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A LAGRANGIAN THREE-DIMENSIONAL FINITE-ELEMENT
FORMULATION FOR THE NONLINEAR FLUID-STRUCTURAL
RESPONSE OF REACTOR COMPONENTS

by

R. F. Kulak and C. Fiala

ABSTRACT

Th1s report presents the formulatmns used in the
NEPTUNE code. Specifically, it describes the finite-element
formulation of athree-dimensional hexahedral element for sim-
ulating the behavior of either fluid or solid continua. Since the
newly developed hexahedral element and the original triangular
plate element .are finite elements, they are compatible in the
sense thatthey canbe combined arbitrarily to simulate complex
reactor. components inthree-dimensional space. Because rate-
type constitutive relations are used in conjunction with a

~ velocity-strain tensor, the formulation .is applicable to large
deformation problems. This development can be used to sim-
ulate (1) the fluid adjacent to. reactor components and (2) the
concrete fill found in large reactor head closures.

An algb’rithm is presented for integrating the elasto-
plastic constitutive equations. Itusesa subincrementationpro-
cedure and a yield-surface return scheme so that the end-of-

step stress state lies on the yield surface.

The new element formulation_was verified by compari-
sonwith problems having closed-form analytical solutions. The
dynamic response of a concrete-filled deck structure which is
one of the major components of a large Pool-type Liquid Metal
Fast Breeder Reactor was investigated.for a hypothetical core-
disruptive accident. Also, the hydrodynamic element was.used

 to simulate the fluid in a study of the fluid-structural interaction
of a Pool Reactor In-tank Component.

I. INTRODUCTION

The safety evaluation of reactor components often involves the analysis
of various types of structural/fluid elements: beams, plates, three-dimensional
solid continua, three-dimensional fluids, etc. The explicit version of SADCATl

_contained a flat, trlangular plate element that was used for the analysis of
‘hexcans and simple models of head closures.




, Presented here is the developmenf of a hexahedral finite element that
can be used to simulate either a fluid or a solid in three-dimensional space.

Thus, this element can be viewed as being both a hydrodynamic element and

a solid element. This element can interact with the original SADCAT

triangular-plate element to solve coupled fluid-structure interaction problems

with a unifiéd treatment. Also, this element can be used to simulate the pre-

cracked structural effects of concrete. '

With the current goal of developing a 1200-MWe reactor, it is neces-
sary to assess the structural integrity of several of its main components. One
of these components is the deck structure. Two recent studies?’? reviewed
basic design concepts of large LMFBR's. These studies indicated that for
both the pool- and loop-type deck structure, concrete would be one of the com-
ponents of the deck. Generally, the deck itself is a composite of beams, plates,
and concrete. Consequently, to.model the concrete as a structural element,
one must use a three-dimensional solid continuum element.

Other components that may be susceptible to structural damage during
“a hypothetical core-disruptive accident (HCDA) are the in-tank components
suspended from the deck of a'pool-type reactor. In.particular, these compo-
nents are the primary pumps and intermediate heat exchangers. Because
these components are immersed in the large sodium pool, a meaningful struc-
tural analysis must include the interaction between the structural components"
"and its surrounding fluid. Here it is necessary to simulate the fluid media
with a hydrodynamic element. Also, note that both the deck structure and the
in-tank component must be analyzed in three dimensions.

A three-dimensional hexahedral finite element was formulated so that
it could represent either a hydrodynamic element or solid continuum element.
Since both the hydrodynamic and solid elements are finite elements, they can
be combined arbitrarily with the original plate finite element to represent -
complex, three-dimensional reactor structures.

J

A nonlinear elastoplastic constitutive algorithm was developed for use
with the solid and plate elements. This algorithm is applicable for metals
whose behavior can be treated by an isotropic hardening theory. ‘A subin-
crementation procedure is used in conjunction with a yield-surface return
scheme to ensure that the consistency condition is satisfied. The number of
subincrements needed per time step is automatically determined based upon
the inner product between the beginning-of-step normal to the yield surface
and an estimated end-of-step normal. The algorithm can treat problems in
which the material undergoes plastic behavior during the first time increment.
In addition, reversed loading problems can be handled.

The above formulations are incorporated in a computer program and
g1ven the name NEPTUNE, which is based upon the quasi-acronym obtained
from Nonlinear Elastic Plastic Three dimensional Fluid Structure lnteractlon
Code. ‘1t is the first three-dimensional fluid-structure interaction code de-
veloped at ANL.



II. THREE-DIMENSIONAL FINITE-ELEMENT FORMULATION

A. Governing Equations. .

We will here derive the finite-element equations for a single element
based upon the principle of conservation. of mechanical energy. The resulting
form can be used to represent either a Lagrangian hydrodynamic or solid
continuum element. The principle of conservation of mechanical energy for
an element is given in integral form as

d
—f%pvvdv+fc av - fTvdS-prvdV=0, (1)
dt 1j1j .
v ) _ Vv
Where .
A p' = density,
vi, T;, Fj = components of velocity, surface traction, and body force
(per unit mass), respectively,
and
O3 éij = . components of Cauchy stress and veloc1ty strain tensors,
S respectlvely

The velocity-strain tensor (rate-of-deformation tensor) is defined by

- - l - . . : . .
.eij = z( i, Vj,i)’ ' (2)

where the comma denotes a spatial derivative. Note that €. is not a strain
rate. The first two terms of Eq. 1 represent the time rate of change of the
kinetic and internal energies of the element, respectively; the last two terms
are the rates of work done on the element. Equation 1 is valid for any type of
‘material, and there is no restriction on the size of the deformation gradients.
"~ Both the stress and velocity-strain tensors can be divided into hydrostatic
-and dev1ator1c components

o35 = Sij = P&y - | | A N E)
and
where

Sij' e'ij = deviatoric comp@h.éhts of the stress and veloéity-strain‘

tensors, respectively,
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and, - o
P; ékk, = hydrostatic pressure and cubical diletation,.:i'espectively.
Using’ the above relations in -Eq: 1, we have

a\{ %p‘vivi dV - \{pekkdv +\,/,‘ SlJeIJ l-dV - é_.Ti-Vi dS - \{ p_FiVi dv = O (5)

The second integral on the left-hand side of Eq. 5 represents a contribution
due. to the hydrostatic behavior of the material, and the third integral repre-
sents a contribution due to the deviatbr'ic behavior of the material. Thus, for
an inviscid fluid, the third integral is not calculated,.but for a sohd continuum,
both integrals must be evaluated

In the finite-element method, the veloc1ty field for ea.ch element is ap-
proximated by

where v; is the velocity in the ith direction, ¢ is the shape function for the

Ith node, and d;j is the velocity of the Ith node in the ith direction. Using the
above approximation for the veloc1ty in the conservation of mechanical energy
expressmn Eq 5, we have

= _f zpdklcplcdedeV - fpcpl kdkl v + f Si; thde dv. .

