in·crement is determined from 

Lle~. = rtz e~. dt = r.tz g .. (t)~ dt. 
lJ Jtl lJ Jtl lJ 

(63) 
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The right-most integral· above can be expressed ·in term of a sum ·as 

(64) 

When the value of N is e_qual to ao, t_he sum equals the integral, arid when N 
is finite, the sum approximates th~ integraL When N is equal to 1, we have 
a single-step procedu:re .. · I.n single-:-step procedures, the assumption is.usually 
made that during the time step the strain increment is small enough that the 
normal does not change significa;ntly; thus the strain increment is given by 

p . (1) ... 
6.e: . - . g .. . i\. 6L. 

lJ lJ 
(65) 

.. . . * . * . 
The estim'7te for the stress state.Sij and the associated, normal gij at 

the end of the step can be calculate.d in the usual manner. The end-of:- step 
normal can be compared to the beginning-of-step normal to determine if the 
above assumption is valid. If the two normals ~re equal or .nearly so, then 
the computed stress is accurate. On the other hand·, if the normals differ sig­
nificantly, the plastic-strain increment should be calculated by 

6e~. 
lJ 

.N 
= L 

n=1 
g~~)~ (n) 6.t(n). (66) 

lJ 

Now the proble~ becomes that of determining the nu:rp.ber of subincre-
p . . . . (1) {2) 

ments N needed to compute 6.eij accurately. To begm, let Sij and s 1j be the 

stress states at the beginning ·and end of the step and let g~~) and g1~J~) be their 
~ . ~ 

respect.ive normals to the yi~ld sU:rfaces f(1 >and f(Z} (see Fig. 3). Also, let us 
define a yield surface £* generally not equal'to f(d or f(z). . 

The procedure -proposed'.is as follows: First, comput'e an· approxima:.. 
·,tion ofthe stress state s{j at the end of the ~tep, based onthe assum~tion that 
the normal vector to the yield surface does ·not change during the step. Then 
determine the components of the unit normal vector g{-, based on the approx-
imated, end-of-step stress state s{j, that is, J 

s'!'. 
-* = _ 1

J_ (67) 
· gij 11srj 11 • 

where lls{j II is the Euclidean norm of s{-. An estimate of the error occurring; 
·during the step is obtained by examinin~ the inner product .of the beginning­
of-step normal g{j) and the end-of-step normal g{j, which is e~pressed by 

-(I) g .. 
lJ 

-g~. = cos e. 
lJ 

) 

(68) 



J 
-I 

j 

The angle 9 is used here as a measure of the error in the end-of-step stre~s 
state. A value of zero for theta indicates that the initial and final normals 
are collinear, and hence gij is constant during the step; thus for this case, 
end-of-step stress sn> is equal to s{j· When the angle 9 is greater than zero, 
the normal gij varies during the step and the subincrementing procedure 
should be used. 

The above subincrementing method will increase the accuracy of the 
end-of-step stresses considerably when compared to a single-step method. 
However, because the end-of-step stress is based upon a linear predictor 
(Eq. 49 ), it does not satisfy the consistency condition stated in Eq. 56. There­
fore, even though the subincre.menting procedure has reduced the amount of 
drift from the yield sur face it has not eliminated drifting. 

In order. to satisfy the consistency condition, a yield-surface return 
scheme was formulated. The yield-surface return formulation is described 
below. The object of this method is to return the stress stj from f* to its 
image s{j' on f(2

) · The unit normal vector to the estimated yield surface f*~ 
is computed from Eq. 6 7 and is used to obtain a. correlation stress defined by 

ASC = ASC-* Ll• • • ~ - U•. g .. , . lJ lJ (69) 

where the scalar D.SC is the difference in radii between the estimated yield , 
surface £* and the yield surface f( 2

) determined from a·universal response 
1 

function evaluated at the equivalent plastic strain e~; that is, 

= R* - R <z >(-*) - (s* s* )1 /2 12 (-*) ep - ij ij - v 3 °o ep · (70) 

This yield-surface return method is applied at the end of each.substep. This 
implies that the consistency condition is satisfied throughout the substep 
procedure. 

The constitutive algorithm is used to evaluate the stress state when 
the material of the three-dimensional solid-continuum element is elastoplastic. 
It has also replaced the original algorithm used with the triangular plate 
element. 

