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INTRODUCTION

Nb3Sn is a strain-sensitive superconductor which exhibits
large changes in properties for strains of less than 1 percent.
The critical current density at 1Z T undergoes a reversible
degradation of a factor of two for compressive strains of about
1 percent and undergoes an irreversible degradation for tensile
strains on the Md3Sn greater than Q.2 percent, Consequently,
the successful application of Np3Sn in large high-field magnets
requires a complete understanding of the mechanical properties of
the conductor. One conductor which is being used for many appli-
cationsi-3 consists of filaments of Nb3Sn in a bronze matrix,
and mych progress has been madp in understanding the mechanical
behavior of this composite.? The NozSn filaments are placed
in compression due to the differentisl thermal contraction between
Nb=Sn and bronze which accurs when the composite is coolec from
the Nb3Sn formation temperature (typically 700 OC) to the 4.2 K
operating temperature, The genersal behavior of the critical cur-
rent when this conductor is subjected to a tensile stress is an
increase tn a maximum when the compressive strain on the NoiSn
is relieved, followed by a decresse as the NozSn filaments are
placed in tension., The degree of precompression is controlled
largely by the ratio of bronze to Nb3Sn in the conductor.?

*Work performed under the auspices of fthe U.S. Department
of Energy by the Lawrence Livermore Natiopal Laboratory unger
Contract W-7405-Eng-43,
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Several authorsé,7 have presented analytical methods which
can be used to estimate the residual strain on the NozSn and
hence to predict the strain-critical current behavior of the con-
ductor. These methods have been shown to work well for a specific
type of conductor, i.e., Nb3Sn filaments in a bronze matrix.
However, these methcis are not adequate to explain the results
when other conductor geemetries are used or when additional com~
pressive strain occurs due to other components in the conductor.
In this paper, we present results for a composite geometry in
which the triaxial strain state is important, and we present a
computer code which can predict the conductor behavior (as well as
the behavior of the bronze-matrix-type conductor). In addition,
we present results for several practical conductors in which
precompression due to comporents other than the bronze matrix is
important.

BRONZE CORE, Nb TUBE CONDUCTOR

After the discovery that NbzSn could be fabricated by
reacting Nb with Sn provided by a bronze matrix, & number of
different multifilamentary configurations were proposed. One
configuration, which we designate as the internal bronze approach,
consists of Nb tubes with bronze cores in a copper matrix. This
configuration has several potential advantages aver the external
bronze approach, namely the Nb tubes serve as diffusion barriers
sp that anoiner element such as Ta is not necessary to prevent Sn
from contaminating the Cu, and each superconductor element is sur-
rounded by a high conductivity Cu matrix so that current transfer
lengths are much shorter than in the external bronze case,

The fabrication and testing of several conductars based on
this approach are dgescribed in Ref. 8. A computer program was
developed which evaluates the triaxial strains on the NbszSn in
this conductor, and the details are presented in Refs., 9 aiid 10.
The computer code, MAXIMSUPER, treats a single, cylindrical
repeating element of the entire myltifilament composite. This
~ single superconducting filament or tube represents the average

geometry and configuration (niobium-core radius, NbaSn-layer
thickness, bronze-to-niobium ratio, and the amount of copper
matrix separating each filament from its nearest neighbors).
Since this average filament is repeated in & multifilamentary
composite superconductor for thousands of elements, its resulting
_ strain fields from thermal expansion and axial loading should be

fairly representative of the overall composite behavier. Of
course, this modeling is more accurate for conductors with uniform
high filament densities across the composits cross-sectional area,
The code determines the three-dimensional strain fields by solving
Hooke's elasticity equations for an element composed of the var-
ious materials (nicbium, NbaSn, bronze, and copper) in their
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prunze-vore sampie; necause of the contributions from the larger
tangential strain components. Other studies have concluded that
the peak critical currents occur at approximately zero strain;
huwever, for the bronze-core geometry, the zero intrinsic €,
strain values, which give the peak criticsl current, coincide with
nonnegligible tangential strain components on the Nb3Sn zones.
Hence, the maximum current displayed at zero intrinsic strain is
the resuit of a minunum 1n the effective average of the three-
dimensional strain field, and the minimum value is not necessarily
zero, Analytical expressions invalving Hooke's elasticity equa-
tions in cylindrical geometry show that the mechanical interac-
tions and hence the stress-sirain relations are not symmetric with
respect to the interchange of the material positions in a fiber
camposite., In fact, the effective strain incresses linearly

(Fig. 1) with axial loading for the niobium core and guadratically
for the bronze-core geometry. This prediction is experimentally
verified in Fig. 2, which is a plot of the measured critical
current density of several conductors at H = 12 Tesla and a
resistivity (pp = 10-112 - cm) as a function of the MAXIMSLPER
predicted residual affective strain (before tensile loading).

