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Neural Networks Models for Linear Programming

Jean-Christophe Culioli and. Vladimir Protopopescu
Engineering Physics and Mathematics Division

Charles L. Britton, Jr., and Milton N. Ericson
Instrumentation and Control Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6364

Abstract: The purpose of this paper is to present a neural network that solves the general Linear
Programming (LP) problem. In the first part, we recall Hopfield and Tank’s circuit for LP and show
that although it converges to stable states, it does not, in general, yield admissible solutions. This is due
to the penalization treatment of the constraints. In the second part, we propose an approach based on
Lagragrange multipliers that converges to primal and dual admissible solutions. We also show that the
duality gap (measuring the optimality) can be rendered, in principle, as small as needed.

1. Introduection. The contribution of neural networks to Optimization Theory has been mainly

dedicated to NP-complete problems so far, and in particular to the Travelling Salesman Problem [1] (see
also [2] for an excellent account). Here, we consider "simpler” problems, like Linear Programming (LP)
and its variants; for which low-order polynomial algorithins are already available [3].. Although some of
these simpler problems are combinatorial by formulation (like the Assignment Problem [4]), their struc-
ture is inherently continuous and seems well adapted to a neural network solution.
The only attempts we are aware of, concerning continuous optimization problems are Hopfield and Tank’s
circuit for: LP [5]; its application to Analog Decoding [6], the work of Jeffrey and Rosner [7] for the so-
lution of variational problems, and our recent application of sigmoidic functions to general optimization
problems(8,9]. In the next Section, we give some properties of linear programs. In Section 3, we recall
some background on Hopfield and Tank’s LP network and discuss its connection with standard optimiza-
tion methods. We note that it converges to stable states which are not, in general, admissible solutions of
the problem. In Section 4, we propose a new network that, in handling the constraints, relies on duality
instead of direct penalization. This network always converges to primal and dual admissible solutions,
and the associated duality gap can be rendered as small as desired.

2. Linear Programming. We intend to solve the LP problem
(1) min'< ¢,z > subject to Az > b,

where ¢ and z are vectors in R”, b is & vector in. R™, and A is an m X n matrix, with m < n. The
brackets < .,. > denote the scalar product in R™. We assume: that problem (1) has a bounded solution
z* and, for the purpose of the forthcoming derivations, that the rank of A is ' m. We define the operation
[.T7: W=y if y<0, [y==0 if y>0,and apply it componentwise, if y is a vector. In the
following, a vector z such that Az > b will be called admissible for (1). It'is common, when dealing with
LP problems to introduce their dual problems. The dual problem associated with (1) is

2 max < b,p> subject to ATp=c, and p>0,

where AT denotes the transpose of matrix A. Note that we have also denoted the scalar product in R™
by <.,. >. The fundamental result of duality is (for a proof, see [10]):

Proposition 1. If & is admissible for (1) and p is admissible for (2) (that is ATp=¢c, p>0), then the
duality gap 6 =< ¢,& > — < b,p > is positive. If § = 0, then & 15 a solution of (1), and p is a solution

of (2).



3. Hopfield and Tank’s Neural Network for Linear Programming. The neural network
proposed in [5] for the solution of (1), contains n neurons with internal states u;, output values z; = ¢5(w),
and time response 7. We denote them as neurons (u;, z;), (i =1, ..., n). The function ¢ is assumed
linear and increasing (ga(u) = Au, X > 0). We also have m neurons (with no time response) with
internal state y; = 3, Ajiz; — b; and output values ¥; = (y; )2. There are no connections within the set
of {(uy, ;)}; neurons nor Wlthm the set of {(y;,¥;)}; neurons. On the other hand, each (u;, z;) neuron is
connected; with connection strength A;;, to the neuron (y;,v;) . The dynamics of the {(ui, z:)}; neurons
is given by the equation (that we directly write in vector form for the whole set)

du u T -
3) = =—c———AT[Az -],

An energy functional is associated with (3)
= 1 =2 1 2
@) B(e) =< ¢,z > +5llldz = | + 5= le]”.
We now prove the convergence of the network and address the optimality of the procedure.

Proposition 2. The functional E(z) is a Lyapunov functional for (3).
Proof: E(z) is bounded below since it contains a quadratic term in ||z{|. Also, we have

dE(z) T dz 1 dz
5 —<,dt>+<A{Ax—],dt T <o >
1. dz du d:c
L TlAz =Bl 4 e Sm e & 2
=<ec+ A [Az -~ b] +/\Tz, - > <= > AH H < 0.
dE ( ) i du
Thus E(z) is decreasmg along the trajectories of (3) and = 0 implies that T 0. B

The network driven by (3) is designed to solve the problem rr;in E(z); where one attempts to satisfy

the constraint by penalization. We will show that, in general, this does not imply that the network solves
the original problem (1). Let (@, Z,9; 1) be a stable state. Then Z is solution of the fixed point equation

