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ABSTRACT

The MILDOS computer code is  used to  estimate impacts o f rad ioactive  emissions 
from uranium m ill in g  f a c i l i t ie s .  This report reviews the technical basis o f the 
models used in  the MILDOS computer code. The models were compared w ith  s ta te -o f- 
th e -a r t p re d ic tio n s , taking in to  account the intended uses o f the MILDOS code. 
Several suggested m odifica tions are presented and the technical basis fo r  those 
changes are given.
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1 .0 INTRODUCTION

The authors have reviewed the technical basis o f the MILDOS computer 
code. The authors have attempted to  take in to  account the intended uses o f 
the code, but the ind iv id u a l user must s t i l l  be responsible fo r  judging the 
model s tru c tu re  and these review comments in  the context o f the proposed 
a p p lica tio n . The portions which p re d ic t airborne and surface contaminant 
leve ls  re su ltin g  from atmospheric d iffu s io n , deposition and resuspension were 
reviewed by T. W. Horst and T. J. Bander. The portions concerned w ith  food 
chains and human dosimetry were reviewed by J. K. Soldat. This review has 
been based on documents NUREG/CR-0553, NUREG-0511 and Regulatory Guide 
RH 802-4.^^^

The MILDOS models fo r  d iffu s io n  and deposition are adequate app lica tions 
o f the s ta te -o f- th e -a r t to the p red ic tion  o f environmental impact. Several 
simple improvements to these models are discussed in  Sections 2.1 and 2.2.

In con tras t, the model fo r  resuspension is  based on lim ite d  data and does 
not properly describe the spa tia l d is tr ib u tio n  o f resuspended contamination.
An a lte rna te  method, which pred icts an upper l im i t  fo r  the airborne and sur­
face contamination, is  suggested in  Section 2.4.

The MILDOS food chain and human dosimetry models were reviewed to de te r­
mine i f  the models would y ie ld  re su lts  which were reasonable considering the 
s ta te -o f- th e -a r t and the intended uses o f the MILDOS code. The accuracy o f 
any model, espec ia lly  one invo lv ing  environmental processes, is  d i f f i c u l t  to 

determine w ithout f ie ld  data fo r  comparison w ith  model p red ic tions . Lacking 
such data, judgments on the reasonableness o f the assumptions im p lic it  in  the 
equations, the parameter values selected, and the consistency o f the approach 
were based on curren t p ractice  in  the f ie ld .  Several recommendations are made 

fo r  these models in  Section 3.3.

(a) NUREG-0511 is  a d ra ft version of NUREG-0706, The Generic Environmental 
Impact Statement on Uranium M il l in g , September 1980.

(b) RH 802-4 is  a d ra ft  NRC Regulatory Guide which is  in  the process o f being 
revised fo r  f in a l issue.



2.0 DISPERSION MODELS

2.1 DIFFUSION

The atmospheric d iffu s io n  is  estimated w ith  a standard Gaussian d iffu s io n  
model, accounting fo r  a f in i t e  atmospheric mixing depth, plume r is e  a t the 
source and the p o s s ib il i ty  o f d is tr ib u te d  area sources.

2.1.1 D iffus ion  Parameters

The Gaussian d iffu s io n  model describes a^, the v e rtic a l spread o f airborne 
contamination, w ith  a set o f em pirical re la tion s  which depend on atmospheric 
s ta b i l i t y  and distance from the source. Near the source these re la tio n s  are 
lin e a r w ith  distance. NUREG/CR-0553 states in  Section 2.2 th a t th is  is  unrea­
sonable fo r  distances less than 100 m and sets a t those distances equal to 
i t s  value a t 100 m, i .e .

o^{r) = (100 m), r  £  100 m. (2-1)

This is  c e r ta in ly  not co rrec t fo r  po in t sources, such as stacks, and fo r  non­
po in t sources no basis has been given fo r  the choice o f 100 m in Equation (2 -1 ). 
NUREG-0511 states more c o rre c tly  in  Appendix G th a t the Gaussian plume model 
may not be accurate in  the immediate v ic in i ty  o f the source, presumably due to 
some in i t i a l  mixing o f the contaminant, and declines to  ca lcu la te  a ir  concen­
tra tio n s  fo r  distances less than 100 m from the source. Both approaches, how­
ever, w i l l  in c o rre c tly  account fo r  dry deposition from ground-level sources 
since th is  is  greatest near the source. Further discussion on deposition is  

found in  a la te r  section o f  th is  review.

2.1.2 Mixing Depth

For neutral and unstable atmospheric cond itions, the well-m ixed surface 
layer is  capped by an elevated inversion (s tab le  laye r) which lim its  the v e r t i ­
cal mixing to  a depth L. Hence, a t large downwind distances, MILDOS imposes 
an upper l im i t  L on the v e r tic a l m ixing. For stable conditions the base o f



the stable layer is  a t the surface. D iffus ion  w ith in  tha t layer is  character­
ized by a which grows slow ly w ith  downwind distance and i t s e l f  reaches a con­
s tan t value a t large downwind distance. Hence, MILDOS imposes the l im i t  L only 

fo r  unstable and neutral cond itions, Pasquill classes A through D (NUREG-CR-0553, 
Section 2 .3 , in c o rre c tly  states A and D), and not fo r  stable cond itions, classes 
E and F.