F. Artificial Viscous Stresses 

The numerical solution of certain transient problems results in high­
frequency oscillations that are not present in the analytical solution. These 
spurious oscillations are due to frequency cutoff of a discrete mesh and can 

·be eliminated by viscosities. In this report we are using an explicit temporal 
integrator which has no artificial viscosities so spurious oscillations with a 
frequency equal to the highest mesh frequency are produced. Also, our dis­
cretized equations of motion do not contain any type of damping. 
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Therefore, to reduce or eliminate spurious ·oscillations when they occur, we 
will folloW a common approach and introduce artificial viscous stresses, a 
form of numerical damping. 

Belytschko et al. 8 presented the following form for a viscous stress to 
damp out the highest mode in a two:-dimensional element: 

'(71) 

. where C 1 and C 2 are the dilatational and shear-wave speeds, respectively, A 
the area of the element,· eij the strain, and dL a fraction of critical damping 
for the highest mode. Here we will use a similar form for the three­
dimensional hexahedral element.' Since the stresses are separated into hy­
drostatic and deviatoric components, we will also separate the viscous stresses 
into these components. Specifically~ the respective forms used for the hydro..:. 
static and viscous stresses are given by 

(72) 

and 

(73) 

where h is a characteristic length, and the remaining symbols retain their. 
previous definitions. 

The characteris.tic length here was taken to be the length of the smallest 
side of the hexahedron. The deviatoric viscous stress (Eq. 73) is linearly 
related to the velocity strain, which is an objective tensor. Therefore, the 
deviatoric viscous stress is also objective (i.e.,· frame-indifferent) and it can 
be used for large -deformation problems. Similarly, since the viscous pres­
sure is a s'calar quantity, it is also frame-indifferent. and thus applicable to 
large-deformation problems. 

The above viscous stresses are added to the total stresses as deter­
mined from the constitutive relations. Thus, fo.r problems in which viscous 
stresses are used, the internal forces (Eqs. 11 and 12) are given by 

.r}{rt,h = J (p + pv)C!lr,k dV, (74) 
·v 

and 

f~It,d = f (SiJ. + SY.)GliJ.k dV. 
v lJ 

(75) 

The above approach indicates that the inclusion of viscous stress, in effect, 
adds another set of internal forces to the equations of motion. 



. III. RESULTS . ; 

. The above develop:ments were implemented into the NEPTUNE code. 
In ~is section w~ present sample problems which illustrate the accuracy and 
applic:ability ·Of these developments to simulate fluid-structure interactions in 
various three-dimensional configurations. The first group of problems com­
pares NEPTUNE code results to analytical solutions or to other computer-coge 
predictions. These. problems are de signed to check the performance of the new 
element ~gainst known results. The last two problems illustrate the applica­
bility of the code to the structural dynamics of' reactor components. 

A. D.ynamic Response of Two Concentric Tubes Separated by a Fluid 

. The first problem studied was that of two concentric tubes s~parated 
by a fluid (see Fig. 4).. The inner tube was subjected to the pressure-tim~ 

·history. shown in Fig. 5. The radial displacement of the' inner cylinder (see 
·Fig. 6) was computed by the STRAW and NEPTUNE codes. There is good 
agreement between the two codes, indicating that the newly added three­
dimensional fluid element is operating p..roperly. 

0.028 

0.024 

5 0.020 

t e . 
!;! 0:016 

!-· 
i5 0.012 

0.008 

0.004 

Outer Tube 

Fluid Loyer 

· Inner Tube 

Fig. 4 

Section of Two Concentric Tubes 
Separated by a Fluid Layer 

0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 

Time, ms 

0.2 

~ 

'~ 0.1 
"' "' .., 
ct 

100 
Time, ms 

Fig. 5 

Pressure-Time History Applied 
to Inside of Inner Tube 

Fig. 6 

·Comparison between 'STRAW and NEPTUNE 
. Predictions for Inner-tube Radial. Displacement 
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B. Compression-wave Propagation down a Fluid Column 

