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ABSTRACT

Two inductive learning methods, the ID3 and Rg algorithms, are studied as a means for
systematically and automatically constructing the knowledge base of expert systems. Both
inductive learning methods are general-purpose and use information entropy as a discriminatory
measure in order to group objects of a common class. D3 constructs a knowledge base by
building decision trees that discriminate objects of a data set as a function of their class. Rg
constructs a knowledge base by grouping objects of the same class into patterns or clusters. The
two inductive learning methods are applied to the construction of a knowledge base for failed fuel
identification in the Experimental Breeder Reactor [ Through analysis of the knowledge bases
generated, the ID3 and Rg algorithms are compared for their knowledge representation, data
overfitting, feature space partition, feature selection, and search procedure.

INTRODUCTION

Learning by induction or from examples has been shown!"? to be an effective method of
knowledge acquisition for expert systems. Induction is the process by which structures or
regularities underlying a finite number of examples are discovered through analysis of the
examples themselves. Given u finite set of examples representative of a problem domain, inductive
learning programs automatically exuract information from the examples and derive "general rules”
that describe the given examples. Inductive learning programs provide an alternative method for
the tedious and time-consuming process of acquiring and encoding expert's knowledge.

Two inductive learning methods, the Iterative Dichotomizer 3 (ID3) algorithm, 'Y and the
entropy minimax ulgorilhm,” have been used to automatically construct the knowledge base of
expert systems for nuclear engincering applications. The first application of the 1D3 algorithm in
nuclear engineering was made to construct the knowledge base of an expert system for diagnosing
clad rupture in the reactor core of the Fast Flux Test Facility.2 Other applications of the 1D3
algorithm include the construction of knowledge buses for expert systems dealing with
contaminated waste sites,® failed fuel identification, and soliditication of radioactive liquid waste.®
These applications used commercialized versions of the ID3 algorithm which are marketed as a
means for automatic construction of the knowledge buse of the accompanying expert system
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shell.3 The entropy minimax algorithm was first applied in nuclear engineering to construct a
knowledge base for fuel clad failure diagnosis in light water reactors. ! Also based on the entropy
minimax algorithm, the Rule Generation (Rg) program?® was developed and used to automatically
construct a knowledge base for dingnosing transient events in pressurized water reactors. Since
inductive learning methods extract knowledge from a data set of examples, all these applications
require that representative examples, from actual plant data or obtained through simulation models,
be compiled prior to the construction of the knowledge buase.

In this paper we compare the 1D3 and Rg inductive methods. The two methods are applied to
the construction of a knowledge buse tor failed fuel identification in the Experimental Breeder
Reactor 11 (EBR-II). Through analysis of the knowledge bases generated, the 1D3 and Rg
algorithms are compared for their knowledge representation, data overfitting, feature space
partition, feature selection, and search procedure.

INDUCTIVE LEARNING AND CLASSIFICATION

The discovery of classification patterns in a collection of objects or examples can be
considered as an inductive learning process. Given a collection of objects described by their cliss
and corresponding set of characteristics, classification patterns representing the relationships
between each class of objects and their characteristics can be inductively extracted by finding the
characteristics that group objects of a common class. Therefore, the discovery of classification
patterns from a finite number of particular objects is equivalent to the derivation of general rules for
classifying objects based on their characteristics. Since the objective of inductive systems is to
classify objects that are not present in the collection of objects used to construct the classification
rules, such systems should construct rules that are not too much geared to the initial collection of
objects. In other words, the inductive svstem should not "overfit” the data and should avoid
constructing contrived rules that characterize the existing data extremely well but may not be
realistic.

