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Spectrum-Transformed Sequential Testing Method
for Signal Validation Applications

Kenny C, Gross
Reactor Analysis Division
Argonne National Laboratory
Argonne, lllinois 60439

Kristin K, Hoyer
Dept. of Industrial Engineering and Management Sciences
Northwestern University
Evanstan, Illinois 60201

ABSTRACT

The Sequential Probability Ratio Test (SPRT) has proven to be a valuable tool in a varicty of reactor
applications for signal validation and for sensor and equipment operability surveillance. One drawback
of the conventional SPRT method is that its domain of application is limited to signals that are contami-
nated by gaussian white noise. Nongaussian process variables contaminated by serial correlation can
produce higher-than-specified rates of false alarms and missed alarms for SPRT-based survcillance sys-
tems. To overcome this difficulty we present here the development and computer implementation of a
new technique, the spectrum-transformed sequential testing method. This method retains the excellent
surveillance advantage of the SPRT (extremely high sensitivity for very early annunciation of the onset
of disturbances in monitored signals), and its false-alarm and missed-alarm probabilities are unaffected
by the presence of serial correlation in the data. Example applications of the new method to serially-
correlated reactor variables are demonstrated using data recorded from EBR-I1.

Introduction

In recent years the Sequential Probabilii, Ratio Test (SPRT) [Refs. 1-4] has found wide applications as
a signal validation tool in the reactor industry, Two featares of the SPRT that make it attractive for
parameter surveillance and fault detection are (1) very early annunciation of the onset of a disturbance
in noisy process variables, and (2) the fact that the SPRT has user-specifiable false-alarm and missed-a-
larm probabilities. One drawback of the SPRT that has limited its adaptation to a broader range of
nv-lear plant applications is the fact that its mathematical formalism is founded upon an assumption that
the signals it is monitoring are purely gaussian, independent (white noise) random variables. We have
undertaken a detailed statistical analysis of a wide variety of plant signals at ANL's Experimental
Breeder Reactor-1I (EBR-II). Our findings show that many types of variables throughout the primary
and secondary systems of EBR-II arc contaminated by noise that is scrially corrclated. We have found
that the presence of serial correlation in a process variable monitored by a SPRT module can lead to
excessive false-alarm and/or missed-alarm probabilities.
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To avoid these difficulties, and to expand the domain of automated signal-validation methods, we intro-
duce here a new technique for signal validation and for sensor and equipment operability surveillance
applications. The technique is called the Spectrum-Transformed Sequential Testing (STST, or ST2)
method. We call the ST2 method a dual transformation method, insofar as it entails both a frequency-
domain transformation of the original time-series data and a subsequent time-domain transformation of
the resu'tant spectrally-filtered data.

For a stationary time series Y, the approach is to first perform a frequency-domain transformation of
the original Y, by a simple Fourier series expansion:

ao N/2 ‘
Y, = - + 2 [amcos(mmt) + bmsm(wmt)] (1)
m=1

where a,/2 is the mean value of the serics, a, and b, are the Fourier coefficients corresponding to the
Fourier frequency _, and N is the total number of observations. Using the Fourier cocfficients, we
next generate a composite function, X, using the valuces of the largest harmonics identificd in the Four-
ier transformation of Y,. The following numerical approximation to the Fourier transform is useful in
determining the Fourier coefficients a, and b. Let x; be the value of X, at the jth time incrcment.
Then assuming 27 periodicity and letting @ _=2nm/N, the approximation to the Fourier transform
yields:

N-1

m*

ZIN

N-1
2
j XJCOS((D i b, = NZx qm(a)mj) (Q)
=0 :O

for 0<m<N/2. Finally, the power spectral density (PSD) function for the signal is given by 1 , where

2 2

a_+b
L, = N——lz——"-l (3)
In our investigations with EBR-II signals, the highest eight I, modes were found to give an accurate
reconstruction of X, while reducing most of the serial correlation for the physical variables we have

studied., (Nevertheless, the number of modes is left as a user-supplied input variable in our ST2 surveil-
lance software to facilitate extension to new system applications.)

