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A B S T R A CT

-_ Two indtlctive learni_a,, m,:tlac,ds, the ID3 and R,, aleorithms, are studied as a means for

systematically and automatically constructing the krlov,,lectge base of expert systems. Bolh
:. inductive learning mett_ods are _,,eneral.-puI'pose and use information entropy as a discriminatory

measure in order to group objects of a commor_ class. ID3 constructs a knowledge base by
a buildin_ decision trees that discriminate objects of a data set as a function of their class. R,,

constructs a knowled,,_e= base by grouping objects of the same class into patterns or clusters. The
two irlductive learning n_ethocts are applied to the cot_struction of a knowledge base for failed fuel

{ identification irathe Exl)erimer_t:_l Breeder Reactor II. '-I"hrotl,.zh,.,analysis of the knov¢led,,e= bases
generated, the ID3 anct R,,=aleoiittams are compared for their kr_owledge representation, data,..-

overfittin,, feature space partition fe:_ture selection, and search procedure.

=

INTRODUCTI()N

Learning by i__duction or from exLlmlmles h:,,:,;been shown 19 to be an effective method of
knowledge acquisition For expert svstems. Induction is the process by which structures or

- regularities underlyin,,,_ a finite number of examples are discovered throu_,h_, analysis, of the
examples themselves. Given a finite set of examl)les representtttive of a problem domain, inductive
lcarnin,, programs autom:ttically extract inform:_tion frorn the examples and derive "general rules",D

that describe the given examples. It_ductive learning programs provide an alternative method for
the tedious and tiine-consurnirl,.z.._proces.s of acqtlirlr_<,_and encodin,,,_ expert's knowlect_e.,

Two inductive learnil_g melhods, the Iterative Dichotornizer 3 (ID3)algorithm, l0 and the
entropy minimax aleorithm, II l_a\'e beet_, used to automatically construct the knowledge base of

' expert systems for nuclear engineering applications. The first application of the ID3 algorithm in
nuclear engineering was made to construct the knowledge base of art expert system for diagnosing

: clad rupture in the reactor corc ot- the Fast I:lux Test Facility.2 Other applications of the ID3
1 algorithm include the constructior_ of I,,nowledge bases for expert systems dealing with

cor_tamina_ed waste sites, 3 failed lttel ide;_tification, 5 and solidification oi"radioactive liquid waste. 6
!

i These applications used commercialized versions of the ID3 algorithm which are marketed as a
means for automtttic construction of the k__o,.,,,ledge base of the accompanying expert svster_

l
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shell. 8,9 The entropy minimax algorithm `,vas First applied in nuclear engineering to construct a
. , 1_

knowledge base for fuel clad t'ailure diagnosis 111lleht water reactors. " Also based on the entropy
minimax algorithm, the Rule Generation (Rg) program 4 was developed and used to automatically
construct a knowledge base for diagnosing transient events in pressurized `,vater reactors. Since

inductive learning methods extract knowledge from Ltel'ataset oi:examples, ali these applications
require that representative examples, from actual plant data oi"obtained through silnulatiorl models,
be compiled prior to the construction of the knowledge base.

In this paper we compare the II33 and Rg inductive methods. The two methocts are applied to
the construction of a knowledge base For fitiled t'uel identification in the Experime_ttal Breeder
Reactor II (EBR.-II). Through analysis of` the kno`,`,'ledge bases generated, tile ID3 and Rg
algorithms are compared t"oi' their knowledge representation, data overfiLLing, Feature space
partition, feature selection, and search procedure.

INDUCTIVE LEARNIN(; ANl) (2LASSIFICATI()N

The discovery ot'cla.,:sil'ication patterns in a collection of objects or examples can be
considered its an inductive learnin,,_ process. Given a collection of objects described by. their class

,, the relationships:.1hdcorrespondin,,_ set oF characteristics, classification patterns representing.
between each class of'objects and their characteristics can be inductively extracted by finding the
characteristics that group objects of a common class. Therefore, the discovery of classification
patterns from a finite nu_nbcr of` particular objects is equivalent to the derivation oi"general rules for
classiFyingob]ects based on their characteristics. Since the ob]ective of inducti`,,e systems is to
classif`y objects that arc not present in the collection oF objects used to construct the classific,'_tion
rules, such systems should construct rt_les that are not too much geared to the initial collection of"
objects. In other`,voMs, the ill<ltlc'ti\'e s\'stem should not "overt'it" the data and should avoid
constructing contrived rt_les that c'harLtctcrize tile existing data extre_el\' ,,,,'ell but may nc_t be
realistic.