The second problem considered wa·s that of a pr~ssure irave·'traveling 
down ·a fluid colwnn: The finite-element mesh for 'this problem is shown· in 
Fig. 7. · The'NEPTUNE:...predicted pressure history at location "A" is shown 
in· Fig.· 8. As seen froni the res~lts~ there is a spurious oscillation in the code­
predicted pressures. This oscillation .is not found in the analytical solution. · 

·The finite -element solution predicts a pressure increase, which starts earlier 
than predicted by the analytical_ solution; the code solution overpredicts the 
pressure and oscillates ·about the analytical solution with decreasing amplitude. 
In order to snub these oscillations, artificial viscosity has been incorporated 
into the fluid elements .. A seco.n.d run. was made in which the viscosity corre­
sponded to the case of critical damping. The results are shown in Fig. 8 .. 
Except for a slight overshoot, the addition of artificial viscosity has eliminated 
the \mde'sirable oscillations. This second run is in good agreement ·with the 
analytical: solution. 

All dimensions in _em 
"A' 

pill 

Fig. 7. Finite-element Mesh for Studying a Pres­
. sure Pulse Tra~eling down a Fluid Column 

14r-----------~--------------~ 

NEPTUNE (No Damping) 

0 20 40 60 0 80 100 120 
Time, p.s 

Fig. 8. Pressure-Time. History at 
Location "A" in Fig. 7 

C. Wave Propagation in a Fluid Emanating from a Cylindrical Cavity 

The problem studied was a compression wave traveling through a 
fluid contained within an infinite cylinder (see Fig. 9) with an out.er radius of 
. 40 em. A cylindrical cavity of 20-cm radius was located in the center of the. 
flu1d cylinder. At time zero, a step pressure was applied and ·maintained at 
the cav:ity-fluid interface.- Analyt~cally, this problem reduced to a one­
dimensional wave,-propagation problem in cylindrical coordinates. However, 
in three-:dimensional Cartesian space the problem was two-dimensional; ·that 
is, motion occurred in the x and y directions·. The finite-element model for 

... 



this problem is shown in Fig. 10. The model consisted of 20 fluid elements 
.wl.th a height h equal to 1 em; The cavity radius was 20 em, and the outer­
fluid boundary radius was 40 ern.· The fluid model wa~. taken to be a 2.86° sec­
tor (fl9 = 2.86°) of the physica~.cylinder (see Fig. 9). The measure. used to 
evaluate the accu~acy of the fluiq-element response to 'the prescrl.bed loading 
was the geometric pres sure attem.i.ation. From the· analytical solution it was 

I . . ' , . 

known that the fluid pressure attenuates inversely as the square root of the 
radial dista:O.ce;· that 'is, 

(76). 

where Pi is the fluid pressure at radius ri. The computed responses. for the 
fluid pressure were compared at several locations, with the analytical solution 
in Fig. 11 .. The code -computed pressures at various radial locations compared 
well with the analytical predictions. 

Fig. 10 

Finite-element, Three­
dimensional Fluid Model 

Fig. 9 

Cylinqrically Contained 
Fluid with an Internal 
Pressurized Cavity 

Elemenl 20 
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12~--...;.:;...---=-----------...;__--~-----. 

NEPTUNE I(: 24.~ em) 

NEPTUNE I r: 29.S em) . 

D. Wave Pr6pagation i'n a Fluid Ema~at­
' ihg from. a Spherical Cavity 

Our next comparative problerrt 
was similar to the previous problem, 
except that the "compression wave was 
spherical. The physical problem ~o~­
sidere.d was that of a compression wave 
emanating from a pressurized spherical 

.. cavity. The cavity radius ri was 10 em 
and the fluid radius r

0 
at the outer bound­

o.ry wa.o 20 em (see Fig. 12.). 'l'hA finit.f':­
elerrlent model, shown in Fig. 13 contained 
20 three-dimensional fluid elements .. The 
elements were bounded by the angles licp 
and AS; both of these angles were equal 

o--~~~----U-----~----~----~ 
o &o so 100 to 9°. Note that even though this problem 