The generation of the Fourier composite X, uses the general form of Eqn. (1), where the cocfficients and
frequencies employed are those associated with the eight highest PSD amplitudes. This yiclds a com-
posite curve with essentially the same corrclation structure and exactly the same mean as Y, Finally, we

generate a discrete residual function R, by differencing corresponding values of Y, and X . This residual
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function, which is devoid of serially correlated contamination, is then processed with the SPRT binary-
hypothesis test developed in detail in Ref. 1.

EXAMPLE APPLICATIONS TO MEASURED PLANT SIGNALS

We have selected variables from EBR-II's reactor coolant pumps (RCPs) and delayed neutron (DN)
monitoring systems to demonstrate the power and utility of the ST2 algorithm. The RCP and DN sys-
tems were chosen for initial application of the ST2 approach because SPRT-basi.d expert system tools
have already been under development for both {1,5,6]. All data used in this inv~stigation were recorded
during full-power, steady state operation at EBR-II. The data have been digitized at a 2-per-second

sampling rate using 2 (16,384) observations for each signal of interest.

Figure 1 demonstrates the spectral filtering approach as applied to EBR-II's primary pump 1 power sig-
nal, which measures the power (in kW) needed to operate RCP 1. The first subplot in the figurc shows
136 minutes of the original signal as it was digitized at the 2-Hz sampling rate. The sccond subplot
shows a Fourier composite constructed from the eight most prominent harmonics identified in the origi-
nal signal. The residual function, obtained by subtracting the Fourier composite curve from the raw
data, is shown in subplot 3, Periodograms of the raw signal and the residual function have been com-
puted and are plotted in Fig. 2. Note the presence of eight depressions in the periodogram of the resi-
dual function corresponding to the most prominent periodicitics in the original, unfiltered data. Histo-
grams computed from the raw signal and the residual function are plotted in Fig. 3. For each histogram
shown we have superimposed a gaussian curve (solid line) computed from a purely gaussian distribution
having the same mean and variance, Comparison of the two subplots in Fig. 3 provides an ad ocular
demonstration of the cffectiveness of spectral filtering in reducing asymmetry in the histogram of the
spectrally filtered versus the original time series. Quantitatively, this decreased asymmetry is reflected
in a decrease in the skewness (or third moment of the noise) from 0.15 (raw signal) to 0.10 (residual
function).

It should be noted here that sclective spectral filtering, which we have designed to reduce the conse-
quences of serial corrclation in our sequential testing scheme, does not guarantee that the degree on non-
normality in the data will also be reduced. Fortuitously, for 80% of the signals we have investigated at
EBR-II, the reduction in serial corrclation is accompaniced by a reduction ir. the absolute value of the
skewness for the residual function. Morcover, in the cases where there is not a reduction in skewness, it
can generally be observed that the skewness is very small to begin with. Finally, it has been shown in a
separate investigation [7] that nonnormality is much less of a problem, in terms of affecting SPRT misi-
dentification probabilities, than is nonwhiteness.

To quantitatively evaluate the improvement in whitencss effected by the spectral filtering method we

employ the Fisher Kappa white noise test [8]. For each time series we compute the Fisher Kappa statis-
tic from the defining equation
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Figure 1
Spectral Decomposition of Pump 1 Power
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Figure 2
Power Spectral Density of
Pump 1 Power
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Figure 3
Noise Histograms for Pump 1 Power
2000
<P ‘ -
=z PUMP 1 POWER| |
@) s | |
1500 oo LR\ U S—
> : :
o
L
R | z =.
O 1000 -] .'s .g.é .........
L
O
o a s
LL] 500 ‘ .........
a8 : ,
=
)
=
128.6 128.8 129 129.2 129.4 129.6
3000 ‘ .
n = g
pd RESIDUAL FUNCTION |
O z s
-
; . H ‘ 1
CE 2000 — :J ‘: ..................... ‘ ....................
L : : :
N
an)
O
& | |
1000.~“““““”““““§ .............................. SRR
oC : i
LU
28]
=
)
Z
0 l
-0.5 -0.3 -0.1 0.1 0.3 0.5