'Tb.e process of irlductive lcttrnin,,=and cl'assil'ication can then be used to model an object's class
as Ltfunction of` its characteristics. Stlc'h apprcxtch is desirable for representing the relationships
between dependent and inclepenclc_t variables in areas where there is a lack of well-understood
models. This is certainly the case of failed fuel identification where the relationships between the

classes or Failure types Ek (k=l ,2 ..... K), treated as dependent variables, anti its characteristics or
features F; (.j=1,2 ..... J), trealed as independent vari',tl_les, are not reliably predicted by mechanistic

fuel pertormance and I'allure models. - F:urthermore, these models represent infonnation from the

failuretvl)eE k to the I'e:ltt re F , i.e., in the causal direction while in oi'der tc) ictentil'v lt failed fuel" , , ] 'J ,,

one needs to represent lnlorniation t'rc_m the observable features Fj to the unobservable failure
t\'pes. Ek, i.e., in the usa,,e=direction.

In the case oF failed fuel identil'ic:ltion, the failure types Ek (k=1,2 ..... K) are discrete events

such as E 1 = failure in the column region oi"llletLIl ftlel, I!:.-,= l'aJltlre in the dinlple region of` _nctal
fuel, and E3 = Failure in the wel_tin- of met:li f`uel.-The feattlres F, (j=l,2 ..... J) used to_" j .

characterize failures Ek arc either clu:_litativc _r quantit',llive and have discrete values F: i
(i=1,2 ..... I). For instance, the qtl',llit',tti\'e l'cLiture f::I = slope of tllc l'raction of fission gas (F_)

released out ot*"the fuel, h',ls l'otlr disc'retc \,alLies' I:11 = erratic, I:12 = sharp, t:13 = gradual, and
FI4 = btlrp. In colltrtlsl, the qtlalltittlti\'e fe',lltlre I;'2 = nl_l._nittlctc of the longest ,;pike in 135mXe
activity, could have two "discrete" intervals' I::',1_--I(), l())'and [:-_-,__--(1(), 4()() Quantitative
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features should be partitioned into discrete fe,qture intervals where each interval is expected to
represent tile same qualitative wllue.

i

Inductive learning approaches have a number of important properties. Because information is
extracted ft'ore a data set of examples, the data set needs to be as complete and validated as

possible. Although the "learned" rules are supposed to be quite general they cannot extrapolate
much beyond the data set used in their generation. For instance, if a given fuel failure class Ek is
not present in the data set, the inductively generated knowledge base ,,,,,illnot be able to identify Ek.

Furthermore, the features Fj need to be defined ns input to the inductive program. If a good set oi'
features is defined, the inctuction problem is simplified and the obtained knowledge base is simple

and compact. Inductively constructed knowledge bases are also logically consistent and
complete, 13 and represent informatioi] in the readily useful direction, i.e., from observable features
F: to unobservnble classes Ek. Finally, the,'e is rlota unique way to group objects of a commori
ctass, except for trivial cases, tlncl dil'ferent inductive le_lrning systems will produce, in general,

different classification rules. The grouping of objects, among other factors, is a function of thediscriminatory mensttre used by the indtlcti\,e system.

}
INFORMATI()N liNT R()I:'Y

g

Shannon and Weaver's 14inform:ltiori-theoretic entropy S(EIX) is used in both the ID3 and Rg

algorithms as a discriminatory measure to partition ;l d:lta set ot: objects such that objects of a
common class tend to I)c groul)ed together. The entropy S(E]X) can be interpreted as the expected

value of the e.vces,s' amount of inl'ornlation \,,'e would g;lin trom learning the class Ek of an object
above the nmount of inli,nnatiot_ g:linect by knowing its properties, l lence, by partitioning the data
set as a function of the ob]cot's properties such that entropy

I K

p(x,) pc[5: lx,), (i)
I=1 k=l

is minimize(t, we would be extracting mnxiTntlm information from the datn set. Here, p(Xi) isthe
marginal probability of ol-)jects of any class h_tving property X i and P(EklX i) is the conditional
probability that ol:)jects with property X i will belong to class Ek. These probabilities are calculated
based on the number of'objects in the data set.

In the ID3 algorithm, the set X in E(l . (1) corresponds to eacll one oi' Ihe features Vi
(j=l, "_ ,J) which has discrete \,:/lues I-:..(i=1,2 ..... I), while in the Rg aleorithmX correspondg

" ....... I_ represents a cornbir_ation c_f selected values Fji of theto a set C of clusters Ci (i=1,2 ..... I) ,,vhi0h
features. Hence, in the 1133algc>ritll_n Etl. (I) tnkes the fOl'lll

I I-',

S(EIFj) =-___ p(F) ._ l)(EalF',,) In p(EklFj,), (2)
1=1 k=l

bv takineX = F and X =F.. Simil;lrly, l)v t;iking X Cand Xi " in Eq (1) we obtain tile
e;_tropv S(EIC) i , I,' " - = = Ci '. l'6r the Rg algorithln

1 K

s(E p(C,) p(F;klC,)I,p(.I>:kJC,). (3)
_--:l k=l

I
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Comparison of Eqs. (2) and (3) allows us to clarify tile main differences between tile two
algorithnls. Entropy S(EIC) of Ec1. (3) simultaneously selects tile most discriminatory set of

feature values, i.e., cluster C i in Rg, while entropy S(EIFi) of Eq. (2) uses a stepwise approach

selecting the most discriminatory t'enture Fj at each step of the 1I)3 algorithm.