The process of inductive learning and classification can then be used to model an object’s class
as a function of its characteristics. Such approuach is desirable for representing the relationships
between dependent and independent variables in areas where there is a lack of well-understood
models. This is certainly the case of failed fuel identification where the relationships between the
classes or failure types Ey (k=1,2,...,K). treated as dependent variables, and its characteristics or
features F, (j=1,2,....0). treated as indepcndcm variables, are not reliably predicted by mechanistic
fuel performance and failure models.!? Furthermore, these models represent information from the
failure type Ey to the feature Fiy iie., in the causal direction, while in order to identify a failed fuel
one needs to represent informiation from the observable feaures Fj to the unobservable failure
types Ey, i.e., in the usage direction,

In the case of failed fuel identification, the failure types By (k=1,2,... K) are discrete events
such as E| = failure in the column region ol metal fuel, E5 = fuilure in the dimple region of metal
fuel, and E3 = failure in the welding of metal fuel. The features Fo(j=12,....J) used to
characterize failures Ep are cither qualitative or quantitative and have discrete values F;
(i=1,2,..,1). For instance, the qualitative feature Fy = slope of the fraction of fission gas (FG’)
released out of the fuel, has four discrete values: 19, = erratic, 2 = sharp, I} 5 = gradual, and
F 4 = burp. In contrast, the quantitative feature Fy = magnitude of the longest spike in 3mx e
actvity, could have two “discrete” intervals: T4, =0, 10) and Fy5 = (10, 400]. Quantitative



features should be partitioned into discrete feature intervals where each interval is expected to
represent the same qualitative value.

Inductive learning approaches have a number of important properties. Because information is
extracted from a data set of examples, the data set needs to be as complete and validated as
possible. Although the "learned" rules are supposed to be quite general they cannot extrapolate
much beyond the data set used in their generation. For instance, if a given fuel failure class Ey is
not present in the data set, the inductively generated knowledge base will not be able to identify E,.
Furthermore, the features . nced to be defined as input to the inductive program. If a good set of
features is defined, the induiction problem is simplified and the obtained knowledge buse is simple
and comp%t Inductively constructed knowledge bases are also logic illy consistent and
completc, and represent information in the luldl]y useful direction, i.e., from observable features
F. to unobservable clusses E,. Finally, there is not a unique way to group objects of a common
cllass, except for trivial cases, and different inductive learning systems will produce, in general,
different classification rules. The grouping of objects, among other factors, is a function of the
discriminatory measure used by the inductive system.

INFORMATION ENTROPY

Shannon and Weaver's ™ information-theoretic entropy S(EIX) is used in both the 1D3 and Rg
algorithms as a discriminatory measure to partition a data set of objects such that objects of a
common class tend to be grouped together, The entropy S(EIX) can be interpreted as the expected
value of the excess amount of information we would gain from lewrning the class Ek of an object
above the amount of information gained by knowing its properties. Hence, by partitioning the data
set as 4 function of the object's properties such that entropy

S(EIX Zp(\)z PEIX ) In p(EIX), (0
=1

is minimized, we would be extracting maximum information from the data set. Here, p(X;) is the
marginal probability of objects of any class having property X; and p(E 1X;) is the condmonal
probability that objects with property X, will belong to class E.. These probabilities are calculated
based on the number of objects in the data set.

In the ID3 algorithm, the set X in Eq. (1) corresponds to each one of the features I,
(G=1,2,....)) which has discrete values F. (izl,_, 1), while in the Rg algorithm X corresponds
to a set Cof clusters C, (i=1,2,....1) whic h represents a combination of selected values F of the
features. Hence, in the ID% algorithm Eq. (1) takes the form

| K
S(EIE) ==Y p(F) > p(EJE) In p(E,IF,), )
1=1 k=1
by tuking X = F. and X, = I, Similarly, by taking X = Cand X, = C, in Eq. (1) we obtain the

entropy S(EIC) for the [\u algorithm
|

[
S(EIC) == p(C) Y. p(EJC) In p(IEIC). (3)

V=l k=i
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Comparison of Eqs. (2) and (3) allows us to clarify the main differences between the two
algorithms. Entropy S(EIC) of Eq. (3) simultaneously selects the most discriminatory set of
feature values, i.e., cluster C; in Rg, while entropy S(EIF) of Eq. (2) uses a stepwise approach
selecting the most discriminatory feature FJ- at cach step of the 1D3 algorithm.