Tlme,p.s 

Fig. 11. ·comparison between Analytical and 
I 

NEPTUNE Results for Pressure A ttenu-

is reduced to a one -dirnensional problem 
in spherical coordinates, it is a three­
dimensio'nal problem in Cartesian co­
ordinates. ··AU the nodes in the finite­
element mesh underwent motion in the 

ations in a Cylindrical Configuration. 
Calculations were performed using 
artificial viscosity. x, y, and z directions. The pressure-­

attenuation ability of·an element was also. 
used in thi~? problem as an estimate of the accuracy for that element. For the 
spherical-wave problem, the. pressure attenuates inversely as its radial 
distance;. that is 

y 

Pressurized Cavity r. 
I 

Fig. 12. A Pressurized Spherical Cav­
ity in a Fluid Medium 

z 

y~x,r. 
r. 
I 

Fig. ·13. Finite-element Model for 
Spherical-wave Study 

(77) 
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A comparison between analytically predicted and NEPTUNE-predicted 
pressure attenuations at various radial locations (see Fig. 14) gave good ' 
agreement. 

10.-------------------------------~ 

~Analytical 

I NEPTUNE I r = 12.25 em l 
I 
I 
I 

10 20 

NEPTUNE (r= 14.5 em) 

30 40 
Time, ~s 

50 

r 

Fig. 14 

Comparison between Analytical and NEPTUNE 
Results for Pressure Attenuations in a Spheri.cal 
Configuration. Calculations were performed 
using artificial viscosity. 

E. Fluid-Structural Interaction of Two Concentric Cylinders Separated 
by a Sodium Layer 

The combined fluid-structural problem presented here is the dynamic 
response of two finite -length concentric cylinders (see Fig. 1.5) separated by 
a s·odium layer and loaded by a pressure pulse acting over part of the inner 
cylinder. Both cylinders were· 30.48 em long and 1. 016 mm thick; the nominal 
radius of the inner cylinder was 5.08 em. A layer of sodium 2.54 min thick 
separated the cylinders. A 100-I.J.s triangular pulse (see Fig. 16) with a peak 
pressure of 20.7 MPa (at 50 IJ.S) was· applied to a central.l5.24-cm-long region 
aro~d the inner ci~cumference of the inner cylinder. Because of symmetry 
in both loading and geometry, the NEPTUNE finite-element model (see Fig. 17) 
for this problem consisted of a 10° sector 15.24 em high. Twenty-four tri­
angular plate elements were used to model the cylinders (12 for the inner and 
12 for the outer) and six fluid-hexahedral elements for the sodium layer. The 
material properties are given in Table II. 

0.254 em--, ~ ---yo, 
15.24 em I 

p ( ·_) ---LJL....LL.7 ~H 
r-5.08-cm.J 

I 

I 

Fig. 15. Concentric Cylinders Sep­
arated by a Sodium Layer 

p 

0 50 100 
I, JlS 

Fig. 16. Applied Pres­
sure Pulse 
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[J. 

Outer Cylinder 

14 

20 

13 

19 

12 
18 15.24 em 

.II 
Fig. 17 

17 Finite-element Model for 
Concentric Cylinders 

10 
16 

9 

TABLE II. M.aterial Properties for Sample Pro1:>.lem E 

··:Density .(g/cm3 ) 

Young's modulus (GPa) 

Bulk modulus (GPa)_ 

Yield stress (MPa) 

Tangent modulus (MPa) 

Cylinders (steel at 
elevated temperature) 

7.8 

152 

517 

414 

Fluid 
(sodium) 

0.826 

4.05 

... 

The NEPTUNE-predicted respo"nse was compared with the predicted 
response of WHAM. 9 The radial-displacement history of the inner cylinder at 
the line of symmetry is shown in Fig. 18. The NEPTUNE and the WHAM re­
sults compare rea:?onably well in displacement amplitude, response frequency, 
ahd amplitude va,riation. However, the NEPTUNE results indi.cate a slightly 

. stiffer behavior. · 
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Fig. 18. Comparison between NEPTUNE 
and WHAM Results for Radial 
Displacement of Inner Cylinder 
at Line of Symmetry 
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F. S-wave Propagation in an Elastic, Infinite ·Plate 

The problem studied was ~he propagation of a plane shear wave in an· 
infinite, elastic plate. The plate was taken to be 50 em thick in the Z direc­
tion and infinite in the X and Y directions. The front face of the plate was 
subjected to the shear loading givenby 

crzx(t) = cr'Z:XH(t);. (78) 

where crzx is a constant and H(t) is the Heaviside step function. Two types 
of boundary conditions were considered for the back face: fixed and free. 
Beca\].se the analytical solution for thi~? probiem is available, the behavior-of 

I' ~z .. 