TIlE ID3 AI__(]ORII'tlM

The ID3 algorithm, l0 which is a descendent ¢)t-"Flunt's Concel)t Learning System, 15 models
the relationships between an ob.jeers class and its features, i.e., characteristics, by building
decision trees that discrim!nate tl_e objects of a data set as a function of their class. ID3 builds a

decision trce by first scanning the clitt:t set and choosing the most informative feature Fj, i.e., the
feature that can best classify the objects according to their class, as the root node of the decision

tree. This ix done by obtaining feature F. that minimizes entropy S(EIF i) in Eq. (2) in the
formation of the decision trce. The root nocte hranches out into I branches c_rresponding to the

discrete values.. . F:ij (i=1,2,...,I) of"I7.I The objects of the data set hre then sorted throuRh the I
branches divlctlna the cintra set into i sul_sets, accordin,, to their F: value Fi,,ure 1 illustrntes this

• . . _,, , I ¢"
procedure, for the case of the EI3I>,-II t:ttlecl fuel l(lentlllcntion problem, where feature F 1= slope
of the fraction of FG released out oF the Fuel, was selected as tt_e root node of the decision tree

from a data set of 43 objects each havin,,_ one oF 8 possible classes Ek, The class distribution of"
the 43 objects is indicated by the 8 nutnbers inside thehruckets. "l'he four branches of ttle first

I

node (erratic, sharp, _,,r_lctual,nnd hurp) are also shown touether._ with their corresponcling subsets

of the original data set. Forinstunce, there are l() objects ot"class E l in the data set and ali I0
objects have fenture valtte F'I i= erratic for feature t-;"1.

I l(),-l,l 2,1,7,-l,3,2 I

FI = Slope of the l'r;_cti()nof F'G released out of the fuel

I

[10,O,0,11,7,.l,l),l)] I/_,l l l,¢_,tl,ll,2,1 I [ll,.l 1,¢_,¢_,/I,¢1,tlI 111,{I,¢1,1,0,(I,1,21

Fig. 1 l:orlnnti<_n ol';t Dccislon Tree Usin-the II)3 Algorithln.

l'he remnilling nodes of the trce ;lI'c obtnined by repeating the process, for each branch, with
the corresponding subsets of the data set, such that the subset at each node of the tree ,,viii be

"purer" than the parent subset. 135,clloosing Fj at each node that minimizes S(EIFj) in Eq.(2),
based on each node's stlhset ot" the ori,,inal data set, we would be t'cwnlin- the nlost discriminatory. _

and hence the minim;tl size trce. This process continues until each branch has no objects or ;ill its
objects have the salne class. The objects corresponding to the last level or terminal node of each
branch, i.e., the subset where ali objects huve a common class, form the leaves of the decision



tree. A key step in building udecision tree istl_e selection oF discriminatory tree nodes, i.e.,
mininlum entropy features, since n series of b_ld choices will restlit in a tree with ti leaf for each
object of the tl'ainin,,_ set.

Once the decision tree is built, n new obJect witk known feature values and unknoven cl_.iss is
cl_ssified by starting tit the root node of the decision tree, t'indin,,_ the value of the root node feature

,_in the same f;.tshionin the given object, takin,,_ the branch al3prol)rinte to that value, and continuin...
until a leaf' is reached. Usin,,_ a decision rree to classify _11_object is equivalent to using a set of "if
(cor_dition) then (consequence)" productiorl rules v,'here the condition part of the rule is formed by
the cor_jur_ction, i.e., a logical AND, of. nll discrete feature values of"the tree def.ining the path From
the root node to each one of its lenves, nnd the consequence part is the class oF the objects tit each
leaF. Hence, a decision trce can be represented by a set of"production rules.

THE Rg AL(;ORITH_I

The Rg algorithna, 4 which is _ldescendent of Christensen's Entropv .",linina_x ;_pproach f.or
pattern recogilition, 11 tnodels the relationships between arl object's class and its f.eatules by
f.ornaii_g arl N-dirnensic_il_ll l'caturc-space populnted with the ob.jeers ot" the data set and partitiorling

the entire feature sp:lee into I "optim',ll" patterns or clusters C i (i-1,2 ..... I) such that ob.jects of a
COlnrnon class are located in the s:l_necluster. "l'he N-dimensioilal t'etlture space is formed by

selecting the N "best" t'c_ltures of the data set lind using each oi" the N features F 1,t:"2..... F N ;.ts ali
axis. Optimal patterns n_uxi_nixe the c'l_lssit'ication int'orm_ttion extracted frorn the data set such thttt

eachsubspaceoi'clusterC, i in t'eature space is closely nssoci_lted with only one cl_lss Ek. In order
to handle the "curse of climellsionality," typical ot' searching procectures in rnultidimer_sional
sprites, the Rg program rn;lkes apprc)xirn:ltiolls in /he three rna.jor steps of the entropy minimax
al,_orithm,_ the partition of the feature space, the selection of the N best f.eatures, and the discovery
of"patterns, which :ire dcscril)ed in the f.ollowirlg par:lgraphs and is illustrated in Fig. 2.