In general it shows that, far the same bronze-to-iNdsSn ratios,

we should expect the bronze-core geometry to be inferior to the
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Fig. 2. The measured critical current density as a function
of residual strain predicted by the computer code is
plotted for various conguctor geometries.



Table I. Transition Temperature (K) of NbsSn Fabricated by the
Internal Bronze Approach (Measured Inductively)

TC (Midpoint) Tc (Onset)
As Fabricated 16.20 17.35
¥ith Cu Matrix Removed 16.50 —
With Bronze Core Removed 17.97 18.10

niobium-core design, with a decrease in critical current density
at 12 7 of factors from three to ten times.

Some corrohorating data on this effect, obtained on these
and other internal bronze samples by K. Aihara, T. Luhman, and
M. Suenaga,lly12 are shown in Table 1. For a comparable bronze-
to-Nb ratio, the transiticn temperature depression in the internal
bronze conductor is about 1.8 K, compared with about 0.2 K for an
external bronze conductor.i2 Similarly, if we plot the transi-
tion temperature reduction for the internal bronze sample on a
master ploti3 of Te teduction versus strain, this plot would
indicate a strain of greater than 1 percent in the Nb3Sn layer.

RFTF Nb35n SUPERCONDLCTOR

A cryostable Nb3Sn conductor designed to operate at 5 kA
and 12 T is being manufactured for the High fField Test Facility.2
This conductor consists of a eore which is clad with half-hard
Cu after reaction. The core ¢ross-section (Fig. 3) consists of

(2 mm

Fig. 3. Cross section of the HFTF conductor core. The core
consists of 18 strands in a Cu matrix; each strand
contains 15,895 No3Sn filaments.



58 percent Cu, 30 percent bronze, 10 percent NbiSn and 2 percent
Ta. The Cu in the core is annealed during the reaction step and
contriputes littie to the precompression on the Np3sa.ll Our-
ing the reaction, the bronze is depleted of Sn and 1s annealed.
The resulting precompression of the NosSn can be predicted by
graphical means and by computer modeling, when the properties of
annealed, Sn-depleted bronze are used. In addition, the strain-
critical current behavior can be modeled by introducing a strain
depencence for the parameters in Kramer's scaling laws.14 The
experimental strain-critical current behavior of the HFTF core is
shown in Fig. 4. We also present preliminary bending data for
comparison with the tensile strain data. The initial increase in
critical current seen in the tensile tests is not evident for the
pending tests. However, the tensile data does provide adequate
data with which to predict general bending behaviar for this
conguctor.

14 L HFTF Nb,Sn Core -+
H=12T
===~ Recovery

1.2~ O Bending data ~

0 0.2 0.4 06 038 1.0
Strain {%)

Fig. 4. The critical current (normalized to the value for zero
applied strain) is plotted as & function or applied ten-
sile strain for the HFTF cure. The change in critical
current with applied tensile strain is reversible up to
a strain of 0.7 percent.
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F1g. 5. Experimental stress-strain data for the HFTF core and
HFTF claguing at 4.2 K. The cladding is half-hard Cu.

Subsequent ta the reaction to form Nos3Sn, additional Cu
{equivalent to approximately SU percent of the tatal cross sec-
tion) is soldered to the core. This Cu has a yield strength of
approximately 300 MPa (Fig. 5); nence, it will contribute to the
precompression on the Ab3Sn when the conductor is cooled from
the cladding temperature to the 4.2 K operating temperature. The
caiculated value of additional precompression on the NbsSn due
to differential thermal contraction between 553 K and 4.2 K is
0.5 percent. This precompression occurs in two steps: during the
cooling from cladding temperature to 293 K and during cooling from
293 K to 4.2 K. The amount of compressive strain actually trans-
mitted to the Nb3Sn during the first step depends upon the
experimental conditions, in particular, the extent that the solder
between core and ¢ladding yields during the cladding operation.
Experiments are in progress to measure the additional precompres-
s1on in the HFTF conductor due to the Cu cladding.

