
MASTER

PROGRAM MANWgL FOR TEE ,DATA DIRECTOR EDITOR
t 1

f'
I'

/.

k
,'&y:

Patrick R. HcGoldrSclc

February 17, 1977

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

, 1

NOTICE

This report was prepared as an account of work
.

sponsored by the United States Government. Neither the
United States nor the United States Energy Research
& Development Administration, nor any of their
employees, nor any of their contractors, subcontractors,
or their employees, makes any warranty, express or

implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or
represents that its use would not infringe

privately-owned rights.

NOTICE

Reference to a company or product name does not
imply approval or recommendation of the product by
the University of California or the U.S. Energy Research
& Development Administration to the exclusion of
others that may be suitable.

Printed in the United States of America
Available from

National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $; Microfiche $3.00

Domestic Domestic

Page Range Price Page Range
Price

001-025 $ 3.50 326-350 10.00

026-050 4.00 351-375 10.50

051-075 4.50 376-400 10.75

076-100 s.00 401-425 11.00

101-125 5.50 426-450 11.75

126-150 6.00 451-475 12.00

151-175 6.75 476-500 12.50

176-200 7.50 501-525 12.75

201-225 7.75 526-550 13.00

226-250 8.00 551-575 13.50

251-275 9.00 576-600 13.75 w

276-300 9.25 *601-up
301-325 9.75

'Add $2.50 for each additional 100 page increment from 601 to 1.000 pagei,

add $4.50 for each additional 100 page increment over 1,000 pages.

THIS PAGE

WAS %NTEMTI[ONALkY

89 LEFT BLANK

CONTENTS

Page
....

. . Abstract . 1
Introduction . 1
Editor Structure . 2

The User Task . 2
Logical Units . 3

'Reentrant Edit Procedure . 3
Editor Data Structure . 4
The Working File . 5

Working-File Structure . 5
The Edit Buffer . 7

Editor Operation . 10
Finding a Line . 10
Copy and Move ~'fter . 1 1

Editor Statistics . 12
Statistical Results . 12

The Editor and Other Operating Systems . 14
User Console . 14

. Filer I/O and Dynamic Memory Allocation 14
Logical Units . 15
Files and Devices . 15

References . 17
Appendix A: Listing of the Editor Data Structure . 18
Appendix B: Editor's Modules and Procedures in Order of Appearance 22
Appendix C: Editor's Modules and Procedures Alphabetized by Procedure 25
Appendix D: Editor's Modules and Procedures Alphabetized by Module 28
Appendix E: Listing of .the Editor Modules

(on fiche, inside the back cover; page numbers.apply to lisli~g only)
SF1024 . 1
EDITR . 3
EDlTTET . 7
ALOMEM . 8
CEDlT . 10
EDIT . 23
EDlTCA . 66
EDlTF . 88
EDREV . 108
EVFILE . 110
FILER . 125
FINDL . 152
LIST . 188
LOGIT . 201

. OFlLE 211
SAVREC . 225

. SEARCH .. 237
STAT . 240

. STATD 250
. TERROR 252

. WORD 265

PROGRAM MANUAL FOR THE DATA DIRECTOR EDITOR
5 -

ABSTRACT

The Data Director editor is a powerful. multiuser editor that will aid in
the development and modification,of APT part programs, assembly-language
programs. and other text.

Some benefits of the editor are:
ir

1) Most of the editor is reentrant, allowing several users to share it.
2) The user can use the editor as though the entire file being edited is in

memory.
.A

3) Editing takes place on a working file so that changes are not made to the
original file until desired

4) The editor offers a powerful command set where most commands have the same
syntax.

INTRODUCTION

This manual is written to aid those who malntain the Data director Editor
Program and assumes that the reader is familiar with the editor's operation. It
further assumes that the reader has read and understood the Data Director Editor
User's Manual (Ref. 1) and is moderately familiar with Interdata's assembly
language and RTOS V (Interdata's real time operating system). This manual also
can aid those who wish use the editor on other systems and points out
possible problem areas. I f this manual is being used to implement the editor on
systems other than LLL's Data,Director system, then certain references to
filenames and other items that exist only in the Data Director should be
ignored.

EDITOR STRUCTURE

To allow several users to edit simultaneously without having one copy of
the editor per us.er. most of the editor is reentrant and may be shared by many
users. The'editor is in two parts: 'the user task. where variables determining
the user identity end.editor state are stored, and a reentrant procedure, EDIT.
that performs the editing function.

The User Task

In its simplest form, the user task consists of setting register 12 to a
large expanse of free memory and calling the reentrant procedure. EDIT. EDIT
uses the free memory to store the editor's state information. Since Working
Files are named and can appear in the same disk partition as others. each user
has t.o have a unique name for his Working File. This name is stored just before
the large scratch area.

EDIT needs to know the input and output device number of the user console.
The device numbers are stored in FILEID blocks [*I and the block's addresses are
stored before the working filename.

Thus, we can write a simple user task:

START

lNFlD
OUTF I D

SCRATCH

EQU 12
EQU 15
EXTRN EDIT

LHI R12,SCRATCH 'R12 = A(SCRATCH)
BAL R15.EDIT CALL TClE ED 1 TOR
SVC 3 .O END OF JOB

DC O,INDEVICE.X'4040' 4040 MEANS NOT A, FILER FILE
DC O,OUTDEV,X84040'
DC A(INF1D)
DC A(0UTFID)
DC C'EDITUSEROl' WORKING FILE NAME
DS. 1742
END

The size of the scratch area is dependent on some parameters in the
reentrant portion of the editor that can be set at assembly time. A rule of
thumb is that scratch s i z e is equal to the working File's buffer size plus 718
bytes. The above example user task was written to run with an EDIT that has a
huffer size o f 1024 bytes. EDIT'S buffer size is set in file EDITCOMS by label
BUFSIZE (see line 21, Appendix A) .

[*I FILEID blocks are blocks of data that identify files to the file' 110
routines. A user console is considered to be a file by the editor.

The user task is established via the task establisher task (TET) if running
under RTOS. The file EDITTET contains a set of commands to TET to establish the
editor task, and a copy of i t is provided with the editor listings.

Logical Units

EDlT uses logical units 1 through 7 , which are assigned as follows:

LU 1 - Input file device {0 FILE)
LU 2 - Output file device {NF FILE)
LU 3 - not used
LU 4 - Working-file disk partition
LU 5 - Input commands
LU 6 - Output messages and lists

W l i e ~ i creating a user task, only LU 4, 5, and 6 need to be assigned. EDlT
will assign the other logical units to the directory used in an editor command.

Reentrant Edit Procedure

When called. the EDlT procedure handles all the editing functions (i.e..
obtains commands from the user and performs them). In performing its task. EDIT
calls on other reentrant procedures. which themselves may call even more
reentrant procedures. The package of procedures that is called is labeled the
reentrant section.

The procedures in the reentrant section are packed into modules that can be
separ'ately assembled. On a minicomputer. assembly time can be long. By having
several independently assembjl!able modules, i t takes little time to make a
modification in one procedure. The modules can be added to the reentrant
library or can be linked together with a link editor (TET). The object modules
for the editor are kept in the Data Director in a file called EDITBxxxx. where
xxxx is the month'and day the last module was upgraded.

EDITOR DATA STRUCTURE

The editor data structure is stored in the user task and contains almost
all of the editor state information for that user. Procedure INITIAL obtains
the necessary memory from the scratch pointer, register 12. and sets register S
to point to the memory for the structure. Data is referenced by an offset from
register S; LH RX.L.INT(S) for example.

' The offsets are defined via a STRUC assembler pseudo-opcode in the file
EDITCOMS. Modules that use the data st.ructure obtain EDITCOMS at assembly time
via a COPY EDITCOMS pseudo-opcode. This permits the data structure to be
changed without changing every module; reeassembly is all that is required.

Appendix A is an assembly listing of the Editor Data Structure.

THE WORKING FILE

When a file is opened for editing, the lines in 'the file are inserted into
another disk file known as the working file. This file ,contains the lines., the
line numbers and the pointers that place the Lines in numerical order.

When lines are deleted, inserted, or modified, i t is the c0ntent.s of the
working file that are changed. Only when an NF or END command is executed are
'the lines in the working file written to the opened file or to a new file.

Working-File Structure

The working file consists of one or more disk pages linked together in a
doubly linked list. The disk partition that is to hold the working file must
first be formatted in a special way. These specially formatted disk p a r f ~ t i ~ n s
are known as "filer" partitions, because they are compatible with Interdata's
"filer" routines. Formatting of the disk partition may be done with task
SF1024, which sets up its logical unit .4 to a 1024 byte record size. The disk
partition for the working fiie need only be formatted once. as long as the
partition is not aberrated by any nonfiler oriented tasks.