Partition of the Feature Space

In step 1, the simt_ltalleotls p:trtition of the N'-din_ensicmal f.eatule st)ace, v,hel'e N' is the total
rlurnber of"quantit',ttive t'e_lttires, is _lPl)roxim_lted by N' independent one-dimensioilal partitions.

Partitionirlg of each of the N' t'eattlres Fj into a ma×imurn of ['our intervals Vii (i=l ..... <4) is
obtained b\' pio]ecti1_<, till ctalta l)oil_ts oi" the dilili set onto ei_ch feature tixis F; andTirldine three or'E ......... J ". ,, ,
less cuts in F, that rvliilil-rlize eiltl'{_l),,, S(F:II.;) in Eq. (2). '-IhrouEh tills appro:tch, the initial N
qunnt_tativerneasurementsortcaturevar_abtesarect_sc'ret_zed _ntoatmos:4N leature _ntervals
which are then adctcd to the alrc'acty discretizcd Cltittlitative features to fo1m a total set of N" feature
intervals. Thus, in step 1,13,,,dcco_nposing the partition operation of the quantitative f.eature:; into
N' indeper_der_t oper',ttio1_s, the ntilnbcr of possibilities is greatly reduced and vet good pal_ilions of
the feature sp:lee can I.)cobtail_cd '<isIon,, asthc objects are reasonlibly well separated

Feature Selection

The gotil of auton_itic l'eaitlrc sclcc'tio_ in step 2 is to select and retain a subset of N salient

features, FI,F_ ..... F N, frorn ihc i_liti41 N" features such that the process of pattern discovery is
implemented in t_\,:lstly reduced feature space witt_out degrading its perfoiTn'lrlce. The underlying
philosophy in the selectionot'N keys',llicnt features istwo-fold' elin_ination of features that are
interrelated and hence cto r_ol c'oni/'il-m/e :l(Iclitional irlt'o1"rn',itiorl,and i'elention oi" l"eatuleS that can
clearly characterize or ctiscritninate e_lc'hcl_lss from the x'emainir_<,clllsses.
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_ N' Measttrements or Features

Partition of the Step 1
Fenture S pace

I N" Featttre h2tervalslVe:.tture Selection
/,.. -,,,

Elinlinate Redundant

Feature Inte rvul.',;

,/ tm(.'orre/a/ed

l'tttem,ctl,v Step 2

Select N Most

Disct'imin:ltot'y

f:eature Intervals

[tel';.lte _ .... "

I 'I times N-Dimetz,vi(mal Featltre Sl)ace

I-":.tttern Discovery

Obtaila l"',lttcrn C i with Step 3
N1ir_iilaUmS(EICi)

_ l-'cttte/'/tCi
i

....................... ., ... , , ,, , ,,

Fi,, _ I:lc}wCh:lrt of thc Three Major Steps of the Rg Prouram

Feature intervals that share (..'OllllllOllint'onnntion with nnother feature interval nrc redundant

and should not be selected. Inclt_ding redttndnnt fe:lture intervals would only increase the

dimensionality of the feature .',;p',tcc,whct'e p',tttcms hre to be found., with no extra contribution.
This redurlct_ncy check is m:lde by c:tlculLlting the lille:u"correlation coefficient between euch pair of
feature intervals Ltftdkeepi,lg only one of two or w_ot'e feature intervals when their linenr correlation
coefficient is beyond a specified tl_resl_olcl. After the correlated feature intervals have been
removed from the initizll list of possil,le fe:ltt,t'e intervnl,s, the remaining J uncorrelated intervals are

ranked based on their di,sct'itni_l:ttory pov,'er. The di.'.;ctiminatory power for each feature interval Fji
of the set of J intervals is measttrcd ihrou,gla the inverse of entropy S(EIFji)
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S(EIFji ) =- _ P(EklF_i)In p(EklI-:ji), (4)
k=l

where P(EklFji) is tile conditionnl probability tha_tobjects with value Fji of feature Fj.will belong to
class Ek . In order to nccount for tile discl'iminatory pov,,er of each feature interval In conjunction

with the ottier fentures, S(EIl::ji) is c_llculated with F,, represented by the intersection of featureJt

interval Fji with ali 3 featul'e interv_tls. The N features corresponding to the N most discriminatoryfeature inter\ als _tre used to t'onn the N-dimensional fenture space wheI'e one M-dimensional (M _<

N) clusterC iistobe found in step 3. To find the entire set of clusters C i (i=l,2,.,,,I),step3 is
itenttively used I times.