{

- ngmldM as - f PFypdy; dV = 0 B - (7)

)

where

\ | Glijk Z(QPIJ ik CPl i _]k) 3(P1’k61j » o .» (8)

‘and 6. . is the Kronecker delta. :

1)

Taking the indicated time derivatives, we obtain for a single f1n1te
element ' ' . _ ‘

int, h int,d T | b\ _ : : '
dkl(mIJko £t fkl\ -y - )= 0, , ._ (9)

“where the element's consistent mass is given by

my = fWI%‘ av, S . (10)



the hydrostati¢ intérnal nodal-force matrix by

fnt,h - _\/f p(PI,k.dV’ , _ < (11)

the deviatoric internal nodal-force matrix by
int,d = | . &
o f $; Gz 4V (12)

and the external nodal-load matrices by

T, - C e ~ :

fi = [ Tepds, | | o (13)
and

P = [pF, . dV. | o o ' (14)

k5 KT - y o

S1nce Eq 9 must be valid for arbitrary motions, it ‘must be true for
arb1trary dkl thus, the term in parentheses must vanish. The general equa-
tion of motion of a finite element is given by

. 3 . t’d T b _ . B
myydy g + fﬁt’h + 63 b - fop = 0 A (15)

The formulation of this equation differs from the usual approach be-

‘cause the ‘internal nodal forces are divided into hydrostatic and deviatoric

parts. It should also be pointed out that Eq. 15 is identical to the form used
in SADCAT. Thus, the above formulation is compatible with the earlier for-
mulation and can be directly incorporated into the code. Equation 15 is the
equation of motion of a single finite element; however, the global form of the
equations of motion for the entire structure can be obtained by adding, in a
consistent manner, the equations of motion for all the elements. Since this
procedure is well known, it is not presented here.

B. Hydrodynamic Element

We will now develop the specific form of the internal nodal force matrix
for a hydrodynamic element. The element is an eight-node hexahedron (see
Figs. 1 and 2). This element has a node located at each of its eight corners.
The element shape functions ¢; used here are the trilinear functions described
by Zienkiewicz:*

oy = H(1+ €LY+ MY+ CC) (16)

11
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A where g, N, and C are the natural coordinates of the e_lei:nent (Fig..'Z)., For
example the shape function for node 1 is : '

o = B+ D1 - 0. S D)

Fig. 1. Arbitrary Hexahedron in Global ’ Fig. 2. Hexahedron after transformation
(x,y.z) Coordinate System _into Local Natural (§ n,¢) Coor—
‘ dinate System

We are primarily interested in problems in which the fluid can be ™
treated as inviscid; thus, there are no shear stresses, which means that the
deviatoric internal nodal forces are zero. Therefore, only the hydrostatic
internal nodal forces need to be computed. ' ' o - ‘

Theé method for computlng the hydrostatic internal nodal forces pro-
posed by Kennedy and Belytschko® will be followed. From Eqgs. 9 and 11 the
following relation for the rate of 1nternal work for an element is g1ven by

[ e _ 3 ¢inth o ‘ A :
: \frpekk dV = dyrfer . . (18)

Now we treat the pressure field within each element as a constant that
reduces the integral in Eq 18 to the form ’

[ P dV = p [ éqedV = pV, | ()
v - v . | : o

where V is the rate of- volume change This change can be expressed in linear
-form by : o '

Vo= Hpdg o - D
where Hp 1 depends only upon the nodal coordinates.

From Egs. 18-20 we obtain the following express1on for the hydrostatxc
) 1nternal nodal forces :

, h 7 | , |
.f;:; = ~pHyr 4 o (21)



o .We obtain the form for these forces by determining Hyy from Eq. 20
as follows: First, the expression for the volume of a generic element is de-
termined, and second, the temporal derivative of the volume gives the form
for Hy;. Because of the difficulty in computing the volume of an element
arbitrarily oriented in the global-coordinate system, we transform the element
.into its natural-coordinate system. Thus the volume, V, of the element is
given by ' '
V= fdxdydz = fgpdEdndg, - " (22)
v , a. A .

3

where £ is the Jacobian of the transformation from the global (x, vy, z) -system
to the natural (g, T, {) system. The final expression for the volume is obtained
here by evaluating the right-most integral in Eq. 22 with a one-point integra-
tion scheme at the center of the hexahedron. The above procedure gives the
following form for the hydrostatic internal nodal forces

cnt,h _ P L e ;
gath = ‘Tg[XjPJ(XkKM = XgNp) - X5rMXkPT - XknL)
+ XjNL(XkPJ - XkKM)]’ ' ' | (23)
where, for example", XjP.I is defined to be
Xipy = Xjp - X7 4 A (24)

Here XjP is the jth component of the coordinate of node P. The appropriate
node numbers are given in the permutation table (Table I).

TABLE I. Permutation Table

I J K L M N P

) 1 2 3 4 5 6 '8
2. 3 4 1 6 1 5
3 4 1 2z 1 8 6
4 1 2 3 8 5 71
5 8 7.6 1 4 2
6 5 8 7 2 1° 3
; 7 6 5 8 3 2 4
| '8 7 6 5 4 |

13
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Equatlon 10 defines the consistent mass matrix for the hydrodynamic
element. ' It is a 24 x 24 nondiagonal matrix. When the consistent mass matrix
is used in the equatlons of motion (Eq. 15), they become a set of coupled equa-
tions whose solution requires matrix inversion. To circumvent matrix inver-
sions, we will use 'a diagonal mass matrix, which is formed by lumping the
masses at the nodes. Now the equations of motion become uncoupled, and their
solution is quite efficient. Note that the triangular plate element was also
formulated with a diagohal mass matrix. In the explicit version of SADCAT,
the equations of motion are integrated using an explicit central-difference
temporal integrator. The numerical studies of Kreig and Key® showed that 3
the combination of a diagohal mass matrix and the explicit central-difference
time-integration method leads to accurate and economical solutions.

C . Continuum Element

The fluid element was formulated by considering only the hydrostatic
(mean) components of stress and strain rates, which gave the formulation for
the hydrostatic, internal nodal-force matrix. In this section we will develop
the formulation for the deviatoric, internal nodal-force matrix that is obtained
from the deviatoric components of the stress and strain rates. The combina-
tion of the hydrostatic and deviatoric internal forces provides the capability
for modehng three-dimensional solid contlnua

The deviatoric internal nodal force for an element was given (Eq'. 12)
by

int,d. =

fkl

where the coefficient Gth is a function of the element shape functions ¢, as
defined in Eq 8.