The sector numbers of the first and last working-file pages are called the
head of the list of working-file pages and are stored in memory as FIRSTREC and
LASTREC (see lines 105 and 106. Appendix A). When a page on the disk points to
the head. its 11ex1 p o i r ~ t e r or last pointer is set to zero. ,

When any of the working file's pages are brought into memory, the page in
memory is called the "edit buffer". 'She definition of the edit buffer, and
hence any page on disk. is found on lines 135 through 144 in Appendix A.
B.FIRST through B.TOP is a structure that contains lines of text with their line
numbers and will be discussed in the next section. "The Edit Buffer."

Each working-file page contains lines of text, i f the file is not empty.
The pages are ordered in that all line numbers on a page must be less than all
line numbers on the next page and greater than all the line numbers on the
previous page. Lines are not allowed to cross page boundaries. (See Fig. 1 for
an example of the working file.)

Page 4

File index B . NXTREC
B . LSTREC

No lines -a
Page 4

File index

Lines 1 -Fl
Page 4

File index

Page 7

Page 4

File index

Page 7 Page 3

Fig. 1. Example of the working file. Line numbers n to m are greater than any
other line numbers in the file. The pointers that form the linked list of
pages are sector numbers, and can be listed in a random order as the free
pages are obtained from the filing system. The head, {FIRSTREC. LASTREC), in
this example is {4 ,4) , { 4 . 4) , { 4 , 7) , and (4 .9) . respecllveiy.

The editor has a rule that unless the working file is empty, all pages must
contain lines. As pages become empty from deletions, they are removed from the
1ist:until only the page pointed to by the index remains. This page is allowed
to be empty and signals an empty working file.

When the working file is first created, only one empty page exists. As
lines are added, the page fills until i t is full. When a new line is to be
added and the current page is full, a new page must be added to accommodate the
new line. This is done by spl,itting the current page, after the appropriate
line. into two pages. Each page wil'l be full sized, so at least one page will
be able to hold the line to he inserted.

When the working file is forgotten (FF), i t is merely destroyed and the
pages are returned to the filing system. To manipulate the working 'file, the
following procedures are used:

MOlJll I ,I!:

ED I TF
F I NDL
FINDL
F INDL
F I NDL
FlNDL
FINDL
F I NDL
FINDL
F l NDL

PKULEUURE PURPOSE
--------- -------
CWORK CREATE WORKING FILE & SETUP THE FIRST BUFFER
SPLlTPG SPLIT PAGE AFTER LINE BP INTO 2 PAGES
RELPG RELEASE CURRENT PAGE IF EMPTY
NEXTREC HEAD IN NEXT RECORD UPDATING IF NECESSARY
READER READ RECORD F.CUREC
WRITER WRITE OUT F.CUREC
GETREC GET AN AVAILABLE RECORD
GlVREC GIVE UP A RECORD
DWORK DESTROY WORKING FILE AND RELEASE ALL FREE RECORDS
LSTREC READ IN RECORD BEFORE F.CUREC

The Edit Buffer

The edit buffer is a disk page of the working file in memory. The buffer
is defined in lines 128 through 131, and again separately in lines 136 through
144 in Appendix A. Lines of text, with their line numbers and length. are
stored in the edit buffer in numerical order in a doubly linked list. The head
of the list is B.FIRST and B.L.XST, pointing to the first and last lines in the
buffer. All links in the edit buffer's list are offsets from B.FIRST.

B.AVAIL is a link to a list of available or free lines. This is used when
spliting a page into two pages. For one page on disk. the lines after the line
where the insertion is to go are made available by placing a link to it in
B.AVAIL. The added page then has the lines from B.FIRST to the place of the
insertion made available. This makes page splitting very fast, as CPU time is
not used for freeing lines until a space is to be needed when an insertion is to
be made.

Each line in the edit buffer is stored in a line buffer defined by lines
147 through 154 in Appendix A. Each line buffer has two link fields. BP.NEXT
and BP.LAST, pointing to the next line and to the last line in the list.
BP.INT + RP.DEC/lOO form the line number. BP.SIZE is the actual size of the
line to follow, in bytes. BP.LINE is the start of the line that is BP.SIZE big.

I f BP.SIZE is odd then the line ends on an even byte boundary. All line
buffers are forced to end on an odd byte boundary due to technical limitations
in the lnderdata computer (Halfword instructions only work on even byte
boundaries). Also, in RTOS, all 1/0 must end on an odd byte boundary, so a
carriage return is added to any line that ends on an even boundary. BP.SIZE
remains unaffected by the above.

Adding or deleting an item to or from a doubly-linked list is
straightforward and is explained in detail in Ref. 2. The insertions and
deletions in EDIT are done by procedures INSERT, below label NOTEVEN, and
DELETE, below label DELETE2.

Since line buffers are variable jn length, the editor engages in dyrlamic
storage allocation in the edit buffer from B.BOTTOM to B.TOP f'or storage. The
dynamic storage algor.ithm is a modified form of Knuth's boundary tag method
(Ref. 3). Our version of Knuth's algorithm requires no "available list" unless
the page has been split. I f the page has been split, all line buffers on the
nvailahle list. are released before the algorithm is evoked.

In the edit buffer, a free space is noted by a tag (most significant bit is
a 1). followed by the size of the free space. Thus, a 512 byte free space looks
like this:

A 2 byte free space looks like:

Filled spaces (i.e., line buffers) do not need a size field before and
a f t e r +,hem, as their size is k,~own and the first and last words in the buffer
cannot have the tag set. This is assured by making a rule that the edit buffer
must never be larger than 32,767 bytes. This ensures that BP.NEXT is less than
32,767. and the tag bit is off in the 16 bit field. Also, the editor only edits
lines +,hat are ?-bit ASCII. This ensures that the tag bit cannot be set on the
end of the line buffer.

1

The mem'ory allocation procedure, CETBUF, uses the first-fit method by
scanning line buffers and free spaces until i t finds a free space large enough
for the insertion. I f none is available in one piece, but there is enough free
space in the edit buffer, CETBUF will call COMPRESS to compress all the free
space to the top of the buffer. Memory is released by RELBUF, which makes tags
and size fields for the released line buffer and recombines the buffer with any
other adjacent free space:

5 12

508 byte free space

1 512

1 3 0

Recombined
free space

1 3 0

The procedures below are used to manipulate the edit buffer:

MODULE

FlNDL
F I NDL
FINDL
FINDL
FINDL
F I NDL
FINDL

PROCEDURE PURPOSE
--------- -------
I NSERB INSERT LINE L. BEFORE LINE POINTED TO BY BP
l NSERT INSERT LINE L. AFTER LINE POINTED TO BY BP
DELETE DELETE LlNE POINTED TO BY BP
RELBUF RELEASE BUFFER OBTAINED BY GETBUF
GETBUF GET A BUFFER OF LENGTH IN R14
SUBSPLIT SPLIT A BLOCK OF LENGTH+N INTO 2 BLOCKS OF LENGTH AND N
COMPRESS COMPRESS AVAILABLE BUFFERS INTO ONE BUFFER

EDITOR OPERATION

Finding a Line

' When a line ir to be operated on by the editor, the page that the line is
on must first be brought into memory (i f not in already), and a p0inte.r
(register BP) must be set to the address of the line's buffer. This operation
is called finding a line and is performed by procedure FINDL. All references to
lines at FINDL's level are by line number.

FlNDL accomplishes the above by calling a procedure (FASTPC) to guess the
page that contains the line number and bring it into memory i f it's not in
already. FlNDL then starts at the first line in the page and tests for the
desired line number, searching up or down, until the line is found or i t has
moved past where the line should be. Procedure MOVE allows FINDL and other
p r o c e d u i * = ~ to eus i ly i i iOVe Dp U p Oi' du'viii u li~iiibci' uf 1111es f~ UIII I 1s curre111
position. MOVE brings in new pages as necessary.

Procedure FASTPG guesses what page the desired line number is on. FASTPC
will either guess the page and bring it into memory. or will let the page
currerltly i r ~ nlemury stay as being close enough. FASTPC uses a hashtable.
RECDRDS, where the sector numbers of pages are stored. The hashing method is
such that numbers near each other tend to hash to the same number. Procedure
GENKEY generates keys into the hashtable by the following formula.

KEY = FLOOR(MAXKEY desired line number/MXNUM)

where :

FLOOR is thc lcast intcgcr function.
MAXKEY is the maximum number of entries in the table.
MXNUM is t.he maximllm l ine n~lmher and is arbitrarily chosen.

When a page is split, the first line number in the new page is used to
generate a key where the sector number of the page is stored (procedure SAVREC):

RECORDS(KEY) = sector number

When a line number is presented to SAVREC to be placed in the hashtable and
the line number produces a key greater than that in the table. MXNUM is
increased and the sector numbers are relocated down in the table. MXNUM is
generally increased by 25% so that the relocation operation does not have to
take place too often, and the table retains its effectiveness. When pages are
released from the working file, procedure FRCREC removes the page from RECORDS
i f the sector number was in i t .