POWER, kw

wWMWWWWWW”WWW””“W”WWWWW“W”WWV“W”WWWWWWWHW”WWW”WW”WWWWWWWWWW”WW”WWWWWWWWWW”MW“WWWMWWWWWWWWWWWWWWWWMWWWWWWWW“WWWWW



O I AR i i e ) O I I 5 . .

(— A o

¥

gl T T IT 'MYNIY BT KT

N
1 1
K = ['N‘ ;uwk)} I(L) \ ()

where I(®,) is the PSD function (sce Eq. 3) at discrete frequencies @y, and 1(L)) signifies the largest
PSD ordinate identified in the stationary time series.

In words, the Kappa statistic is the ratio of the largest PSD ordinate for the signal to the average ordinate
for a PSD computed from a signal contaminated with pure white noise. For EBR-II's pump 1 power sig-
nal used in the present example K is 1940 and 68.7 for the raw signal and the residual function, respec-
tively. Thus, we can say that the spectral filtering procedure has reduced the degree of nonwhiteness in
the signal by a factor of 28. Strictly speaking, the residual function is still not a pure white noise pro-

cess. The 95% critical value for Kappa for a time series with 2 observations is 12.6. This means that
only for computed Kappa statistics lower than 12.6 could we accept the null hypothesis that the signal is
contaminated by pure white noise, The fact that our residual function is not white is reasonable on a
physical basis, for the complex interplay of mechanisms that influence the stochastic components of a
physical process would not be expected to have a purely white correlation structure. The important
point, however, is that the reduction in nonwhiteness effected by the spectral filtering procedure using
only the highest eight harmonics in the raw signal has been found to preserve the pre-specified false
alarm and missed alarm probabilitics in the SPRT sequential testing procedure (see below). Table I
summarizes the computed Fisher Kappa statistics for 13 EBR-II plant signals that are used in SPRT-
based surveillance systems at ANL. In every case the table shows a substantial improvement in signal
whiteness.

DEMONSTRATION OF COMPLETE ST-2 PROCEDURE

The complete ST2 algorithm integrates the spectral decomposition and filtering steps illustrated above
with the SPRT binary hypothesis procedure developed in detail in Ref. 1. The general procedure is
demonstrated by application of a SPRT to two redundant delayed neutron detectors (designated DND A
and DND B) whose signals were archived during long-term normal (i.e. undegraded) operation with a
steady DN source in EBR-II. For dcmonstration purposes a SPRT was designed with a false alarm rate,
o, of 0.01. Although this value is higher than we would designate for a production surveillance system,
it gives a reasonable frequency of false alarms so that asymptotic values of o can be obtained with only
tens of thousands of discrete observations. According to the theory of the SPRT, it can be easily
proved [1,4] that for purely gaussian, independently distributed processes o provides an upper bound to
the probability (per observation interval) of obtaining a false alarm--i.e. obtaining a "data disturbance"
annunciation when, in fact, the signals under surveillance are undegraded.

Figures 4 and 5 demonstrate sequences of SPRT results for raw DND signals and for spectrally-whi-
tened DND signals, respectively. In cach figure the first two subplots show the DN signals from detec-
tors DND-A and DND-B, where the steady-state values of the signals have been normalized to zero.
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TABLE I

Effectiveness of Spectral Filtering for Measured Plant Signals

Fisher Kappa Test Statistic (N=16,384)

Plant Variable I.D.

