
ORNL/TM-11375

OAK RIDGE
NATIONAL
LABORATORY PVM: A Framework for

Parallel Distributed Computing

V. S. Sunderam

J$ f; 3 jpe*

n-j l

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available
from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

NTIS price codes—Printed Copy: A03 Microfiche A01

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com­
pleteness, or usefulness of any information, apparatus, product, or process dis­
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti­
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM—11375
DE90 004390

Engineering Physics and Mathematics Division
Mathematical Sciences Section

PVM: A Framework for Parallel Distributed Computing

06
H
S
<
d
CO
Q

V. S. Sunderam
Department of Math and Computer Science

Emory University
Atlanta, GA 30322

Date Published:

•S 5 -§. a

'c
D s -2 c S *5 uj- t

*1. X? wE * So*-

•s
a. g ^ o

a- e *s -tip 'C
% "g
b GCQ >.a. >Q. o“S -w y- ^>> Im M c»• T? *i 7i

cti J-
G ^ ^ -o

b* ej2 3 •5 c

■g
8
C -
aC/5

J-J
o

o
c9
8

.8 E
11

S' E c ET 8 °

£ e C ° 3g 19 § “ M* .S
c ^ « H -S!

.2 3« -C E o.
•P »

E J E gS i
a
3 C
^ S ^ 8
fe. ou<

! ~ C

o
tD9 «

0 *C
C M
1 8 £ w E 634>
O g

>< o 2

Ok C
£ M
18 o -o

•8

"C

5 £ ,2 .23

•3
E

y vi
11
&.£
C u.(0 o

(0 G «3
^ 2 S'
■8 -S S
11 “

to eu s o C G
us a b.
*- X o

^ s^ C/2 GIm 4> 00 O g
C J3 5•c g e

S 2 k*
a e g

oH O 2 a

o 6
° c *i
c .2 2 .2 .S c/2
I ° 1
s-g-S
E 3 P

Research performed at the Mathematical Sciences Section of
Oak Ridge National Laboratory under the auspices of the Faculty Research
Participation Program of Oak Ridge Associated Universities, and supported
by the Applied Mathematical Sciences subprogram of the Office of Energy

Research, U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
operated by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

-iii-

CONTENTS

Abstract .. 1

1. Introduction .. 1

2. The User Interface .. 3

2.1 Processes and Process Initiation ... 4

2.2 Data Transfer and Barrier Synchronization ... 6

2.3 Shared Memory and Mututal Exclusion ... 7

2.4 Miscellaneous Facilities ... 9

3. PVM System Design and Implementation .. 9

3.1 Basic Facilities .. 10

3.2 Process Control ... 12

4. Results and Experiences ... 13

5. Conclusions & Future Work .. 16

References 17

PVM : A Framework for Parallel Distributed Computing

V. S. Sunderam
Department of Math and Computer Science

Emory University, Atlanta, GA 30322

ABSTRACT

The PVM system is a programming environment for the development and
execution of large concurrent or parallel applications that consist of many
interacting, but relatively independent, components. It is intended to operate on
a collection of heterogeneous computing elements interconnected by one or more
networics. The participating processors may be scalar machines, multiprocessors,
or special-purpose computers, enabling application components to execute on the
architecture most appropriate to the algorithm. PVM provides a straightforward
and general interface that permits the description of various types of algorithms
(and their interactions), while the underlying infrastructure permits the execution
of applications on a virtual computing environment that supports multiple paral­
lel computation models. PVM contains facilities for concurrent, sequential, or
conditional execution of application components, is portable to a variety of archi­
tectures, and supports failure detection (and certain forms of recovery) at the pro­
cess and processor levels.

1. Introduction

In recent years, parallel and distributed processing have been conjectured to be the most
promising solution to the computing requirements of the future. Significant advances in parallel
algorithms and architectures have demonstrated the potential for applying concurrent computa­
tion techniques to a wide variety of problems. However, most of the research efforts have concen­
trated either upon computational models [1] such as pipelining, shared variables, dataflow com­
puting, and message passing, or upon machine architectures', relatively little attention has been
given to software development environments or program construction techniques that are
required in order to translate algorithms into operational programs. This aspect is becoming more
important as parallel processing progresses from the solution of stand-alone, mathematically

-2-

precise, problems to larger and more complex software systems. Such systems often consist of
many interacting components, each with its unique requirements. Unfortunately, a coherent and
consistent framework for the specification and development of such systems does not exist.

The primary reason for this situation is the high degree of architecture dependency exhi­
bited by efficient parallel solutions to typical problems. Another reason is the fundamental
incompatibility between the different parallel programming paradigms. A third factor is the
nature of the problems themselves — typical applications have thus far been confined to isolated,
well-defined problems — usually programmed in the most suitable, machine specific language.
As applications grow larger and more complex, however, these languages (and indeed, specific
machines) will not be uniformly appropriate or efficient for all the components of a parallel sys­
tem. Certain components may be ideally suited for solution on a hypercube, for example, while
others may require extensive vector processing. Some algorithms may be best implemented using
the shared-memory paradigm, while the user-interface aspects of the system might require a
graphics engine. A real example of the above is the Global Environment Simulation project [2], a
large simulation effort to study contaminant concentrations and dispersal characteristics as a
function of various environmental factors. The computational requirements of this simulation are
vector processing (for fluid flow analysis), distributed multiprocessing (modeling contaminant
transport), high-speed scalar computation (simulation of temperature effects), and real-time
graphics for user interaction.

It should be noted that most typical computing environments already possess the hardware
base required to solve such large, parallel applications. High speed local networks with graphics
workstations, high-performance scalar engines, an occasional multiprocessor, and perhaps a vec­
tor computer are the norm rather than the exception, and will continue to be over the next few
years. However, to harness this collection of capabilities and to utilize it productively requires
considerable efforts in coordination and reconciliation between different computation models and
architectures — all of which has to be done manually. The PVM (Parallel Virtual Machine) pro­
ject is an attempt to provide a unified framework within which large parallel systems can be
developed in a straightforward and efficient manner. The overall objective of this project is to
permit a collection of heterogeneous machines on a network to be viewed as a general purpose
concurrent computation resource. Application algorithms are expressed using the most suitable
paradigm; the PVM system executes them on the most appropriate hardware available, either
directly or by emulating the particular computation model. Furthermore, it is frequently desired
to incorporate existing software (preferably with little or no modifications) into a larger system;
the PVM system is designed to enable this in a convenient and natural manner.

The PVM system provides a set of user interface primitives that may be incorporated into
existing procedural languages. Primitives exist for the invocation of processes, message transmis­
sion and reception, broadcasting, synchronization via barriers, mutual exclusion, and shared
memory. Processes may be initiated synchronously or asynchronously, and may be conditioned
upon the initiation or termination of another process, or upon the availability of data values.
Message transmission as well as file output may be preceded by invocations of specially provided
primitives to ensure that data is transmitted or stored in a machine independent form. Applica­
tion systems may be programmed using these primitives in the language of choice; different com­
ponents may even be programmed in different languages. The PVM constructs therefore permit

-3-

the most appropriate programming paradigm and language to be used for each individual com­
ponent of a parallel system while retaining the ability for components to interact.