Ly 
· Fig. 19. "-Bar" Model for Studying Plane-wave 

Propagation 'in an Infinite Plate 

the· element can be compared with the 
. analytical.predictions to establish -its· 
accuracy .. 

A finite.,.elefl:lent mesh (see Fig. 19) 
_.consisting of 50 solid hexahedral elements 
was used to represent a "bar-type" model 
through the plate thickness; the cross­
sectional area of the bar was 1 cm2

• The 
anci'lytical solution 'to this problem con­
sisted of motion only in the X direction. 
Therefore, our nodal fixities were such 
that only nodal motion in the. X direction 
was permitted. The shear stress crzx in 
Eq. 78 was set equal to 10 MPa. The 
plate density p and shear modulus G 
were taken to be 1. 8 gj cm3 and 80 GPa, 
respectively. 

The analytical solution to this problem is a plane shear wave (S wave) 
of stress magnitude cr~X traveling in the Z direction with a wave speed Cs 
given by 

(79) 

Once the wave front passes through a section, the particles in the stressed 
zone attain a velocity in the X direction v~) grv~n by 

y(P) 
X = 

0 . 
crzx 
./PG. (80) 

The analytical-numerical comparisons for this problem are shown in 
·Figs. 20-23. The numerical· results for the case in which the back face is 
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free compare well with the analytical solution. In Fig. 20 the particle veloc;­
ities are plotted for points that are in a zone 24 em from the loaded face. 
The agreement of wave-arrival times and particle v.elocities is very good. 
The initial plateau is due to the incident S wave, and the second is due to the 
reflected S wave. The doubling in velocity upon pas sage of the reflected 
wave agrees with the analytical results. In Fig. 21, numerical results for the 
stress-time history at the plate midthickness are compared to the analytical 
solution. Here also the wave-arrival times and stress magnitudes are in 
good agreement with the ~nalytic'al solution. The incident S wave is seen to 
increase the stress state in the element from zero to the applied stress 
(10 MPa), while the reflected wave reduces the stress state back to zero. 

100,....--------------, 
----Analytical 

--....;..NEPTUNE 

r.·-------
1 
I 

Time, ms 

Fig. 21 

Stress-TimeHistory at Plate Midthickness: 
Free Back Face. Calculations were per­
formed using artificial viscosity. 

Fig. 20 

Particle Velocity in a Zone 24 em from the 
Loaded Face: Free Back Face. Calculations 
were perfor.med using artificial viscosity. 

-15,....---------------; 
- --- Analytical 
---NEPTUNE 

.. -10 
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60~----~----------------~-, 
-.---Analytical 
--..:..·NEPTUNE 

0:3 

Time,ms 

·Fig. 22. Particle Velocity at a Zone 24 em 
from tl1e Loaded Face: Fixed Hack 
Face. Calculations were performed 
using artificial viscosity. 

-25r-~--~~------~--------~ 

--..-- Analytical 

--- NEPTUNE· 

r·-------
1 
I 
I 
I. 

0.1 0.2 
Time,ms 

0.3 

Fig. 23;. Stress-Time History at Plate Mid­
. thickness: Fixed Back Face. Cal­
culations wer~ .performed u~jng 

artificial viscosity. 

The particle velocity and stress -time history for the, case in which 
the back face is fixed are shown in Figs. 22 and 23, respecti~ely. The dif­
ference in response between the free- and fixed-face cases is in the behav1or 

·after the reflected wave passes through the element. ]for the h·ee-faced case 
the reflected wave. doubles the particle velocity and reduc~.s the stress state 
back to zero. In contrast, when the back .face is fixed, the reflected wave re­
duces the particle velocity back to zero and doubles the stress. These re­
sults agree with elementa.ry wave-propagation theory and indicate that the 
newly developed three-dimensional solid element is representing this behav­
ior accurately. 