THE ID3 ALGORITHM

The ID3 algorithm, ' which is a descendent of Hunt's Concept Learning System, 'S models
the relationships between an object's class and its features, i.e., characteristics, by building
decision trees that discriminate the objects of a data set as a function of their class. ID3 builds a
decision tree by first scanning the data set and choosing the most informative feature F, i.e., the
feature that can best classity the objects according to their class, as the root node of the decision
tree, This is done by obtaining feature F; that minimizes entropy (LIF) in Eq. (2) in the
formation of the dccis'ion tree. The root nocJIC branches out into I branches correspondmg, to the
discrete values F; (i=1,2,....1) of I The objects of the data set are then sorted through the |
branches dividing the data xcl into I’ sub\us, according to their F; value, Figure T illustrates this
procedure, for the case of the E BR-II fuiled fuel identification problem, where feature I, = slope
of the fraction of FG released out of the fuel, was selected as the root node of the decision tree
from a data set of 43 objects each having one of 8 possible classes Ey.. The class distribution of
the 43 objects is indicated by the 8 numbers inside the brackets. The four branches of the t'hxt
node (erratic, sharp, gradual, and burp) are also shown together with their corresponding subsets
of the original data set. For instance, there are 10 o bJLL[h of class Ey in the data set and all 10
objects have feature value I = erratic for fculm F

[10,4,12,1,7,4,3.2
[ = Slope of the fraction of FG released out of the fuel

Fyy = erratic [y =|sharp Fy = gracual Fyy=|burp

(10,0,0,0,7,4.,0,0] [00,11,0,0,0.2,0] [0,4,1,0,0,0,0,0] (0,0.0,1,0,0,1,2

Fig. 1. Formation of a Decision Tree Using the ID3I Algorithm,

The remaining nodes of the tree wre obtained by repeating the process, for each branch, with

th‘ COI‘I‘C‘;pOHdiH“ subsets ol the data set, such that the subset at each node of the tree will be
"purer” than the parent subset. By choosing F.at each node that minimizes S(Ele) in Eq. (2),
based on each node's subset of the original data Set, we would be forming the most discriminatory
and hence the minimal size tree. This process continues until each branch has no objects or all its
objects have the same class. The objects corresponding to the last level or terminal node of each
branch, i.e., the subset where all objects have a common class, form the leaves ot the decision



tree. A key step in building a decision tree is the selection of dlsuxmlnatm) tree nodes, i.e.,
minimum entropy features, since a series of bad choices will result in a tree with a leaf for each
object of the training set.

Once the decision tree is built, a new object with known feature values and unknown class is
classified by starting at the root node of the decision tree, finding the value of the root node feature
in the given object, taking the branch appropriate to that value, and continuing in the same fashion
until a leaf is reached. Using a decision tree to classify an object is equivalent to using a set of "if
(condition) then (consequence)” production rules where the condition part of the rule is formed by
the conjunction, i.e., a logical AND, of all discrete feature values of the tree defining the path from
the root node to each one of its leaves, and the consequence part is the class of the objects at each
leaf. Hence, a decision tree can be represented by a set of production rules.

THE Rg ALGORITHNM

The Rg algorithm.* which is u descendent of Christensen's Entropy Minimax approach for
pattern recognition,'! models the relationships between an object's class and its features by
forming an N-dimensional feature-space populated with the objects of the data set and partitioning
the entire feature space into [ "optimal” patterns or clusters C; (i=1,2,....1) such that objects of a
common class are located in the same cluster. The N-dimensional feature space is formed by
selecting the N "best” features ol the data set and using each of the N features Fy o, Fy as an
axis. Opmml patterns maximize the classification information extracted from the data set such that

each subspace or cluster C; in feature space is closely associated with only one class Ey.. In order
to handle the "curse of dimensionality,” typical of searching procedures in multidimensional
spaces, the Ry program makes approximations in the three major steps of the entropy minimax
algorithm, the partition of the feature space, the selection of the N best features, and the discovery
of patterns, which are described in the following paragraphs and is illustrated in Fig, 2