The PVM system consists of support software that executes on participating hosts on a net­
work; the network may be local, wide-area or a combination, and the host pool may be varied
dynamically. Hosts may be scalar machines, workstations, or parallel processors — the latter
being considered an atomic computational resource by PVM. This support software interprets
requests generated by the user-level constructs and carries out the necessary actions in a machine
independent manner. In addition to implementing reliable and sequenced data transfer, distributed
consensus, and mutual exclusion, the PVM software is also responsible for the detection of pro­
cess and processor failures (including certain forms of deadlock) and executing user-defined
corrective actions. It should be mentioned that the PVM user-interface primitives have been partly
derived from and are a superset of the portable programming constructs described in [3]; an appli­
cation written using these primitives may therefore also execute directly on a specific multipro­
cessor when necessary.

Several projects similar to PVM have been undertaken in the past, and some are ongoing. A
few representative examples are listed below, with comparisons to PVM. The DPUP library [4]
emulates a loosely coupled multiprocessor on a local network, as does the dsim [5] system and
the Cosmic environment [6]. The two latter systems require the preconfiguration of a virtual
machine on which applications execute and support only basic message passing mechanisms. The
Amber project [15] is somewhat different in that the targeted environment is a collection of
homogeneous mw/h-processors. One of the operating modes within DPUP, as well as projects
such as Marionette [7] and MSPCM [8], uses the master-slave approach, where a central control­
ling process is responsible for or is involved in every system event. In addition to affecting per­
formance and being an unnatural model for certain classes of problems, this central process is
critical, and its failure leads to a complete collapse of the entire system. Another shortcoming
common to all the above is the use of virtual circuits for network communication; in addition to
overheads that may not be justifiable, practical limits on the number of connections affect the sca­
lability of applications. In addition, failure resiliency and debugging support is minimal. The
PVM system is completely distributed, supports a dynamic host pool, and assumes only that an
unreliable, unsequenced datagram delivery mechanism is available. From the application’s point
of view, pvm constructs are substantially more general in nature and encompass both the message
passing and shared memory paradigms; yet, by substituting alternative libraries, unmodified pro­
grams may execute on specific multiprocessors.

The following section describes the user interface and the important design aspects of pvm.
An overview of the PVM support software, with an emphasis on the protocol algorithms and key
implementation features follows. Preliminary results and performance figures are then presented,
and the concluding section reports on continuing and future work.

2. The User Interface

The application views the pvm system as a very general and flexible parallel computation
resource that supports common parallel programming paradigms. Application programs access

-4-

these resources by invoking function calls from within common procedural languages such as C
or Fortran. Such an interface was selected primarily for portability reasons — most multiproces­
sor applications are currently written in procedural languages with embedded, machine-specific,
function calls that perfonn process spawning, message reception and transmission, and shared
memory operations. The pvm primitives have been made the same as or very similar to the union
of these functions, thereby enabling previously written applications to be ported readily to the
pvm environment and also permitting pvm to execute applications or components thereof on
specific machines when possible. The PVM user interface syntax and semantics are presented in
this section with illustrative examples using the C language interface.

2.1. Processes and Process Initiation

In the PVM system, an application is considered to consist of components. For example, a
simulation application might consist of a partial differential equation component, a matrix solu­
tion component, and a user interface component. It should be pointed out that this definition of a
component is perhaps unconventional; usually, the term implies a phase or portion of an applica­
tion that is embodied in a subroutine - such as "the forward-substitution component of a matrix
solver". However, the PVM system is a large-granularity environment, primarily targeted at appli­
cations that are collections of relatively independent programs. In view of this, a pvm component
corresponds not to a phase in the traditional sense, but rather to a larger unit of an application.
From the system point of view, a component corresponds to an object file that is capable of being
executed as a user-level process. A compiled C program that performs LU factorization is an
example of a component. It is the responsibility of the user to compile component programs to all
target architectures on which that component may execute. Depending upon the target machine,
the compiled version of a component may either link against the PVM primitives, or machine
specific libraries, or both. A component is therefore a static entity and is identified by a name-,
associations between component names and executable versions are set up as discussed in the fol­
lowing paragraphs.

A complete description of application components, i.e. the component name and all
corresponding executables (each with an architecture tag), is obtained by the PVM support
software. This information is gathered either from a file or from a startup process, as will be
explained below. An example of a component description file is shown in Figure 1. This table
illustrates that a component, identified by a name, may be manifested as several different execut­
able files; and conversely, that multiple component names may map onto the same executable.
The first feature permits the pvm system to execute components at the most suitable location,
while the second allows the user to force a specific location as will be explained below.

A process is an executing instance of a component and is identified by the component name
and a positive instance number. Processes may be initiated from within components or from a
"startup" process that may be manually executed on any participating host. A process is initiated
by invoking the initiate primitive with the component name as an argument; the instance number
of the initiated process is returned to the user. Prior to executing any PVM construct, however, a
process must invoke the enroll function; this establishes a (machine dependent) mechanism by
which a user process may communicate with the PVM system. A typical section of code executed

-5-

Name Location Object file Architecture
factor iPSC /uO/host/factorl ipse
factor msrsun /usr/alg/math/factor sun3
factor msrsun /usr/alg4/math/factor sun4
chol csvax2 /usr/matrix/chol vax
chol vmsvax JOE:CHOL.OBJ vms
tool msrsun /usr/view/graph/obj sun3
factor2 iPSC AiO/host/factorl ipse

Figure 1: Example Component Description File

by a startup process is shown in Figure 2. It should be noted in the example shown that the phy­
sical location of the initiated processes is transparent to the invoking process; the pvm system
determines the best machine on which to execute a process based upon the current host pool, the
alternative architectures on which a component may execute, and the load factor on those
machines. However, a specific location may be forced by declaring a new component name (as in
the last line of the component description file above) and initiating that component.

enroll("startup");
for (1=0;i<10;i++)

instance[1] = initiate("factor");

Figure 2 : Initiation of multiple component instances

The initiate mechanism is, by default, asynchronous. Control is returned to the invoking
process as soon as the instance number of the process is available. However, under certain cir­
cumstances, it may be necessary to initiate a component only after another process has ter­
minated. The initiate? variant allows this by permitting the user to defer initiation of a com­
ponent until after another has terminated. For example,

initiateP("factor","matmul",3);

will initiate an instance of "factor" only after instance number 3 of "matmul" has terminated. A
third-argument value of 0 will cause "factor" to be initiated only when all instances of "matmul"
terminate. In an analogous fashion, initiateD is used to execute components conditional upon the
occurrence of a user-signaled event, normally the availability of data. Thus,

initiateD("chol","dataset?");

will delay the execution of "chol" until some other process signals the occurrence of the
"datasetV" event, by invoking the ready("dataset7") primitive. All variants of initiate return a
negative result if a process could not be initiated, thereby enabling the invoker to take appropriate
action. The global component dependencies of the application may therefore be specified within

-6-

a startup process by the use of appropriate initiate primitives or variants, embedded within com­
mon selection and iteration control flow constructs available in the host language. Of course, a
component itself may be composed of several subcomponents — whose dependencies and execu­
tion order are indicated in an analogous manner within that component. Two other constructs
termed terminate and waitprocess are also provided. Both take a component name and an
instance number (or 0 to mean all instances) as arguments; the first aborts the process while the
second blocks the caller until the process completes.

