
Summaryof full paper to be presentedat the 8th Power Plant Dynamics, Control & Testing
Symposium, May 27-29, 1992, Knoxville, Tennessee

ANL/CP--75528

DB92 014771 ;'_/ _/'

cq,.

Spectrum.Transformed Sequential TestingMethod
for Signal Validation Applications ............

_._ .- _,._ _I _ _._ by
,,._ _. ,_l' U _ _

_ _° __ Kenny C Gross
,.- _R.- _._ _
_,__ _,_ _ o _ Argonne National Laboratory

_.- o_.,= _,,, _ 9700 S. Cass Avenue
= .=._ a': _ _, __ ,,

,__,_ ,_,, _ ._ ,.. Argonne Illinois 60439__o_

_ _ _ ° _ =.il (708)972-6689

_,_.=_._= ._ _ and
o _ ,_

o, _ o=,- o=_ o Kristin K. Hoyer
_,_ . ,, .__ ..= ,.. Dept. of Industrial Engineering and Management Sciences
.... =-o ,, ,, - ,, o Northwestern University

"._ _ u._" _ _ _,...,o

• _ _ .. 80 _ _ _ g The submitled manusCripl has been authoredby a contractor ot' the U. S, Government
. _ .... :::1 m .-., _ und,r contract No. W.31.10_ENG-38.

Accordingly, the U. S. Government retains a

F _ O_'_ _ ._ '_ .,_ O_''_ n.... clusi .... ovalty-free license to pubhsh

I_II '_ _" '-_ ;_ _ 8 _ _ _ '_ or reproduce the pubh_hed form of th,_I__ __ _._ _ _ t__ co,,,,,.ut,on,ora,,o,',o,.e,,,odo,o,,orU. S. Government purposes.

'Work supported by the U. S. Department of Energy, Nuclear Energy Programs under Contract W-31-109-Eng-38.
I

' :k,_ ,,_>.,o..,........,._ !I..i]
.,_,.,_u_u. ul- I.IS_gUM_tIT I$ U_LIMITEII

|



I

Spectrum-Transformed Sequential Testing Method

for Signal Validation Applications

Kenny C. Gross

Reactor Analysis Division

Argonne National Laboratory

Argonne, Illinois 60439

Kristin K. Hoyer

Dept. of Industrial Engineering and Management Sciences

Northwestern University

Evanstan, Illinois 60201

, ABSTRACT

The Sequential Probability Ratio Test (SPRT) has proven to be a valuable tool in a variety of reactor

' applications for signal validation and for sensor and equipment operability surveillance. One drawback

of the conventional SPRT method is that its domain of application is limited to signals that are contami-
z

nated by gaussian white noise. Nongaussian process variables contaminated by serial correlation can

produce higher-than-specified rates of false alarms and missed alarms for SPRT-based surveillance sys-

tems. To overcome this difficulty we present here the development ,andcomputer implementation of a
i

-i new technique, the spectrum-transformed sequential testing method. This method retains the exceUent
surveillance advantage of the SPRT (extremely high sensitivity for very early annunciation of the onset

,'_ of disturbances in monitored signals), and its false-alarm and missed-alarm probabilities are unaffected

' by the presence of serial correlation in the data. Example applications of the new method to serially-.t

i!I correlated reactor variables are demonstrated using data recorded from EBR-II.

:i1 Introduction

,l
l In recent years the Sequential Probabilit)' Ratio Test (SPRT) [Refs. 1-4] has found wide applications as
i
,I a signal validation tool in the reactor industry. Two featares of the SPRT that make it attractive for

I parameter surveillance and fault detection are (1) very early annunciation of the onset of a disturbance
!

i in noisy process variables, and (2) the fact that the SPRT has user-specifiable false-alarm and missed-a-

! larm probabilities. One drawback of the SPRT that has limited its adaptation to a broader range of

-_ nt,'flear plant applications is the fact that its mathematical formalism is founded upon ,anassumption that

the signals it is monitoring are purely gaussian, independent (white noise) random variables. We have-

undertaken a detailed statistical analysis of a wide variety of plant signals at ANL's Experimental

Breeder Reactor-li (EBR-II). Our findings show that many types of variables throughout the primary

and secondary systems of EBR-II are contaminated by noise that is serially correlated. We have found

that the presence of serial correlation in a process variable monitored by a SPRT module can lead to
excessive false-alarm and/or rnissed-alarm probabilities.

i
t
l
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To avoid these difficulties, and to expand the domain of automated signal-validation methods, we intro-

duce here a new technique for signal validation and for sensor and equipment operability surveillance

applications. The technique is called the Spectrum-Transformed Sequential Testing (STST, or ST2)

method. We call the ST2 method a dual transformation method, insofar as it entails both a frequency-

domain transformation of the original time-series data and a subsequent time-domain transformation of

the resu 1rant spectrally-filtered data.