Partition of the Feature Space

In step 1, the simultaneous partition of the N'-dimensional feature space, where N'is the total
number of quantitiative t‘c:mn«,s is approximated by N' independent one-dimensional partitions.
Partitioning of each of the N features F. into a maximum of four intervals F‘i (i=1,...,.€4) is
obtained by pIOJ(.leL’ all data points of the data set onto each feature axis Frandfinding three or
less cuts in PJ that minimize entropy S(EIF) in Eq. (2). Through this approach, the initial N’
quantitative measurements or feature vari 1th are dlscwu/cd into at mos: 4N’ feature intervals
which are then added to the already discretized qualitative features to form a total set of N feature
intervals, Thus, in step 1, by decomposing the purtition operation of the quantitative features into
N independent operations, the number of possibilities is greatly reduced and vet good partitions of
the feature space can be obtained as long as the objects are reasonably well separated.

Feature Selection

The goal of automatic feature selection in step 2 is to select und retain a subset of N salient
features, Tl,Fn, JF, from the initial N" features such that the process of pattern discovery is
implemented in a vastly reduced feature space without degrading its performance. The underlying
philosophy in the seleCtion of N key salient features is two-fold: elimination of features that are
interrelated and hence do not contribute additional information, and retention of features that can
clearly characterize or discriminate each class from the remaining classes.
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Fig. 2. Flow Chart of the Three Major Steps of the Rg Program.

Feature intervals that share common information with another feature interval are redundant
and should not be selected.  Including redundant feature intervals would only increase the
dimensionality of the feature space, where patterns are to be found, with no extra contribution.
This redundancy check is made by caleulting the linear correlation coefficient between each pair of
feature intervals and keeping only one of two or more feature intervals when their linear correlation
coefficient is beyond a specified threshold,  After the correlated feature intervals have been
removed from the initial list of possible feature intervals, the remaining J uncorrelated intervals are
ranked based on their discriminatory power, The discriminatory power for each feature interval Fji
of the set of J intervals is measured through the inverse of entropy S(Elei)



K
S(EIF) =~ Z p(E ) In p(EIF), 4)
k=1

where p(E}IF ) is the conditional probability that objects with value Fy; of feature F, will belong to
class Ep. In order to account for the discriminatory power of each fediture interval’in conjunction
with the other features, S(EIF;) iy calculated with Fji represented by the intersection of feature
interval Fy; with all J feature intervals. The N features corresponding to the N most discriminatory
feature intervals are used to form the N-dimensional feature space where one M-dimensional (M £
N) cluster Cj is to be found in step 3. To find the entire set of clusters C, (i=1,2,...,1), step 3 is
iteratively used [ times,

Pattern Discovery

A simultaneous discovery of T clusters C; (i=1,2,...,1) that minimizes the global entropy
S(EIC) of Eq. (3) requires a complete search over all possible configuration of clusters in the
partitioned feature space. Since the number of possible configurations grows exponentially with
N, an exhaustive search becomes infeasible for any realistic value of N. In the Rg program, the
simultaneous minimization ol S(EIC) is approximated by a sequential discovery of clusters C;, one
at a time, which greatly reduces the computation requirements. At the i-th step of such stepwise
approximation, a cluster C; is discovered with minimum local entropy S(EIC,)

' K
SEIC) == p(EJC) In p(E,JC,). (5)

k=1

The stepwise approximation is necessury but still not sufficient for eliminating the "curse of
dimensionality." The number of possible clusters is still very high for any reasonable value of N.
Therefore, the Rg program restricts the type of logical propositions by which a pattern can be
formed. Patterns are restricted o univariate or multivariate intersections of the selected feature
intervals forming the N-dimensional feature space.

Each one of the patterns C, discovered by the Rg program can again be represented by a "if
(condition), then (consequence) p(ERIC,)" rule R;. The condition purt of rule R; corresponds to the
location in feature space of cluster C;, ie., univariate or multivariate interactions of feature
intervals Fy;, and the consequence part of the rule corresponds to the probability distribution
p(ELIC) OH the classes of the objects located inside cluster Ci. Good discriminatory rules are
formed by a sharp distribution of p(F(IC,) over only one class Ey.