2.2. Data Transfer and Barrier Synchronization

Inter-process communication via message passing is one of the basic facilities supported by
PVM. In the interest of portability and wide applicability, the primitives to accomplish message
transfer have been derived from existing implementations (e.g [9]), including those described in
[3]. Certain aspects, however, are necessarily different; primary among them is addressing. Since
the physical location of processes is deliberately transparent to user programs, message destina­
tions are identified by a {component name, instance number} pair. Furthermore, owing to the
heterogeneous nature of the underlying hardware that PVM executes upon, it is necessary for user
programs to send and receive typed data in a machine independent form. To enable this, a set of
conversion routines has been provided — user programs invoke these routines to construct mes­
sage buffers and to retrieve data values from incoming messages.

In keeping with popular message passing mechanisms, the PVM send and receive constructs
incorporate a "type" argument. This is the only argument to receive, while send requires a desti­
nation component name and instance number as additional arguments. The type parameter per­
mits the selective reception of messages and has been found to be extremely useful in practical
applications. It should be noted that neither the data buffer itself nor its length appear explicitly
as arguments — owing to data representation and size differences on different machines, user
programs should only access messages using the conversion routines. Shown in Figure 3 is an
example of data transfer between two component processes.

In order for a receiving process to obtain additional information about the most recently
received message, the recvinfo construct is provided; this returns the name and instance number
of the sending process and the message length. In addition, two variants of the recv construct are
provided. The first, recvl, permits the user to specify the maximum number of messages of other
types that may arrive in the interim (i.e. while waiting for a message of the specified type). If a
message of the anticipated type does not arrive within this window, an error value is returned to
the program, thus enabling the detection of and possible recovery from incorrect program
behavior or unacceptable levels of asynchrony. The second variant, recv2, allows the
specification of a timeout value and is valuable in preventing certain forms of deadlock as well as
in user-level detection of failed components. Also provided is the broadcast primitive that sends
a message to all instances of a specified component.

Synchronization via barriers is a common construct in many applications. Under PVM, bar­
rier synchronization is accomplished using the barrier construct. An instance of a component
invoking this construct will block until all instances of the component also arrive at the barrier.

-7-

/* Sending Process */
/*--------------------------------- */
initsendO ; /* Initialize send buffer */
putstring("The square root of ")i; /* Store values in */
putint(2); /* machine independent */
putstring("is "); /* form */
putfloat(1.414);
send("receiver",4,99); /* Instance 4; type 99 */

/* Receiving Process */
/*------------------ */
char msgl [32] ,xnsg2 [4] ;
int num; float sqnum;
recv(99); /* Receive msg of type 99 */
getstring(msgl); /* Extract values in */
getint(£num); /* a machine specific */
getstring(msg2); /* manner */
getfloat(Ssqnum);

Figure 3 : User process data transfer

The pvm system attempts to detect and correct barrier deadlocks by notifying invoking processes
if some instances of a component terminate before they reach a barrier — live processes return
from a barrier call with a negative result value in such situations. In addition to barriers, or as an
alternative, the waituntil construct is also provided as a means of synchronization. This construct
(suggested in [10]) takes an event name as an argument and blocks until another process indicates
the occurrence of that event by using the ready primitive mentioned earlier.

23. Shared Memory and Mutual Exclusion

The use of shared memory to synchronize and communicate between processes is a con­
venient and well understood paradigm, and the PVM system provides such an interface for algo­
rithms that are best expressed in these terms. It should be noted, however, that in most cases this
facility is emulated on distributed memory machines and some performance degradation should
be anticipated. The primitives provided are modeled once again after popular, existing implemen­
tations. A shared memory segment is first allocated by invoking the shmget construct that takes
a string valued identifier and a segment size in bytes. To acquire a shared memory segment for
use, a user process invokes the shmat construct, specifying the segment identifier, the address
within the process at which the segment is to be mapped, a flag indicating whether the segment is
to be mapped read-only or read-write, and a timeout value. This construct implicitly incorporates
a lock operation; if mutually exclusive access to the segment cannot be provided, the invoking
process is suspended — for a period not to exceed the specified timeout value.

-8-

The attach operation described above maps a contiguous, untyped block of bytes at the
specified address. In most situations however, shared memory segments will be used to store and
manipulate typed data. In order to permit this among dissimilar machines, typed variants of the
attach construct are provided. For example, the shmatint construct takes an integer pointer as its
second argument, while the shmatfloat variant is used for shared memory regions that hold float­
ing point values. (It should be noted that typed data transfer between dissimilar architectures
could lead to loss of precision or to truncation owing to wordsize differences. Both message
passing and shared memory mechanisms are subject to this drawback. The PVM system attempts
to minimize this by utilizing the laigest size possible for typed data values.) When a process no
longer needs exclusive access to a region, it invokes the shmdt construct (or a typed variant)
whereupon the lock is released and the region unmapped. Finally, the shmfree construct is used
to deallocate a segment of shared memory when it is no longer required. Shown in Figure 4 is an
example of the use of these constructs to pass an array of real numbers between two processes.

/* Process A */
/*--------------------- */
if (shmget("matrx",1024)) error();/*
while /*

(shmatfloat("matrx",fp,"RW",5));
for (i=0;i<256;i++) *fp++ = a[i]; /*
shmdtfloat("matrx"); /*

Allocation failure */
Try to lock & map seg */

Fill in shmem segment */
Unlock & unmap region */

/* Process B */
/*------------------*/
while

(shmatfloat("matrx",fp,"R",5))
for (i=0;i<256;i++) a[i] = *fp++;
shmdtfloat("matrx");
shmfree("matrx");

/* Lock & map; note:reader*/
/* may lock before writer */
/* Read out values */
/* Unlock & unmap region */
/* Deallocate mem segment */

Figure 4 : Use of shared memory for IPC

While shared memory is perhaps the most common resource that processes require mutually
exclusive access to, it is possible that the PVM environment contains other resources that
processes must access in a similar manner. To accommodate such requirements, a generalized
locking facility is also provided. The lock construct permits the logical locking of an entity that is
named by a string argument; the PVM system blocks other processes wishing to lock this entity
until the possessor invokes the unlock construct. For example, different components of a large
application may wish to output results periodically to a user terminal. To avoid interference and
to distinguish the source of the output, components may adopt a convention that requires locking
"terminal" before printing messages or results. Another situation where such a facility could
be useful may be found in the shared memory example in Figure 4. In that example, it is easy to
see that the processes may access the shared memory segment in an incorrect order even though
each will have exclusive access to it. A possible rectification of this situation is to use the lock
construct as shown in Figure 5; however, in practice it is more likely that a transmitted message
or the waituntil facility will be used to resolve such situations.

-9-

/* Process A */
/*---------------------*/
lock("fillmatrix",5);
/* Allocate, attach, £111, and detach shared mem segment. */
unlock("fillmatrix");

/* Process B */
/*---------------------*/
loop:

lock("fillmatrix",5);
if (shmatfloat(...) = SEGMENT_NONEXISTENT) {

unlock("fillmatrix");
sleep(1);
goto loop;

>
/* Read values out of shared mem segment, detach, & free */

Figure 5 : Use of the lock construct

2.4. Miscellaneous Facilities

In addition to the primary constructs described in the preceding sections, a few miscellane­
ous constructs are also provided. The status construct takes a component name and instance
number as arguments and returns status and location information regarding that component. The
entercomp construct permits dynamic additions to the component description table. The shmstat
construct is used to obtain information about active shared memory regions, while the lockstat
primitive reports the status of active locks. A complete list of all the user interface constructs
along with their argument lists and a one-line description is given in the appendix.