For a stationary time series Yt, the approach is to first perform a frequency-domain transformation of

the original Yt by a simple Fourier series expansion:
1

N/2

a o

Y t = "T + _ Eamc°s(0)mt) + bmsin(C°mt)_ (.I)
m=l

where ao/2 is the mean value of the series, amand bmare the Fourier coefficients corresponding to the

Fourier frequency 0)m, and N is the total number of obserwltions. Using the Fourier coefficients, weJ
_, next generate a composite function, Xt, using the values of the largest harmonics identified in the Four-
!

.] ier transformation of Yr The following numerical approximation to the Fourier transform is useful in
determining the Fourier coefficients a m and bm. Let xj be the value of X t at the jth time inert ment.

Then assuming 27z periodicity and letting co,,=2_m/N, the approximation to the Fourier transform

yields:

N-I N-1

am = --N2_'XjCOS(03m'J) bm -" N_XjSirl(°),n j) ('_)
j=o j:o

for 0<m<N/2. Finally, the power spectral density (PSD) function for the signal is given by !,,, where

2 2

a"+bm (_3)
,! lm = N 2
t
I In our investigations with EBR-II signals, the highest eight !m modes were found to give an accurate
!

| reconstruction of X t while reducing most of the serial correlation for the physical variables we have

! studied. (Nevertheless, the number of modes is left as a user-supplied input variable in our ST2 surveil-
I

! lance software to facilitate extension to new system applications.)

l The generation of the Fourier composite Xt uses the general form of Eqn. (1), where the coefficients anti
I

frequencies employed are those associated with the eight highest PSD amplitudes. This yields a com-

posite curve with essentially the same correlation structure and exactly the same mean as Yr. Finally, we

generate a discrete residual function R t by differencing corresponding values of Yt and X t. This residual



function, which is devoid of serially correlated cont,'u-nination, is then processed with the SPRT binary-

hypothesis test developed in detail in Ref. 1.
, J

EXAMPLE APPLICATIONS TO MEASURED PLANT SIGNALS

i We reactor pumps (RCPs) delayed neutron (DN)
have selected variables from EBR-II's coolant and

monitoring systems to demonstrate the power and utility of the ST2 algorithm. The RCP and DN sys-tems were chosen for initial application of the ST2 approach because SPRT-bas_ d expert system tools

i have "already been under development for both [1,5,6]. All data used in this investigation were recorded
during full-power, steady state operation at EBR-II. The data have been digitized at a 2-per-second

sampling rate using 214(16,384) observations for each signal of interest.

Figure 1 demonstrates the spectral filtering approach as applied to EBR-Irs primary pump 1 power sig-

_ nal, which measures the power (in kW) needed to operate RCP 1. The first subplot in the figure shows

136 minutes of the original signal as it was digitized at the 2-Hz sampling rate. The second subplot

shows a Fourier composite constructed from the eight most prominent harmonics identified in the origi-

nal signal. The residual function, obtained by subtracting the Fourier composite curve from the raw

data, is shown in subplot 3. Periodograms of the raw signal _mdthe residual function have been com-

puted and are plotted in Fig. 2. Note the presence of eight depressions in the periodogram of the resi-

dual function corresponding to the most prominent periodicities in the original, unfiltered data. Histo-

grams computed from the raw signal and the residual function are plotted in Fig. 3. For each histogram

shown we have superimposed a gaussian curve (solid line) computed from a purely gaussian distribution

having the same mean and variance. Comparison of the two subplots in Fig. 3 provides an ad ocular

i demonstration of the effectiveness of spectral filtering in reducing asymmetry in the histogram of the

spectrally filtered versus the original time series. Quantitatively, this decreased asymmetry is reflected