Pattern Discovery

A simultaneous discovery ol'l clusters C i (i=1,2 ..... I) that n_inimizes the global entropy
S(EIC) of Eq. (3) i'equires a colr_plete seal'ch over t_ll possible corlfigurati(m of clustex's in the
partitioned Featuresp_lc'e. Since the nurnhcr ot"possible configumttions grows exponentially with
N, arl exl_austive seal"cb becomes int'easiblc for any. realistic value of N. In the Rc,_proeram,,., the

simultaneous miilimiz:ttion of S(EIC)is approxilrr, lted by a sequential discovery of clusters Oi, one
at a time, which _oreatly reduces the COlllpUlatiOn requirements. At the i-rh step of such stepwise

npproxinmtion, a cluster C i is discovel'ect with nlinilnum lee'al entiopy S(EIC i)

K

S(EIC,) = - _ p(EklC _) In p([!-_lC,). (5)
k=l

The stepv,,ise npp_'oximntion is necessnry but still not sufficient for eliminating the "curse oi"
dimensionalitv.." The numbe_" of possihle clusters is still ,.'ei'\'.hi,,h_ fo,'anv, reasonablevnlueofN.
Therefore, the R,_..,lmrOgram restricts the type. oi" loeical.., propositions by which a pattenl c{tn be
fom_ed. Patterns are resti'icted to univ:_riate or nlultivariate intersections off ttle selected feature

intervals l-'om_in,,_the N-dimensiot_{tl Ie',tture space.

Each one of the p_ltlel'ns C i clisco\'ered by..the R,,=pi'o,,ram=can again be represented by a "if
(condition), then (consequence)p(FklCi)" rule R.i. The condition part of rule R i con'esponcls to the
location in feature sp_,ce ot" cltlste,' C i, i.e., univariute or mtLItivariate interactions of feature
intervals F: i, and the consequence p:tl't of the rule cori'esponds to the probability distribution
p(EklC i) oi_ the cltlsses of the ol_jccts loc:lted insicle cluster C i, Good discriminatory rules arc
formect by a sharp clisti'il_tttion of p(li'.klCi) over only one class El,:,

CLASSIFICATI()N ()F FAll,El) I:UI_I.,

The classification of l'uel I'ailul'c events _lt EBI_,-II was selected to compare the ID3 and the Rg
inctuctive approaches for ntltomatic ktlowledge base co_lstmction. Fuel failure events the.ltoccurrect

at EBR-II between May 19E6 and Dece,llhcr 199() were used to t'onn a data set ot: 43 objects 16

where each ob.iect, i.e., fuel t'ailtlro e\'cnt, has one of 8 possible c'lnsses (E I..... Es) and a set ot"7
features (F I..... F7). Eachl'ucl failurecl:lssE k represents the type ol' breached fuel element, e.g.,
metal oi" mixed oxide, and the lee:ilion of Ix'e_lcll alone,., tile fuel pin, e._.,,, column re_ion,..,dimple
region, plenum region. Table I describes tile Nclasses of fuel f_ilure ulong with the distributior_ of
the 43 failures in erich class. The 7 l'e_tu_'es chosen tu characterize the 8 t'uel failure types represent
directly monitored anti calctllated characteristics of fission proctuct activities, FG released, and



delayed-rlel.itron (DN) signals, As illuslratcct iri Table II, three features, F 1, F S, and F7, are
qualitative while the othcrl'otlr are qtiantitative, Using predefined criteria, tile two inductive
approaches automatically parliiioll tl_e iotal railge of the quailtitative tEattire values shown in Table
II into feature intervals repl'esentit_g "discrete" feature values,

Table I, Classes of Failed F'uel alld Number of Occl.irrerlces tit EBR-II,

......

Number or" Class of Failed Fuel
Occurreilces

.............

10 El = Failure iri tile colurnrl region of metal fuel

.................. ..... :

4 E->= Failtlre iri iile dirnple re<,iorl_of metal fuel

.................

12 E3 = Failui'e iri the v,eldirlg ot' rl'lctal t'tlel

....................

1 E.4 = Mtiltiplc t'ailui'es, Metal fuel t'ailui'e preceded by rriixed oxide failure

.... , ........... _ ....

7 E5 : Fresll t'tliltlre in the colurni,l re<,ion_of" rilixed oxide fuel
....................

4 E(_: iMtiltil)lt.' l",liltil'es. F:ailurc in the colunln region of nlixed oxide fuel
colrlbiiled witll ai_otllc.'rrl-lixed o.,:ide ftiel t'ailure

...................

3 I("7 = l:;'ililtii'c iri the I)lcntirll re,ion_,of mixed oxide fuel
............

2 1::],<.4= lJrc-'\'ioti:';f'<lilure in tj,le c.'oltlinr_region ot"mixed oxide fuel
, i .......