Observations o f the m ixing depth are ro u tin e ly  ava ilab le  only tw ice per 
day, 0000 GMT (Greenwich Median Time) and 1200 GMT. For s im p lic ity ,  MILDOS 
averages these morning and afternoon observations to  get a s ing le  annual- 
average mixing depth. Two choices are given in  Section 2.4 o f NUREG/CR-0553 
fo r  th is  averaging. The most reasonable o f these is  the average value o f 1/L 
since the computed airborne concentrations are inverse ly  proportional to L.

2 .1 .3  D irect A ir  Concentrations

The annual-average concentration o f contaminant is  calcu lated by in te ­
g ra ting  the Gaussian d iffu s io n  model in  the crosswind d ire c tio n . This in te ­
grated value is  then re d is tr ib u te d  in  a tr ia n g u la r form w ith the peak along the 
downwind d ire c t io n , considered as the cen te rline  o f the plume. The concentra­
tio n  decreases lin e a r ly  to  zero a t 22-1/2° (one sector w idth) in  e ith e r d ire c ­
tio n  from the cen te rline  o f the wind d ire c tio n  secto r. D is tr ib u tin g  in  th is  
manner smooths out the annual average concentration calcu lated around a c irc le  
a t some given distance from a source.

The v e r t ic a l spread o f the contaminant is  determined from the em pirical 
a ^ 's , which fo r  stab le atmospheric conditions are used a t a l l  downwind d is ­
tances. However, fo r  unstable and neutral conditions a determ ination is  made o f 
the distance x^ a t which the v e rtic a l dispersion becomes greater than 0.47 times 
the mixing depth. For a l l  distances between X|̂  and 2X|^, the concentration is  
then determined by taking a lin e a r in te rp o la tio n  between the concentrations a t 
X|_ and 2X| ,̂ where the concentration a t 2x  ̂ is  calcu lated assuming the v e rtic a l 
d ispersion to be uniform throughout the m ixing depth. Thus fo r  unstable and 
neutra l s ta b i l i t ie s ,  the em pirical a^ 's  are not used a t distances greater than 

x^. The plume depletion in te g ra ls , however, use between and 2X|̂  fo r  a l l  

s ta b i l i t ie s  and thus are not consistent w ith  the d iffu s io n  form ula tion.



2.1.4 Plume Rise

MILDOS accounts fo r  plume r is e  above the height o f the source w ith  the 
formula

Ah = 1.5 wD (2 - 2 )

where w is  the e ff lu x  v e lo c ity , D is  the stack diameter and u is  the wind speed. 
Recent observations have shown tha t plume r is e  also depends on downwind d is ­
tance r ,  and Briggs (1969, 1975) recommends

Ah = 3 wD
2u(l + 3u/w)

w ith  a maximum value o f

2/3 1/3 
r (2-3)

Ah = 3 wD (2-3a)

Figure 2.1 compares the p red ictions o f Equations (2-2) and (2 -3 ). Equation (2-3) 

is  no more d i f f i c u l t  to  include in  MILDOS than Equation (2-2) and fo r  most d is ­
tances i t  increases Ah by a fa c to r o f two. Note th a t Equations (2-2) and (2-3) 
are applicab le to  uranium m ill stacks fo r  which thermal buoyancy can be neglected. 
In cases where th is  is  not tru e , the add itiona l plume r ise  due to buoyancy must 

be included.

2.1 .5 Area Sources

MILDOS accounts fo r  the f in i t e  horizonta l extent o f area sources by sub­
d iv id in g  them in to  squares o f width d. For the horizonta l spread o f the plume, 
each subdivision is  replaced w ith  a v ir tu a l po in t source located a distance 
r  = 8d/TT (based on 22.5° wind d ire c tio n  sectors) upwind o f the subd iv is ion 's  
center. For v e r t ic a l spread and to  account fo r  deposition , a v ir tu a l source is  
located a t the center o f the subdiv is ion. A comparison w ith  an exact so lu tion  
obtained by numerical in te g ra tio n  (H orst, 1978) shows th a t i f  d is  less than 

300 meters th is  la t te r  approximation is  co rrec t w ith in  a fa c to r o f two.
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FIGURE 2.1 . A Comparison o f Plume Rise Formulas



2.2 DEPOSITION

MILDOS models the deposition f lu x  as a deposition v e lo c ity  m u lt ip lie d  
by the ground-level airborne contamination C(z=0). The contaminant plume is  
depleted by the source depletion method. These are acceptable s ta te -o f- th e -a r t 
techniques fo r  environmental impact ap p lica tio ns . However, the inc lus ion  o f 
resuspension would a llow  plume depletion to  be neglected e n t ire ly ,  a major 
s im p lif ic a t io n . I t  is  also recommended th a t s ta te -o f- th e -a r t techniques be 
used to  estimate deposition v e lo c it ie s  as a function  o f wind speed, p a rt ic le  
s ize , and surface c h a ra c te ris tic s .