G. Dynamic Re·spon·se of Large Pool-type Deck Structures to an HCDA 

Figure 24 is a schematic elevation 'view of a 1200-MWe pool-type ref­
erence system. The reactor-core region was design~d to provide 3000 MW 
of thermal power with sodium entering at about 3 71 °C (700°F) and leaving at 
about 538°C (l000°F). The main components of the pool-type LMFBR system 
are shown:.· the reactor-:core region, internal heat exchangers (IHX'.s), pri­
mary pumps, the core:-support structure, primary and secondary tanks, and 
the shield-deck strU:cture. The instrument tree and fuel-handling machinery 
are not shown. Figure 25 shows the plan view of the reference reactor: The 
primary vessel contains three primary pumps, six IHX's, and two storage 
baskets. The basic dimensions of the pool reactor used in this preliminary 
study are shown in Fig. ~26. 
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Fig. 24. Schematic Elevation View of 
Pool-type Reactor Based on 
Cold-pool (EBR-11) Design 

... 

Fig. 25. Schematic Plan View of Pool­
type Reactor (1200 MWe) 
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Model Used in REXCQ-HEP 
Calculations. Conversion 
factors: 1ft =.0.305 m, 
1 in. = 2.54 em. 

The shield deck itself is an annular structure supported by steel col­
umns embedde.d in the surrounding concrete radial biological shield. The 
major structural components of the deck are the radial I-beams, the bottom 
annular plate, arid the .inner ring that supports the rotating plugs. The radial 
beams form a 11 spoked 11 type of structure with the central inner ring as the 
hub. The deck is, in general, a concrete-filled, beam-plate composite 
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structure which provides, in most designs, supportfo.r the pumps and heat ex­
changers, primary cilnd guard tanks, and ~ufficie~t radiation shielding. 

Pressure loadings (Fig. 27) used in. this study were obt'ained from out­
put of .the REXCO-HEP.10 containment code.- It must be pointed qut that· the 

·' · "zero" time shown in Fig. 27 is 
1400.---_:__-----------'--------., 

1200 

1000 

"' E 
<.> 
;;;: 800 

i 
~ 600 ... a: 

400 

200 

0 
0 40 . 80 120 160 200 

Time, ms 

. I 
Fig. 27. Pressure Loading on Deck Structure 

referred to the beginning of slug 
impact. Relative to the beginning 
of the accident, slug impact occurs 
at about 95' ms. The peak pressure 
was 10.4 MPa (104 MD/ cm2

) inci 
occurred at ·9.'7 ms. The pressure 
decreases in an oscillatory xnanner 
to a quasi.;.equilib.rium pressur.e at 
the end of the calculations. Using 
the aboye code, a finite-element 
model was designed to assess the 
ability of a pool--type LMFBR 
shield deck to sustain aq energetic 
HCDA. 

. , . From the plan view of a 
conceptual representation of an expanded EBR-II-type .de-ck, it was deter­
mined that there is .a reasonable amount of symmetry in-the ·structure, and 
that an initial model would consist ·of a 12° sector encompassing one radial 
I-beam and one-half of a typical in-tank 
component (e.g., intermediate heat ex­
changer, pump, or storage basket).· The 
model is shown 'in Fig. 28. The struc­
tural components modeled are the main 
radial I-beam, the component-support 

"' I-beam, the inner ring, the concrete fill, 
and the in-tank component nozzl'es. Al-

. though the rotating plug is not. modeled 
explicitly, its mas·s was taken into ac­
count by distributing it along the inner 
ring. Similarly, the pressure load act- A 

ing on theplug assembly was treated as 
a vertical-force line load acting on the 
inner ring of the deck. 

·Two· separate models were gen­
erated for,this study. The firstmodel 
accounts f.or the mas;; 'of the concrete, 

-but ignores its· structural_ effect .. The 
concre,te mass is distr.ibuted along the 
beams, while the mass of .a typical in­

INNER 
RING 

Fig. 28-. Sector Model for Pool-
:type Deck Structure· 

tank component is taken into account as concentrated masses located along 
the nozzle. The second model, which is similar, accounts for the structural 
effect of the concrete fill as well as its mass. 

(1 



The finite~element discretization of our models is shown in Figs. 29-
32. Figure 29 shows the discretization of the entire model; Figs. 30-32 ' 
illustrate the discretization of the various deck components. The material 
properties used for the various structural members and the concrete biolog­
ical shielding are listed in Table III. The steel was assumed to follow a bi­
linear, universal stress- strain curve based upon the mechanical properties 
listed in Table III. 