This precompression, due to the cladding, is useful from the
standpoint of proviging more strain tolerance during coil winding



and coil operation. However, the Nb3Sn critical current is
reduced due to the compression; this must be taken into account
1n designing the conductor.

Additional precompression can be expected for the JAERI
design of the TMC conductorl® and ather designs employing cold-
worked copper tor stabilization.

LCP-TYPE CONCUCTOR

Another NirzSn-base conductor of practical interest is the
forced-flow conductor being utilizeo in the LCP.l Strands of
0.7-mm diameter multifilamentary Nb-bronze are insulated, cabled,
and wrapped in a stainiess steel jacket prior to neat treatment to
form NozSn. The strain-critical current benhavior of the individ-
val strands has been measuredlé and the results are adequately
predicted by tne analytical method.? In order to verify the
behavior of these sirands in the firal conductor, a series of
samples were preparecl’ for testing in the LINL tensile testing
facility. The samples consisted of B8l-strand cables which were
compacted in type 304 stainless steel tubes, with approximately
33 percent of the cross sectional area available for helium cool-
ant (Fig. 6). The ands of the sample were compacted, to form
current terminations, and pinned to the steel lacket, to insure
that the strain was imparted to both the cable and the jacket,
Strain gages and voltage taps were placed on the samples in the
5-cm uniform field zone of the test magnet. 7The strain-critical
current behavior for these samples is illustrated in Fig. 7 and
compared with the single-strand data., The initial critical
current values (for H = 8 T} are suppressed to 75 percent of the
single-strand values, and the peak in critical current is shifted
from~0,2 percent applied strain to~0.8 percent applied strain.
Althnugh the strain-critical current behavior for the single
strands and the total conductor are quite different, the critical
current value at the peaks is the same for the two cases. In
order to verify that this behavior is due to the stainless steel
Jacket, identical samples with soft copper jackets were tested
(Fig. 7). These critical current values scaled directly to the
values for the single strands.

The behevior of the jacketed conductor compared with that for
tre single strands becomes evident when the thermal contraction of
the stainless steel jacket is considered. The stainless steel
jacket comprises about 47 percent of the conductor cross section
and has a mean thermal expansion coefficient ® = 15.3 x 10-6/0K,
The temperature range over which tne differential thermal contrac-
tion of the stainiess cfeel must be considered is from the reaction
temperature (973 K) to 4.2 K. when the properties of the stainless
steel are considered, two factors become important: (1) the dif-
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Fig. 6. Cross section of the LCP-type conductor used in the
strain-critical current experiments,

ferences in thermal expansion coefficients (stainless steel to
Nb3Sn and bronze to MNb3Sn; are similar; (2) the higher yield
strese of the stainless steel compared to that of bronze, espe-
cially at higher temperatures, means that the stainless steel is
much more effective in applying a compressive strain to the
Nb3Sn.  When the data appropriate for stainless steel are used

to calculate the precompression on the Nb3Sn, a value of 0.8
pergent precompressive strain is obtained, in good agreement with
the experimental results shown in Fig. 7. This value of precom-
pression is greater than that necessary to protect the Nb3Sm frocm
damage during winding and operation., Moreover, the decrease in
critical current at 12 T, campared to the unstrained case, is 2
factor of two. Conseguently, this canfiguration presents a sig-
nificant design problem to be avercame if the operation at 12 71
is to be optimized.
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Fig. 7. The critical current (normalized to the value for zero
applied strain on a single strand) is plotted as a
function of applied tensile strain for a single strangd
and for 8l-strand LCP-type conductors.

CONCLUSIONS

The behavior expected for several configurations of NozSn
conductors has been calculated and measured. The results show
that the triaxial strain state of the No3Sn is important for
understanding the behavior of the Nb tube, bronze-core geametry.

For practical conductors in which stainless steel or
work-hardened Cu are used to provide strength, the additional



precompression on the NbzSn due to these components must pe
taken into account.
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