2.2.1 Deposition V e loc ity

The MILDOS estim ation o f deposition can be made more re a l is t ic  by using 

curren t models to  account fo r  the dependence o f deposition v e lo c it ie s  on p a r t i­
c le  s ize , wind speed and surface roughness. The em pirical model o f Sehmel and 
Hodgson (Sehmel, 1980a) shows a minimum deposition v e lo c ity  o f much less than 
1 cm/sec fo r  p a rtic le s  between 0.1 and 1 jjm diameter and an increase in  deposi­
t io n  v e lo c ity  roughly proportional to p a r t ic le  diameter fo r  smaller p a rtic le s  

and to  the square o f p a r t ic le  diameter fo r  la rg e r p a rt ic le s . Deposition v e lo c ity  
also increases w ith  the wind speed and th is  co rre la tio n  should be e x p l ic i t ly  
included in  the computation o f the annual-average deposition. F in a lly ,  deposi­
t io n  v e lo c it ie s  also increase w ith  surface roughness. Although the dependence 

is  weaker than fo r  p a r t ic le  size o r wind speed, i t  may also be accounted fo r  

w ith  Sehmel and Hodgson's model.

The MILDOS deposition model would also be improved by a f in e r  subdivision 
o f p a r t ic le  s izes, but w ith  the drawback o f add itiona l computational cost.

2.2.2 Plume Depletion

MILDOS uses the source depletion model to  account fo r  the loss o f m ateria l 
from the airborne plume by dry deposition. However, MILDOS sets the lower l im i t  
o f the depletion in te g ra l,  F-| in  NUREG/CR-0553, equal to  a downwind distance o f 
100 m. Th is , and the re d e fin it io n  o f in  Equation (2 -1 ), may be motivated by 
the fa c t th a t the in te g ra l is  undefined fo r  a ground-level source i f  the lower

l im i t  is  properly set to  zero and the deposition is  parameterized w ith  C(z=0).



For elevated sources the in te g ra l is  well defined, however, and should begin a t
the source. For ground-level sources the depletion in teg ra l is  well defined
only i f  deposition is  parameterized w ith  C(z*) where z* f  0, but un fo rtuna te ly  
the in te g ra l becomes a sens itive  func tion  o f z*.

These plume depletion considerations may be academic, however. I t  is
recommended in  the fo llo w ing  section th a t plume depletion be neglected e n tire ly  
in  order to  conserva tive ly account fo r  resuspension. The computation o f a i r ­
borne contamination, deposition , and surface contamination based on the unde­
pleted airborne plume w i l l  account fo r  deposition from the o r ig in a l plume, as 
w ell as fo r  a l l  subsequent resuspension and redeposition.

2.3 RESUSPENSION

A ir  concentrations o f resuspended contamination are predicted in  MILDOS 
by m u ltip ly in g  the surface contamination 6 by a resuspension fa c to r K. The 
surface contamination is  ca lcu la ted only from the deposition o f airborne con­
tam ination transported d ire c t ly  from the o r ig in a l source. The resuspension 
fa c to r is  assumed to  be s p a tia lly  uniform and to  decay exponentia lly  w ith  
time a t a "weathering" ra te  A| .̂ This method o f accounting fo r  resuspension is  
based on very lim ite d  data and does not properly describe the spa tia l d is t r i ­
bution o f resuspended contamination. I t  is  best app lied , i f  a t a l l ,  only in  
the immediate v ic in i t y  o f the maximum surface contamination. An a lte rn a tive  
method is  suggested which is  conservative and is  commensurate w ith  our present 
knowledge o f resuspension.

2.3.1 Resuspension Factor

Measurements o f resuspended airborne contamination are cu rre n tly  lim ite d  
to  a very small number o f circumstances, notably the a r id  environment o f 
nuclear te s t s ite s . Even fo r  these p a rtic u la r  environments (which are s im ila r 
to  those o f many e x is tin g  uranium m ills )  the resuspension parameters have a 

large uncerta in ty  associated w ith  them. Observed values o f K fo r  resuspension 
by the wind range from 10” ^^ m~̂  to 3 x 10"^ m~̂  and, since they vary by sev­
era l orders o f magnitude even w ith in  a s ing le  set o f observations, taking an 

average resuspension fa c to r cannot be ju s t i f ie d  (Sehmel, 1980b). Estimates o f



vary from 7.2 y r   ̂ to  0.68 y r ~ \  but in  con tro lled  experiments Sehmel (1980b) 
has also found no reduction o f the resuspension w ith  tim e, i . e .  A|̂  = 0.
Lassey (1980) and Kocher (1980) have recently  discussed these uncerta in ties  and 
note th a t as a consequence i t  is  not even possible to determine the importance 
o f resuspended contamination re la t iv e  to  the airborne contamination transported 
d ire c t ly  from the o r ig in a l source.