1
(5) c+ —Z+AT[AE -8 =0

AT
We can state
Proposition 3. Two nécessary condiiions {on Atr) for & lo be admissible are

£ 3
(6) ATt < —E—Ielliﬁ-i—z, and ArAc < b,
~ ¢

Proof: Indeed, if Z is admissible, then we get # = —Arec from (5). Since the solution z* is such that
<ecz* > < <z > for every admissible z, we must have < ¢,2* > < —Arl|c||?>. By applying the
matrix A to (5) and by using the admissibility of &, we get the other condition. |
Corollary. In general, the solution of (5) is not admissible for (1).
Indeed, since At is strictly positive, whenever < ¢, ¥ > is positive or equal to zero, one cannot obtain an
admissible . Even if < ¢, z* > is negative, the second condition of (6) implies AT < Ae,b> < —|[b]|?,
which is not satisfied whenever < Ae, b > > 0. Counterexamples can be easily constructed.

4. A Primal-Dual Neural Network for Linear Programming. We now propose a neural
network named Primal-Dual because it provides admissible primal () and dual (p) vectors'. Moreover,
we will show that the duality gap can be made as small as desired.” We consider n neurons of the type
(u,z) and m neurons of the type (v,p). We assume that

(1) ==R Gy(v), p=gu(v), with 1>0, R>0, Gy(u)>0, g,(v)>0, g¢,(v)>0,
2



where R is a large bound on ||z|] which has not to be known precisely. Although the following derivations
do not use their explicit form, the functions G and g, can be chosen as G (u) = tanh(Au) (with: X not

too large in order to prevent instabilities) and g,(v) = choice of g, was proposed in [6].

It may have, however, a natural tendancy to produce numerical difficulties.
The evolution equations of these neurons are assumed to be

du T dv P
(8) = =-—c+47p, Et-_—;;—b—ym.

The main differences between (8) and (3) are the following: (7} the neurons (u,z) have no time
constant, and the relation between u and  is not totally linear, (4¢) the constraints are ”softly” penalized
by the cutput values of the neurons (v, p); (7i7) unlike the neurons (¢, y) of the Hopfield and Tank model,
the neurons (v, p) have an explicit evolution as independent state variables; and have a time constant.
These differences do not affect significantly the feasibility of an analog 1mplementatlon [11].

We now address the convergence of the network and the optimality of its fixed points:
We choose the Lyapunov functional

llpli?

9) E(z,p)=<c¢,z>= <p,Aa:—b>+2T

Convergence: E(z,p) is bounded below because ||z|| is bounded by +/nR and E contains a quadratic
term in ||p||]. It decreases along the trajectories of (8): Indeed,

dE T dz dp i ! dul 2
- =< e—A Py > =< = s Az —b— p >= =X E G (u )( E g“(vj)( ) <0.
dE(z) Lo du dv k
Thus; 5= 0 implies P 0 and 5= 0. |

Consequently, the network defined by (7) and (8) converges to a stable state (g, Z, v, p).

The admissibility and optimality of the fixed points is addressed in

Propos1txon 4. The fized point T is admissible for (1) and the fized poini p is admissible for (2). The
5112
HT

assoctated duality gap 6 =< ¢,z > — < b,p > is equal to ~——. Moreover, if the rank of A is equal to m,

P is bounded and the duality gap has a magnitude of order O(“T)

Proofy From the fixed point equations; one gets AZ — b = }% > 0. Thus z is admissible for (1). Also,

we have ATp = ¢ and since § = 94(7) > 0, p is admissible for (2). If we multiply AT5 = ¢ by Z, we get
1

< C’E > —< b,ﬁ >= ;;;“ISIP‘

If the rank of A is equal to m, then (4A4T) is an m x m positive invertible matrix. Its eigenvalues (ordered

by increasing size) a1, ..., a,, are stricly positive, and from A7H = ¢, one gets ||5|| < -—1—-HcH <M < +oo.
ay
1
Thus,(c,:i'>—<b,13>§;M2. : | |

Application. In order to get an approximation of the optimal cost, < ¢,z* >, with an absolute
2

.. M :
precision ¢ , one can choose y, = - One might expect, however, that due to the form of g,, some

bifurcation behavior can appear (See [9] for typical examples). It will thus be advisable to start the
network with a moderate x4 and increase it progressively to the value p.. This procedure would bear
some analogy with an “annealing” technique [1,9].



5. Conclusion. In this paper, we have studied two neural networks models for Linear Program-
ming, the Hopfield and Tank network, and the Primal-Dual network. We have shown that the Primal-Dual
network converges to admissible solutions and can be used to get a very good approximation of the op-
timal cost. Throughout the paper, we also addressed some implementation issues. Extensive numerical
simulations and analog circuit implementation will be our next focus [11].
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