The clecisio_, tree 5'1(_ ol)iaiilcd bv. ',ll)plvirl<,._ tile 1I)3 al<_,ol'ithlrrl_to the failed Pl.icl data set is
duplicated iii rig. 3. Tile ctec'isiofl rf'ce cise.,;_lll 7 t'e',ittli'CS;.iilddiscrirl-iirlates the 8 failure cla.<;ses
such that each erie or ii,lc 12 leaves cll:lr:ic.'icriz.cs olllv erie class, even iri tile case where there is

orily one objeci per lc;ii', "l'llc 8 rllli,lll->cr.sinsiclc the brackets of each node indicate the ril.imber of

objects iri each o1"the 8 classc.s Ek, l;or inst',tnce, lhc 8 ili.ll`lll?el'.sillsiclc the bracket of tile fifi _' 1,,:lt
frorn the let't, I(),(),l 1,(),(),(),(),()1, illclic',lte ill_lt tl'iere are 11 objects oi" class E3 = failure ill itle
welding of metal ftiel and no <.>l ,ic,c.'isor oilier cl_lsses ii_ tl,lis leat', Also ilote tllnt the paths fl'orn the
root node to tile 12 lc.,',ivcs c':ln I_c i'Cl)i'cscl'_tetl I)y 12 cl',tssit'ic.'atiorl rules, LI,[. 2..... LI2. For
example, tile l_:ltl,ll'rolll the i'oclt iioclc tc)the I'llrh lc_ll'c',ln be rcprescntecl by l.,5

ii' (I::1 = shlii'l)_illcl I;-__< I())

then (l)]3 has oc.'curl'ccl),
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Tnble II, l=enttlres und Fe_lttlre Vnlues Used for ClnssiFyinB Fniled Fuel at EBR-II,

, , a ,,

Fc'nttll'es VLflLIes

FI= Slope of tile frnction ot: fission gas relensed out of' tile fuel F ii = en'atic

FI2 = sh_u'p

F I3 = gradual

F 14 - burp

i'

F 2 = Mngr_itucle oi'largest spike in 135'nXe nctivity [0, 400]

F3 = Increase in the level o1'clel_lyed ileutron sign:li 1(), 2000]

Fa = N'lagnittlcte of largest spike in 87I<r activity [(), l H()()]

F5 = Behavior oF cleln\,cd, neutron si,,n:tl=ni'tel' breach 1=51= normal

if F52 = step increase

i_ I:53 = spikes

l-Vsj' = sharp spike

F6 = Maxin_um 133Xe _cti,,,it,,, level [(], 350()01

F 7 = Existence ot'del_lvecl netltron signal at b_lckgl'ound level FT I = no

prior to fuel I)l'c_lch I;'72= yes

"I'he 7 clnssil'ic_ltion _'ttles gellet':ttcct by _tpplying the Rg algoritlJln _o the failed fuel data set are

illustrated in Table III. l:'or e_lc'l_l'tlle P'i :1cltlster C i is formed by nn intersection of the feature
intervals in the second coltlmn ot' tile t',lble which con'esponds to the condition pun of' an if ,,
(corlctition) therl (corlse_.lUel_c'c) rule. 'l'he tllird column clescribiil,,_ the rlurnl._er of objects and the

probabilities P(EklC i) for e_tc'h of the 8 c'l_lsses Ek rcp1"esents the conseqttence part of the rule. The

symbol e is used to dellote _l I_z'ol_:tl_ilit\' I)(EklC i) vulue srn_lller or equal than 0.1(). The
probabilities p(tEklC i) _trc,estiln:ttecl b:tsedon I)uth the obsen,_ltional cl_tt',_insicte the clttsters and
prior experiences not exl_licitly inc'ludctl in tile c'ttri'ent cl'at't set4,11

hl_ + \V_

P(EalC') = IX'l+ \\" ' (6)

where

M k = rlumbcr oi'objects 1:{k iii c'ltlster C i,
K

M - £ M k - tot:li ntlmbcr c)l"ol,ie .'tsin c!uster Ci,
k=l



o i

,+

W k = i_'ior weight associated with Ek, and

W = E W k - total prior,,veigl_t associated with the entire M events,
k=l

Hence, tile probabilities p(El,:lCi) tbr rules c)rclusters where ali objects are of the same class are not
equal to 1,0which would be the casev,'ith null prior weights, Furthem-lore, the probabilities in
Table III, calculated with \V. =1, are not sharply distributed because of the small r_urnber of

objects Mk in each cluster anct_lle selection ot"a relatively large total prior weight W = K = 8.

,, i ii , i, ,, , i i1,,

[I 0,4,12,1,7,.1,3,21

1'1= Slope of the I'ractior_ 01' FG released out oi' tl+o fuel

I

[I0,(),0,0,7,-I,(),01 [(),(),11,0,(),0,2,01 [1)1,1,0,0,0,0,01 [0,0,0,1,0,0,1,21
,,1

:] F,,= Irlcrc.aseDN level I_ : t.'.lru,.'st1:+,nXc,sl+ikoE, = Largest Sll<,'spike Fs: DN be.havior
i:

<55o >_55<) <lo _>lo <s.5 _>8.5 normal spike

+
incr_lse

[ IO,O,C),O,I,O,O,OI I(),(),(),(),(,,'l,(),0] 1(),(),(),0,(),(1,2,01 I(),._,0,0,(),1),0,01 [o,r),o,o,O,O,O,2I "