A second weakness o f the resuspension fa c to r is  tha t i t  does not properly 
account fo r  the dependence o f the resuspended contamination on the spa tia l 
d is tr ib u tio n  o f surface contamination or fo r  the dependence on source- 
receptor separation, because i t  re la tes airborne contamination to  the local 
surface contamination, ra ther than to  the upwind d is tr ib u tio n  o f contamination 
(Healy, 1977). Observations o f the dependence on upwind, ra ther than lo c a l, 
surface contamination were noted by Stewart (1967). Horst (1977) demonstrates 
th a t fo r  uniform surface contamination the ra t io  o f resuspended contamination 
to surface contamination increases w ith  distance from the upwind edge o f the 

contaminated area. For non-uniform ly contaminated areas, th is  ra t io  increases 
slow ly as the peak contamination is  approached from the upwind side but 
increases very ra p id ly  w ith  downwind distance from the peak. Thus, in  most 
cases, a uniform resuspension fa c to r w i l l  not p red ic t the co rrect spa tia l 
d is tr ib u t io n  o f resuspended contamination.

2.3.2 Resuspension Rate

The la t te r  weakness o f the resuspension fa c to r can be i l lu s tra te d  by 
examining the p red ictions o f a more re a l is t ic  model which assumes tha t the 
v e r tic a l resuspension f lu x  is  proportional to the loca l surface contamination 
through a resuspension ra te  A. This model ca lcu la tes the resuspended contami­
nation by accounting fo r  atmospheric transport and d iffu s io n  between the 
receptor and the upwind d is tr ib u tio n  o f surface contamination (H orst, 1977; 

Horst, 1979).

The pred ictions o f th is  model are shown schematically in  Figure 2.2 fo r  

the s itu a tio n  modeled by MILDOS, where a loca lized  source produces annual- 
average, airborne contamination C a t breathing le v e l. There are no scales on 

the axes o f Figure 2.2 because i t s  purpose is  to show the re la tionsh ips among
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FIGURE 2.2. Annual-Average Airborne Contamination a t Breathing Height as a 
Function o f Distance from the O rig ina l Source. The resuspended 
contamination is  predicted to  be Cy. by the resuspension ra te  
model, 0.06Cci and 7.7C(j by resuspension fa c to r models.



the various pred ic tions o f airborne contamination; actual magnitudes o f the 
curves depend on the d iffu s io n  clim ato logy o f the s ite ,  source he ight, deposi­
t io n  v e lo c ity , resuspension ra te , e tc . The various C are averaged over a ll 
wind d ire c tion s  and hence are functions only o f the distance r  from the 
source. With no deposition or resuspension the airborne contamination is  C^; 
w ith  deposition the d ire c t airborne contamination is  reduced to C^.

The surface is  contaminated by deposition both from the d ire c t airborne 
contamination and from the resuspended contamination C^. I f  a l l  o f the sur­
face contamination is  assumed to  be ava ilab le  fo r  resuspension, i . e . ,  neglecting 
losses by weathering, the resuspended contamination is  maximized. The surface 
contamination increases w ith  time u n t i l  resuspension balances deposition and 

Cd+Cr "  Cq. More e xa c tly , the resuspended contamination is  found to be less 
than the deposition loss from the d ire c t airborne contamination (H orst,
1979). An exception to  th is  conclusion may be seen in  the immediate v ic in i ty  o f 
an elevated source, where the d ire c t airborne contamination does not reach the 
surface. In th is  case the resuspended contamination is  sustained by surface 

contamination which has been deposited in  the past on the opposite side o f the 
source.

The re la t iv e  magnitudes o f the resuspended contamination as predicted by 
the resuspension ra te  model and by MILDOS depend on the p a rt ic u la r  values o f K, 
A|̂  and deposition v e lo c ity  v^. MILDOS, as well as other resuspension fa c to r 
models, p red ic ts  the resuspended contamination to  be proportional to C^. Kocher 

(1980) has ca lcu la ted the p ro p o rtio n a lity  fa c to r fo r  several models and his 
re s u lts , which range from 0.06 to  7 .7 , are included in  Figure 2.2. For p a r t i­
c les w ith  a deposition v e lo c ity  o f 1 cm sec“ \  the de fau lt parameters in  MILDOS 

p re d ic t an interm ediate value o f 0.63. A comparison o f these values w ith  
predicted by the resuspension ra te  model shows tha t a resuspension fa c to r model 
w i l l  agree w ith  a resuspension ra te  model a t no more than two distances from the 

source. This fo llow s from the re la t iv e  shapes o f the curves fo r  and C^, 
which are determined by the d iffu s io n -de p os itio n  process and are independent o f 

the resuspension parameters. MILDOS cannot reproduce both near

the source and or fa r  from the source.
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2.4 CONCLUSIONS

Without resuspension MILDOS pred ic ts  the airborne contaTnination to  be Ĉ ,̂ 
the d ire c t a irborne contamination depleted by dry deposition. I f  the model 
estimates fo r  the source s trength , atmospheric d iffu s io n  and dry deposition are 
a l l  c o rre c t, th is  would underestimate the airborne contamination. Accounting 
fo r  resuspension by the resuspension fa c to r  model gives a more conservative 
estimate fo r  the to ta l a irborne contamination (1+R)C^. MILDOS pred ic ts  R =
0.63. However, the complexity o f the resuspension process and the lack o f 
observational data makes i t  very d i f f i c u l t  to  re lia b ly  estimate K, A|^, and R. 
Furthe r, i t  has been shown th a t the resuspension fa c to r model pred icts the wrong 
dependence o f resuspended contamination on distance from the source. I t  is  best 
app lied , i f  a t a l l ,  only in  the immediate v ic in i t y  o f the maximum surface con­
tam ination, where the loca l surface contamination may be more important than 
upwind contamination in  determining resuspended airborne contamination.