The following routines permit finding lines and moving BP up and down lines in
the edit buffer:

MODULE

F I NDL
FlNDL
SAVREC
SAVREC
SAVREC
SAVREC

PROCEDURE PURPOSE
--------- -------
F l NDL GIVEN THE LINE # , SET BP TO POINT TO THAT LlNElS LINE BUFFER
MOVE MOVE UP/DOWN R14 LINES, SET BP TO RESULTANT LINE
SAVREC ASSOCIATE A RECORD # WITH A LINE # SO CAN FIND LINES FAST
FASTPG GUESS PAGE NUMBER THAT LINE NUMBER IS ON AND GET PACE.
GENKEY CALCULATE KEY FOR LINE NUMBER
FRGREC DISASSOCIATE RECORD NUMBER FROM LlNE NUMBER

Copy and Move After

Copy and move after from a working file is accomplished by copying all
lines in RANGE into a temporary disk file and then inserting into the working
file all the lines in the temporary disk file.

The temporary disk file has no name and is in essence a FIFO (first-in.
first-out queue) that is in memory. Lines are pushed into the FIFO as the lines
in RANGE are found. When the FIFO overflows, the lines in i t are put to disk
giving more room in the FIFO for new entries. Thus when copying or moving smal.1
numbers of lines there probably won't be any disk activity concerning the
temporary f i le.

Move after is accomplished in the same way as copy after, except that the
lines in RANGE are deleted from the working file as they are pushed into the
FIFO. Copy after from a FILElD does not need a temporary disk file. The FILEID
is opened, and all lines in RANGE are inserted directly into the working file.
Following arc thc routines for copy and move after:

MODULE

ED 1 TCA
ED I TCA
ED I TCA
ED I TCA
ED I TCA
ED I TCA
ED I 'I'CA
ED l TCA
ED l TCA
ED I TCA
ED l TCA

PROCEDURE PURPOSE
--------- -------
DOMACA DO MOVE AFTER OR COPY AFTER
CAFILE COPY ALL LINES IN RANGE FROM FILEID AFTER CAL.
FNDCAL SET BP TO LINE CAL. OR LlNE BEFORE IF NONE
SETGETCA SETUP FOR GETCA, FIND FIRST LINE IN RANGE IN FILE
GETCA GET NEXT LINE IN RANGE FROM FILEID
CAWORK IOVE OR COPY LINES IN RANGE IN WORKING FILE AFTER CAL
SE'I'EMT' SETUP FOR PL'TEMP
PUTEMP PUT I, INE AWAY IN FIFO THAT CAN EXTEND TO DISK
ENDPUT FINSH PUTEMP AND Sti1'UP FOR GETEMP
GETEMP GET NEXT LINE FROM FIFO
HELTEMP RELEASE FIFO

Appendices B through E provide complete listings of the editor's modules
and procedures.

EDITOR STATISTICS

The editor keeps statistics in itself. See lines 172 to 186 in Appendix A .
These statistics can be of use in determining the effectiveness of certain
algorithms. We can gather statistics from several users simultaneously and can
accumulate them over a long period of time to give accurate results.

This method is much better than random testing, s ~ n c e EDIT users do not
access lines randomly. Often, an EDIT user will start at the front of his file
and move through it , editing as he goes. Or, the user may edit in only a small
area of his file. Thus, these statistics give a true reflection of the
cfficiency of our algorithms.

There are three routines involved in gathering statistics:

MODULE PROCEDURE PURPOSE
------ --------- -------
STAT STAT SAVE STATISTICS IN TASK COMMON
STAT STATIN START STATISTICAL INCREMENT
STAT STATIE END STATISTICAL INCREMENT

Since there are only three statistics routines. they can be as simple or as
complex as desired. We can modify them to make distributions or other
statistical items of interest. When we no longer care about statistics, the
routines can be removed or can be modified to do nothing.

Statistical Results

Table 1 gives the results of nine days worth of editing taken at different
times. Files of differing lengths (300 to 2400 lines) were edited. but most of
the editing was done on the larger files. The working-file page size for Table
1 was 512 bytes.

'Table 1 . Statistical results. ...
Day ...

1 2 3 4 5 6 7 8 9

Number of calls to FlNDL
Number of page faults during FINDL
Total number of page faults
Number of disk I/O's
Number of insertions
Nuabcr af dclctiana
Number of lines listed
Number of compresses
Number of released pages
Number of page splits
Number of times AVAILSTK overflowed
Number of times AVAILSTK underflowed

The first four columns of Table 1 represent statistics taken before FASTPC
was implemcntcd. Notice the higher percentage of page faults per call t.o FIWI.
before FASTPC was implemented. The average number of page faults per call to
FlNDL before FASTPC was implemented was 4 . 3 4 5 , while the average number of page
faults per call to FlNDL after implementation was 0 . 5 5 1 . This was an 87%
improvement. It may be possible to obtain even better improvement. and the
statistics will allow us to see the results of experiments with different
algorithms. FASTPC was improved again in early October 1976. and the average
number of page faults per call to FlNDL decreased to 0 . 3 4 1 .

THE EDITOR AND OTHER OPERATING SYSTEMS

The editor was written to operate on an advanced version of RTOS-5 and
should run under standard interdata RTOS with no modifications (assemble EDlTR
with assembly option SVC11 EQU 0). With modification, EDlT should be able to
run under any opereting system. In this section. I will outline functions ,that
the editor uses that may differ between our version of RTOS-5 and other systems.
The editor or system may have to be modified to get the editor to operate at its'
full potential.

The editor can be assembled with assembly option NOFlD EQU 1. With this
option, the editor will allow no FILEID's on an open, NF, or END command. so the
user can assign LU 1 to the source file and LU 2 to the output file with the
user's operating system's supervisor. This option solves most of the problems
listed below.

User Console

EDlT can operate with any ASCII input device as its command input and any
ASCII output device for its comments. However, there is some extra power to be
gained i f the editor is run on a system with the FULL DUPLEX DRIVER controlling
the user console (See Ref. 4 .)

The editor prompts and reads via a single SVC 1. This causes no conflict
on most systems, since the function code for this SVC is both the read and write
bits set. On most systems this causes a read without the editor's prompt
character .

Multiple commands can be input per line in the editor. These commands are
separated with an X'Al' code. As this character cannot be typed on most
terminals, a way must be found to implement i t i f one wants multiple commands
per line. Our FULL DUPLEX DRIVER inserts X'A1' into the user buffer whenever
linefeed is typed, and i t echos " ! " as a command separator.

Filer 1/0 and Dynamic Memory Allocation

I f any filer files are opened or NFed, the editor needs 1K more memory.
The editor uses dynamic memory allocation (SVC 2 option D) to get it.
Therefore, if one wishes to open or NF a filer file on a system without dynamic
memory allocation, the routines ALOMEM and RELMEM will have to be modified to do
get-storage (SVC 2 option 2) and release-storage (SVC 2 option 3). The routines.
are between six to nine lines long, so their modification should be fairly
simple. The above does not apply i f the editor modules are assembled with
assembly optlon NOFlD EQU 1 .

Logical Units

The editor makes logical to physical unit assignments dynamicaliy while
running. These are all made by procedure ASSlLU in module OFILE. Since E:DlT
was designed to run under RTOS. this 12-line procedure fetches the UTCR pointcr
(SVC 2 option 5) ard sets the physical unit by indexing into the logical unit
table. ASSILU must be rewritten to operate the editor under operating systems
that do not have the same UTCB format for I/O assignments. The rewrite should
be fairly simple. since the current procedure, ASSILU, is not complex. betng
only 12 lines long. The above does not apply i f the editor modules are
assembled with assembly opt ion NOFID EQU 1.

Fi'les and Devices

The editor was designed to operate w ~ t h the Data Director filing system.
which is a set of procedures that are linked to the editor. A brief discussion
of the filing system is included here so that a user can decide i f changes
should be made to it. I f the editor modules are assembled with assembly option
NOFID EQU 1 , the followinz does not apply.

FlLElD is the name or identification of a file. FlLElD is what is typed
after a C(cr2ate). O(open). NF(new file). END, or maybe CA(copy after) command.
Procedure EVFILE evaluates FlLElD and sets up a FlLElD block (FID). All the I/O
that. the editor does is done by routines CRFILE. OFILE. OAFILE. READ. WRITE. and
CFILE. (The editor does random reads and writes to the working file directly.
but that does not concern us here and should be no problem to all but the most
restrictive operating systems.) These procedures do 1/0 to th- device in the
FID block. All devices.are treated as though they are files.