Raw Signal

Residual Function

Pump 1 Power 1940 68.7
Pump 2 Power 366 52.2
Pump 1 Speed 181 25.6
Pump 2 Speed 299 30.9
Pump 1 Radial Vibr (top) 123 67.7
Pump 2 Radial Vibr (top) 155 65.4
Pump 1 Radial Vibr (bottom) 1520 290.0
Pump 2 Radial Vibr (bottom) 1694 80.1
DN Monitor A 96 39.4
DN Monitor B 81 44.9
DN Detector 1 86 36.0
DN Detector 2 149 44.1
DN Detector 3 13 8.2
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Investigation of SPRT Misidentification Probabilities
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(Normalization to adjust for differences in calibration factor or viewing geometry for redundant sensors
does not affect the operability of the SPRT). The third subplot in each figure shows pointwise differ-
ences of signals DND-A and DND-B. It is this difference function that s input to the SPRT algorithm,
Output from the SPRT is shown for a 250-second segment in the bottom subplot in each figure. Inter-
pretation of the SPRT output is as follows: When the SPRT index reaches a lower threshold, A, one can
conclude with a 99% confidence factor that there is no degradation in the sensors. For this demonstra-
tion A is equal to -4.60, which corresponds to false-alarm and missed-alarm probabilities of 0.01. As
the figures illustrate, each time the SPRT reaches A it is reset to zero and the surveillance continues.

If the SPRT index drifts in the positive direction and exceeds a positive threshold, B, of +4,60, then it
can be concluded with a 99% confidence factor that there is degradation in at least one of the sensors.
Any triggers of the positive threshold are significd with diamond symbols in Figs. 4 and 5. In this case,
since we can certify that the detectors were functioning properly during the time period our signals were
being archived, any triggers of the positive threshold are false alarms.

If we extend sufficiently the surveillance experiment illustrated in Fig. 4 we can get an asymptotic esti-
mate of the false alarm probability . We have performed this exercise using 1000-observation win-
dows, tracking the frequency of false alarm trips in each window, then repeating the procedure for a
total of 16 independent windows to get an estimate of the variance on this procedure for evaluating o
The resulting false-alarm frequency for the raw, unfiltered, signals is o= 0.07330 with a variance of
0.000075. (The very small variance shows that there would be only a negligible improvement in our
estimate by extending the experiment to longer data streams), This value of o is significantly higher
than the design value of o= 0,01, and illustrates the danger of blindly applying, a SPRT test to signals
that may be contaminated by excessive serial correlation,

The computations shown in Fig. 5 employ the complete ST2 algorithm. When we repeat the foregoing
exercise using 16 independent 1000-observation windows we obtain an asymptotic cumulative falsc-a-
larm frequency of 0.009142 with a variance of 0.000036, This is less than (i.e. more conservative than)
the design value of 0i=.01, as desired.

It will be recalled from the Introduction that we have used the eight most prominent harmonics in the
spectral filtration stage of the ST2 surveillance algorithm. By repeating the foregoing empirical proce-
dure for evaluating the asymptotic values of o, we have found that eight modes are sufficient for all of
the expert system input variables shown in Table I. Furthermore, by simulating subtle degradation in
individual signals, we have found that the presence of serial correlation in raw signals gives rise to
excessive missed-alarm probabilities as well. In this case spectral whitening is equally effective in
ensuring that pre-specified missed-alarm probabilities are not exceeded using the ST2 surveillance soft-
ware.

SUMMARY

In summary, an ST2 technique has been devised which integrates frequency-domain filtering with
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sequential testing methodology to produce a compact algorithmic structure that provides a computation-
ally tractable solution to a problem that is endemic to nuclear-plant signal surveillance. We have found
the ST2 module to provide a valuable tool in ANL's ongoing development of innovative expert system
tools for sensor-operability surveillance applications in nuclear plants, as well as in non-nuclear indus-
trial applications that require high-reliability, high-sensitivity parameter surveillance,
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