3. PVM System Design and Implementation

The PVM support software executes as a user-level process on each host in the participant
pool. An initial set of participating hosts is statically identified; additions or deletions are possible
during operation by means of an administration interface. The PVM system is designed to be
implemented in a manner that requires no operating system changes or modifications, and porting
efforts to varied operating system environments are minimal. The PVM support process (termed
pvmd) on a host is responsible for all application component processes executing on that host;
however, there is no central or master instance of pvmd. Control is completely distributed (by vir­
tue of all pvmd processes possessing global knowledge) in the interest of avoiding performance
bottlenecks and increasing fault tolerance. The pvmd processes are initiated on each participating
host either manually, through the administration interface, or via a machine/OS dependent
mechanism such as inetd in the Unix environment. In this section, the key design aspects of the
pvmd software are discussed with an emphasis on the protocol algorithms used.

-10-

3.1. Basic Facilities

In terms of networic capabilities, the PVM system assumes only that unreliable, unse­
quenced, point-to-point data transfer (but with data integrity) facilities are supported by the
hardware platform on which it executes. The required reliability and sequencing, as well as other
necessary operations such as broadcast, are built into the pvm system in the interest of efficiency
and portability. While it is true that most operating systems in existence already support reliable
and sequenced data delivery, in most cases this is via the use of virtual circuits — for the pro­
jected use of PVM the overheads and scalability limitations of using such a service directly did
not warrant its adoption. In the test implementations of PVM, the UDP [11] protocol was used;
this deliberate choice of a simple datagram protocol also permits relatively simple porting or pro­
tocol conversion when pvm is to be installed under a different operating system environment.

Across the network, pvmd processes communicate using UDP datagrams. The "well known
port" approach is used for addressing; all incoming messages are received by pvmd processes on a
predetermined port number. For user-process to user-process communication, the following
scheme is employed. The first communication instance between any two entities is routed
through the pvmd processes on the source and destination machines. Location and port number
information is appended to this exchange; the PVM routines (linked to the user process) that
implement send and recv cache this information, thus enabling direct communication for subse­
quent exchanges. Local user processes communicate with pvmd using the most efficient machine
dependent mechanism available and the development of this mechanism is deemed part of the
installation procedure. However, the generic version of pvmd may be adopted; this utilizes UDP
datagrams once again, via the loopback interface if one is available. The pvmd process uses a dif­
ferent, predetermined port number for incoming messages from all local user processes.

To achieve reliable and sequenced point-to-point communications, the pvmd processes use a
positive acknowledgment scheme and an additional header that contains sequence numbers as
well as fragmentation and reassembly information. Unacknowledged transmissions are retried a
parameterized number of times after which the recipient process or processor is presumed to be
inoperative. The sequence numbers are destination specific and are used by the message recipient
for sequencing as well as for duplicate detection. The header is placed at the end of a UDP
datagram to reduce copying overheads, and single datagram sizes are restricted to the smallest
MTU (maximum transmission unit) of all participating hosts. When first initiated, pvmd
processes determine the protocol specific addresses of all participating hosts and proceed to ser­
vice incoming requests from the network or user processes in an infinite loop.

Each pvmd process maintains information concerning the location and status of all applica­
tion component processes. A user send is addressed to a component name and instance number,
the local pvmd determines the physical location of that process and forwards the message to the
remote pvmd. As described, the user process library performs this translation for the second and
subsequent messages. The source component name and instance number are appended to the
message, enabling message delivery with an indication of the sender’s identity. As mentioned,
executing the enroll construct is a precondition to user process participation — in the UDP
implementation, this supplies to the local pvmd the receiving port number of the user process.

-11-

Broadcast is a commonly performed operation in the PVM system, both because applica­
tions desire such a facility and since it is inherent to the completely distributed nature of the PVM
support software. All pvmd processes maintain information regarding all processes, shared
memory segments, and locks, to guard against loss of context and state in the event of failures.
User process broadcasts are first delivered sequentially to local recipient user processes after
which the local pvmd process broadcasts over the network to all other pvmd processes that in turn,
deliver the message to their local user process recipients. Although most computing environments
support a network broadcast facility, pvmd broadcast is implemented in PVM using point-to-point
messages with recursive doubling. This decision was made in the interest of portability and
efficiency; given that network broadcast is unreliable, acknowledgments are necessary from each
recipient, resulting in 0(p) time (p +1 sequential steps are to be performed by the originator),
while recursive doubling broadcast is accomplished in O (log2 p) time, where p is the number of
processors. The participating pool of hosts is logically numbered from 0 top-1, and the origina­
tor (or root) of the broadcast is part of the broadcast message. There is one pvmd process per host,
which represents that processor. Broadcast proceeds in "rounds", with the number of processors
contributing to the broadcast effort doubling in each round. In any round, processor i transmits
to i + 2r mod p and receives an acknowledgment. A processor j joins the broadcast effort at
round rj, where r; = no. of significant bits in (j - root) mod p. In the event of processor
failure, the pvmd process that first detects the failure assumes the broadcast duties of the failed
processor. If the quantity 2(2r) is less than 21og2p, failure notification is piggybacked on the
broadcast, at the end of which the remaining processors are individually informed. Otherwise, the
detecting processor initiates another broadcast with failure information, at completion of the
current broadcast.

The pvmd processes execute a finite state machine which gives precedence to messages
(requests) incoming while another activity is in progress. Such a scheme is adopted to avoid
deadlock; two processes transmitting to each other may both wait indefinitely for each others ack­
nowledgment if this precedence rule were not followed. It should also be pointed out that in the
case of PVM hardware platforms where wide area networks are involved, the choice of an
appropriate timeout value can significantly affect the performance of the data transfer mechan­
isms and the broadcast process. Further, the present implementation does not perform any optimi­
zations in the broadcast scheme when a geographically distant host is at a non-leaf position in the
broadcast spanning tree.

Mutual exclusion is another primitive required both in response to user requests as well as
for pvmd coordination. Examples are exclusive access to emulated shared memory, general
resource locking, and assignment of unique instance munbers for application component
processes. Distributed mutual exclusion is normally achieved by unanimous or majority con­
sensus; a requesting process that receives permission from a certain number of processes is
deemed to have acquired the lock. Different strategies, varying in their approach, efficiency, and
level of failure resiliency have been proposed and representative methods are described in [12,
13, 14]. The strategy adopted in PVM is somewhat different from these approaches, but the algo­
rithm is efficient and, more importantly, is integrated with the required distribution to all pvmds
of lock location information.

-12-

A pvmd process, either for its own purposes or on behalf of a local user process, attempts to
obtain a lock by broadcasting a "claim" for the lock. Since all pvmd processes possess knowledge
regarding the use (and location) of all locks, such an attempt will, of course, only be made when a
lock is known to be free at the start of the claim. In the absence of conflicting claims (a situation
most likely to be encountered in practice), the requester, after the broadcast has been completed,
can assume that the lock has been successfully obtained. In the process, all other pvmds update
their lock table information, and (implicitly) grant the requester permission for exclusive access
to the particular resource.