The FID block tells whether tbe file is a filer file or I/O device. The
FID block also gives the file name, security level. and attributes of the file
(see F. structure in EVFILE). Therefore. procedure EVFILE simply maps a
symbolic FlLElD into a FID block. To create custom mapping there are several
alternatives.

1) Keep the Data Director formats. 0 .HSR means open a file from the
high-speed reader. A list of device codes can be found in EVFILE in
DEVTABLE for the mnemonic and DEVICE for the physical unit number. These
two tables can be enlarged with custom devices i f desired.

0 FILENAME means open a filer file. FILENAME, on the default filer library
(label DFDEVICE in EVFILE).

0 .DOC:FILENAME means open a filer file. FILENAME, on the DOC filer library.
A table of filer library-mnemonics to physical disk partitions is contained
in tables DIRTABLE and DIRDEV in EVFILE.

I f the system on which EDlT is to be implemented uses filer files. then
DIRTABLE and DIRDEV could be modified to suit. Caution: the Data Director
filer differs from the standard lnterdata filer in several important
respec 1s:

b) File security. attributes. date. and time of creation are stored before
the. first data record in the file (transparent to most filer users).

c) Filer can be called with a reentrant call.

d) The filer block has been'shortened from 66 to 24 bytes (see FILER label
BUFFER) .

e) The filer block and filer record buffer may be split in memory (see AREC
in filer BUFFER).

. .

f) Register 12 must point to a scratch area'of 56 bytes that can be reused
by other routines between filer calls.

In the Data Director operating system most user tasks do not call
filer. Thcy make FID blocks and call CRFILE. OFILE. OAFILE. HEAD. WHITE
and. CFlLE in order to remain device independent on a file level. The
editor assumes through the above six procedures that the physical record
size of the filer records is less than or equal to 512 bytes.

2) Rewrite EVFILE to provide one's'own mapping between symbolic FILEID's and
FID blocks. This could be done so that all FID blocks made are devices and
not filer files. For example, 0 4 could mean open a file from device 4 , the
card reader.

3) Rewite CRFILE, OFILE. OAFILE, READ, WRITE, and CFlLE to handle filing as it
exists in one's own operating system.

REFERENCES

1 . P. R. McColdrick, Data Director Editor User's Manual. Lawrence Livermore
Laboratory, Rept. 17372 (1977).

2. D. E.. Knuth, Fundamental Algorithms (Addison-Wesley, Reading, Mass., 1973),
vol. 1. pg. 278.

3 . Ibid., p g . 441.

4. P. R. McGoldrick. Full hplez CRT and Teletypewriter Driver. Lawrence
Livermarc L a b s r a t s ~ y ~ R c p t , UCID-16961 (1975) .

APPENDIX A: LISTING OF THE EDITOR DATA STRUCTURE

PROG= *NONE* ASSEMBLED BY CAL 03-068R04(18-BIT)

0008
OOOA
oooc
OOOD
OOOE

OOlR
0019
OOlA
OOlC

0000 0080
0000 OOOD
0000 0020
0000 OOAl
0000 oooa
0000 OOOA
0000 6000
FFFF FFFF
FFFF FFFE

0000 OOOA
0000 0003

FFFF FFF4

**EDITCOMS
9/28/76 PR!J

CONSTANTS
MIMISF EQII X'RO' UINUS INCREWENT FLAC
CR EQU 13
BLANK EQU X'ZO'
LEOM EQU X'AI' LOGICAL END OF MESSAGE
LOVHEAD EQU 8
BOHEAD EQU 10 BUFFER OVERHEAD
EMPTY EQU X'8000' EMPn FLAG
FIRST EQU -1 CODE FOR FIRST LlNE
LAST EQU -2 LAST LINE
* - - - - - - - - -
SYSGEN PHAMEI'ERS FOH EDIT BUFFER
SIZE OF STACKS FOR AVAILABLE RECORDS

AVAILS2 EQU 10
OVLSTKSZ EQU 3

BUFFER SIZES
LLENGTH EQU 130 MAX LINE LENGTH ' 255 & EVEN
BUFSIZE EQU 1024 EDIT BUFFER SIZE (MULTIPLE W 258)
KXKEY EQU 40 # OF KEYS TO WORKING FILE
MXNUMI EQU 400 INITIAL # OF LINES FOR FASTPC

EDIT DATA STRUCTURE DEFINITION
WORKNAME EQU -12 NAKE OF WORKING FILE (BY CALLER)
S. STRUC
EOJ DS 1 END OF JOB IF TRUE
CERF DS 1 LOC COMMANDS IF TRUE
TCF DS 1 TYPE CHANCES IF TRUE
BATCHF DS 1 DOING BATCH IF TRUE
ASMF DS 1 ASSEYBLY FORMAT IF TRUE
APTSYNF DS 1 APT SYNONYUS ON IF TRUE
APTCKF DS 1 APT SYNTAX CHECK IF TRUE
SYMF DS 1 SYMBOL IF TRUE

CURRENT F 1 LE
FC.OPN DS 2 A(FILER BLOCK) IF OPEN.0 IF UNOPEN
FC.DEV DS 2 PHYSICAL DEVICE
FC. IATTR DS 1 DESIRED ATTRIMJTES
FC.FATTR DS 1 FILES ATTRIWTES
F C . N W D S 10 FILE NAME .
SUB STRUCTURE FOR TOKEN GETTER

W.BUF DS 1
W.CODE DS 1 TOKEN TYPE
W. LENGTH DS 2 LENGTH OF TOK?3
W.VALUE DS 4 VALUE OF ASCII # IN BINARY

0028
0029
002A
OOAB
OOAE
0000
OOBZ
0084
0086

OOB8
OOBA
OOBB

OOBC
OOBE
OOBF

ooco
OOC2
OOC3

ooci '
OOC6
OOC7
OOC8
OOCA
OOCB

OOCC
OOCE
OODO
OOD2

OOF8
OOFA

A,(INPUT LINE)

LEFT DELIMITER
RIGHT DELIMITER
POINTS TO END OF TOKEN+l

JUST TO EVEN UP HALFWORD BOUNDRY
START COMUAND LlNE WITH LEOM
ROOM FOR A LlNE
END OF LlNE
SVC PRAMETER BLOCK

W.LINEPT DS 2
W.STATE DS 1
W .S'fA7UY OY 1
W.LDELIMDS 1
W.RDELIM DS 1
W.IPNTR OS 2

DS I
ESCHAR DS I
LlNE DS LLENGTH-1
LINFND ns 3
SVC.FUNC DS 2
SVC.STAT DS 2
SVC.B DS 2
SVC.E DS 2
SVC.PROM DS 2 .

LlNE NUUBER
L.INT DS 2 INTEGER PART
L.DEC DS I DECIWL PART
L.INC DS I INCREUENT OFF LINE # .
CURRENT LlNE

LC.INT DS 2
LC.DEC DS 1
LC.INC DS 1

LlNE # FOR START OF PAGE LISTING
P.INT DS 2
P.DEC DS I
P.INC DS I .
START AND END LlNE HUIdeERS IN RANGE

LS.INT DS 2
LS.DEC US 1
LS.INC DS 1
LE.INT DS 2'
LE.DEC DS 1
LE.INC DS 1

ASSOCIATE RANGE. PATTERN ADDRESSES
PATSTART DS 2 A(START OF PATTERN)
PATLEN DS 2 PATTERN LENGTH
RPATS DS 2 A(START OF REPLACEMENT PA-)
RPATLEN DS 2 LENC'M OF REPLACEYENT PATTERN .
START AND END COLllYN NlRlRERS

C0L.S DS 1
C0L.E DS 1

AVAILSTK DS 2*AVAILSZ+4 AVAILABLE RECORD STACK
OVLSTK DS ?*OVLSIP(SZ+Q OVERFLOW STACK .
SECTOR H U I ~ ~ E R OF RECORDS I N WOW(I~Y: FILE (FOR FAST SEARCH)

MXPRRl DS 2 W LlNE # INTEGER PART
LASTREC DS 2 DISK ADDR OF LAST RECORD

OOFC
OOFE

FFFF FFFC
FFFF FFFE

0000
0002
0004
0006
0007
0008
OOOA

FIRSTREC DS 2
RECORDS DS 2OMXKEY
l

A(REC0RDS ORDERED BY LlNE #)

l BLOCK FOR EDlT BUFFER
F.BLOCK EQU l

F.AREC DS 2 A(FILER RECORD)
F.OFLG DS 1 OPEN FLAG
F.LU DS 1 LOGICAL UNIT #
F.PS1ZE DS 2 PHYSICAL SIZE OF FILER RECORDS
F .CUREC DS 2 CURRENT OPEN RECORD #
F.ISEC DS 2 INDEX SECTOR #
F. ILOC DS 2 INDEX LOCATION
F.PREVS DS 4
F.NEXTS DS 4
F.EXP DS 2
F.UFLC DS I UPDATE FLAG
F.CODES DS 1
l

