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A Neural Network for Explicitly Bounded Linear Programming

Jean-Christophe Culioli and Vladimir Protopopescu 
Engineering Physics and Mathematics Division

Charles L. Britton, Jr., and Milton N. Ericson 
Instrumentation and Control Division

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6364

Abstract: The purpose of this paper is to describe a neural network implementation of an algorithm 
recently designed at ORNL [1] to solve the Transportation and the Assignment Problems, and, more 
generally, any explicitly bounded linear program.

1. Introduction. In a companion paper [2], we study two general neural network models for Linear 
Programming. Here, we introduce a different model. This model applies only to explicitly bounded 
linear problems, i. e. problems for w-hich a priori bounds are available for the optimization variables. In 
particular, it is well suited to the Transportation and the Assignment Problems (TP and AP). Due to the 
very structure of the explicitly bounded linear problems, the architecture complexity of the network is 
much simpler. For example, a. K x L AP will require only K + L neurons and K x L connections, instead 
of KxL + K + L neurons and (K x L)(K + L) connections for the Primal-Dual model studied in [2] 
or for the circuit proposed by Hopfield and Tank in [3]. The neural network proposed here could also be 
used to solve the Analog Decoding problem proposed in [4]. In the next Section, we will briefly describe 
the TP and AP models. In Section 3, we present a network that implements a solution of a slightly more 
general problem, via a parameterization of the primal variables with respect to the dual variables. We 
also discuss a possible implementation. Some simulations results are given in Section 4.

2. Two Examples of Explicitly Bounded Linear Problems. The TP can be formulated in
the following way: we have to ship some goods from k different sources with stocks Si, i = 1,2, ...K, to L 
destinations with associated demands Dj, j = 1,2,.A transportation cost c,jX,j is associated with 
the shipment of the (positive) quantity from the source Si to the destination Dj. One assumes that 
there is no loss during the process, i.e. for every source i, = Si, and also that the demand is met for
every destination, that is = ■ This defines a ’’balanced” TP: Ylij xij = XZj Dj = Yli ^ is
possible, at the price of adding shadow sources or destinations, to transform any unbalanced problem into 
a balanced one. The problem of minimizing the cost of the transportation leads to the linear program:

(1) minCijXij, subject to Xij > 0, Xij = Si, ijj = Dj

* j i *

The AP has the same mathematical formulation as the TP, except that each stock Si is equal to 1 and 
each demand Dj is also equal to 1. A typical application is to assign K jobs to L machines, with operation 
costs [cij]. As noted before, one can assume, without loss of generality that K = L. The AP can be 
viewed as a combinatorial (0,l)-programming problem. However, it has been shown [5] that it can be 
expressed as a continuous linear program with 0 < < 1. There exist several algorithms of complexity
0(K3) dedicated to solving both problems (see for example [6,7]). From their above formulation, one can 
notice that explicit bounds on the optimization variables are available (0 < < min{S,, Dj} =: Xij).
We now introduce a generic problem that is somewhat more general that the TP and the AP, but preserves 
their fundamental properties. We seek for the solution of

(2) min < c,x > subject to Ax = b, x > 0,

where c and x are vectors in R”, 6 is a vector in Rm, and A is an m x n matrix, with m < n. The brackets 
< .,. > denote the scalar product in R". We assume that the problem (2) has a bounded solution x* and, 
for the purpose of the forthcoming derivations, that the rank of A is m. We also assume that the entries 
of A and the entries of 6 are positive. This implies that one can compute an explicit bound Amar for the
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variable x. One choice is Xmax with entries Xpax = -------;— { J■ Note that if Xf101 = 0, this
maxj {«_,,■ | a;i / 0}

implies immediately that r,* =0, and we can remore this variable from the original problem. We thus 
assume in the following that all components of Xmax are strictly positive.
The dual problem associated with (2) is [8]

(3) max<&,p> subject to ATp<c,

where AT denotes the transpose of matrix A and the scalar product in Rm is also denoted by < .,. >. By 
definition, a vector x such that Ax — b, x > 0 or a vector p such that ATp < c will be called admissible. 
The fundamental result of duality is (for a proof, see [8]):
Proposition 1. If x is admissible for (2) and p is admissible for (3) then the duality gap 6 :—< c,x > 
— < b.p> is positive. If 6 — 0, then x is a solution of (2), and p is a solution of (3).

3. The Parameterized Neural Network Model. To solve problem (2), we propose to param­
eterize the primal variables x in the following way

(4) x = Xmax •gxic-ATp), gx(y) :=

where the function g\ is applied componentwise on the vector c— ATp, and the operation denotes 
the Kronecker product of vectors, that is (j/i, j/2, —,yn) • (zi,Z2>—,'*«) := (2/iZi, 2/2-2, -,2/n2n)
With this parameterization, we wish to solve in p the equation Ax{p) = b which now writes AXmax • 
gx(c — ATp) = b. To do that, we consider the variables p as input-states of neurons with output states x 
(the implementation will be clarified in the next Section) and assume the following dynamics:

(5) dJ>. = -{Ax{p)-b).

The sigmoid function gx has two useful properties that we shall take advantage of in the future derivations. 
Namely,
(i) VA > o, Vy, g'x{y) =-^gx{y)g\{-y) <0,

(ii) VA > 0, Vy > 0, y gx{y) <
We now address the convergence of the network.
Proposition 2. If p in system (4-5) is bounded, then the network converges to stable states (x,p) which 
are admissible solutions of (2) and (3).