Fig. 29. Complete Structure Plot of Finite­
element Model for Deck Structure 
of a 1200-MWe Refer~nce Reactor 

Fig. 31. Multiple.:.component Plot of Inner 
Ring. Component-support !-beam, 

·Component Nozzle, and Outer Ring 

Fig. 30. Multiple-component Plot of 
Radial !-beam and Bottom 
Annular Plate of the Deck 

Fig.· 32. Discretization of Concrete Fill 
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... TABLE III. Material Properties for Components 
of the Deck Structure 

· T l Steel Concrete 

Young's modulus (GPa) 
Poisson' s_ ratio 
Yield str.es s (MPa) 
Ultimate .stress (MPa) 
Tangent ~odulus (MI?a) 

206 
0.30 
620 
724 
620 

31.7 
·o.Is 

The above, models were loaded according to the pressu:r:e-time curve 
shown in Fig. 27. Th~s· ·pressure was applied uniformly to the und.erside of 
the annular plate .. As mentioned above, the plug load was considered to be a 
line load acting on the iimer ring. It was assumed that the in-tank component 
did not contribute to the loading, except for its mass effect. .. . . ,· 

· The ·boundary c9nditions applied to this deck structure are obtained 
from the following basis. At the outer periphery the deck is supported by. 
vertical columns which conn~ct directly to the beams. The 'Qearns and col­
umns are considered to be connected by a welded, stiffened corner, which 
corresponds to a "fixed-end" ·boundary condition. 

At the deck's inner periphery the -choice of the boundary condition is­
not as obvious. Here the boundary condition is determined by the manner in 
which the rotating-plug assembly is connected to the deck. The rotating-plug. 
assembly would be connected to the top area of. the inner ring with _a substan­
tial holddown bolting system. Because of this holddown system and the large 
stiffness of the plug assembly, there was believed to be little radial differen­
tial movement between the plug assembly and the deck at the top of the inner 
ring. ·Therefore, the top of the inner ring was a-ssumed to move vertically 
and to,be r'estricted from radial motion. This boundary condition corresponds 
to a "pinned- end" condition in which vertical motion is permitted. The re­
mainder of the. inner ring ·is separated from the plug assembly by a relatively 
small clearance· gap. Depending on the size of this gap, the plug assembly 
may further res~ric.t ·the i.nner ring from rotating during loading. This motion 
constraint would occur when the. gap dimension is small. In contrast, if the 
gap is relatively large, po res:traint would occur. For this· study we cqnsider 
only the case of a smat~·gap and, the_refore, restrain the inner ring from ro­
tations. Thus, for this condition the movement of the entire inner· ring is re­
stricted to vertical motion. 

The vertical displacement of the radial-I-beam at its connection to the 
inner ring is shown :in Fig. 33 for both models. It. is seen that the structural 
effect ~f the. concrete fill was to reduce by 31 o/o the peak displacement of the 
deck from 5.2 to 3.6 em. The peak displacements occurred at 30.8 ms for 
the model that neglected the structural effect of concrete and at 21 ms for the 
model that included the structural strength. 
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Vertical-displacement Histories of 
Radial I-beam at Its Connection to 
Inner Ring with and without the 
Structural Effect of Concrete 

The above short study illustrates the use of the continuum element 
for treating the structural effect of a deck's concrete fill. A more detailed 
study on deck response will be conducted at a later date to ascertain the ef­
fect of various design parameters. 

H. Fluid-Structure Interaction of a Pool Reactor In-tank Component due to 
Pres sure-wave Propagation 

In the design of a pool-type reactor (Figs. 24 and 25) several vital •. 
components such as the primary pumps and the intermediate heat exchangers 
are contained within the primary tank. Typically, these components are sus­
pended from the deck structure and largely submersed in the sodium pool. 
Because of this positioning, these components are vulnerable to structural 
damage due to pressure-wave propagation arising in the tank from an HCDA. 
To assess the structural integrity of these components, we must perform a 
three-dimensional dynamic analysis which accounts for the fluid-structure 
coupling. 