ERCODE DS 2 ERROR CODE.
STATSAV DS 4 ROOM TO SAVE DATA FOR STATISTICAL INCRE

EDlT BUFFER
E.NXTREC DS 2 TOP OF EDIT PAGE
E.LSTREC DS 2 A(LAST RECORD) ON DISK
ED DS BUFSIZE-4 ED1 T BUFFER

ENDS
MlNSlZE EQU , BUFSIZE/2-BOHEAD 1/2 OF AVAILABLE BUFFER
ATTR EQU ED+3 ---
l EDIT BUFFER DEFINITION'
B.NXTREC EQU -4 LINK TO NEXT BUFFER ON DISK
B. LSTREC EQU . -2 LINK TO LAST BUFFER ON DISK
B. STRUC
B.FIRST DS 2 HEAD OF DOUBLY LINKED LIST
B. LAST DS 2 A(LAST LINE)
B.AVAIL DS 2 A(AVAILABLE LINE LIST)
B.BOTTOM DS BUFSIZE-10 BOTTOM OF AREA FOR LINES
B.TOP DS 2

ENDS .
DEFINITION OF A LlNE BUFFER IN THE EDlT BUFFER

BP . STRUC LINKED LIST OF LINES IN EDIT BUFFER
BP.NEXT DS 2 POIN'IS FO NEXT LINE
RP. I.AST DS 2 POINTS M LAST LINE
BP.INT DS ,2 LINE // INTEGER PART
BP.DEC DS 1 DECIYILL PART
BP.SIZE DS I SIZE OF LINE
BP.LINE DS 2 THE LINE

ENDS
l

l FILER BLOCK
FI. STRUC
FI.AREC DS 2 A(F1LER BUF)
FI.OFLG DS 1 OPEN FLAG
FI.LU DS 1 LOGICAL UNIT #
FI.PSIZE DS 2 SIZE OF FILER BUF

0006
0008
OOOA
OOOC
0010
0014
0016
0017
0018

0000
000 1
0002
0003
0004
0005
0006
0007
0006
0009
OOOA
OOOB
oooc

0000 0088
OOOOR

PI .CUREC DS 2
FI.ISEC DS 2
FI.ILOC DS 2
FI .PREVS DS 4
FI.NEXTSDS 4
FI.EXP DS 2
FI.UFLG DS 1
FI.CODESDS I

. ENDS

TASK COMMON DEFINITI.ON 0F.STATISTICS
TSKCOM STRUC
NFINDL DS I OF SEARCHES FOR A LINE #
NPCFAULT DS 1 # OF PACE FAULTS DURING FINDL
NPCFTOT , DS I TOTAL # OF PACE FAUI.TS
NDlO DS 1 # OF DISK I/O'S
NINSERT DS 1 # OF INSERTIONS
NDELETE DS 1 # OF DELETIONS
NLST DS 1 MIMBER OF Ll NES LISTED
NCOM? DS 1 W E R OF COMPRESSES
NRELPC DS 1 # OF RELEASED PACES
NSPLIT DS 1 # OF PACE SPLITS
NCIVREC DS 1 # OF TIMES AVAILSTK OVERFLOWED
NCETREC DS 1 # OF TIMES AVAILSTK UNDERFLOWED

ENDS

EOF EQU X'68' EOF CODE
EM)

APPENDIX 8: EDITOR'S MODULES AND PROCEDURES IN ORDER OF APPEARANCE

MODULE -----
EDIT
EDIT
EDIT
EDIT
EDlT
EDIT
EDlT
EDIT
EDIT
EDIT
EDlT
EDIT
EDlT
EDIT
EDlT
EDlT
EDIT
EDIT
EDIT
EDlT
EDIT
EDlT
EDlT
EDIT
EDlT
EDIT
EDIT
EDIT

' EDlT
EDIT
EDlT
EDlT
EDlT
EDlT
EDIT
EDIT
EDlT
EDlT
EDIT
EDIT
EDIT
EDIT
EDIT
EDlT
EDIT
EDlT
EDIT
EDlT
EDlT

PROCEDURE --------
EDIT
INITIAL
GETCMD
GET l NS
DOCMD
LOGON
OFF
APTSYN
APTCK
ASM
TC
ONOFF
SETTOKEN
GETTOKEN
END
C
0
SETUPOC
NF
FF
NUMCMD
BL
A L
LF
LA
DF L
DAL
P
Q
RFP
RAP
CA
MA
NXTNUM
SETCMDUP
FSTRNG
EXPRNG
ASORNG
REPRANGE
PATTERN
PATDEL lM
C'OLIMITO
COLUMN
ALRANC
ALRANGl
L I NENUM
RNUM
DECNUM
1 NCR

PURPOSE -----
PERFORM EDITING FUNCTION
CREATES AND INITIALIZES THE DATA STRUCTURE OFF R12
GET COMMAND FROM INPUT DEVICE. PROMPT = .
GET LINE FOR INSERT. PROW =
DO COMMANDS IN INPUT BUFFER UNTIL ERROR OR END OF LINE
RESET OR SET CERF TO LOG ALL EDITOR INTERACTIONS
TURN OFF ALL OPTIONS
TURN ON/OFF OPTION APTSYNF FOR APT SYNOMYNS
TURN ON/OFF OPTION APTCKF FOR APT SYNTAX CHECKER
TURN ON/OFF OPTION ASMF FOR ASSEMBLY LANGUAGE FORMAT
TURN ON/OFF OPTION TCF FOR TYPE CHANGES OPTION
DECODE ON/OFF ON COMMAND LINE. SET R14 TO ZERO IF ON ELSE 1 IF OFF
SET UP DATA STKUC'CURE TO DECODE TOKENS ON COWAND LlNE
GET NEXT TOKEN ON COMMAND LINE
TERMINATE EDIT [DO NF. FF END EOJ]
CREATE A WORKING FlLE
OPEN FlLE TO A WORKING FILE
COMMON SETUP ROUTINE FOR 0 AND C
WRITE OUT WORKING FILE TO FlLElD
FORGET FlLE BY DESTROYING THE WORKING FILE
HANDLE NUMBER INPUT AS A COMMAND
INSERT NEXT LINE BEFORE FlRST LINE IN RANGE
INSERT NEXT LINES AFTER FlRST LlNE IN RANGE
LIST THE FlRST LlNE IN RANGE
LIST ALL LINES IN RANGE
DELETE FlRST LlNE IN RANGE
DELETE ALL LINES IN RANGE
LIST A PACE OF LINE STARTING WITH FIRST LINE IN &GE
RELIST A PACE OF LINES STARTING WITH P.INT
REPLACE PATTERNS IN FlRST LlNE IN RANGE
REPLACE PATTERNS IN ALL LINES IN RANGE
COPY AFTER
MOVE AFTER
PUT NEXT LIFE NJMBER IN WORKING FlLE TO LE.
COMMON S E W S FOR MOST COMMANDS USING RANGE
FIND FIRST LlNE IN RANGE
EVALUATE EXPLICIT RANGE OF FORM LINE#.LINE#
EVALUATE ASSOCIATIVE RANGE
EVALUATE REPLACEMENT RANGE.
EVALUATE PATTERN ON C O W N D LlNE
DETERMINE IF A CHARACTER IS A PATTERN OR SYYBOL DELIMITER
BVALUhTE C O L W LIMITS
EVALUATE CURRENT TOKEN FOR A COLUUN NUMBER
DO FUNCTION FOR EACH LlNE IN RANGE
DO FUNCTION FOR EACH LlNE IN RANGE
EVALUATE CURRENT TOKEN FOR LlNE NUYBER
EVALUATE CURRENT TOKEN FOR LlNE NUYBER. TOKEN CAN NOT BE A COMMAND
SET L.DEC IN DATA STRUCTURE IF INTEGER BETWEEN 0 AND 99
HANDLE INCREMENT LINE NUMBERS OF FORU +I. -1 ETC.