CLASSIFICATION OF FAILED FUEL

The clussification of fuel failure events at EBR-IT was selected to compare the [D3 and the Rg
inductive approaches for automatic knowledge buse construction. Fuel failure events that occurred
at EBR-II between May 1986 and December 1990 were used to form a data set of 43 objects!©
where each object, i.e., fuel failure event, has one of 8 possible classes (E,....Eg) and a set of 7
features (Fy,....,F7). Each fuel failure class I represents the type of breached fuel element, e.g.,
metal or mixed oxide, and the location of breach along the fuel pin, ¢.g., column region, dimple
region, plenum region. Tuable T deseribes the 8 classes of fuel failure along with the distribution of
the 43 fuilures in each class. The 7 features chosen to characterize the 8 fuel fuilure types represent
directly monitored and calculated characteristics of fission product activities, FG released, and




delayed-neutron (DN) signals.  As illustrated in Table 11, three features, Fy, Fg, and F4, are
qualitative while the other four are quantitative.  Using predefined criteria, the two inductive
approaches automatically partition the total range of the quantitative feature values shown in Table
IT into feature intervals representing "discrete” feature values,

Table 1. Classes of Failed Fuel and Number of Occurrences at EBR-11.

Number of Class of Failed Fuel
Occurrences
10 E; = Failure in the column region of metal fuel
4 E, = Failure in the dimple region of metal fuel
12 Eq = Failure in the welding of metal fuel
1 E, = Multiple fuilures. Metal fuel tailure preceded by mixed oxide failure
7 Es = Fresh failure in the column region of mixed oxide fuel
4 E, = Multiple faitures. Failure in the column region of mixed oxide fuel

combined with another mixed oxide fuel failure

3 [ = Failure in the plenum region of mixed oxide fuel
2l Eq = Previous failure in the column region of mixed oxide fuel

The decision tree? 10 obtined by applying the 1D3 algorithm to the failed fuel data set is

duplicated in T1g. 3. The decision tree uses all 7 features and discriminates the 8 failure classes
such that each one of the 12 leaves characterizes only one class, even in the case where there is
only one object per leaf. The 8 numbers inside the brackets of each node indicate the number of
objects in each of the 8 classes Ey. Forinstance, the 8 numbers inside the bracket of the fift" leaf
from the left, [0,0,11,0,0,0,0,0], indicate that there are 11 objects of class Eqy= failure in (he
welding of metal fuel and no objects of other classes in this leaf. Also note that the paths from the
root node to the 12 leaves can be represented by 12 classification rules, Ly,L,....\L 4. For
example, the path from the root node to the fifth leaf can be represented by Lg

if (F) = sharpand I5 < 10)

then (L4 has occurred),




Table 1. Features and Feature Values Used for Classifying Failed Fuel at EBR-II,

Features Values

F, = Slope of the fraction of fission gas released out of the fuel |, = eratic
Fio = sharp
Fy5 = gradual
F\ 4= burp

F,, = Magnitude of largest spike in 3dmxe netivity [0, 400]

Fy = Increase in the level of delayed neutron signal [0, 2000]

F, = Magnitude of laraest spike in 87Kr activity [0, 1400

4 5 & | .
Fs = Behavior of delayed neutron signal after breach Fgy = normal

Fg, = step increase
Fqs = spikes
Fq, = shurp spike

Fg = Maximum 133X e activity level [0, 35000]
F, = Existence of delayed neutron signal at buckground level Fq) =no
prior to fuel breach [F75 = yes

The 7 classification rules generated by applying the Rg algorithm to the failed fuel data set are
illustrated in Table ML For cach rule Ry a cluster C; is formed by an intersection of the feature
intervals in the second column of the table which corresponds to the condition part of an if
(condition) then (consequence) rule. The third column describing the number of objects and the
probabilities p(EIC;) for cach of the 8 classes Ey represents the consequence part of the rule. The
symbol € is used to denote a probuability (L IC) value smaller or equal than 0.10. The
probabilities p(EIC}) are estimated based on both the observational data inside the clusters and
prior experiences not explicitly included in the current dara serh!!