Proof: We introduce the Lyapunov functional E = — ^l|2- functional E is bounded below

(it is positive) and above, because x given by (4) is bounded. We study the variation of E along the 
trajectories of (5). We have ^ =< A^-,Ax-b >=< ^■,AT(Ax-b) >= - < ^j-,AT^- >. From (4),

' at at at at at
we get ^ = ^-Xmax • At • g(c — ATp) • g(ATp — c), which leads to 

at 2 at

f -5 < '«<‘ - *TP)'^TP-c)'AT%ATdj > •

We can rewrite this as ^ ^ < DAT^,AT^ >< 0 with D(t) := diag(Xmax• gx{c— ATp)»gxiA1^p—
c)), a strictly positive diagonal matrix. Thus E is decreasing along the trajectories of (5). Ifp is bounded, 
then each entry of the vector gx{c — ATp) • gx(ATp — c) is bounded below by a strictly positive constant. 
The matrix .4(t) := ADAT is, at any time t, an m x m positive definite matrix, with ||A(t)|| > a > 0, 

d E
which implies —j— < —XaE. Then E converges to 0 and the trajectories of p and x converge to fixed 

dt
points p and x such that Ax = b, x = Xmax •gx(c — ATp). Also, by construction of Xmax, and due to 
the factor 2 in the definition of gx, the satisfaction of the constraint A{Xmax • gx{c — ATp)) = b implies 
that c — ATp is positive. I
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Remarks.
1. Although we had to assume a ’’boundedness hypothesis” for p in the theoretical derivation, it appears 
that in practice, this condition is not very restrictive. It is always possible to limit the iterates of p in a 
ball of radius iZ in a computer implementation (which, for R large enough does not perturb the system), 
but it proved unnecessary.
2. The assumption rank(A) = m, needed for the proof of convergence (strict positivity of A(t)), can also 
be relaxed in the numerical tests. In particular, in the case of the TP or the AP, m = K + L but the 
rank of A is AT + X — 1. This fact did not seem to alter the simulations either.

Now that we have obtained admissible solutions for (2) and (3), we need to evaluate their associated 
duality gap S.

M
Proposition 3. The duality gap associated with x and p is positive and bounded above by —, where M
is a positive constant which depends on the data A and b.
Proof: The duality gap is positive since x and p are admissible. We have

6 =< c,x > — < b,p >=< c - ATp, x >=< c - .4Tp, Xmax • gx(c - ATp) > .

By using property (it) and the Cauchy-Schwarz inequality, we conclude 0 < 6 <
2-y/n 11 A’’”

Ae

In order to do some comparison with ’’standard implementations”, and address the complexity of 
implementation, we define the vector z := c — ATp. With this notation, we can write

(6) x = gx(z), ^1 = AT{Ax-b).

System (6) defines a neural network comprising n neurons with input states z, output states x, activation 
functions gx and thresholds —ATb. Neurons (z,-,,x,-,) and (z,-2,xtJ) are connected with a connection 
strength equal to —Ylj Aji1Aji2. In conclusion, the only difference between the network (z,x) and 
Hopfield and Tank’s network (u,T) is the absence of a time constant r. However, it is not necessary to 
consider so many neurons and connections. The system (4-5) is naturally expressed as

(7) § = -(A(Xmax . gx(c - ATp)) - 6),

for which we are led to an implementation whith only m neurons. In the case of the TP or the AP, the 
implementation is even more simplified. In both cases, n = K x L » m = K + L. Also, due to the 
matricial structure of these problems, we can denote the vector x by x^ (with x^jax = 1), and associate 
dual variables pi and q, to the rows and columns of the constraints equations (p< <-+ Yl^=i xij — 1 and 
qj <-*• xij — 1) respectively. With this notation, the system (7) reduces to

(8) -fi- = “OC 9x(-Cij + Pi + Qj) - 1). = -(%2 9\(-Cij + Pi + ?;)- 1).
;' = 1 i = l

The corresponding neurons pi and qj are somewhat different from the ’’standard neurons” of Hopfield 
and Tank. They include some ’’feedback” and a whole vector of internal thresholds (a row or a column 
of the cost matrix [c,j]) in the activation function. Their interconnection is however very simple: each 
neuron p,- is connected to itself and to all the neurons qj. The same is true for the neurons qj. The 
connection strength are equal to —1 and the external thresholds are all equal to —1.

4. Numerical Application. We report the test of the numerical simulation of (8) for Assignment 
Problems with K — L rangint from 10 to 100. Note that this corresponds to 102 < n < 104 and 
20 < m < 200, i. e. fairly large problems. The entries of the matrix [c,j] were generated using a uniform
distribution law on [0,1]. The simulation of equation (8) was performed with a step size e = ^ The

/A
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parameter A was taken equal to 103. We had the following results (compare the duality gap with an 
optimal cost of approximately 1):

II

*

10 20 30 40 50 75 100
6 10~' 2 10"4 10"3 2 IQ"3 7 lO"3 2 10 z 3 lO"3
# iterations 240 170 100 90 110 70 60

One notices that the number of iterations needed to reach a stable state is not increasing with the 
number of variables. On the other hand, the duality gap deteriorates with the dimensions, as predicted 
by the above analysis. We have also simulated the network with A = 104 (and e = 10~4). We noticed 
the following improvement of the duality gap:

K = L 30 50 75 100
6 lO"6 lO-4 io-4 2 IO-4
# iterations 820 960 490 460

5. Conclusions. We have presented a neural network model for solving explicitly bounded linear 
programs. Its low architectural complexity is due to the parameterization of the primal variables (x) 
with respect to the dual variables (p) which applies very well to matricial problems like the TP and the 
AP. The theoretical work presented here and many computer simulations seem to prove its applicability. 
We are now in the process of designing an analog circuit implementation.
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