To determine the form for the deviatoric internal forces, we miust
evaluate the integral on the right-hand side of Eq. 12. Because a closed-form
analytical expression is not tractable, we performed a numerical 1ntegra.t10n
Barlow’ has indicated that there exist optimal points for calculating accurate
stresses within a finite element. For the eight-node hexahedron used here,
this optimal location is at the origin of the local natural-coordinate system
(€,M, €). Therefore, the numerical integration required in Eq. 25 was per-
formed using a one-point (optimal) integration scheme. Also, the 1ntegrat10n
was performed in the local natural-coordinate system because of numerical
efficiencies. Therefore the deviatoric internal nodal forces are given by

- ¢int,d _ ' '4
fkI {,‘Sl_] h_]k fS1J I1Jkde' _ o (26)
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. Evaluating the right-most integral in Eq. 26 gives the following expres-
-sion for the components of the deviatoric internal nodal forces:

fiI

h 128;{[ jpr% KKM L)+XJ

( kJL ~ kPN)

+ XN rp - Xkrm)]Sii + [Xeps(Xikm - XiNL)
+ XmXi7r, - XipN) + X i - Xikm)]S;;
o+ [XiPJ(XjKM - XynL) + Xikm (XL - Xjen)

+ XKoL - XjKM)]Sik}- ' | (27)

The internal nodal forces for a solid continuum element are given By the sum
of the hydrostatic and deviatoric nodal forces

int - gint,h 4 gint,d . | - '
fkl fkl + fkl . : (28)
. A diagonal-mass matrix is also used for the solid continuum element.

D. Constitutive Relations

In this section we will describe the constitutive equétioﬁs used to rep-
resent the material response of the following material types: fluid, concrete;
and elastoplastic solid. '

1. Fluid

The state of stress in a deforming fluid is given by

o3 = -poij + fij(€43) . (29)
where

P = thei‘ﬁlodynamic pressure

fij = tensor-value functidn.

The thermodynamm pressure is deterrmned by the kinetic equa-
tion of state, wh1ch is of the form

p=p(p,T), N | - R EL)
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where p is the density and T.is. the absolute temperature. For ‘the class of

- problems we are interested.in, we can consider the fluid to be isotropic.

Furthermore, we are interested in problems in which the wave-propagation
aspect dominates, so we can neglect the viscous behavior of the fluid. Thus,
the stress state becomes 1sotrop1c and is given by
O‘ij = —pé_j_j. A N " - ' ’ _ . . (31)
Now.the equation of state (Eq. 30) for our frictionless fluid reduces:
to - : t

P = P(p). ' | L | (32)
The explicit form used in the code is

p=Kﬁp A S : (33) .
- Po : o

3

where K is the bulk modulus of the fluid and the zero subscript refers to the

.Ooriginal state. !

From the equation of mass conservation for a Lagrangian element
we have’ '

PV = poVo. - :1 (34)

In terms of the -element volurhe, the,pre-ssure is given by

p’=K(\%’-—l) | R A o (35)

The above form of the equation of state for a fluid element is coded in the pro-
gram. Other forms, when needed, can be readily incorporated.

2. Concrete
The matenal response of concrete is taken to be linear elastic.

The reason for choosing this material model was the nature of the problem
we are interested in solving. The problem is to determine the dynamic re-

‘sponse of a pool-type deck structure. This structure is a composite of beams,

plates, and concrete fill. The concrete fill is primarily a radiation shield.

Its effect on the ultimate. structural integrity of the deck is believed to be of

second-order importance because of the likelihood of cracking under the ex-

‘treme load conditions of a core-disruptive accident. However, since the struc-

tural effect of the concrete will affect the dynamic response of the deck, it

" should be included in the model. Also, although the above material model

cannot treat the postcracking phenomenon, it can provide valuable information
as to the locations of cracks and the time at which the onset of cracking occurs
in the concrete fill.
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The constitutive equation for concrete is of the form

v

%5 = cijklékl’, | (36)
in !’which'thé Jaumann stress rate Givj is.defined by k
| ?ivj =. 05~ 5imd’mj - %5n%ni» (37)
where the spin tensor W] is given by
b = 20 v (38)

The stress rate can be separated into hydrostatic and deviatoric
components given by ‘

Voo l: &..aY - L L

cij = 3°kk6ij + Sij’ . (39)
where ' -

c.kk = -3p. ' | : | ' " | .(40)

In terms of these components, the constitutive relation becomes

e

and
v _ .

where K and G are the bulk and shear moduli, respectively, for concrete.

Since theé internal forces (Eq. 27) depend on the total stress values
and the constitutive relations only provide the stress rates, we must obtain
the total stresses at the current time from the stresses at the previous time
step and the current stress increment. The stress increment is obtained from
the stress rates by '

and
- . \Y M T, .
ASIJ = SijAt + wikSkJAt - Sikwijt. . (44)

The total stresses at the current time step are gi'ven by

Opklt + Ot) = o) (t) + 8O jkc | | (45)



18

"and

Sij(t + At) = Syj(t) + ASj;5. (46)

To determihe the onset of cracking in the concrete fill, we must
choose and utilize a simple criterion. A crack is said to initiate when a prin-
cipal stress equals or exceeds a maximum tensile value d,,. Thus the onset
of cracking occurs when ‘

v

C'mt = max(crl, UII, OHI), . (47)

. where o1, 011, and o1y are the eigenvalues of the stress tensor 9ij-

The above treatment of concrete allows us to 5ccount for the struc-
tural effect of concrete and to identify the location and time at which cra.ckmg
occurs. The treatment of postcracking behavior is not con51dered

3.
3. Elastoplastic Solid
L, .

The stress-strain-rate relations for an elastoplastic solid are

presented below. The form used is lirnited to metal plasticity.

To begin, we must define several concepts and terms. Earlier
we divided the velocity strain, stress, and Jaumann stress rate into dilata-
tional and deviatoric parts (Egs. 3, 4, and 39). Now we will further divide the
deviatoric velocity strain into elastic and plastic parts, given by

c. o= ge 33 . . . '
¢ij = €3 + eij' | | (48)

The d1latat10nal stress is related to the velocity strain through

Eq. 41 and the’ stress-rate deviator is related to the velocity-strain deviator
by the hypoelastic relation

-

V i . - ) . .,P . ’ . ' . . .
- Slj = ZGelj = ZG( 1_] 13).\ . ) R (49)
The plastic fvelocity strain is detérmined from a potential-flow
law by : '
P _ 5 0f - o ‘
€ij = }\BS--’ , (50)'

where X is a constant of proportionality and f is a yield function.
. . \ » " .
In our work we are using a von Mises yield function given by

~ ;= $5;5;5 - R3(Ep) = 0 - S (51)



where R is the radius of a hypersphere in n1nespace It is related to a _
unlversal response function by

- ;/%00(5

where °o can be 1nterpreted as the yleld stress for a.uniaxial specimen. The
accumulated plastlc strain is defined in terms of the plastic velocity strain
as

) R('EI;), (52)

o)

,_ . ..t_-.- N '

ep'=f0 €P dt, | , (53)
where

. 1/2

—p = p p . : . . 54

= (8E) _ (54)

Durin‘g‘plastic loading the stress must lie on the y‘ield surface,
which leads to the consistency condition given by - ‘

£=0 - . .’(55)

In terms of our yield function the consistency condition is given
by’
f=85,S:-RR=0 L ' | ~ (56
= SijSyy - RR= 0. - ' (56)

Since our hardening function only depends on the accumulated plastic strain,
its temporal derivative is given by ' ‘

rR- 3R - o | (57)
de P .
o . .