EDlT
EDlT
EDlT
EDlT
ED l TCA
ED l TCA
ED l TCA
ED 1 TCA
ED l TCA
ED l TCA
ED l TCA
ED l TCA
ED 1 TCA
ED l TCA
ED l TCA
EDlTF
ED l TF
ED l TF
ED l TF
ED l TF
EDlTF
ED l TF
ED I TF
ED l TF
ED l TF
CEDlT
CEDlT
CEDlT
CED l T
CED l T
CEDlT
FlNDL
FINDL
FlNDL
FlNDL
FlNDL
FlNDL
FlNDL
FlNDL
FlNDL
FINDL
FlNDL
F l NDL
FlNDL
FINDL
FINDL
FlNDL
FINDL
FINDL
FINDL
FINDL
FINDL
FlNDL
F l NDL
EVF l LE
EVF l LE

TERR
TERORS
CLEANTOK
CLEANCMD
DOMACA
CAF I LE
FNDCAL
SETGETCA
GETCA
CAWORK
SETEMP
PUTEMP
ENDPUT
GETEMP
RELTEMP
BATCH
FlLWRK
3AVRWD
RSmD
GETC
GETF
CWORK
I LC
RENUMBER
GL l NES
NXTRNG
RNG
CHKEXRNG
CHKASRNG
FNDPAT
SYMBOL
FlNDL
MOVE
l NSERB
l NSERT
DELETE
REPAT
FRACCOPY
COPY
PATCOPY
RELBUF
GETBUF
SUBSPL l T
COMPRESS
SPL I TPC
RELPG
NEXTREC
READER
RR I TER
GETREC
Q l VREC
DWORK
LSTREC
ERRHAN
EVF l LE
DEF l LE

LOG ERROR MESSAGE
WRITE OUT POINTER TO CURRENT TOKEN AND ERROR MESSAGE
MAKE SURE WE'RE POINTING TO THE NEXT TOKEN
MAKE SURE NO MORE DATA IN INPUT COMblAND LlNE
DO MOVE AFTER OR COPY AFTER
COPY ALL LINES IN RANGE FROM FlLElD AFTER CAL.
SET BP TO LlNE CAL. OR LlNE BEFORE IF NONE
SETUP FOR GETCA. FlND FIRST LlNE IN RANGE IN FILE
GET NEXT LlNE IN RANGE FROM FlLElD
MOVE OR COPY LINES IN RANGE IN WOKKING FILE AFTER CAL.
SETUP FOR PUTEMP
PUT LlNE AWAY IN FlFO THAT CAN EXTEND TO DISK
FINSH PUTEMP AND SETUP FOR GETEMP
GET NEXT LlNE FROM FlFO
RELEASE FlFO
HANDLE BATCH COMMAND
FILL WORKING FlLE WITH DATA FROM CURRENT FILE
SAVE STATE OF WORD AFTER RIP
MSTQPE WORD BLOCK TO STATE WHEN SAVRWD WAS CALLED
GET A LlNE FROM COPY AFTER FID
GET NEXT LlNE FROM CURRENT FlLE
CREATE WORKING FlLE & SETUP THE FIRST BUFFER
INSERT LlNES AFTER LlNE POINTED TO BY BP
RENUMBER LlNES IF NECESSARY
GET LINES FOR INSERTIONS WATCHING FOR LEOMS
SET BP & CURRENT LlNE TO NEXT LlNE IN RANGE
SET BP & CURRENT LlNE TO NEXT LlNE IN RANGE
CHECK TO SEE IF LlNE POINTED TO BY BP IS IN EXPLICIT RANGE
CHECK LINE. BP. TO SEE IF IT'S IN ASSOCIATIVE RANGE
FIND PATTERN OR SYMBOL IN A LlNE
DETERMINE IF A CHARACTER IS A SYUBOL
GIVEN THE LlNE #. SET BP TO POINT W THE LlNE BUFFER OF THE LlNE
MOVE UP/DOWN R14 LINES. SET BP TO RESULTANT LlNE
INSERT LlNE L. BEFORE LlNE POINTED TO BY BP
INSERT LlNE L. AFTER LlNE POINTED TO BY BP
DELETE LlNE POINTED TO BY BP
REPLACE PATTERN IN LINE BP
COPY A LlNE FRAGMENT
COPY A LlNE FRAGMENT
COPY PATTERN INTO LlNE NL
RELEASE BUFFER OBTAINED BY CETBUF
GET A BUFFER OF LENGM IN R14
SPLIT A BLWK OF LENGTH+N INTO 2 BLOCKS OF LENGTH AND N
COMPRESS AVAILABLE BUFFERS INTO ONE BUFFER
SPLIT PAGE AFTER LlNE BP INTO 2 PAGES
RELEASE CURRENT PAGE IF EYPTY
READ IN NEXT RECORD UPDATING IF NECESSARY
READ RECORD F,CVRGC
WRlTE OUT F.CUREC
GET AN AVAILABLE RECORD
GIVE UP A RECORD
DESTROY WORKING Fl LE AND RELEASE ALL FREE RECORDS
READ IN RECORD BEFORE F.CUREC
IF I/O ERROR THEN LOGIT SETTING ERROR
EVALUATE A F l LE ID IN ASC l l AND PllT RF-SIJLTS IN A FI LEID BLOCK
SET DEFAULTS IN FlLElD BLWK

EVF l LE
EVF l LE
LlST
LlST
LlST
LlST
LOG l T
LOG l T
OF l LE
OF l LE
OF l LE
OFILE.
OF l LE
OF l LE
OF l LE
OF l LE
OF l LE
OF l LE
ALOMEM
ALOMEM
SAVREC
SAVREC
SAVREC
SAVREC
SEARCH
STAT
STAT
STAT
STATD
STATD
ST ATD
TERROR
TERROR
TERROR
TERROR
TERROR
WORD

SATTR
LATTR
LlST
L l NENA
FORMAT
PUTCHAR
LOG l T
LST l T
OF l LE
CRF l LE
OAF I1.E
SETUP0
ASS l LU
CF l LE
RELEASE
RELAMEM
WR l TE
READ
ALOMEM
RELMEM
SAVREC
FASTPG
GENKEY
FRGREC
SEARCH
STAT
STAT IN
STAT l E
STAT
STAT l N
STAT l E
TERROR
FlLE
FILL
PO l NT
LOG
WORD

SET CLASSIFICATION AND PROPERTY TO MAX IN FID
LOG FlLE SECURITY IF > UNCLASSIFIED
LlST LINE POINTED TO BY BP IN UNFORMATTED OR ASSEMBLY LANGUAGE FORMAT WITH LlNE NUMBERS
CONVERT LlNE NUMBER TO ASCll
FORMAT A LlNE IN ASSEMBLY LANGUAGE FORMAT
PUT A CHARACTER IN A BUFFER UNTIL END OF LlNE
LOG MESSAGE TO LU 6
LOG MESSAGE TO LU 6
OPEN A FILER FlLE
CREATE A FlLE
OPEN OR ALOCATE A FILER FlLE
COMMON SETUP ROUTINE FOR OFILE. CRFILE AND OAFILE
ASSIGN LU TO PHYSICAL DEVICE NUMBER
CLOSE FILER Fl LE
RELEASE DEVICE
RELEASE ANY ALOCATED MEMORY FOR FILER
WRITE OUT A LlNE TO FILER OR A DEVICE
READ A LINE FROM FlLER OR A DEVICE
ALOCATE N CONTIGUOUS BLOCKS OF MEMORY
RELEASE N CONTIGUOUS BLOCKS OF MEMORY
ASSOCIATE A RECORD # WITH A LlNE # SO CAN FIND LINES FAST
GUESS PAGE NUMBER THAT LlNE NUMBER IS ON AND GET PAGE.
CALCULATE KEY FOR LlNE W E R
DISASSOCIATE RECORD NUYBER FROM LlNE NUMBER
SEARCH A TABLE OF VARIABLE LENGTH TOKENS
SAVE STATISTICS IN TASK COWON
START OF STATISTICAL INCREMENT
END OF STATISTICAL INCREMENT
DUMMY ROUTINE TU TURN OFF STATS
D W ROUTINE TO TURN OFF STATS
DUMMY ROUTINE FO TURN OFF STATS
LOG ERROR MESSAGE N TO THE USER
PLACE THE WORD 'FILE' AFTER R3
INSERT WSSAGE N AFTER W9
PLACE AN t TO TOKEN DELIMITER WHERE WORD IS POINTING
LOG MESSACE TO LU 6
DECODE TOKENS OFF AN ASCII LlNE

APPENDIX C: EDITOR'S MODULES AND PROCEDURES ALPHABETIZED BY PROCEDURE

MODULE -----
EDIT
ALOMEM
EDlT
EDlT
EDlT
EDIT
EDlT
EDlT
OF l LE
ED 1 TF
EDlT
EDlT
EDlT
ED l TCA
ED l TCA
OF 11.E
CED l T
CED l T
EDlT
EDlT
EDlT
EDlT
F l NDL
F l NDL
OF l LE
ED 1 TF
EDlT
EDlT
EVF l LE
FlNDL
EDlT
EDlT
ED I TCA
F l NDL
EDlT
EDlT
ED l TCA
FlNDL
EVF l LE
EDlT
SAVREC
ED 1 TCA
EDIT
EDIT
TERROR
TERROR
ED l TF
FlNDL
CED l T