F_= Max l__Xe f:v= B',lck.urotitld I)N l+r, l_.,j LI I

I I IO.(),i ,(),r,,(,,(,,,)I I(),I, I ,<),(,',(),o,(,I<16500 _>165oo.... yes i'_¢) t.,, l:'i_: I.aruc,;t. S;Kr sl)iko IO,(),o,l,o,o,0,ol [(),o,o,o,o,0,1,o

( IO,O,C),O,O,O,(),OI Io,o,o,o,n,(),(),()l

Li I._
[o,o,o,o, ,o,o,o} [(),(),(),o,(),,_,(),t) I(), I,O,(),o,(),o,o:

lo,u, I ,o,(),o,o,oI

L,.;

Fig, 3 l)ec'isiorl "l'rce tbr F:',tilccll:"uel tit EI?,P,-II Using the ID3 Algorithrn.

The rttles in Table 111iclu,_til'\' 7 oi' the 8 Failed t'tlcl cla.',;',;es,t'ailure class E4 is not characterized

by the l)rogralrl :_,itlce there is oltlv one object v,'itll that class in the data set. Ali rules are
characterized by either 2 or 3 t'c:ltures and tlnlike the lD3 results feature F 1 is not used to
characterize every single rt_le, anti t'e:ltut'es I:'4 and I_'5 are not sttt't'icier_tly discriminating and hence
not used in any of the 7 rules. Also irl contr',lst with the ID3 results, the rules generated by Rg are

not always pure; the rtilcs t'cl)rcscr_t iilc)rc titan one class, Its irlclicated by rtlles R 5 and R 6,
Ft.irthermore, not ali olRiccts o1' the cl;it:l .,.;ctiil'c tist.'cl tc) c'or_struct the rules. One object of class E5 is

not l'ound sirnil_tr tc) the rclnuiniilg 6 objects oi'ct:is.'-; E5 tillet is not used in rule R3, Two rules, R 1

and R 2, correspot_clirl-_ to l",_ilttrccl:tsscs E3 and 1i1, respectively, are identical to the ID3 rules L5
and L 1, respectively. Nlost ot' the other rtllc.,; arc difl'urent from the If)3 results by only one feature.
A comparison ot" the rttle.s obtained by tile ID3 and Rg algorithms is illustrated in Table IV. The

table shows the equivalence between the 12 ID3 rules, I. 1..... LI2, and the 7 Rg rtlles, R 1..... R7,
based on the 8 classes they rCl_resent.
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'T'_lbleIll, ldentil'icatiot_Rules t'or l::aile(tF:uelat IiBR-II Using theRg Algorithm,

Rule l::aturcs , Classes and Probabilities
....

R l F 1 = sl'_arl._and () < I::-,< ().()1 10,i3,'11,0,0,O,0,ii]- le,e,0.63,e,c,c,c,c]
......................

I io,(),o,o,o,o,(),()1
R2 F I - erratic ancI ()< I:,_-_< 5()()an_l ()< I%_< 14()()()

[0,6 l,E,E,e,e,e,e,el
..............

Io,o,(),o,6,o,o,ol
R3 5<I::,_ <4()() tlncl 6()()<F 3 <2500 und I::7 =)'es- 1e,t::,_,e,O,5,e,e,el

............... 1(i,(),0,0,(')'14i0,0i....
R4 5<F 2 <4()() al'ld 6()()<F 3 <25()() and F7 =no

Ie,c,c,c,e,0.42,e,el

.......... Io14,1,o,o,o,ii,ol
R5 F'I = gradual and ()< l:._< 5()()

[c,0.38,0.15,e,e,c,c,c]
.......... , ...........

I(),(),(),0,0,0, 1,2]
I),,.6 F1 = btlrp unct () < F:-,< ().()1 and I::7 = 3,es

" Ic,e,e,e',c,e,O. 18,0.2 7 l
.............

...... I0,o,o,(),0,0,2,0I
I),7 FrI = sharp ai_¢l5 < I:-,< -1()()arid () < F:3 < 5()()

- Itc,c,c,e,_,c,O,3,e]
.........

Table IV, Conalxlri.,,cmof the 11)3and Rg Prodi.lctiorlRtl!es,

lndtlc,i\'e I:.qtliv:llCtltR tiles>,lethod
...........

ID3 I.l [.2 [.3 I.-I 1.,5 [-,6 L7 L 8 i.-9 LI() LI I LI2
...............

R,, P"2 " R I)"-1 R I R.7 R5 R 6_, .'{
..............