By using Egs. 50, 51, and 54, we obtain the form

. dR : -
R = ,\/E—R)\ [ (58) .
3 dep _ -

By using Eqs. 49-51, 56, and 58, we solve for X, which is giverr by

SlJeIJ

With X known we can determine the plastlc strain rate (Eq. 50) and use it in
Eq. 49 to find the stress rate. '

19
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E. Elastoplastic Constitutive Algor.ithm'-

" The above equations are in dlfferentlal form and must be 1ntegrated
to yield total-stress values. The numerical method used for this integration
is presented below. A prime objective of the algorithm is to integrate the -

" differential equations so that the stress state satisfies the consistency condi-

tion (Eq. 56) exactly. Also, the algorlthm must be able to determine the var-
ious loading- unloadmg processes

During a time step a materlal may strain in any of the follow1ng
reg1mes

1. Loading
2. Unloading
3. Unloading-reloading.

The following plastic-loading relations determine the type of loading:

df . \ A
aleS ij <0 usloading,
of ¢ S
= i .
353; i 0 neutral loading, (60)
) :
! sV.'’> 0 loading. .
asij 1)
: , , )

: . i
The loading regime occurs when the beginning-of-step stress state is

either inside the yield surface or on the. yield surface and the end-of-step
stress state lies on the yield surface. The unloading regime is when the

- beginning-of-step stress lies on the yield surface and the end-of-step stress

is inside the yield surface. The unloading-reloading regime occurs when the

‘strain increment is such that both the beginning-of-step stress and the end-

of-step stress lie on the yield surface, but the loading path during the step
traverses through the elastic region bounded by the yield surface.

To describe the algor1thm used to obtam the stress increments, we de-
fine S(j) as the beginning-of-step stress state (Fig. 3), S’i“j as the estimated
end—of-'step stress state, and Si(é) as.the end-of-step stress state. The algo-.

rithm first computes the end-of-step stress state based on the assumption

that the loadmg process will be elastic, thus the £1rst estimate of end-of- step..

stress is given by

s* = S0+ as® (61)
T Syt Sy |




where the elastic deviatoric-stress increment is obtained by evaluating Eq. 49
with the plastic strain rate equal to zero and then using Eq. 44. Now if both
the initial stress state S(l) and the end-of-step stress state S* are within the
elastic region bounded by the yield surface then S*J is the exact end-of-step

stress S(z) (see Fig. 3). On the other hand, if Si' is in the elastic region and
S* is out51de the yield surface, then the step must be divided into two parts:
elastic and elastoplastic. The treatment of the elastic part is identical to the
previous case. The plastic part is discussed in general below.

F1g 3. Stress Space Showmg Stress States, Yield Surfaces and Normals Used
in the Constitutive Algorithm. The yield surfaces are shown as circles
for illustrative purposes and are in reality hyperspheres in ninespace.

We now describe the formulation used to obtain the end-of-step stress
when plastic loading occurs. To begin, we assume that the stress state has
been advanced to the yield surface and consider this stress to be the stress
S(l) in the followmg discussion. We note that the quantity Bf/aS : is the nor-

mal vector to the loading surface say, gij- Therefore Eq. 50 can be restated
as’ -

eP = Xg... | - (62)

At the beginning of the step the normal gi(‘lj) is known. Now we must

determine the change in plastic-strain increment seP that occurs during the
step. This 1ncrement is determlned from 1

I):"tZ 'pd = t2 ..tht' . l 63
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- The right-most integra1~~ above can be expr'ess'ed'in term of a sum as
AeP. = lim SOP GV A A , 64)
1) "Now nz=1 glJ o . C (

When the value of N is equal to =, the sum equals the integral, and when N

is finite, the sum approximates the integral. When N is equal to 1, we have

a single-step procedure. In single-step procedures, the assumption is.usually
made that during the time step the strain increment is small enough that the
normal does not change significantly; thus the strain increment is given by

P SR ,
Aeij - Byj ?\AL ) ‘ _ | _ _ (65)

The estlmate for the stress state S and the associated normal g1 at.
the end of the step can be calculated in the usual manner. The end-of-step
normal can be compared to the beginning-of-step normal to determine if the
above assumptlon is valid. If the two normals are equal or nearly so, then
the computed stress is accurate. On the other hand, if the normals differ sig-
n1f1cant1y, the plastlc strain increment should be calculated by

i

..a
.

n=1 1]

SN ) gl L (e

Now the problem becomes that of determining the number of sub1ncre-~
ments N needed to compute Aepj accurately. To begin, let S(‘;) and S< be the

1)
) 2)

stress states at the begmnlng ‘and end of the step and let g and 8ij be their

reSpectlve normals to the yleld surfaces %) and f(“ (see F1g 3). Also, let us
def1ne a yleld surfa.ce £* generally not equal'to £ 1. or f(z).

The procedure prOposed is as follows: First, compute an approxima-

" tion of the stress state S* at the end of the step, based onthe assumption that

‘the normal vector to the y1eld surface does not change during the step. Then
determine the components of the unit normal vector g1 , based on the approx-

imated, end-of- step stress state Sl_]’ that is,
s*
- _ 1 ‘ '
5T T . | e

where ||S* | is the Euclidean norm of S* An estimate of the error oc'curring;

~during the step is obtained by examlnlng the 1nner product .of the beginning-

of-step normal g13 and the end-of-step normal g1y Whlch is expressed by

(1) =k
g.l . gi.

i; j = cos 8. : | ‘- Ny (68)




The angle © is used here as a measure of the error in the end-of-step stress
state. A value of zero for theta indicates that the initial and final normals
are collinear, and hence glJ is constant during the step; thus for this case,
end-of- step stress S @) js equal to S When the angle 0 is greater than zero,
the normal g;j; var1es during the step and the subincrementing procedure
should be used.