It is of course possible that two processes may initiate claims on the same resource before
either has received the other’s request. In pvm, such situations are resolved using a heuristic that
assumes that communication between any pair of processors takes the same amount of time. In
particular, consider two processors (pvmd processes) A and B that wish to acquire the same lock,
and another processor C. Note that (B ,C} and {A ,C} are in the broadcast spanning trees of A
and B respectively, possibly at different depths. It may be assumed without loss of generality that
A’s processor number is less than that of B. Under the constant time assumption, both A and B
will receive each others claims before their broadcast is completed. When B receives A’s claim,
it computes the number of rounds that A’s broadcast has proceeded; if this number is greater than
the number of rounds that its own broadcast has proceeded, B surrenders its claim to the lock. An
identical (first-claim, first served) policy is followed by A. If the broadcast progress metrics are
the same, the lower numbered processor is given priority and is considered to have obtained the
lock. The passive processor C also makes the same decision since it has the capability of comput­
ing the number of rounds of broadcast progress that each claimant has made when the second
such broadcast arrives.

In practice however, communication times between arbitrary pairs of processors may not be
constant; further, intervening messages of other types may skew the propagation time of a broad­
cast claim. For practical safety therefore, the originators of conflicting claims exchange a
confirmatory message — with the claim being abandoned if their respective notions of the suc­
cessful claimant are not in agreement. In such a situation, the lower numbered processor broad­
casts a "reset lock" message, and the entire process is started afresh, but without competition from
the "losing" processor. In case of process or processor failures, the strategy of all pvmd processes
possessing all information is used to avoid undesirable situations. If a process or processor hold­
ing a lock terminates without releasing it, the particular resource is marked as "defunct"; further
requests to the resource are denied until an explicit reset is performed.

3.2. Process control

The initiation order and process dependencies of application components are described by
the use of appropriate initiate constmcts embedded within host language control flow statements
as described in the preceding section. This implies that it is not possible to determine statically
the application process flow graph as component initiations may be conditional or repeated based
upon parameters known only at execution time. The pvm system therefore performs process ini­
tiations in response to requests based upon the resources available and load conditions at the
moment of the request — rather than by constmcting a predetermined static schedule and process

-13-

to processor assignments.

When an application component process makes an initiate request, the local pvmd process
first determines a candidate pool of target hosts based upon the information in the component
description file. One host is then selected from this pool based upon the following algorithm:
(1) Select next host from pool in round-robin manner, based upon all initiations that originated

here.
(2) Obtain load metric (decayed average of number of processes in run queue) from this poten­

tial target host.
(3) If this quantity is less than a prespecified threshold, select this host.
(4) Otherwise, repeat the process. If no host has a load factor below the threshold, the host with

the lowest load is the selected target

Once the target host is identified, the local pvmd sends the initiate request to the pvmd process on
the remote host where the application component is initiated. The remote pvmd then broadcasts
notification of this event to all processors, simultaneously claiming an instance number for this
initiation (by simply incrementing the last previous instance number for the component).
Conflicting claims for the same instance number are again resolved as in the case of multiple
claims to a lock, with a "losing" processor using a higher value. Once again, consistent conflict
resolution is confirmed by an exchange of messages between all claimants and reset actions are
performed in the case of disagreement. Application process termination information is also
broadcast to all pvmd processes. Conditional variants of initiate are saved by the local pvmd, and
this queue is inspected and appropriate action taken when the particular event occurs.

In the PVM system, shared memory is emulated by first creating an image of a memory seg­
ment on secondary storage. A file of the requested size is created; for efficiency and failure resi­
liency reasons, the local pvmd (the processor at which the creation request originated) attempts to
locate the file on a device that is accessible to other processors via a network file system. Mutual
exclusion, both for creation as well as for access, is achieved as described earlier. A pvmd process
that has acquired a lock (on behalf of a local application process) copies the file into the requested
address space; this is done directly if the file is accessible directly, and with the assistance of the
remote pvmd if it is not. A user release request results in the specified memory area being copied
back to the file unless the lock request was for read-only access. It should be noted that creation,
locking, unlocking, and deallocation (resulting in file removal) events are broadcast to all pvmds;
given the conflict resolution rules and highest priority to incoming requests, undesirable incon­
sistencies are avoided.

4. Results and Experiences

To facilitate its use and to determine its effectiveness, the PVM system has been imple­
mented on a variety of machines including Sun 3/50 workstations, Vax 11/785 and Sun 4/280
servers, a 64 node Intel iPSC/2 hypercube, and a 12 processor Sequent shared-memory multipro­
cessor. The minimal assumptions made regarding the underlying facilities available greatly
simplified the implementation efforts; the software could be ported (from a base Sun 3

-14-

implementation) to to all the environments with changes necessary only in data representation
and conversion utilities. In the implementation, the pvmd processes run independently, while the
user level routines are supplied as a set of libraries to be linked in with application components.
Initial experiences with the use of PVM are reported in this section.

The efficiency of user-level data transfer is perhaps the most critical aspect of any distri­
buted computing environment. In the PVM system, low latency data transfer has been provided
without sacrificing location transparency, and a datagram protocol is used so that overheads of
more heavyweight protocols are avoided. It is anticipated that a large proportion of the use of
PVM will be constrained to local networks, with only a few applications wishing to execute com­
ponents on geographically distant hosts. The protocols used by PVM therefore incur the overheads
of retransmission and sequencing only when the underlying network quality is poor; more than
95% of local network communications typically succeed on the first attempt Table 1 shows the
message delivery times for varying message sizes under pvm between two Sun 3/50 systems on a
10 MB/s Ethernet. It should be noted that these figures represent elapsed time from the start of
message transmission to the receipt of positive acknowledgment and are averages over several
runs performed under varying host and network loads.

Message size (bvtes) 8 128 256 512 1024
First instance 15 ms 18 ms 22 ms 25 ms 30 ms
Subsequent instances 6 ms 8 ms 10 ms 12 ms 15 ms

Table 1: User process data transfer times in pvm

Broadcast, since it is used heavily within PVM, is another important factor in the performance of
the system. It was observed that for broadcast among pvmd processes, the calculated performance
of the recursive doubling algorithm is consistent with actual behavior. Acknowledged message
transmission on a single branch of the broadcast spanning tree required between 4 and 9 mil­
liseconds for a (typical) 100-byte message, depending upon the speed and load on the processors
involved. This translated to measured figures of 15, 28, 35, and 50 milliseconds for typical
broadcasts to 3, 7, 15, and 31 hosts respectively. For user process broadcasts, the figures vary
widely, owing to the fact that pvmd processes deliver broadcasts sequentially to local recipients.
Thus, if a large percentage of the user process broadcast group were physically executing on one
host, the sequential delivery time for that host would dominate the total broadcast time. Table 2
shows typical time requirements for user broadcast, under the assumption that the broadcast
groups are evenly distributed among participating hosts.