I ira a decrease in the skewness (or third moment of the noise) from 0.1.5 (raw signal) to 0.10 (residual
II

l function).

lt should be noted here that selective spectral filtering, which we have designed to reduce the conse-

quences of serial correlation in our sequential testing scheme, does not guarantee that the degree on non-

.! normality in the data will also be reduced. Fortuitously, for 80% of the signals we have inw:stigated at

I EBR-II, the reduction in serial correlation is accompanied by a reduction lr'. the absolute value of the
t skewness for the residual function. Moreover, in the cases where there is not a reduction in skewness, it

can generally be observed that the skewness is very small to begin with, Finally, lt has been shown in a

separate investigation [7] that nonnormality is much less of a problem, in terms of affecting SPRT misi-

dentification probabilities, than is nonwhiteness.I

--- To quantitatively evaluate the improvement in whiteness effected by the spectral filtering method we'lib

employ the Fisher Kappa white noise test [8]. For each time series we compute the Fisher Kappa statis-

i tic from the defining equation
=mu

I
I
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Spectral Decomposition of Pump 1 Power
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Figure 2

Power Spectral Density of
Pump 1 Power
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Figure 3

Noise Histograms for Pump 1 Power
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]11= -ff l(COk) I(L)

where l(f.0k) is the PSD function (see Eq. 3) at discrete frequencies coi,, and I(L) signifies the largest

PSD ordinate identified in the stationary time series.

_ in words, the Kappa statistic is the ratio of the largest PSD ordinate for the signal to the average ordinate

for a PSD computed from a signal contaminated with pure white noise. For EBR-Irs pump 1 power sig-

nai used in the present example _cis 1940 and 687 for the raw signal and the residual function, respec-

tively. Thus, we can say that the spectral filtering procedure has reduced the degree of nonwhiteness in

the signal by a factor of 28. Strictly speaking, the residual function is still not a pure white noise pro-

I cess. The 95% critical value for Kappa for a time series with 214observations is 12.6. This means that
o only for computed Kappa statistics lower than 12,6 could we accept the null hypothesis that the sign_alis

i contaminated by pure white noise. The fact that our residual function is not white is reasonable on a
physical basis, for the complex interplay of mechanisms that influence the stochastic components of a

phlcsical process would not be expected to have a purely white correlation structure. The important

point, however, is that the reduction in nonwhiteness effected by the spectral filtering procedure using

only the highest eight harmonics in the raw signal has been found to preserve the pre-specified false

alarm and missed alarm probabilities in the SPRT sequential testing procedure (see below). Table I

summarizes the computed Fisher Kappa statistics for 13 EBR-II plant signals that are used in SPRT-

based surveillance systems at ANL. In every case the table shows a substantial improvement in signal

i whiteness.
..

DEMONSTRATION OF COMPLETE ST-2 PROCEDURE

The complete ST2 algorithm integrates the spectral decomposition and filtering steps illustrated above

with the SPRT binary hypothesis procedure developed in detail in Ref. 1. The general procedure is

tl demonstrated by application of a SPRT to two redundant delayed neutron detectors (designated DND A

j and DND B) whose signals were archived during long-term normal (i,e. undegraded) operation with a
._ steady DN source in EBR-II. For demonstration purposes a SPRT was designed with a false alarm rate,

o_,of 0.01. Although this value is higher than we would designate for a production surveillance system,

it gives a reasonable frequency of false alarms so that asymptotic values of occan be ob'_ained with only
tens of thousands of discrete observations. According to the theory of the SPRT, it can be easily

i proved [1,4] that for purely gaussian, independently distributed processes c_provides an upper bound to,!

i the probability (per observation interval) of obtaining a false alarm--i.e, obtaining a "data disturbance"
annunciation when, in fact, the signals under surveillance are undegraded.

|

i Figures 4 and 5 demonstrate sequences of SPRT results for raw DND signals and for spectrally-whi-

tened DND signals, respectively. In each figure the first two subplots show the DN signals from detec-

tors DND-A and DND-B, where the steady-state values of the signals have been normalized to zero.

i
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TABLE I

Effectivenessof SpectralFilteringfor MeasuredPlant Signals
......