The resuspension ra te  model is  more r e a l is t ic ,  but un fortunate ly is  s im ila r ly  
indeterm inate, again due to  a lack o f data on resuspension and weathering ra tes.
In con tras t to  the resuspension fa c to r model, however, the resuspension ra te  
model establishes a physical upper l im i t  fo r  C^, i . e . ,  < C^-Cj. Even though
th is  is  an estim ate, i t  is  known to  be conservative and may in  many cases be less 
than resuspension fa c to r p red ic tions . Thus, i t  is  recommended th a t the annual- 
average airborne contamination, be estimated fo r  a continuous source
simply by neglecting dry deposition from the d ire c t airborne contamination.
This estimate must be modified to  account fo r  resuspension immediately below an 
elevated source. Here the airborne contamination can be conservative ly estimated 
to  be equal to  the peak value o f C^. For a source o f f in i t e  du ra tion , the 
to ta l exposure (o r tim e-in tegra ted  concentration) may be estimated in  a d ire c t ly  

analogous manner.

These estimates assume th a t the surface contamination increases by dry 
depos ition , from both the d ire c t and the resuspended airborne contamination, 

u n t i l  resuspension balances deposition and C^+C  ̂ = C^. Thus the surface con­
tam ination is  given by Equations (4.34) and (4.35) o f NURE6/CR-0553, but w ith

the undepleted d ire c t concentration instead o f and the resuspension ra te  A

instead o f the "denudation c o e ff ic ie n t"  y or "environmental loss constant" Ag
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(RH 802-4). U nfortunate ly there are few measurements o f A and these vary from 
10~^ y r ”  ̂ to  10^ yr~^ (Sehmel, 1980b). RH 802-4 and NUREG-0511 assign a value 
o f 0.014 y r ”^ to  but do not c ite  any data to  support th a t value. In view of 
th is  large unce rta in ty , an a lte rna te  approach would take no c re d it fo r  these 
losses, i .e .  A = p = Ag = 0.
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3.0 FOOD CHAIN AND HUMAN DOSIMETRY MODELS

3.1 FOOD CHAINS

This section o f the review is  based p r in c ip a lly  on Regulatory Guide 
RH-802-4 (USNRC, 1979) and, to  a lim ite d  extent, NUREG-CR-0533 (Momeni, e t a l . ,  
1979). The food chain model is  based on equations in  USNRC Regulatory 
Guide 1.109 (USNRC, 1977) which were patterned a fte r  the code FOOD (Napier, e t 
a l . ,  1980)^^\ The models in  Regulatory Guide 1.109 are, however, d if fe re n t 
from FOOD in  th a t ce rta in  parameters were e ith e r omitted or changed in  value; 
e .g . ,  the fra c tio n a l re ten tion  o f deposited airborne radionuclides by vegetation, 
and the trans loca tion  o f deposited m ateria ls from vegetation surfaces to  por­
tions  o f the plants consumed. Ingestion dose fac to rs  were obtained, in  the 
most p a rt, from NUREG-0172 (Hoenes and Soldat, 1977).

3.1.1 Retention

The fra c tio n  o f deposited airborne radionuclides retained by vegetation was 
given as 0.25 in  FOOD (Napier, e t a l . ,  1980) and HERMES (F le tcher and Dotson, 
1971) based on data fo r  pa rticu la tes  and iodine found in  the l i te ra tu re .  For 
convenience th is  same value o f 0.25 was assumed fo r  sp r in k le r app lica tion  o f 
contaminated water, since no data were found in  the li te ra tu re  fo r  th is  para­
meter. In Regulatory Guide 1.109, however, the re ten tion  fa c to r was raised to

1.0 fo r  iod ine , lowered to  0.2 fo r  other p a rtic u la te s , and le f t  a t 0.25 fo r  

s p r in k le r ir r ig a t io n .

The MILDOS code uses the value o f 0 .2 , from Regulatory Guide 1.109, fo r  
re ten tion  o f the p a rtic le s  containing uranium and daughters. This value is  
acceptable considering the small amount o f data ava ilab le . In fa c t ,  i t  may be 
preferable to  a value o f 0.25 as the data only warrant one s ig n if ic a n t f ig u re .

3.1.2 Translocation

Translocation is  the term adopted in  HERMES fo r  the tra n s fe r o f deposited 
radionuclides from the external surfaces o f vegetation to  the portion  a c tu a lly  

consumed by man o r animal.

(a) FOOD, in  tu rn , is  a s im p lif ie d  version o f the te r re s tr ia l food chain and 
human dosimetry portions o f the code HERMES (F le tcher and Dotson, 1971)
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The values o f the parameter a c tu a lly  re fe r to the ra t io  o f concentration 
o f a rad ionuclide in  the ed ib le  portion divided by the average concentration 

obtained by d iv id in g  the to ta l a c t iv i ty  o f the ex te rn a lly  deposited nuclide by 
the to ta l mass o f the vegetation. Lim ited data on ce rta in  s p e c ific  nuclides in 
grains and potatoes obtained from the li te ra tu re  are summarized in  the HERMES 
report (F le tcher and Datson, 1971). I t  was assumed then th a t the data fo r  grain 
could be used fo r  a l l  above-ground vegetables, and tha t the values fo r  potatoes 
also applied to  roo t vegetables. The values o f the trans loca tion  fac to rs  ranged 
from 0 up to  0.1 fo r  both categories o f vegetation. As a s im p lif ic a t io n , the 
FOOD code was designed to  use a trans loca tion  fa c to r o f 0 .1 , the maximum found 
in  the l i te ra tu re  fo r  a l l  nuclides fo r  both categories.