PROCEDURE PURPOSE -------- -----
AL INSERT NEXT LINES AFTER FIRST LINE IN RANGE
ALOMEM ALOCATE N CONTIGUOUS BLOCKS OF MEMORY
ALRANG DO FUNCTION FOR EACH LlNE IN HANCE
ALRANGl DO FUNCTION FOR EACH LlNE IN RANGE
APTCK TURN ON/OFF OPTION APTCKF FOR APT SYNTAX CHECKER
APTSYN TURN ON/OFF OPTION APTSYNF FOR APT SYNOMYNS
ASM TURN ON/OFF OPTION ASMF FOR ASSEMBLY LANGUAGE FORMAT
ASORNG EVALUATE ASSOCIATIVE RANGE
ASSILU ASSIGN LU TO PHYSICAL DEVICE NUMBER
BATCH HANDLE BATCH COMMAND
BL INSERT NEXT LINE BEFORE FIRST LINE IN RANGE
C CREATE A WORKING FILE
CA COPY AFTER
CAFILE COPY ALL LINES IN RANGE FROM FlLElD AFTER CAL.
CAWORK MOVE OR COPY LINES IN RANGE IN WORKING FlLE AFTER CAL.
CFlLE CLOSEFILERFILE
CHKASRNG CHECK LINE. BP, TO SEE IF IT'S IN ASSOCIATIVE RANGE
CHKEXRNG CHECK TO SEE IF LlNE POINTED TO BY BP IS IN EXPLICIT RANGE
CLEANCMD MAKE SURE NO MORE DATA IN INPUT COMMAND LlNE
CLEANTOK MAKE SURE WE'RE POINTING TO THE NEXT TOKEN
COLlMlTS EVALUATE COLUMN LIMITS
COLUMN EVALUATE CURRENT TOKEN FOR A COLUMN NUMBER
COMPRESS COMPRESS AVAILABLE BUFFERS INTO ONE BUFFER
COPY COPY A LINE FRAGMENT
CRFl LE CREATE A Fl LE
CWORK CREATE WORKING FlLE & SETUP THE FIRST BUFFER
DAL DELETE ALL LINES IN RANGE
DECNUM SET L.DEC IN DATA STRUCTURE IF INTEGER BElWEEN 0 AND 99
DEFILE SET DEFAULTS IN FlLElD BLOCK
DELETE DELETE LlNE POINTED TO BY BP
DF L DELETE FIRST LINE IN RANGE
DOCMD DO COMMANDS IN INPUT BUFFER UNTIL ERROR OR END OF LlNE
DOMACA DO MOVE AFTER OR COPY AFTER
DWORK DESTROY WORK ING PI LE AND RELEASE ALL FREE RECORDS
EDIT PERFORM EDITING FUNCTION
END TERMINATE EDIT [DO NY. FF END EOJ]
ENDPUT FlNSH P U T W AND SETUP FOR CETEW
ERRHAN IF I/O ERROR THEN LOGIT SETTING ERROR
EVFILE EVALUATE A FlLElD IN ASCII AND PUT RESULTS IN A FILEID BLOCK
EXPRNG EVALUATE EXPLICIT RANGE OF FORM LINE#.LINE#
FASTPC CIIESS PAGE NlRdRRR THAT LlNE M E P IS ON AND GET PACE.
FNDCAL SET BP TO LlNE CAL. OR LlNE BEFORE IF NONE
FSTRNG FlND FIRST LlNE IN RANGE
FF FORGET FILE BY DE3TROYING T1tE WORKING FILE
FILE PLACE THE WORD 'FILE' AFTER R3
F l LL INSERT ldESSAGE N AFTER R3
FILWRK FILL WORKING FlLE WITH DATA FROM CURRENT FlLE
FINDL CIVEN THE LINE u . SET BP TO POINT m THE LINE BUFFER OF THE LINE
FNDPAT FlND PATTERN OR SYMBOL IN A LlNE

LIST FORbIAT
F 1 NDL FRACCOPY
SAVREC FRGREC
SAVREC GENKEY
FINDL GETBUF
EDITF GETC
EDITCA CETCA
EDlT GETCMD
EDITCA GETEMP
EDITF GETF
EDlT GETINS
FlNDL GETREC
ED l T GETTOKEN
FlNDL ClVREC
EDITF CLINES
EDITF ILC
EDlT INCR
EDIT INITIAL
FINDL INSERR
FINDL INSERT
EDlT LA
EVFILE LATTR
EDlT LF
L 1 S'l' L l NENA
EDlT LINEW
LIST LIST
TERROR LOG
LOGlT LOGIT
EDlT LOGON
LOGIT LSTIT
FlNDL LSTREC
EDlT MA
EDlT NXTNUM
FlNDL MOVE
F 1 NDL NEXTREC
EDlT NF
EDlT NUMCMD
CEDlT NXTRNG
EDlT 0
OFILE OAF1 LE
EDIT OFF
OFILE OFILE
EDlT ONOFF
EDlT P
F 1 NDL PATCOPY
EDlT PATDELIM
EDlT PATTERN
TERROR POINT
LIST PUTCHAR
EDITCA PUTEMP
EDIT Q
EDlT RAP
OF1 LE READ
FINDL READER
FlNDL RELBUF
OF1 LE RELAKEM

FORMAT A LlNE IN ASSEMBLY LANGUAGE FORMAT
COPY A LlNE FRAGMENT
DISASSOCIATE RECORD NUMBER FROM LlNE NUMBER
CALCULATE KEY FOR LlNE NUMBER
GET A BUFFER OF LENGTH IN R14
GET A LINE FROM COPY AFTER FID
GET NEXT LINE IN RANCE FROM FlLElD
GET COMMAND FROM INPUT DEVICE. PROMPT =
GET NEXT LlNE FROM FIFO
CET NEXT LlNE FROM CURRENT FILE
GET LlNE FOR INSERT. PROW =
GET AN AVAILABLE RECORD
GET NEXT TOKEN ON COMMAND LINE
GIVE UP A HECUHU
GET LINES FOR INSERTIONS WATCHING FOR LEOMS
INSERT LINES AFTER LlNE POINTED TO BY BP
HANDLE INCREMENT LlNE NUMBERS OF FORM +I. -1 ETC.
CREATES AND INITIALIZES THE DATA STRUCTURE OFF R12
INSERT LlNE L. BEFORE LlNE POINTED TO BY BP
INSERT LlNE L. AFTER LlNE POINTED TO BY BP
LIST ALL LINES IN RANGE
LOG FILE SECURITY IF > UNCLASSIFIED
LlST THE FIRST LlNE IN RANGE
CONVERT LlNE NUMBER TO ASCII
EVALUATE CURRENT TOKEN FOR LlNE NUMBER
LIST LINE POINTED TO BY BP IN UNFORMATTED OR ASSEMBLY LANGUAGE FORMAT WITH LlNE NUMBERS
LOG MESSAGE TO LU 6
LOG MESSAGE TO LU 6
RESET OR SET CERF TO LOG ALL EDITOR INTERACTIONS
LOG MESSAGE TO LU 6
READ IN RECORD BEFORE F.CUREC
MOVE AFTER
PUT NEXT LlNE NUMBER IN WORKING FILE TO LE.
MOVE UP/DOWN R14 LINES. SET BP TO RESULTANT LlNE
READ IN NEXT RECORD UPDATING IF NECESSARY
WRITE OUT WORKiNG FlLE TO FILEID
HANDLE NUMBER INPUT AS A COMMAND
SET BP & CURRENT LINE TO NEXT LlNE IN RANCE
OPEN FlLE TO A WORKING FlLE
OPEN OR ALOCATE A FILER FlLE
TURN OFF ALL OPTIONS
OPEN A Fl LER F lLE
DECODE ON/OFF ON COWAND LINE. SET R14 TTI ZERO IF ON ELSE 1 IF OFF
LIST A PAGE OF LlNE STARTING WITH FIRST LlNE IN RANGE
COPY PATTERN INTO LlNE NL
DETERbllNE IF A CHARACTER IS A PATTERN OR SYMBOL DELIMITER
EVALUATE PATTERN ON COMMAND LlNE
PLACE AN t TO TOKEN DELIMITER WHERE WORD IS POINTING
PUT A CHARACTER IN A BUFFER UNTIL END OF LlNE
PUT LlNE AWAY IN FIFO THAT CAN EXTEND TO DISK
RELIST A PAGE OF LINES STARTING WITH P.INT
REPLACE PATTERNS IN ALL LINES IN RANGE
READ A LlNE FROM FILER OR A DEVICE
READ RECORD F.CUREC
RELEASE BUFFER OBTAINED BY GETBUF
RELEASE ANY ALOCATED MEMORY FOR FlLLH