Owing to the manner in which process initiation and mutual exclusion are implemented, the
time taken for these operations are almost identical to that for 100-byte broadcasts between pvmd
processes. In the current implementation, barrier synchronization is also performed using broad­
casts. When a user process executes a barrier call, the local pvmd process first waits until all parti­
cipating user components on this host also arrive at the barrier. This aggregate notification is then
broadcast to the other pvmd processes. When all local and remote user processes are known to
have arrived at the barrier, each pvmd signals the processes local to its processor to proceed. The

-15-

No. of
processors

No. of
processes

Message size (bytes)
8 128 256 512 1024

4 4 18 ms 22 ms 26 ms 30 ms 35 ms
4 8 21 ms 26 ms 30 ms 35 ms 41 ms
8 8 39 ms 48 ms 60 ms 75 ms 90 ms
8 16 47 ms 57 ms 70 ms 86 ms 105 ms

16 16 65 ms 76 ms 91 ms 110 ms 130 ms
16 32 95 ms 110 ms 125 ms 145 ms 180 ms

Table 2 : User process broadcast timings in PVM

performance of the barrier pvm primitive was tested using a sample application that invoked the
barrier construct twice consecutively, with the second invocation being timed. Shown in Table 3
are the observed measurements. When the number of participants is large, the burst of simultane­
ous broadcasts resulted in lost messages, accounting for the disproportionate increase in time.

No. of
processors

No. of
processes

Time
(msecs)

4 4 40
4 8 100
8 8 150
8 16 250

16 16 1200
16 32 1550
32 32 4000
32 64 7100

Table 3 : Barrier synchronization timings in PVM

Although the PVM system has not yet been used for a heterogeneous application (one in
which different components have different requirements), two existing multiprocessor codes have
been ported to run on the system. The first is numerical integration using the rectangle rule. The
results from this experiment were uninterestingly predictable; on PVM, scaling in the number of
processors or the number of rectangles resulted in a linear performance increase. Furthermore,
the performance ratio between PVM and the iPSC/2 multiprocessor for this problem was constant
— and consistent with the inherent processor speed differences. The second application is Chole-
sky matrix factorization [16] — an application that has a relatively high communication to com­
putation ratio. Table 4 shows the elapsed times for this problem run on a network of Sun 3/50
machines for varying problem sizes. Shown in parentheses adjacent to each timing are the
corresponding times for running the same program on an Intel iPSC/2 hypercube. In this experi­
ment, no attempt was made to place more than one component process on a host; however, it
should be noted that each participating host was also being used simultaneously for general pur­
pose editing, compilation, etc.

-16-

No. of
processors 100

Problem size (Order of Matrix)
200 500 1000

2 6 (2) 35 (30) 260 (245) 1950 (1923)
4 7 (2) 22 (16) 130 (120) 990 (970)
8 9 (1.5) 17 (9) 75 (64) 610 (490)

16 14 (1) 12 (6) 46 (34) 342 (255)

Table 4 : Times (in seconds) for Cholesky factorization

The anomaly apparent in the first column of Table 4 was traced down to the nature of the
Cholesky algorithm — for a small matrix, the simultaneous broadcasts of every process’s matrix
column to a (relatively) large number of processors resulted in a high percentage of dropped
packets, leading to retransmissions and elapsed timeouts. For larger problems however, it can be
seen that the performance of PVM is acceptable at the least, considering that the application is a
substantially communication oriented one and that general purpose machines on a local network
were used. It should also be pointed out that these figures are 2 to 4 times better than those for
other distributed multiprocessor simulators such as dsim[5]. Furthermore, the factorization pro­
gram was built for performance measurement purposes and therefore internally generated the
matrix elements and did not output the factorized results. Given the usual difficulty and
inefficiencies in I/O from within the nodes in a distributed memory machine, it is expected that
PVM will compare much more favorably against hardware multiprocessors when significant
amounts of I/O are performed.

5. Conclusions & Future Work

The primary motivation for the PVM project is derived from the existing and anticipated
need for a general, flexible, and inexpensive concurrent programming environment. The success­
ful implementation of the system has demonstrated that such a framework can be provided and
can execute on existing hardware bases, with the benefits of a procedural programming interface
and straightforward constructs for access to various resources. The most noteworthy features of
PVM are the support of multiple models of computation and a heterogeneous collection of
machines; the provided framework enables interaction between application components and
machine architectures that are normally incompatible. Anticipating that large and complex paral­
lel systems will require error indication and failure detection capabilities, such features have been
built into the PVM system and are likely to be valuable. From the performance point of view, pvm
has proven to be acceptable even for applications with a high communication to computation
ratio — although its primary intent is to support applications with much larger grainsize and less
interaction. Perhaps of more importance in certain situations is the ability of PVM to utilize
resources that already exist and would be wasted otherwise, not to mention its value as a proto­
typing tool for new algorithms or applications. The simplicity of porting the PVM system as well
as application software also enhances its appeal and will contribute to its increased use.

-17-

There are, however, several aspects to PVM that require further work; some efforts are ongo­
ing while others are planned for the future. It is evident that the data transfer, broadcast, and
mutual exclusion protocols are the most crucial parts of the system, and work is in progress to
improve these. Barrier synchronization should be implemented using a more effective strategy
such as dimensional exchange to reduce message losses when a large number of processes arrive
at a barrier simultaneously. Conflict resolution in the locking algorithm presently uses a heuristic
method — a provably correct formalization of this will be undertaken soon. From the application
point of view, certain additional features might be desirable such as (1) the ability to coalesce
emulated and real shared memory, and (2) to dynamically optimize message passing, locking etc.,
depending on the architecture on which a component instance is executing. Also planned for the
future are a graphical interface for the specification of component execution order and interac­
tions, as well as debugging and execution history trace facilities.

Acknowledgements

The author would like to thank M. T. Heath, G. A. Geist, T. H. Dunigan, and D. A.
Poplawski for helpful discussions during the course of this work and for their comments on ear­
lier versions of this paper.

References

[1] K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill,
New York, 1984.

[2] H. Narang, R. Flanery, J. Drake, Design of a Simulation Interface for a Parallel Computing
Environment, Oak Ridge National Laboratories Report, preprint.

[3] G. A. Geist, M. T. Heath, B. W. Peyton, P. H. Worley, A Machine Independent Communi­
cation Library, Proceedings of the Hypercube Concurrent Computers Conference 1989, J.
Gustafson ed., to appear.

[4] T. J. Gardner, I. M. Gerard, C. R Mowers, E. Nemeth, R. B. Schnabel, DPUP : A Distri­
buted Processing Utilities Package, Computer Science Technical Report, University of
Colorado, Boulder, 1986.

[5] T. H. Dunigan, Hypercube Simulation on a Local Area Network, Oak Ridge National
Laboratory Report ORNL/TM-10685, November 1988.

[6] C. Seitz, J. Seizovic, W. K. Su, The C programmer’s Abbreviated Guide to Multicomputer
Programming, Caltech Computer Science Report, CS-TR-88-1, January 1988.

[7] M. Sullivan, D. Anderson, Marionette: A System for Parallel Distributed Programming
Using a MasterlSlave Model, Proceedings of the 9th International Conference on Distri­
buted Computing Systems, June 1989, pp. 181-188.

[8] G. Riccardi, B. Traversal, U. Chandra, A Master-Slaves Parallel Computation Model,
Supercomputer Computations Research Institute Report, Florida State University, June
1989.

-18-

[9] Intel iPSC/2 Programmer’s Reference Manual, Intel Corporation, Beaverton, OR, March
1988.