M., + W,
7(E.|C :_.5______5‘.
] N A) h,] ‘l_ \\" (6)

where

M = number of objects Ly in cluster G,

K
M= L M, = wtal number of objects in cluster Cj,
k=1
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W = prior weight associuted with By, and
K
= 2 W = totul prior weight associated with the entire M events,

Hence, the pmbablllms p(E,IC)) for rules or clusters where all objects are of the same class are not
equal to 1.0 which would be tlu case with null prior weights, Furthermore, the probabilities in
Table 111, caleulated with W =1, are not sharply distributed becuuse of the small number of
objects My in each cluster and the selection of a relatively large total prior weight W =K = 8.

(10,4,12,1,7,4,3,2
Fy = Slope of the fraction of FG released out of the fucl

lcrrulic Lshurp Lgru(luul lbu p

[10,0,0,0,7,4,0,0] 10,0,11,0,0,0,2,0] (0,4,1,0,0,0,0,0) [0,0,0,1,0,0,1,2
" I3m . .
By = Increase DN fevel B = Largest 2" Xe spike Fy = Largest #TKr spike Fs= DN behavi 1}0r
sharp
<550 =55 <10 210 <K.5 >8.5 normal ‘ \plkg,
step
incrapise
A\
(10,0,0,0,1,0,0,0] [0,0,0,0,6,4,0,0] IO.O\U.U.(IM).J.01 10,3,0,0,0,0,0,0] 0,,0,0,0,0,0,2!
N N '(
F, = Max BXe By = Backeround DN ’ Ly Ly
I [0,0,11,0,0,0,0,01 [0,1,0,0,6,0,0,0]
<16500 | 216500 YOS no Ls I = Largest VKrspike  (0,0,001,0,0,0,0] (0,0,0,0,0,0,1,01
l l Lig Ly
[10,0,0,0,0,0,0,0) [ 10,0,0,0,6,0,0,0]
L.] [‘t
(0,0,0,0,1,0,0,0) 10,0,0,0,0,4,0,01 10,1,0,0,0,0,0,0°
La Ly Ly

(0,0.1,0,0,0,0,0]
Ly

Fig. 3 Decision Tree tor Failed Fuel at EBR-1T Using the 1D3 Algorithm.,

The rules in Table 1 identity 7 of the 8 failed fuel classes, failure class By is not characterized
by the program since there iy only one object with that class in the data set. All rules are
characterized by either 2 or 3 feaures and unlike the D3 results feature Iy is not used to
characterize every single rule, and features Iy and Fs are not sufficiently discriminating and hence
not used in any of the 7 rules. Also in contrast with the 1D3 results, the rules generated by Rg are
not always pure; the rules represent more than one class, as indicated by rules Ry and R6
Furthermore, not all objects of the data setare used to construct the rules. One object of class Eg is
not found Slmllal to the remaining 6 objects of class Es and is not used in rule Ry, Two rules, Ry
and R,, corresponding to lailure classes Eyand 1, wxpcumly, are identical to the ID3 rules L
and Ll, 1espwllvdy Most of the other rules are dilferent from the ID3 results by only one temum
A comparison of the rules obtained by the 1D3 and Ry algorithms is illustrated in Table IV, The
table shows the equivalence between the 12 1D3 rules, L.l and the 7 Rg rules, Ry,...R,
based on the § classes they represent.