Because i t  was assumed tha t the portions o f green lea fy  vegetables and 
pasture grass eaten would include the outer surfaces, the value o f the tra n s lo ­
cation fa c to r was taken as 1.0 fo r  th a t category fo r  a l l  nuclides in both the 
HERMES and FOOD codes. Regulatory Guide 1.109 e lim inated the trans loca tion  
fa c to r w ith  the re s u lt th a t a l l  parts o f the p lan t would be uniform ly contami­
nated. In attempting to  restore the trans loca tion  fa c to r in  MILDOS, the value 
o f 0.1 was applied to  a l l  roo t crops and a value o f 1.0 to a l l  above-ground 
p la n ts .

I f ,  as assumed, the concentration ra tio s  (p la n t/s o il)  in  the lite ra tu re  
are derived d ire c t ly  fo r  the portion  consumed (such as gra ins) then there is  
no need fo r  an add itiona l trans loca tion  fa c to r fo r  the root pathway. For th is  
reason, none has been applied in  any o f the te r re s tr ia l food codes discussed here.

I recommend th a t the trans loca tion  fa c to r in  MILDOS be modified to  a value 
o f 1.0 fo r  a l l  lea fy  vegetables and pasture and hay, and a value o f 0.1 fo r  a l l  
o ther vegetation inc lud ing g ra in , above-ground vegetables and root crops 
(F le tcher and Dotson, 1971). These values should be used fo r  a l l  nuclides. 
Although no data were given in  F letcher and Dotson (1971) fo r  trans loca tion  
o f uranium and daughter products, i t  seems lo g ica l to  assume th a t fo r  these 
nuclides the value o f the trans loca tion  fa c to r would not exceed the maximum o f
0.1 l is te d  there and adopted fo r  a l l  nuclides in  the FOOD code.
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other equations and parameter values in  the te r re s tr ia l food chain portion
_2

o f MILDOS, such as the s o il areal density o f 240 kg m and the 14-day weathering 
loss ha lf-tim e  fo r  radionuclides on vegeta tion, re f le c t  current usage.

3.2 HUMAN DOSIMETRY

MILDOS ca lcu la tes ra d ia tio n  doses fo r  a l l  o f the pe rtine n t pathways covered 
by the transport and food chain portions o f the code using dose conversion fac to rs .

3.2.1 Categories o f Dose Calculated

There are several d if fe re n t categories o f ra d ia tio n  dose tha t can be calcu­
la ted fo r  e ith e r the ind iv id u a ls  or the populations involved. The sp e c ific  
types o f dose calcu la ted should include one th a t matches as c lose ly  as possible 
those addressed in  any applicab le ra d ia tio n  dose standards. For rad ionuclides, 
most guides speak to  annual dose or dose ra te ; i . e . ,  mrera yr~^ or rera yr~^ to 

various s p e c ific  organs or to ta l body. L im its are seldom promulgated fo r  c o lle c ­
t iv e  doses, numerical l im its  ( i . e . ,  man-rem) are seldom expressed, but ra ther the 
ALARA (as low as reasonably achievable) p r in c ip le  is  invoked.

Standards usually give very l i t t l e  guidance on the proper method o f calcu­
la t in g  doses used to  determine compliance w ith  annual dose l im its .  As a re s u lt ,  
several d if fe re n t types o f doses are being calcu la ted today and the exact d i f ­
ferences between the methodologies are not always c le a r. L isted below are fou r
types o f doses often ca lcu la ted . Many other types are possible.

1. The f i r s t  year dose from one yea r's  exposure and uptake
2. The 50-year (o r 70-year) conmitted dose from one yea r's  exposure and uptake.
3. The integrated dose from a l l  the exposure and intake which occurs over 

a 50-year (o r 70-year) exposure period.
4. C alcula tion o f the probable maximum annual dose by compounding each p r io r  

yea r's  co n tribu tion  to  the current yea r's  body burden o f rad ionuclides, and 
doing th is  fo r  each year throughout a 50-year (or 70-year) exposure period.

The f i r s t  method is  useful fo r  an annual assessment o f the management o f 
rad ioactive  e fflu e n ts  fo r  comparison w ith  p r io r  years' dose where the e ff lu e n t 

release rates to  the environment may vary over time. The second method
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is  the one c u rre n tly  eraployed in MILDOS and Regulatory Guide 1.109 fo r  ca lcu la tion  
o f ra d ia tio n  doses to  in d iv id u a ls . The th ird  is  the log ica l method fo r  ca lcu la tion  
o f r e a l is t ic  to ta l c o lle c t iv e  doses fo r  conversion to  health e ffe c ts . I t  can also 
be used fo r  ca lcu la tin g  to ta l accumulated ind iv idua l doses. The fou rth  is  designed 
to  y ie ld  values comparable to  annual dose l im its  stated in terms o f dose y r " \

The p ractice  o f using dose fac to rs  which convert an annual intake o f a 
rad ionuclide in to  a 50-year committed dose fo r  comparison w ith annual l im its  has 
become widespread. Most guides, however, do not mention such a procedure as an 
acceptable a lte rn a tiv e  to  method 4.