[10] A. Karp, Programming for Parallelism, IEEE Computer, May 1987, pp. 43-57.
[11] J. B. Postel, User Datagram Protocol, Internet Request for Comments RFC-768, August

1980.
[12] N. Maekawa, A 'fn Algorithm for Mutual Exclusion in Decentralized Systems, ACM Tran­

sactions on Computer Systems, May 1985, pp. 145-159.
[13] K. Raymond, A Tree Based Algorithm for Distributed Mutual Exclusion, ACM Transac­

tions on Computer Systems, February 1989, pp. 61-77.
[14] D. Agarwal, A. E. Abbadi, An Efficient Solution to the Distributed Mutual Exclusion Prob­

lem, Proceedings of the Principles of Distributed Computing Conference, Edmonton,
August 1989 (to appear).

[15] J. S. Chase et. al.. The Amber System: Parallel Programming on a Network of Multiproces­
sors, to appear in 12th SOSP, Litchfield Park, November 1989.

[16] G. A. Geist, M. T. Heath, Matrix Factorization on a Hypercube Multiprocessors, in Hyper­
cube Multiprocessors 1986, SIAM, Philadelphia, 1986, pp. 161-180.

-19-

Appendix — PVM User Interface Constructs

enroll(</ujme>)

Enroll calling process as <name>. Returns instance number.

initiate(<c0/np£>n£/ir name>)
Start new process specified by <component name>. Returns instance number.

in\ti&teV{<namel>,<name2>,<inwn>)
Start new instance of <namel> when <name2>/<inum> terminates.

initiateD(</wime>,<evertf>)
Start new instance of <name> when <event> occurs.

ready(<event>)
Inform PVM system of occurrence of <event>.

termmate(<name>,<inum>)
Terminate instance <inum> of component <name>.

waitprocess(<name>,<m«ffi>)
Block caller until instance <inum> of <name> terminates.

send(<name>, <inum> ,<type>)
Send message of specified type to specified destination process. Negative return value on
failure.

rec\(<type>)
Receive message of specified type.

recvl(< jy/?e>, <other_limit>)

Receive message of specified type; <other_limit> msgs of other types allowed. Negative
return value on failure.

rec\2(<typel >,<timeout>)
Receive message of specified type within <timeout> seconds. Negative return value on
failure.

putstring(<srrmg>)
Store <string> in send buffer in machine independent form.

putint(<nw/w>)
Store integer in send buffer in machine independent form.

putfloat(</rt«/n>)
Store real number in send buffer in machine independent form.

getstring(< jrring_ptr>)
Retreive string from receive buffer in machine dependent form.

-20-

getint(<integer_ptr>)
Retreive integer from receive buffer in machine dependent form.

getfloat(</foaf_ptr>)
Retreive real number from receive buffer in machine dependent form.

rec\‘mfo(<string_ptr>,<inum_ptr>,<len_ptr>)
Return source name, instance number, and length of last received message.

broadcast(</uzme>)
Broadcast send buffer to all instances of <name>. Returns actual number of recipients.

barrier()
Blocks caller until all instances arrive at barrier. Negative return value if some instances
have terminated.

waituntil(<eve«r>)
Blocks caller until specified event occurs.

shmget(</key>,<s/ze>)
Allocates shared memory segment of specified size identified by <key>. A negative return
value indicates that the key value is already in use.

shmat(<key>, <ptr>, <flag>, <timeout>)
Locks shared memory segment identified by <key> and maps segment at caller’s address
space starting at ptr>. "R" or "RW" are possible flag values; a negative value is returned if
the attach does not succeed within <timeout> seconds. A 0 timeout value causes the caller
to block until successful.

shmatint(<key > ,<integer_ptr>, <flag> ,<timeout>)
Variant of shmat that maps segment in typed form as integer array.

shmatfloat(<key>, <float_ptr>, <flag> ,<timeout>)
Variant of shmat that maps segment in typed form as float array.

shmdt(<)fcey>, </?//■>)

Unlocks and unmaps specified shared memory segment from process’ address space indi­
cated by <ptr>.

shm&t\nt(<key>,<integer_ptr>)
Unlocks and unmaps specified shared memory segment in a typed form from process’
address space indicated by <integer_ptr>.

shmdtfloat(<key>,<float_ptr>)
Unlocks and unmaps specified shared memory segment in a typed form from process’
address space indicated by <float_ptr>.

shmfree(</:ey>)
Deallocates specified shared memory segment.

-21

\ock{<resource_name>,<timeout>)
Peraiits exclusive access to abstract resource identified by string-valued <resource_name>.
Negative return value indicates resource could not be acquired within specified timeout
period.

nn\ocVi{<resource_name>)
Releases lock on previously acquired resource.

status(<component_name>,<inum>, <stat_ptr>,<loc_ptr>)
Takes string valued component name and an instance number and returns the status
(O=nonexistent, l=active) and location (processor number in the range 0 — p) of that com­
ponent instance.

£nttrcQmp(<name>,<loc_machine>,<objJile>,<arch>)
Permits a component description to be added; specifying the component name, the object
file name and the machine on which it is located, and the type of architecture that the object
will execute on.

shmstat(<key _ptr_ptr>,<stat_ptr>)
Obtains information about shared memory regions. Array of strings holds the key values;
array of integers holds status (0=free, l=locked) information. Return value specifies total
number of active regions.

lockstat(<key_ptr_ptr>)
Returns total number of active locks with array of strings holding the key values.

Notes:
Among the PVM constructs described above, those concerned with machine dependent data
representation are to be implemented as part of the installation procedure for architectures
not represented in the generic distribution of the software. Also deemed part of this pro­
cedure are constructs to handle other data types such as double precision, boolean,
enumerated types, etc.

1

ORNL/TM-11375

INTERNAL DISTRIBUTION

1. B. R. Appleton 22. C. H. Romine
2. J. J. Dongarra 23. R. C. Ward
3. J. B. Drake 24. P. H. Worley
4. G. A. Geist 25. Central Research Library

5-6. R. F. Harbison 26. ORNL Patent Office
7. M. T. Heath 27. K-25 Plant Library
8. M. R. Leuze 28. Y-12 Technical Library/

9-13. F. C. Maienschein Document Reference Station
14. E. G. Ng 29. Laboratory Records - RC
15. C. E. Oliver 30-31. Laboratory Records Department
16. G. Ostrouchov

17-21. S. A. Raby

EXTERNAL DISTRIBUTION

32. Dr. Donald M. Austin, Office of Scientific Computing, Office of Energy Research,
ER-7, Germantown Building, U.S. Department of Energy, Washington, DC 20545

33. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Gra­
duate Center, 19600 N.W. Walker Road, Beaverton, OR 97006

34. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Houston,
TX 77252-2189

35. Dr. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

36. Dr. Edward H. Barsis, Computer Science and Mathematics, P.O. Box Box 5800, San-
dia National Laboratory, Albuquerque, NM 87185

37. Dr. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

38. Prof. Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping
58183, Sweden

39. Dr. James C. Browne, Department of Computer Sciences, University of Texas, Aus­
tin, TX 78712

40. Dr. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

41. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer­
sity of Michigan, Ann Arbor, MI 48109