C()._IPAI_,IS()N ()F 'l'llF; '1'_,_'() ._ll;;'l'll()l)S

Both the ID3 and Rg illdtlcti\'c algorith_'ns generated ce)noise classification rules that are
ctescribecl by only two or three fctlturcs. The conciseness oi: the rules is tl cor_sequence of ,,veil
definect feature variables and the high c'lassil'ication pov, er of int'c-)rllaationentropy used as a
discriminatory measure in both al_pro:tche.,;.Altl_ough at first glance the rules generated by' the ID3
and the Rg approacl_es secln vet\, .,.;irnil:tr,there _li'ea number oF unclerlying differences between
these tv,,oinductive lcarnill,,=al)l)ro:lch,:s. In this section, the aclvanta_es,.,anct disactvantaees,_of' the
naethocts are compared/llrotlel_, an:llvsis of ti_c'irknowled,,e=representation, claraoverl'ittin-_, feature
space partition, t"eature selection, _lllClsc':lrc'hproccdtire,





terminal nodes in Vi,,_..,_ respecti\'cl',',, p:_rtition tile same feature F4 twiue rnnkine..,it more and more
specific as subsequent I)'artitions are performed. One ttl)l)l'Oacl_to eliminate this overfitting would
be to partition each feature based on tile entire dilta set bel'ore any feature is selected as in Rg.
However, such a procedttre could cause two objects belonein,,,._ to dift'erent classes to have identical
feature values which cannot Iveh_lndled by tile ID3 algorithin.

Feature Selection

Feature selection is performed in the [D3 algorithm by choosing the most infonnative feature,
at each node, that best discriminates the objects of the node according to their class. As the nodes

of the tree are built, feature F: th:_t rnini_nizes entropy S(EIFj) is chosen, one at a time, and used in
the formation of the tree. l-le{ice, lD3 :_pproximates the formatiorl of the most discriminatory rule
with NI features by choosin,,_ tile NI _nost discriminatory features one at a time, based on a different
subset of the ori,_.,inal ct_lta set _lt e.,_ch time Fe:lture selection is performed in the R,, ttleorithm
through a t\vo-step _lpproach. First, the entire clara set is used to eliminate redundar_t features and
then a set of features is selected in the reverse order of their entropy S(EIF..), calculttted either as anjl
incti\'idual feature interval or 'as :l pair ofl'e_ltttre interv_tls. Unlike 1I)3, ali features are selected

,, algorithm represent a morebased on the same set of ol)jects q'ht_s the rules,,eneratedbvthel_,_

global view of the ctatn set.

Search Procedure

Finally, let us now comp',lre the tv,o :tppro:K'hes based c)n their search procedures. ID3 avoids
the conlbinatorial explosions oi" i_o_sihilities lor se_ii'c'hing N t'e:lttlres sirnultaileously by,
perf'orn_in<,_N one-ctirnension',il sc:trc'hes al each node oF tile tree. ",Vhile such a_ approac}_ is easy
to irnplemerlt and _,,re:lll\, silupliFv the search in rnultidimensic_r_al spaces, it also causes ID3 to
"lose" the global picture of l'it_c.litle...:t .,;ctof l'e:tttlres that collectivel;,. _,,roup objects of"a common
class. On the other hand, R.,,_l_Crl'orn!s...,,loh:il N-di_nensional searches in featurespncealthoueh..
patterns are discovereci one _ltit ti_ue. [{:tc'h NI-dimensional p'attern, where M < N, is ctiscovered by
nn N-dimensional se_rc'h al loxviEl,- For ,t coilec'tix e an',_lysis of the data set and the forrnntion of more

general rules that capture the essenceofthcct:_ta. The R,,..aleorith_n_ pavs, a price for this more
global analysis of tile d',tt:t x,,,itl_a se:trc'h prcK'edtlre that is more conlplex and difficult to implement.

C()NCI_tJSI()NS

Both the ID3 and P,g it_dttcti\c :_l,_,(:)rith_r_sare eflectix, e alternatives to the painstakir_g process
of knowledge acquisition si_c'c tl_c\' r,.:quirc rnini_num hum:lh intervention. Tile use of these tv,,o
inductive methods s'n\,e time :tnd cl'l'(_rtJ_lthe development of knov,,led,,e= bases for expert systems.

The kno\vlectge acquired hv tl_csc _nct!_ocl.sc:ln hc encoded i_s i/...then production rules that are
logically complete nndcc)nsistc,_t, l_I'()rl_:ltiun entropy is t_sc(Ito genei;_te discriminntory rules that
are described by only _ls_ll:tll ntlrnl)cr _._I"l'e:ltt_res. The Rg algorithm construct rules that are more

general and less contrived th:tn tile II)3 rt_lcs 'and should be better able to classify new objects.
This aclvanta,,e of tile l_.,, alec_ritt_rn is c'ontrastcd with an easier to implement and faster

computation of tile 1I)3 algoritl_r_..,Ns _ore EBR-II failed fuel ctit_ilbecon_es available, a more in-
depth comp:_rison between tl_e t\xo :_ppr_:lches shot_ld be perl'orrned b\' e\,'_luatirl_.z the two

" 17 could bealgorithms asa funclionoltheir_r_iscl:tssilic',_tion rate. Across-validationtechnique
used to ctivide the data set into tr:_inin,- _nd test dat',t :tnd tile rnisclassit'ic',ltion rate for the test data
would be analvzect basecl on l't_les cc)n.-;trtK'tcdtlsin,, tile tr',tir_ine data.
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