._ ,,,

FisherKappa Test StatisticIN=16,384),,,,,

Plant Variable I.D. Raw Signal ,,,ResidualFunction

Pump I Power 1940 68.7
i

" Pump 2 Power 366 , 52.2

i Pump 1 Speed 181 25.6
_Pump 2 Speed , 299 , 30.9

Pump I Radial Vibr (top) 123 67.7

Pump 2 RadialVibr (top) 155 65..4

Pump I Radial Vibr (bottom) 1520 290.0 ......

Pump 2 Radial Vibr (bottom) 1694 80.1

i DN MonitorA 96 39.4

' DN MonitorB 81 44.9

DN DetectorI 86 36.0

DN Detector2 149_, 44.1

DN Detector3 13 8.2

i , , i , ii
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Figure4
Investigation of SPRT Misidentification Probabilities
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Figure5
Investigation of SPRT Mlsldentiflcatlon Probabilities

CASE2: SpectrallyI=llteredDN81gnats
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(Normalization to adjust for differences in calibration factor or viewing geometry for redundant sensors

does not affect the operability of the SPRT), The third subplot in each figure shows pointwtse differ-

ences of signals DND-A and DND-B, It is this difference function that is input to the SPRT algorithm,

Output from the SPRT is shown for a 250-second segment in the bottom subplot in each figure, Inter-

pretation of the SPRT output is as follows: When the SPRT index reaches a lower threshold, A, one can

conclude with a 99°/'0confidence factor that there is no degradation in the sensors. For this demonstra-

tion A is equal to -4.60, which corresponds to false-alarm and missed-alarm probabilities of 0,01. As

the figures illustrate, each time the SPRT reaches A it is reset to zero and the surveillance continues.

If the SPRT index drifts in the positive direction and exceeds a poslttve threshold, B, of +4.60, then tt

can be concluded with a 99% confidence factor that there is degradation in at least one of the sensors,

Any triggers of the postttve threshold are signified with diamond symbols tn Figs. 4 and 5, In this case,

since we can certify that the detectors were functioning properly during the time period our signals were

being archtved, ,any triggers of the positive threshold are false alarms.

If we extend sufficiently the surveillance experiment illustrated in Fig. 4 we can get an asymptotic esti-

mate of the false alarm probability o_, We have performed this exercise using 1000-observation win-

dows, tracking the frequency of false alarm trips in each window, then repeating the procedure for a

total of 16 independent windows to get an estimate of the varl_mce on this procedure for evaluating o_.

The resulting false-alarm frequency for the raw, unfiltered, signals is rf.= 0.07330 with a variance of

0.000075, (The very small variance shows that there would be only a negligible improvement in our

estimate by extending the experiment to longer data streams). This value of o_ is significantly higher

than the design value of _ 0,01, and illustrates the danger of blindly applying a SPRT test to signals

that may be contaminated by excessive serial correlation,

The computations shown in Fig. 5 employ the complete ST2 algorithm. When we repeat the foregoing

exercise using 16 independent 1000-observation windows we obtain an asymptotic cumulative false-a-

larm frequency of 0.009142 with a variance of 0.000036. This is less than (i.e. more conservative than)

the design value of _7,=.01, as desired.

It will be recalled from the Introduction that we have used the eight most prominent harmonics in the

spectral filtration stage of the ST2 surveillance algorithm. By repeating the foregoing empirical proce-

dure for evaluating the asymptotic values of o_, we have found that eight modes are sufficient for all of

the expert system input variables shown in Table I. Furthermore, by simulating subtle degradation in

individual signals, we have found that the presence of serial correlation in raw signals gives rise to

excessive missed-alarm probabilities as well. Irl this case spectral whitening is equally effective in

ensuring that pre-specified missed-alarm probabilities are not exceeded using the ST2 surveillance soft-
ware.

SUMMARY

In summary, an ST2 technique has been devised which integrates frequency-domain filtering with

, r ....... I_!



sequential testing methodology to produce a compact algorithmic structure that provides a computation-

ally tractable solution to a problem that is endemic to nuclear-plant signal surveillance. We have found
the ST2 module to provide a valuable tool in ANL's ongoing development of innovative expert system

tools for sensor-operability surveillance applications in nuclear plants; as well as in non-nuclear indus-

trial applications that require high-reliability, high-sensitivity parameter surveillance.
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