DO NOT MICROFILM
THIS PAGE

-24-

42. Dr. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

43. Dr. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Office, P.O.
Box 12211, Research Triangle Park, NC 27709

44. Dr. Eleanor Chu, Department of Computer Science, University of Waterloo, Ontario,
Canada N2L 3G1

45. Prof. Tom Coleman, Department of Computer Science, Cornell University, Ithaca,
NY 14853

46. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory,
Berkeley, CA 94720

47. Prof. Andy Conn, Department of Combinatorics, and Optimization, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

48. Dr. Jane K. Cullum, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

49. Dr. George Cybenko, Computer Science Department, University of Illinois, Urbana,
IL61801

50. Dr. George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

51. Prof. John J. Doming, Department of Nuclear Engineering and Physics, Thornton
Hall, McCormick Road, University of Virginia, Charlottesville, VA 22901

52. Dr. Iain Duff, CSS Division, Harwell Laboratory, Didcot, Oxon OX11 ORA, England

53. Prof. Pat Eberlein, Etepartment of Computer Science, SUNY/Buffalo, Buffalo, NY
14260

54. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

55. Dr. Lars Elden, Department of Mathematics, Linkoping University, 58183 Linkoping,
Sweden

56. Dr. Howard C. Elman, Computer Science Department, University of Maryland, Col­
lege Paik, MD 20742

57. Dr. Albert M. Erisman, Boeing Computer Services, 565 Andover Park West, Tukwila,
WA 98188

58. Dr. Peter Fenyes, General Motors Research Laboratory, Department 15, GM Techni­
cal Center, Warren, MI 48090

59. Prof. David Fisher, Department of Mathematics, Harvey Mudd College, Claremont,
CA 91711

60. Dr. Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Tech­
nology, Pasadena, CA 91125

DO NOT MICROFILM
THIS PAGE

-25-

61. Dr. Paul O. Frederickson, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

62. Dr. Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550

63. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State
University, Raleigh, NC 27650

64. Dr. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming­
ton, IN 47405

65. Dr. David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

66. Dr. C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

67. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada K1A
0R8

68. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

69. Dr. John Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road Palo Alto,
CA 94304

70. Dr. Jacob D. Goldstein, The Analytic Sciences Corporation, 55 Walkers Brook Drive,
Reading, MA 01867

71. Prof. Gene H. Golub, Department of Computer Science, Stanford University, Stan­
ford, CA 94305

72. Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA
94550

73. Dr. Per Christian Hansen, Copenhagen University Observatory, @0@ster Voldgade
3, DK-1350 Copenhagen K, Denmark

74. Prof. Robert M. Haralick, Boeing Clairmont Egtvedt Prof., Department of Electrical
Engineering, Director, Intelligent Systems Laboratory, University of Washington, 402
Electrical Engineering, Building, FT-10, Seattle, Washington 98195

75. Dr. Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

76. Dr. F. J. Helton, GA Technologies, P.O. Box 81608, San Diego, CA 92188

77. Dr. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

78. Dr. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

79. Dr. Dse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

DO

-26-

80. Ms. Elizabeth Jessup, Department of Computer Science, Yale University, P.O. Box
2158, Yale Station, New Haven, CT 06520

81. Prof. Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta, Canada T6G 2H1

82. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

83. Dr. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

84. Dr. Hans Kaper, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

85. Dr. Linda Kaufinan, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

86. Dr. Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laboratories,
Livermore, CA 94550

87. Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

88. Ms. Virginia Klema, Statistics Center, E40-131, MIT, Cambridge, MA 02139

89. Dr. Richard Lau, Office of Naval Research, 1030 E.Green Street, Pasadena, CA 91101

90. Dr. Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

91. Dr. Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle
Park, NC 27709

92. Dr. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

93. Prof. Peter D. Lax, Director, Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012

94. Dr. James E. Leiss, 13013 Chestnut Oak Drive, Gaithersburg, MD 20878

95. Dr. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

96. Dr. Heather M. Liddell, Director, Center for Parallel Computing, Department of Com­
puter Science and Statistics, Queen Mary College, University of London, Mile End
Road, London El 4NS, England

97. Dr. Joseph Liu, Department of Computer Science, York University, 4700 Keele
Street, Downsview, Ontario, Canada M3J 1P3

98. Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

99. James G. Malone, General Motors Research Laboratories, Warren, MI 48090-9055

100. Dr. Thomas A. Manteuffel, Computing Division, Los Alamos National Laboratory,
Los Alamos, NM 87545

DO NOT MICROFILM
THIS PAGE

-27-

101. Dr. Bernard McDonald, National Science Foundation, 1800 G Street, NW, Washing­
ton, DC 20550

102. Dr. James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

103. Dr. Paul C. Messina, California Institute of Technology, Mail Code 158-79, Pasadena,
CA 91125

104. Dr. Cleve Moler, Ardent Computers, 550 Del Ray Avenue, Sunnyvale, CA 94086

105. Prof. Neville Moray, Department of Mechanical and Industrial Engineering, Univer­
sity of Illinois, 1206 West Green Street, Urbana, IL 61801

106. Dr. Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

107. Dr. Dianne P. O’Leary, Computer Science Department, University of Maryland, Col­
lege Park, MD 20742

108. Dr. James M. Ortega, Department of Applied Mathematics, University of Virginia,
Charlottesville, VA 22903

109. Prof. Chris Paige, Department of Computer Science, McGill University, 805 Sher­
brooke Street W„ Montreal, Quebec, Canada H3A 2K6

110. Dr. John F. Palmer, NCUBE Corporation, 915 E. LaVieve Lane, Tempe, AZ 85284

111. Prof. Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

112. Prof. Beresford N. Parlett, Department of Mathematics, University of California,
Berkeley, CA 94720

113. Prof. Merrell Patrick, Department of Computer Science, Duke University, Durham,
NC 27706

114. Dr. Robert J. Plemmons, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

115. Dr. Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

116. Dr. John K. Reid, CSS Division, Building 8.9, AERE Harwell, Didcot, Oxon, Eng­
land OX11 ORA

117. Dr. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

118. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

119. Dr. Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

120. Dr. Ahmed H. Sameh, Computer Science Department, University of Illinois, Urbana,
IL 61801

DO NOT MICROFILM

-28-

121. Dr. Michael Saunders, Systems Optimization Laboratory, Operations Research
Department, Stanford University, Stanford, CA 94305

122. Dr. Robert Schreiber, Department of Computer Science, Rensselaer Polytechnic Insti­
tute, Troy, NY 12180

123. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

124. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W.Greenbrier Parkway,
Beaverton, OR 97006

125. Dr. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, TX 75275

126. Dr. Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

127. Dr. Danny C. Sorensen, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

128. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

129-133. Dr. V. S. Sunderam, Department of Mathematics and Computer Science, Emory
University, Atlanta, GA 30322

134. Dr. Kosmo D. Tatalias, Atlantic Aerospace Electronics Corporation, 6404 Ivy Lane,
Suite 300, Breenbelt, MD 20770-1406

135. Prof. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

136. Dr. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

137. Prof. Mary F. Wheeler, Mathematics Department, University of Houston, 4800
Calhoun, Houston, TX 77204-3476

138. Dr. Andrew B. White, Computing Division, Los Alamos National Laboratory, Los
Alamos, NM 87545

139. Dr. Arthur Wouk, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

140. Dr. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

141. Dr. A. Yeremin, Department of Numerical Mathematics of the USSR Academy of
Sciences, Gorki Street 11, Moscow, 103905, USSR

142. Office of Assistant Manager for Energy Research and Development, U.S. Department
of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN 37831-8600

143-152. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831

DO NOT MICROFILM
THIS PAGE