Table HIL [dentification Rules for Failed Fuel at EBR-IT Using the Rg Algorithm,

Rule | Ieatures \ Classes and Probubilities
[0,0,11,0,0,0,0,0]
[e,6,0.63,e,8,8,6,€]
[10,0,0,0,0,0,0,0]
[0.61,€,8,6,6,8,€,]
10,0,0,0,6,0,0,0]
le,e,e,6,0.5,6,6,E]
10,0,0,0,0,4,0,0]
le,e,e,€,6,0.42,e,€]
10,4,1,0,0,0,0,0]

i

Ry Fy = sharp and 0 < <001

R, | F

il

erratic and (0 < By <3500 and 0 < Fy < 14000

R4 5 < Fy <400 and 600 < Fy <2500 and Fy = yes

R4 5 < F,y <400 and 600 < Fy <2500 and Fy =no

J

Ry Fy = gradual and 0 <y <500
. : : 1€,0.38,0.15,e,¢,8,€,€]
L . 0,0,0,0,0,0,1,2
R() Fio=burp and 0 <t < ().()l and Fy = yes | |

{e,e.e.e.6,,0.18,0.27]
10,0,0,0,0,0,2,0]
|e,e,e,6,6,e,0.3,¢€]

Ry | F =sharp and 5 <Fs <400 and 0 < Fy <500

|

Table 1V, Comparison of the ID3 and Rg Production Ru'es,

Induc.ive Tauivale
Method Equivalent Rules
ID3 i | Lol La| Ly| Lsi Lg | Ly Lg Lo | L] Ly L2

COMPARISON OF THIE 'TWO METIHODS

Both the ID3 and Rg inductive algorithms generated concise classification rules that are
described by only two or three features. The conciseness of the rules is a consequence of well
defined feature variables and the high classification power of information entropy used as a
discriminatory measure in both approuches. Although at first glance the rules generated by the ID3
and the Rg approuches seem very similar, there are a number of underlying differences between
these two inductive learning approaches. [ this section, the advantages and disadvantages of the
methods are compared through analysis of their knowledge representation, data overfitting, feature
space partition, feature selection, and search procedure,
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Knowledge Representation

The ID3 aigorithm acquires knowledge from a data set of examples by constructing decision
trees such that each leaf represents olmus of only one class, even if the leaf has only one object.
For instance, the second leaf in Fig. 3 has only one object of cluss E5. The information of the
decision tree cun be represented by non-overlapping if (condition) then (consequence) production
rules where the condition part of the rules is represented by the features used to form the paths
between the root node and the leaves of the tree, while the consequence part of each rule is
represented by one of the possible classes By (k=1,2,..,K) of the leaf. The represent'uion of the
consequence part of the rule is equivalent to setting p(EyIC,) = 8y, where 8 is the Kronecker
delta. The Rg algorithm acquires knowledge from a data set by discovering non-overlapping
patterns in a feature space populated with objects of the data set such that events of & common class
tend to be located in the sime pattern. The information embedded in the patterns are also
represented by non-overlapping production rule.. The condition purt of the rule is represented by
the features used to form the boundaries of the patterr and the consequence part of each rule is
represented by the probability distribution p(E|IC,) over the K possible classes based on the
objects that fall inside cach pattern and prior experiences, Hence, the Rg inference mechanism
offers the probability p(EIC;) as a measure of confidence of its inference based on the objects
included in each pattern. 1D3 does not provide such useful informatior

Data Overfiuing

An important property of any inductive fearning approach is the caps tblmy of the algorithm to
construct general rules that are able 1o predict the class of objects not used in its construction. To
achieve such property, the construction of the ruies should not be too much geared to the data set,
i.e., the data should not be overfit. This property is accomplished in the Rg program by restricting
the tvpe of logical propositions by which a pattern can be found o univariate and multivariate
intersections of selected fewtures. The rules construcied by the Rg program are general and tend to
represent the global behavior of the dat. On the other hand. the 1D3 algorithm does not have, in
general, & provision to restrict the formation of contrived rules and can form rules too much geared
to the data set. For instance, in Fig. 3 the seventh leaf has one object of class E4, the eighth leaf
has one object of class Eyand the ninth leaf has three objects of I55. In contrast, Rg constructs
only one global rule. R5 i Tables 1 and IV, 10 represent these five events. A similar situation
occurs for the eleventh and twellith feaves in Fig. 3. which correspond to rule R in Tables [T and
IV. Provisions could he added to the 11D3 algomhm by defining stopping rules or pruning the
decision tree'” 1o uchieve vencral inference rules that are not contrived.