The loading for this problem is from a short-duration energy source 
which creates pressure waves that propagate through the sodium pool and 
load the embedded component, the surrounding primary tank, and the de.ck 
structure. 

For a preliminary study of this complex problem, we developed a 
simple model which has many of the salient features of this fluid- structural 
component system. To begin, we modeled the primary tank and the in-tank 
component as deformable elastoplastic structures made of Type 304 stainless 
steel, the sodium pool as an inviscid, compressible fluid, and the deck to be 
rigid and fixed in space. The effects of slug impact are not addressed. Sub­
sequent models will include both a deformable deck and slug-impact effects. 
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A reasonable model can be 
metry of the system. Therefore a 

developed by assuming a 12° repeated sym­
model (Fig. 34) that includes a 12° sector 

of the sodium pool, one-half of an 
in-tank component (primary pump 

In· tonk 
ComponP.nl 

Sod1um Pool 
p 

53 

1--Promory 

I T~nk 
. I 

I 
I 
I . 
r--- 52 
I 
I 

J D 

Fig. 34. Simple Model of In-tank Component, Pri-. 
mary Tank, Sodium Pool. and Deck 

Sl 

or intermediate heat exchanger), 
and a 12° sector of the primary tank 
is suffident. Because of these sym­
metries, we can define the symmetry 
planes shown in Fig. 34. · Symmetry 
plane Sl is the plane OACEO, which 
originates along the axial centerline 
of the tank and passes through the 
axial centerline of the in-tank coxn­
ponent. The symmetry _plane S2 
OBDEO also originates along the 
tank's axial centerline, but it passes 

. halfway between adjacent in-tank 
components. The final symmetry 
plane ~3 ECDE is a horizontal plane. 

The finite-element mesh for 
our model is shown in Figs. 35:..37, 
The entire mesh (Fig. 35) consists 
of 80 triangular plate/ shell elements 
and 127 hydrodynamic elements. A 

clearer picture of the components of our mesh is shown in the substructure 
plot, which is a plot of an individual component or a group of corn.ponents. 
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Fig."35. Finite--element Mesh of Simple 
Model Showing In-tank Compo­
nent, Primary. Tank. -Pressurized 
Cavity. Sodium Pool. and Deck 

PRIMARY TANK 

Fig. 36. Finite-element Mesh· 
of Primary Tank and 
In-tank Component 

Fig. 37. Plan View of 
Finite-element 
Mesh for Sim­
ple Model 
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Figure 36 is a plot of only the structural components of the model: the in­
tank component and the primary tank. Our model for the in-tank component' 
consists of 38 triangular plate elements, which simulate the entire length but 
only one-half of the circumference of an in-tank component. The- boundary. 
conditions at the top are zero displacements and rotations. The nodes that lie 
in the symmetry plane Sl are confined to motion only in that plane. The re­
maining nodes of the component model are free to move arbitrarily in three­
dimensional space. 

The model for the primary t;:mk consists of 42 plate elements. The 
boundary conditions at the to'p of the tank are zero displacement and rotations 
that simulate the tank's attachment to the rigid deck. In contrast, the bound­
a~y conditions at the bottom of the tank model are such that these nodes are 
_allowed to translate in the symmetry plane S3. Rotations that preserve the 
symmetry are allowed. 

The nodes that are connected entirely by fluid elements are free to 
move arbitrarily in three-dimensional space, except for those that are re­
stricted to motion in a symmetry plane. Figure 37 is a plane view of our 
model. 

For our preliminary study, the pressure volume curve (Fig. 38) de­
scribed by Amorosi et al. z is used to describe the expansion of the co~e region 
during an HCDA. The resulting displacement history for the in-tank component 
was obtained. The radial displacement-time history of the bottom of the in-tank 
component, given in Fig. 39, shows a maximum displacement of 30.7 em at 
50 ms after the initiation of cavity pressurization. At this time the clearance 
between the in-tank .component and the primary tank is 94 em. 
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Radial-displacement Histories of 
Bottom of In-tank Component and; 
Primary Tank: Points I and P, Re­
spectively. of Fig. 34 
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This preliminary study showed that the dynamic r'esponse of an in-' 
tank component· is such that the' peak displacem·ent· of the component is suf­
ficiently small so that contact between the~ compone.nt and th~ tank is not 
anticipated. · 
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