The ca lcu la ted 50-year corm itted dose and an annual l im i t  would be compar­
able only i f  the in take ra te  o f the radionuclide were constant fo r  50 years.
Then the body burden accumulated a fte r  50 years would d e liv e r a dose ra te  ( in  
un its  o f rem y r ” ^) o f the same numerical value as the 50-year committed dose 
( in  un its  o f rera per 50 years).

Barring constant in take , the 50-year dose commitment ca lcu la ted must be made 
fo r  the year o f highest in take to  ensure th a t the maximum annual dose in any 
year does not exceed the gu ide lines. This normally corresponds to  the year o f 
highest concentration in  environmental media ( a ir ,  s o i l ,  water, and food).

MILDOS allows th is  op tion .

There are two s itu a tio n s  where th is  type o f dose ca lcu la tion  is  

inappropria te .

1. The e ff lu e n t release period or the exposure period is  less than

50 years.

2. The peak concentrations in  d if fe re n t media occur a t w idely separated times.

Instances o f re la t iv e ly  constant environmental concentrations are indeed 
present fo r  uranium ta il in g s  p ile s . These include radon releases from the 

p ile s  during periods when management practices are constant.

3.2.2 Inha la tion  Dose

MILDOS ca lcu la tes inha la tion  doses fo r  the lung as weighted averages over 

the nasopharyngeal (N-P), tracheobronchial (T -B ), lymph (L ) , and pulmonary (P)
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regions defined by the Task Group Lung Model (TGLM) o f the In te rna tiona l Commis­
sion on Radiological P rotection (ICRP, 1966). Up u n t il recen tly  the term "lung 
dose" usua lly  re ferred to  the dose to  the pulmonary compartment o f the re sp ira ­
to ry  t ra c t .  This convention was applied w ith  both the o lder lung model in  ICRP 
P ub lica tion  2 (ICRP-59) and the TGLM. ICRP Publications 26 and 30 (ICRP-77, ICRP- 
78) s ta te  th a t three regions o f the re sp ira to ry  system, v iz .  T-B, P, and L, should 
be considered as a composite o f mass 1,000 g when ca lcu la ting  "lung dose" (and 
when applying the weighting fa c to r  o f 0.12 to lung dose during ca lcu la tion  
o f the new "e ffe c tiv e  dose equ iva le n t"). The mathematical procedure used fo r  
ca lcu la tin g  the ALI values involves ca lcu la tio n  o f the to ta l a c t iv i ty  
deposited in  the three compartments and d iv ides the to ta l by the combined mass 
o f 1,000 g. The re s u lt  is  num erically the same as ca lcu la ting  a mass-weighted 

average o f the dose to  the three compartments.

There is  s t i l l  some controversy among lung dosimetry experts, about whether 
such an average dose or the dose to  the pulmonary compartment alone is  the most 

p e rtin e n t. In add ition  there are s t i l l  some who fee l th a t the inc lus ion  o f the 
N-P region in  the average is  appropria te. In l ig h t  o f the current discussion the 
method o f averaging the dose across the fou r compartments o f the re sp ira to ry  sys­

tem as used in  MILDOS is  acceptable.

The dose to  the bronchial ep ithelium  from Rn-222 is  ca lcu la ted in  a s tra ig h t­

forward way, except fo r  a discrepancy in the number o f hours assumed fo r  
indoor occupancy. The Rn-222 dose ca lcu la tio n  assumes indoor occupancy fo r  
24 hours per day w hile  the external dose ca lcu la tio n  assumes 14 hours per day are 
spent indoors. The f i r s t  value is  inconsis ten t w ith  the second. Regardless o f 
whether or not these assumptions have l i t t l e  e ffe c t on the f in a l ca lcu la ted dose,
I recommend th a t a s ing le  value (perhaps 14 hours per day) be adopted fo r  both 

sets o f ca lcu la tion s .

The use o f the a d u lt dose conversion fac to rs  fo r  ca lcu la tion  o f inha la tion  
doses fo r  a l l  ages is  acceptable, i f  the u n its  o f the fac to rs  used are dose or

_3
dose ra te  per u n it concentration in  the inhaled a i r ,  v iz . mrem per pCi m o f a ir  
as given in  Table 3, page 31 o f RH 802-4 (USNRC, 1979). The lower breathing ra te  

fo r  younger ages compensates fo r  the smaller organ s izes, so th a t the concentra­

tion s  o f the radionuclides in  the organ would be s im ila r fo r  the fou r age groups.
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based on the assumptions th a t metabolic fac to rs  and b io lo g ica l ha lftim es are 
re la t iv e ly  independent o f age.

3.2 .3  External Dose

Except fo r  the inconsistency in  hours spent indoors mentioned above, the 
external dose ca lcu la tion  methods are s a tis fa c to ry .