, The above subincrementing method will increase the accuracy of the
end-of-step stresses considerably when compared to a single-step method.
However, because the end-of-step stress is based upon a linear predictor

(Eq. 49), it does not satisfy the consistency condition stated in Eq. 56. There-
fore, even though the subincrementing procedure has reduced the amount of
drift from the yield surface it has not eliminated drifting.

In order. to satisfy the consistency condition, a yield-surface return
scheme was formulated. The yield-surface return formulation is described
below. The object of this method is to return the stress S* from f* to its
image S(J) on f®) " The unit normal vector to the estlmated yield surface f¥
is computed from Eq. 67 and is used to obtain a.correlation stress defined by

ASE; = -ASCE’.I’}, (69)

where the scalar ASC is the difference in radii between the estimated yield ,
surface f* and the yield surface £?) determined from a'universal response
function evaluated at the equivalent plastic strain E;; that is,

ASC = R* - R@)(E’lg) = (S 13 13)”2 ,\/-E;-co(?{)). (70)

This yield-surface return method is applied at the end of each.substep. This
implies that the consistency condition is satisfied throughout the substep
procedure.

The constitutive algorithm is used to evaluate the stress state when

the material of the three-dimensional solid-continuum element is elastoplastic.

It has also replaced the original algorithm used with the triangular plate
element. ' '

F. Artificial Viscous Stresses

The numerical solution of certain transient problems results in high-
frequency oscillations that are not present in the analytical solution. These
spurious oscillations are due to frequency cutoff of a discrete mesh and can

‘be eliminated by viscosities. In this report we are using an explicit temporal

integrator which has no artificial viscosities so spurious oscillations with a
frequency equal to the highest mesh frequency are produced. Also, our dis-
cretized equations of motion do not contain any type of damping.

23
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Therefore, to reduce or eliminate spurious -oscillations when they occur, we
will follow a common approach and introduce artificial viscous stresses, a
form of numerical damping.

Belytschko et al.® presented the following form for a viscous stress to
damp out the highest mode in a two-dimensional element:

o;’J = dpp VA [(C, - Ca) e by * zczéij], \ ' o (71)

where C; and C, are the dilatational and shear-wave speeds, respectively, A
the area of the element, €ij the strain, and dj, a fraction. of critical damping

for the highest mode. Here we will use a similar form for the three-
dimensional hexahedral element. Since the stresses are separated into hy-
drostatic and deviatoric components, we will also separate the viscous stresses
into these components. Specifically, the respective forms used for the hydro-
static and viscous stresses-are glven by ‘

pY = ‘--%c;’i = -deh(Cl - 3-C2)€11, ‘ _ o (72)
and - '
s{i = phCZe

ij’ (73)

~where h is'a characteristic length, and the remaining syn1bols retain their.

previous definitions.

The characteristic length here was taken to be the length of the smallest
side of the hexahedron. The deviatoric viscous stress (Eq. 73) is linearly
related to the velocity strain, which is an objective tensor. Therefore, the
deviatoric viscous stress is also objective (i.e., frame-indifferent) and it can
be used for large-deformation problems. Similariy, since ‘the viscous pres-
sure is a scalar quantity, it is also frame-indifferent and thus applicable to
large-deformation problems.

The above viscous stresses are added to the total stresses as deter-

mined from the constitutive relations. Thus, for problems in which viscous

stresses are usAe‘d, the internal forces (Eqs. 11 and 12) are given by

gat, ho= [ (p+ p¥)e; i dV, | S (74)
'
and . ‘ .
int,d _ v V v : : ’
gat.d - {(sij + 87)Grjp 4V | | (75)

The above approach indicates that the inc'lu'sion of viscous stress, in effect,
adds another set of internal forces to the equations of motion.




. III. RESULTS

. The above developments were implemented into the NEPTUNE code.

In this section we present sample problems which illustrate the accuracy and
appllcablllty -of these developments to simulate fluid-structure interactions in

. various three-dimensional configurations. The first group of problems com-
pares NEPTUNE code results to analytical solutions or to other computer-code
predictions. These problems are designed to check the performance of the new
element agamst known results. The last two problems illustrate the applica-
bility of the code to.the structural dynamics of reactor components. .

A, 'AD‘yhamic Responée of Two Concentric Tubes Separated by a Fluid

The first problem studied was that of two concentric tubes separated
by a fluid (see Fig. 4). The inner tube was subjected to the pressure-time
-history shown in Fig. 5. The radial displacement of the inner cylinder (see
- Fig. 6) was computed by the STRAW and NEPTUNE codes. There is good
agreement between the two codes, indicating that the newly added three-
dimensional fluid element is operating properly.

3\

Outer Tube

(=]
N
T

Fluid Layer

N\

" Inner Tube

Pressure, Pa
e
T

(4],
0 50 100
Time, ms
Fig. 4 ~ Fig. 5
Section of Two Concentric Tubes Pressure-Time History Applied
Separated by a Fluid Layer : to Inside of Inner Tube
. ) ' ‘
0032
. . STRAW
0028 [—
N NEPTUNE
0024 —
§ 0020 — .
H _ Fig. 6
g 0016 — & . .
EN .Comparison between STRAW and NEPTUNE
oo .Predictions for Inner-tube Radial Displacement -
" 0008 [—
0004 —
|1 | VI

0 004 008 0J2 016 020 024 028 032
Time, ms
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B. Compression-wave Propagé.t'idn down a Fluid Column

‘The second problem considered was that of a pressure wave’'traveling
down a fluid column. The finite-element mesh for this problem is shown in .
Fig. 7. The NEPTUNE-:predicted pressure history at location "A" is shown
in ' Fig. 8. As seen from the results, there is a spurious oscillation in the code-
predicted pressures. This oscillation is not found in the analytical solution.

' The finite-element solution predicts a pressure increase, which starts earlier

than predicted by the arialYtic'al‘_sqlution; the code solution overpredicts the
pressure and oscillates about the analytical solution with decreasing amplitude.
In order to snub these oscillations, artificial viscosity has been incorporated
into the fluid elements. A second run was made in which the viscosity corre-
sponded to the case of critical damping. The results are shown in Fig. 8.. _
Except for a slight overshoot, the addition of artificial viscosity has eliminated
the undesirable oscillations. This second run is in good agreement with the
analytical® solution. T : o - '

NEPTUNE (Crificol Domping)

Analytical

Pressure, MPa

Al dimensions in cm pit)

Fig. 7. Finite-element Mesh for Studying a Pres-
- sure Pulse Traveling down a Fluid Column