Partition of the Feature Space

The feature space must be partitioned before o feature iy »‘clccxcd. for the [D3 algorithm, or a
set of feartures is selected, for the Rg algorithm. Qualitative features are already partitioned and
require no further muanipulation.  In contrast, quantitative tcnlurcx representing continuous
variables need to be properly partitioned into ranges or feature intervals. Since patterns in the Rg
algorithm are discovered by searching 1 multidimensional feature space, ideally the N quantitative
features should be partitioned simultancously. Ay described in a previous section, the
simultaneous partition is computationally infeasible and instead the partitioned is approximated by
N’ one-dimensional partitions using the entire dataset. In the commercial implementations of the
ID3 aluomhm quanm wive features are also partitioned, one at a time, as features are selected to
form a node &Y However, unlike the Re algorithm, here a feature is partitioned based only on the
subset of the mnml data set of the L()il\.xpundlng node. This partitioning approach causes the
partitions to be very specialized resuhing inoverfitted or contrived rulzs. For instance, the three
rules, Lo, Lg, and Lg. tormed by the paihs £ ihe root node to the seventh, eighth “and ninth
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terminal nodes in Fig. 3, respectively, partition the same feature Fy twice making it more and more
specific as subsequent partitions are performed. One approach to eliminate this overfitting would
be to partition each feature based on the entire data set before any feature is selected as in Rg.
However, such a procedure could cause two objects belonging to different classes to have identical
feature values which cannot be handled by the 1D3 algorithim.

Feature Selection ‘

Feature selection is performed in the ID3 algorithm by choosing the most informative feature,
at each node, that best discriminates the objects of the node according to their class.  As the nodes
of the tree are built, feature F, that minimizes entropy S(EIF)) is chosen, one at a time, and used in
the formation of the tree. Ience, ID3 approximates the formation of the most discriminatory rule
with M features by choosing the N most discriminatory features one at a time, based on a different
subset of the original data set at each time. Feuture selection is performed in the Rg algorithm
through a two-step approach. First, the entire data set is used to eliminate redundani features and
then a set of features is selected in the reverse order of their entropy S(EIF ), calculated either as an
individual feature interval or as a pair of feature intervals. Unlike D3] all features are selected
based on the same set ol objects, Thus, the rules generated by the Rg algorithm represent a more
global view of the data set.

Search Procedure

Finally, let us now compare the two approaches based on their search procedures. 1D3 avoids
the combinatorial explosions of possibilities for searching N features simultaneously by
performing N one-dimensional searches at each node of the tee. While such an approach is easy
to implement and greatly simplity the search in multidimensional spaces, it also causes 1D3 to
“lose" the global picture of finding w set of fewtures that collectively group objects of a common
class. On the other hand, Rg performs global N-dimensional searches in feature space although
patterns are discovered one ata time. Euch NM-dimensional patiern, where M < N, is discovered by
an N-dimensional search atlowing for a cotlective analysis of the data set and the formation of more
general rules that capture the essence of the data. The Rg algorithm pays a price for this more
global analysis of the duta with @ search procedure that is more complex and difficult to implement.

CONCLUSIONS

Both the ID3 and Ry inductive algorithms are effective alternatives to the painstaking process
of knowledge acquisition since they require minimum human intervention. The use of these two
inductive methods save time and cffort in the development of knowledge bases for expert systems.
The knowledge acquired by these methads can be encoded as if...thien production rules that are
logically complete and consistent. Information entropy is used to generate discriminatory rules that
are described by only a small number of features. The Rg algorithm construct rules that are more
general and less contrived than the 1D3 rules and should be better able to classify new objects.
This advantage of the Rg algorithm is contrasted with an easier to implement and faster
computation of the ID3 algorithm. As more EBR-IT failed fuel data becomes available, a more in-
depth comparison between the two approaches should be performed by evaluating the two
algorithms as a function of their misclassification rate. A cross-validation techr1iquel7 could be
used to divide the data set into training and est dataand the misclassification rate for the test data
would be analyzed based on rules constructed using the training data.
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