3 .2 .4  Ingestion Doses

With one exception, the method employed in  MILDOS fo r  ca lcu la tin g  ingestion 
doses is  s a tis fa c to ry . The exception is  the use o f to ta l-body dose as a surrogate 
fo r  lung dose fo r  those nuclides fo r  which no ingestion fa c to rs , f ^ ,  are given by 
ICRP fo r  the lung. Standard practice  has been to ignore the lung dose fo r  such 
nuclides, because i f  the fra c tio n  deposited there were thought to be s ig n if ic a n t,
then the ICRP would have estimated values fo r  f  in  the lung.w ^

The MILDOS procedure overestimates the lung dose (Schermerhorn and Ryan, 1980), 
The overestiraation is  espec ia lly  large fo r  alpha em itte rs , whose energy does not 
re a d ily  penetrate to  adjacent organs. The m a jo rity  o f the e ffe c tiv e  energy, and 
hence the dose calcu lated fo r  a deposited alpha e m itte r, re su lts  from the re la ­
t iv e ly  high energy o f the alpha p a r t ic le  ('\̂ 5 MeV) m u lt ip lie d  by the q u a lity  fac ­
to r  Q. The penetrating gamma ra d ia tion  makes l i t t l e  co n trib u tion  to the 
to ta l-body  dose, but would be the only component reaching the lung from an alpha-
em itting  nuclide deposited in some other organ.

I t  does not matter th a t fo r  the nuclides and scenarios considered in  MILDOS, 
the numerical con tribu tions o f the pseudo-lung doses from ingestion are numer­
ic a l ly  sm all. A mathematical procedure has been promulgated which could lead
to  improper, large pseudo-lung doses i f  used fo r  other exposure s itua tio ns  and
rad ionuclides. Therefore, I recommend th a t no lung doses be calculated fo r 
nuclides fo r  which no value o f f^ -lu ng  has been set by ICRP. Exceptions would be 
fo r  nuclides o f elements which are e sse n tia lly  uniform ly d is tr ib u te d  in the body, 
such as H-3, C-14, Na-22, Na-24, etc.

(a) An example o f a rad ionuclide  which does deposit in  the lung fo llow ing  inges­
tio n  is  Cs-137. The lung dose can be re a d ily  calculated and can be a measur­
able add ition  to  the to ta l lung dose from inh a la tio n  o f Cs-137 in  some 
instances.
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3.2.5 Population Doses

Population doses are calcu la ted over a 100-year period , using a procedure 
analogous to  th a t employed by the Environmental P rotection Agency (EPA) when i t  
ca lcu la tes i t s  Environmental Dose Conmitment (EDO)(EPA-1974). Calculation o f
th is  type o f population dose integrated over long time periods is  required i f  one
is  to  estimate to ta l possible health e ffe c ts  in  a population. The choice o f 100 
years as an in te g ra ting  period seems ra ther a rb itra ry  considering the long rad io ­
ac tive  h a lf - l iv e s  o f the nuclides in  the uranium decay se ries . Nevertheless, the 
U.S. EPA has set a precedent in  th is  m atter (EPA-1974), and some ju s t i f ic a t io n
can be found fo r  continuing to use 100 years. However, the descrip tion  o f the
ca lcu la tion  scheme given in  Appendix B o f RH 802-4 (USNRC, 1979) is  not c lea r.
I t  is  possible to derive d if fe re n t dose ca lcu la tion  schemes from the te x t and 
Table B-1, page 60. The descrip tion  should be re w ritte n  to  minimize 
misunderstanding.

MILDOS assumes th a t a constant annual dose would e x is t in  each o f the three 
operational phases and ca rries  each ca lcu la tion  out to 100 years past exposure so 
th a t the c u to ff year fo r  each phase's exposure is  d if fe re n t.

The dose conversion fac to rs  used are those fo r  a 50-year dose commitment from
a one-year exposure. Use o f such fac to rs  fo r ca lcu la tio n  o f the EDO introduces 
conservatism by extending the EDO period to  as long as 150 years fo r  exposures in  

the la s t year.

3.3 CONCLUSIONS

I t  is  recommended th a t MILDOS be modified to ;

1. E lim inate the ca lcu la tion  o f a pseudo-lung dose from ingested radionuclides 
which has no accepted value fo r  tra n s fe r from blood to  lung.

2. Use the trans loca tion  fa c to r in the manner in  which i t  was intended; v iz . ,
apply a value o f 1.0 fo r  green lea fy  vegetables and forage and a value o f 

0.1 fo r  a l l  other crops.

Adoption o f the f i r s t  recommendation would e lim inate an improper procedure 

th a t,  i f  applied to other nuclide m ixtures, could g rea tly  overestimate the so- 
ca lled  lung dose. In a d d ition , i t  is  recommended th a t the methodology fo r c a l­

cu la ting  the EDO be more f u l ly  explained.
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One add itiona l minor recommendation is  th a t the number o f s ig n if ic a n t d ig its  
attached to  the values o f poorly known data be reduced to  one, or a t most, two. 
This seems appropriate since some values can be estimated to w ith in  only an order 
o f magnitude.
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