0 20 40 60 .80 100 120
Time, ps
. : . Fig.'8. Pressure-Time History at

Location "A" in Fig. 17

C. Wave Propagation in a Fluid Emanating from a Cylindrical Cavity

The problem studied was a compression wave traveling through a
fluid contained within an infinite cylinder (see Fig. 9) with an outer radius of
40 cm. A cylindrical cavity of 20~-cm radius was located in the center of the.
fluid cylinder. At time zero, a step pressure was applied and maintained at
the cavity-fluid interface.. Analytically, this problem reduced to a one-

 dimensional wave-propagation problem in cylindrical coordinates. However,

in three-dimensional Cartesian space the problem was two-dimensional; that
is, motion occurred in the x and y directions. The finite-element model for




this problem is shown in Fig. 10. The model consisted of 20 fluid elements
with a height h equal to-1 cm: The cavity radius was 20 cm, and the outer-
fluid boundary radius was 40 cm. The fluid model was taken to be a 2.86° sec-
tor (A8 = 2.86°) of the physical cylinder (see Fig. 9). The measure used to
evaluate the accuracy of the fluid-element response to the prescribed loading
was th'é’geomet-ric p'res‘su‘re attenuation. From the analytical solution it was
known that the fluid pressure attenuates inversely as the square root of the
radial distance; that is, '

P, T . ‘ ' ’ . .
— - /L . . 6).
Pl r; . ' ) . ’ . (7 )

where Pi is the fluid pressure at radius r;. The computed responses for the
fluid pressure were compared at several locations, with the analytical solution

in Fig. 11.. The code-computed pressures at various radial locations compared

well with the analytical predictions.

Fig. 9
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Pressurized Cavity
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NEPTUNE (r'=24.5 cm)

ol Analytical J
: . r/Anolylica'l

NEPTUNE {r= 29.5¢m) -

_____:__'\

. Pressure, MPa

0. 20 . 40 60 80 100

Fig. 11. ‘Comparison between Analytical and
NEPTUNE Results for Pressure Attenu-
ations in a Cylindrical Configuration.
Calculations were performed using
artificial viscosity. :

D Wave Propagatlon in a Flu1d Emanat-
‘ing from.a Sphencal Cav1ty

Our next comparative _problend
was similar to the previous problem,
except that the compression wave was
‘spherical. The physical problem con-
sidered was that of a compression wave
emanating from a pressurized spherical

_.cavity. The cavity radius r; was 10 cm

and the fluid radius r, at the outer bound-

* ary wao 20 cm (see Fig. 12). The finite-

element model, shown in Fig. 13 contained
20 three-dimensional fluid elements. The
elements were bounded by the angles A¢
and A8; both of these angles were equal

to 9°. Note that even though this problem
is reduced to a one-dimensional problem
in spherical coordinates, it is a three-
dimensional problem in Cartesian co-
ordinates. “All the nodes in the finite-.
element mesh underwent motion in the

X, y, and z directions. The pressure-
attenuation ablhty of-an element was also

used in this problem as an estimate of the accuracy for that element. For the
spheru;al-wave problem, the pressure attenuates inversely as its radial

distance; that is

P, r

Pl r; )

Pressurized Cavity

Fig. 12. A Pressurized Spherical Cav—
ity in a Fluid Medium

(77)

Element 20 8,/ ™ Ad

i

Element 1
6

Fig. 13. Finite-element Model for
Spherical-wave Study




A comparison between analytically predicted and NEPTUNE-predicted
pressure attenuations at various radial locations (see Fig. 14) gave good
agreement.

10
'/Anolyﬂcal
8+
: NEPTUNE (r=12.25 cm)
I 7
§ Ul I NEPTUNE (r=14.5 cm) Fig. 14
g Analyticol Comparison between Analytical and NEPTUNE
g ok Results for Pressure Attenuations in a Spherical
| Configuration. Calculations were performed
| using artificial viscosity.
| ,
2r I
|
-
0 | 1 1 T
0 10 20 30 40 50

Time, us S ;

E. Fluid-Structural Interaction of Two Concentric Cylinders Separated
by a Sodium Layer '

The combined fluid-structural problem presented here is the dynamic
response of two finite-length concentric cylinders (see Fig. 15) separated by
a sodium layer and loaded by a pressure pulse acting over part of the inner
cylinder. Both cylinders were '30.48 cm long and 1.016 mm thick; the nominal
radius of the inner cylinder was 5.08 cm. A layer of sodium 2.54 mm thick
separated the cylinders. A 100-pus triangular pulse (see Fig. 16) with a peak
pressure of 20.7 MPa (at 50 ps) was applied to a central 15.24-cm-long region
around the inner circumference of the inner cylinder. Because of symmetry
in both loading and geometry, the NEPTUNE finite -element model (see Fig. 17)
for this problem consisted of a 10° sector 15.24 cm high. Twenty-four tri-
angular plate elements were used to model the cylinders (12 for the inner and
12 for the outer) and six fluid-hexahedral elements for the sodium layer. The
material properties are given in Table II. )

0.254 cm - == P
I 20.7 MPo
0 15.24 cm _ _/_/ ; )
: P{t) 762 ¢cm
1 ' - 1 : - l
=508 cn 0 50 100
- !, ps
Fig. 15. Concentric Cylinders Sep- Fig..16. "‘Applied Pres—

arated by a Sodium Layer sure Pulse
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~ Outér Cylin_der

L Sodium - . / .
Inner Cylinder \ _ 2

|5.24 cm
Fig. 17

Finite—eiement Model for

Concentric Cylinders .
10 § -

| TABLE II. Material Properties for Sample Problem E

Cylinders (steel at - Fluid
elevated temperature) (sodium)
‘Density (g/cm?) o 7.8 . 0.826
Young's modulus (GPa) . 152 -
Bulk modulus (GPa). -  4.05
Yield stress (MPa) : ' » 517 - ’ -
Tangent modulus (MPa) 414 . .

The NEPTUNE-predicted response was compared with the predicted
response of WHAM.? The radial-displacement history of the inner cylinder at
the line of symmetry is shown in Fig. 18. The NEPTUNE and the WHAM re-
sults compare reasonably well in displacement amplitude, response frequency,
ahd amplitude variation. However, the NEPTUNE results 1nd1cate a shghtly

.stiffer behavior.

~
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Fig. 18. Comparison between NEPTUNE _
and WHAM Results for Radial
Displacement of Inner Cylinder
at Line of Symmetry
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F. S-wave Propagation in an Elastic, Infinite Plate

The problem studied was the propagation of a plane shear wave in an

_infinite, elastic plate. The plate was taken to be 50 cm thick in the Z direc-

tion and infinite in the X and Y directions. The front face of the plate was
subjected to the shear loading given by o

oz x(t) = oy HE) . o  (78)

where °ZX is a constant and H( ) is the Heaviside step function. Two types

of boundary conditions were considered for the back face: fixed and free.

Because the analytical solution for this problem is available, the behavior of
the element can be compared with the

| Back F,uc\‘ _analytical predictions to establish its- -

- y - accuracy. .

,//'- ,la - . A finite-element mesh (see Fig. 19)
LA 1. ¢ .consisting of 50 solid hexahedral elements
'/"“,;" S 1 was used to represent a "bar-type" model

Vo . ] through the plate thickness; the cross-
b ' "’, »  sectional area of the bar was 1 cm?, The
W i ﬂ . / analytical solution to this problem con-
' ., 7 ‘ ‘sisted of motion only in the X direction.
7 Therefore, our nodal fixities were such
X : /. that only nodal motion in the X direction
z : Frodt Foce

was permitted. The shear stress UOZX in
y . " ' Eq. 78 was set equal to 10 MPa. The
plate density p and shear modulus G

- Fig. 19. "Bar" Model for Studying Plane-wave = Weére taken to be 7.8 g/cm and 80 GPa,

Propagation in an Infinite Plate . ~ respectively.

The analytmal solution to this problem is a plane shear wave (S wave)

of stress magnitude O'ZX travehng in the Z direction with a wave speed Cg
given by '

_CS‘=\/9§- B S -‘ B B | (79)

Once the wave front passes through a sect1on the particles in the stressed
zone attain a velocity in the X direction VY P given by

(P) c’OZ-X

X s = - e

The analytical-numerical comparisons for this problem are shown in

‘Figs. 20-23.. The numerical results for the case in which the back face is
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free compare well with the analytical solution. In Fig. 20 the particle veloc-
ities are plotted for points that are in a zone 24 cm from the loaded face.

The agreement of wave-arrival times and particle velocities is very good.
The initial plateau is due to the incident S wave, and the second is due to the
reflected S wave. The doubling in velocity upon passage of the reflected
wave agrees with the analytical results. In Fig. 21, numerical results for the
stress-time history at the plate midthickness are compared to the analytical

“solution. Here also the wave-arrival times and stress magnitudes are in

good agreement with the analytical solution. The incident S wave is seen to
increase the stress state in the element from zero to the applied stress
(10 MPa), while the reflected wave reduces the stress state back to zero.

100
= o= == == Anglytical
= NEPTUNE
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60~
§ ‘ Fig. 20
_.:.3‘ Particle Velocily in a Zone 24 cm from the
§ 40 Loaded Face: Free Back Face. Calculations
were performed using artificial viscosity.
20|
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Time, ms
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Fig. 21 =
Stress-Time History at Plate Midthickness: ﬁ
Free Back Face. Calculations were per- & sl
formed using artificial viscosity. :
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1
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Time, ms .
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from the Loaded Face: Fixed Back Time, ms : ,

, Face. Calculations were performed

ing artificial viscosity. -
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' _ “thickness: Fixed Back Face, Cal-
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The particle velocity and stress-time history for the case in which
the back face is fixed are shown in Figs. 22 and 23, respectively. The dif-
ference in response between the free- and fixed-face cases is in the behavior

‘after the reflected wave passes through the element. For the free-faced case

the reflected wave doubles the particle velocity and reduces the stress state
back to zero. 'In contrast, when the back face is fixed, the reflected wave re-
duces the particle velocity back to zero and doubles the stress. These re-
sults agree with elementary wave-propagation theory and indicate that the
newly developed three-dimensional solid element is representing this behav-
ior accurately. o ‘

G. Dyﬁamic Response of I.Large Pool-type Deck Structures to an HCDA

Figure 24 is a schematic elevation view of a 1200-MWe p'ool—type ref-
erence system. The reactor-core region was designed to provide 3000 MW
of thermal power with sodium entering at about 371°C (700°F) and leaving at
about 538°C (1000°F). The main components of the pool-type LMFBR system

-are shown:. the reactor-core region, internal heat exchangers (IHX's), pri-

mary pumps, the core-support structure, primary and secondary tanks, and

“the shield-deck structure. The instrument tree and fuel-handling machinery

are not shown. Figure 25 shows the plan view of the reference reactor. The
primary vessel contains three primary pumps, six IHX's, and two storage.
baskets. The basic dimensions of the pool reactor used inthis preliminary
study are shown in Fig. 26.
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The shield deck itself is an annular structure supported by steel col-
umns embedded in the surrounding concrete radial biological shield. The
major structural components of the deck are the radial I-beams, the bottom
annular plate, and the inner ring that supports the rotating plugs. The radial
beams form a "spoked" type of structure with the central inner ring as the
hub. The deck is, in general, a concrete-filled, beam-plate composite

~
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structure which provides, in most des1gns support for the pumps and heat ‘ex-

changers, pr1mary and guard tanks, and suff1c1ent radiation sh1e1d1ng

Pressure loading's (Fig. 27) used 'in this study were obtained from out-

put of the REXCO HEP!° eontalnment code.
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Fig. 27. Pressure Loading on Deck Structure
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It must be pointed out that the
"zero" time shown in Fig. 27 is
referred to the beginning of slug
impact. Relative to the beginning
of the accident, slug impact occurs
at about 95 ms. The peak pressure
was 10.4 MPa (104 MD/cm?) and
occurred at 9.7 ms. 'T'he pressure
decreases in an oscillatory manner
to a quasi-equilibrium pressure at
the end of the calculations. Using
the above code, a finite-element
model was designed to assess the
ability of a pool-type LMFBR
shield deck to sustain an energetic

' HCDA.

From the plan view of a

conceptual fepresentation of an expanded EBR-II;type deck, it was deter-

mined that there is a reasonable amount of symmetry in-the structure, and

that an initial model would consist of a 12° sector encompass1ng one rad1a1

I-beam and one-half of a typical in-tank
component (e.g., intermediate heat ex-
changer, pump, or storage basket). The
model is shown in Fig. 28. The struc-
tural components modeled are the main
radial I- beam the component- support
I-beam, the inner ring, the concrete fill,
and the in-tank component nozzles, Al-

‘though the rotating plug is not. modeled
.explicitly, its§ mass was taken into ac-

count by distributing it along the inner
ring. Similarly, the pressure load act-
ing on theplug assembly was treated as
a vertical-force line load acting on the
inner ring of the deck.

. - Two" separate models were gen-
erated for.this study. The first model
accounts for the mass of the concrete,

‘but ignores its: structural effect.. The
concrete mass is distributed along the

beams, while the mass of a typical in-
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Fig. 28. Sector Model for Pool-
~‘type Deck Suucture-

tank component is taken into account as concentrated masses located along

the nozzle,

The second model, which is similar, accounts for the structural
effect of the concrete fill as well as its mass.



The finite-element discretization of our models is shown in Figs. 29-
32. Figure 29 shows the discretization of the entire model; Figs. 30-32 '
illustrate the discretization of the various deck components. The material
properties used for the various structural members and the concrete biolog-
ical shielding are listed in Table III. The steel was assumed to follow a bi-
linear, universal stress-strain curve based upon the mechanical properties
listed in Table III. '
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- TABLE III Material Properties for Components
: of the Deck Structure

“T1 Steel : ‘ Concrete

Young's modulus (GPa) * = - 206 ~ 31.7
Poisson's ratio . : 0.30 0.18
Yield stress (MPa) » 620 '
Ultimate.stress (MPa) 724 -

Tangent modulus (MPa) - 620 : -

The above models were loaded according to the pressure-time curve
shown in Fig. 27. This pressure was applied uniformly to the underside of
the annular plate.. As mentioned above, the plug-load was considered to be a
line load acting on  the inner ring. It was assumed that the in-tank component
did not contribute to the loadlng, except for its mass effect.

. The"boundary c_onditions applied to this deck structure are obtained
from the following basis. At the outer periphery the deck is supp’orted by .
vertical columns which connect directly to the beams. The bearns and col-
umns are considered to be connected by a welded, stiffened corner ~which
corresponds to a "fixed-end" boundary condition.

At the deck's inner periphery the.choice of the boundary condition is -
not as obvious. Here the boundary condition is determined by the manner in
which the rotating-plug assembly is connected to the deck. 'L'he rotating-plug .
assembly would be connected to the top area of the inner ring with a substan-
tial holddown bolting system. Because of this holddown system and the large
stiffness of the plug assembly, there was believed to be little radial differen-
tial movement between the plug assembly and the deck at the top of the inner
ring. - Therefore, the top of the inner ring was assumed to move vertically

" and to-be restricted from radial motion. This boundary condition corresponds
to a "pinned-end" condition in which vertical motion is permitted. The re-
mainder of the inner ring is separated from the plug assembly by a relatively
small clearance- gap- Depending on the size of this gap, the plug assembly
may further restrlct the inner ring from rotating during loading. This motion
constraint would occur when the .gap dimension is small. In.contrast, if the
gap is relatively large, no restraint would occur. For this study we consider
only the case of a small gap and, therefore, restrain the inner ring from ro-
tations. Thus, for this cond1t10n the movement of the entire 1nner ring is re-
stricted to vertical motlon

The vertical displacement of the radial I-beam at its connection to the
inner ring is shown in Fig. 33 for both models. It is seen that the structural
effect of the concrete fill was to reduce by 31% the peak displacement of the
deck from 5.2 to 3.6 cm. The peak displacements occurred at 30.8 ms for
the model that neglected the structural effect of concrete and at 21 ms for the
model that included the structural strength.
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The above short study illustrates the use of the continuum element
for treating the structural effect of a deck's concrete fill. A more detailed
study on deck response will be conducted at a later date to ascertain the ef-
fect of various design parameters. '

H. Fluid-Structure Interaction of a Pool Reactor In-tank Component due to
Pressure-wave Propagation

In the design of a pool-type reactor (Figs. 24 and 25) several vital
components such as the primary pumps and the intermediate heat exchangers
are contained within the primary tank. Typically, these componénts are sus-
pended from the deck structure and largely submersed in the sodium pool.
Because of this positioning, these components are vulnerable to structural
damage due to pressure-wave propagation arising in the tank from an HCDA.
To assess the structural integrity of these components, we must perform a
three-dimensional dynamic analysis which accounts for the fluid-structure
coupling.

The loading for this problem is from a short-duration energy source
which creates pressure waves that propagate through the sodium pool and
load the embedded component, the surrounding primary tank, and the deck
structure. ' \

For a preliminary study of this complex problem, we developed a
simple model which has many of the salient features of this fluid-structural
component system. To begin, we modeled the primary tank and the in-tank
component as deformable elastoplastic structures made of Type 304 stainless
steel, the sodium pool as an inviscid, compressible fluid, and the deck to be
rigid and fixed in space. The effects of slug impact are not addressed. Sub-
sequent models will include both a deformable deck and slug-impact effects.
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A reasonable model can be developed by assuming a 12° repeated sym-

metry of the system. Therefore a model (Fig. 34) that includes a 12° sector
: ’ of the sodium pool, one-half of an

in-tank component (primary pump
or intermediate heat exchanger),
and a 12° sector of the primary tank
is sufficient. Because of these sym- .
metries, we can define the symmetry
planes shown in Fig. 34." Symmetry
plane Sl is the plane OACEOQ, which
originates along the axial centerline
of the tank and passes through the
axial centerline of the in-tank com-
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‘—' anory
1 Tank

In-tank

—_—

) (omponent .
ponent. The symmetry plane S2
| OBDEO also originates along the
JID tank's axial centerline, but it passes
Sodium Pol - | halfway between adjacent in-tank

components. The final symmetry
plane S3 ECDE is a horizontal plane.

The finite-element mesh for A

£ -
$3 . our model is shown in Figs, 35-37.
Fig. 34. Simple Model of In-tank Component, Pri= ~ L (¢ entire mesh (Fig. 35) consists )
mary Tank, Sodium Pool, and Deck - of 80 triangular plate/shell elements -t

and 127 hydrodynamic elements. A
clearer p1cture of the components of our mesh is shown in the substructure
plot, which is a plot of an individual component or a group of components.
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Figure 36 is a plot of only the structural components of the model: the in-
tank component and the primary tank. Our model for the in-tank component
consists of 38 triangular plate elements, which simulate the entire length but
only one-half of the circumference of an in-tank component. The-boundary.
conditions at the top are zero displacements and rotations. The nodes that lie
in the symmetry plane Sl are confined to motion only in that plane. The re-
maining nodes of the component model are free to move arbitrarily in three-
dimensional space. A '

The model for the primary tank consists of 42 plate elements. The
boundary conditions at the top of the tank are zero displacement and rotations
that simulate the tank's attachment to the rigid deck. In contrast, the bound-
ary conditions at the bottom of the tank model are such that these nodes are
allowed to translate in the symmetry plane S3. Rotations that preserve the
symmetry are allowed.

The nodes that are connected entirely by fluid elements are free to
move arbitrarily in three-dimensional space, except for those that are re-
stricted to motion in a symmetry plane. Figure 37 is a plane view of our /
model.

!

For our preliminary study, the pressure volume curve (Fig. 38) de-
scribed by Amorosi et al.? is used to describe the expansion of the core region
during an HCDA. The resulting displacement history for the in-tank component
was obtained. The radial displacement-time history of the bottom of the in-tank
component, given in Fig. 39, shows a maximum displacement of 30.7 cm at
50 ms after the initiation of cavity pressurization. At this time the clearance
between the in-tank component and the primary tank is 94 cm.
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This preliminary study showed that the dyna.rrnc response of an- 1n-b'
tank component'is such that the’ peak displacement of the component is suf—

- ficiently small so that contdact between the’ component and the tank is not

ant1c1pated
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