OF 1 LE RELEASE
ALOUEM RELMEM
FINDL RELPG
EDITCA RELTEMP
ED 1 TF RENUMBER
FINDL REPAT
ED 1 T REPRANGE
EDITF RSTWRD
EDlT RFP
CEDIT RNG
EDlT RNUM
EVFlLE SATTR
EDITF S A V m
SAVREC SAVREC
SEARCH SEARCH
ED 1 T SETCMDUP
EDITCA SETEW
EDITCA SETCETCA
ED 1 T SETTOKEN
OFILE SETUP0
EDlT SETUPOC
F 1 NDL SPL 1 TPG
STAT STAT
STATD STAT
STAT STATIE
STATD STATIE
STAT STATIN
STATD STATIN
F 1 NDL SLlBSPL 1 T
CEDIT SYMBOL
EDlT TC
EDIT TERORS
EDIT TERR
TERROR TERROR
WORD WORD
OFILE WRITE
FlNDL WRITER

RELEASE DEVICE
RELEASE N CONTIGUOUS BLOCKS OF MEMORY
RELEASE CURRENT PAGE IF EMPTY
RELEASE F IF0
RENUMBER LINES IF NECESSARY
REPLACE PATTERN IN LlNE BP
EVALUATE REPLACEMENT RANGE
RESTORE WORD BLOCK TO STATE WHEN SAVRWD WAS CALLED
REPLACE PATTERNS IN FIRST LlNE IN RANGE
SET BP & CURRENT LlNE TO NEXT LlNE IN RANGE
EVALUATE CURRENT TOKEN FOK LINE NUMBER. TOKEN CAN NOT BE A COULLAND
SET CLASSIFICATION AND PROPERTY TO MAX IN FID
SAVE S'I'A'I'E UF WUKu APTER R l t
ASSOCIATE A RECORD # WITH A LINE # SO CAN FIND LINES FAST
SEARCH A TABLE OF VARIABLE LENGTH TOKENS
COMMON SETUPS FOR MOST COMMANDS USING RANGE
SETUP FOR PUTEW
SETUP FOR GETCA, FIND FIRST LlNE IN RANGE IN VILE
SET UP DATA STRUCTURE TO DECODE TOKENS ON COMMAND LlNE
COMMON SETUP ROUTINE FOR OFILE AND OAFILE
COMMON SETUP ROUTINE FOR 0 AND C
SPLIT PAGE AFTER LlNE BP INTO 2 PAGES
SAVE STATISTICS IN TASK C O W N
DUMMY ROUTINE TO TURN OFF STATS
END OF STATISTICAL INCREMENT
DUMMY ROUTINE FO TURN OFF STATS
START OF STATISTICAL INCREMENT
DUMMY ROUTINE TO TURN OFF STATS
SPLIT A BLOCK OF LENGTH+N INTO 2 BLOCKS OF LENGTH AND N
DETERMINE IF A CHA~ACTER IS A SYMBOL
TURN ON/OFF OPTION TCF FOR TYPE CHANCES OPTION
WRITE OUT POINTER TO CURRENT TOKEN AND ERROR MESSAGE
LOG ERROR MESSAGE
LOG ERROR MESSAGE N TO THE USER
DECODE TOKENS OFF AN ASCII LlNE
WRITE OUT A LlNE TO FILER OR A DEVICE
WRITE OUT F.CUREC

APPENDIX D: EDITOR'S MODULES AND PROCEDURES ALPHABETIZED BY MODULE

MODULE -----
ALOMEM
A LOMEM
CED 1 T
CED 1 T
CEDI T
CEDlT
CEDIT
CED 1 T
EDIT
EDlT
EDlT
EDlT
EDIT
EDIT
EDlT
EDlT
EDlT
EDlT
EDlT
EDIT
EDIT
EDIT
EDlT
EDIT
EDlT
EDlT
EDIT
EDlT
EDIT
EDIT
EDlT
EDIT
EDlT
ED! T
EDlT
EDlT
EDIT
EDIT
EDIT
EDIT
EDIT
EDIT
EDlT
EDIT
EDlT
EDIT
EDIT
EDIT
EDIT

PROCEDURE PURPOSE --------- -------
ALOMEM ALOCATE N CONTIGUOUS BLOCKS OF MEMORY
RELMEM RELEASE N CONTIGUOUS BLOCKS OF MEMORY
NX'I'KNC SET BP k CURRENT LINE TO NEXT LlNE IN RANGE
RNC SET RP k CURRENT LINE TO NEXT LINE IN RANGE
CHKEXRNG CHECK TO SEE IF LlNE POINTED TO BY BP IS IN EXPLICIT RANGE
CHKASRNC CHECK LINE. BP. TO SEE IF IT'S IN ASSOCIATIVE RANGE
FNDPAT FIND PATTERN OR SYMBOL IN A LINE
SYMBOL DETERMINE IF A CHARACTER IS A SYMBOL
EDIT PERFORM EDITING FUNCTION
INITIAL CREATES AND INITIALIZES THE DATA STRUCTURE OFF R12
GETCMD GET COMMAND FROM INPUT DEVICE. PROMPT = .
GETINS GET LlNE FOR INSERT. PROMP =
DOCMD DO COMMANDS IN INPUT BUFFER UNTIL ERROR OR END OF LINE
LOGON RESET OR SET CERF TO LOG ALL EDITOR INTERACTIONS
OFF TURN OFF ALL OPTIONS
APTSYN TURN ON/OFF OPTION APTSYNF FOR APT SYNOWNS
APTCK TURN ON/OFF OPTION APTCKF FOR APT SYNTAX CHECKER
ASM TURN ON/OFF OPTION ASbfF FOR ASSELdeLY LANGUAGE FORUAT
TC TURN ON/OFF OPTION TCF FOR TYPE CHANGES OPTION
ONOFF DECODE ON/OFF ON COMMAND LINE. SET R14 TO ZERO IF ON ELSE 1 IF OFF
SETTOKEN SET UP DATA STRUCTURE TO DECODE TOKENS ON COMMAND LlNE
GETTOKEN GET NEXT TOKEN ON COMMAND LINE
END TERMINATE EDIT [DO NF. FF END EOJ]
C CREATE A WORKING FILE
0 OPEN FILE TO A WORKING FILE
SETUPOC COMMON SETUP ROUTINE FOR 0 AND C
NF WRITE OUT WORKING FILE TO FILEID
FF FORGET FILE BY DESTROYING THE WORKING FILE
NUMCMD HANDLE NUMBER INPUT AS A COWAND
BL INSERT NEXT LINE BEFORE FIRST LINE IN RANGE
AL INSERT NEXT LINES AFTER FIRST LINE IN RANGE
LF LIST THE FIRST LINE IN RANGE
LA LIST ALL LINES IN RANGE
DFL DELETE FIRST LINE IN RANGE
DAL DELETE ALL LINES IN RANGE
P LIST A PACE OF LINE STARTING WIT11 FIRST LINE IN RANCE
Q RELIST A PAGE OF LINES STARTING WITH P.INT
RFP REPLACE PATTERNS IN FIRST LINE IN RANGE
RAP REPLACE PATTERNS IN ALL LINES IN RANGE
CA COPY AFTER
MA MOVE AFTER
NXTNUM PUT NEXT LINE NUMBER IN WORKING FlLE TO LE.
SETCMDUP COMMON SETUPS FOR MOST COMMANDS USING RANGE
FSTRNC FIND FIRST LINE IN RANCE
EXPRNG EVALUATE EXPLICIT RANGE OF FORM LINE#.LItiE#
ASORNG EVALUATE ASSOCIATIVE RANGE
REPRANGE EVALUATE REPLACEMENT RANGE
PATTERN EVALUATE PATTERN ON COMUANO 1.1M:
PATDELIM DETERMINE IF A CHARACTER IS A PATTERN OR SYMBOL DELIMI'TER

EDIT COLlMlTS
EDlT COLUMN
EDlT ALRANG
EDIT ALRANGI
EDlT LINENUM
EDIT RNUM
EDlT DECNUM
EDlT INCR
EDlT TERR
EDlT TERORS
ED l T CLEANTOK
ED l T CLEANCMD
EDITCA DOMACA
EDITCA CAFILE
ED I TCA FNDCAL
EDITCA SETGETCA
EDITCA GETCA
EDITCA CAWOKK
EDITCA SETEMP
EDITCA PUTEMP
EDITCA ENDPUT
EDITCA GETEMP
EDITCA RELTEMP
EDITF BATCH
EDITF FILWRK
EDlTF SAVRWD
EDlTF RSTWRD
EDITF GETC
EDlTF GETF
EDlTF CWORK
EDITF ILC
EDITF RENUMBER
EDlTF CLINES
EVFILE EVFILE
EVFILE DEFILE
EVFILE SATTR
EVFILE LATTR
FlNDL FINDL
FlNDL MOVE
FINDL INSERB
FlNDL INSERT
FlNDL DELETE
FlNDL REPAT
FINDL FRAGCOPY
FlNDL COPY
F I NDL PATCOPY
FINDL RELBUF
FINDL GETBUF
FINDL SUBSPLIT
FlNDL COMPRESS
FINDL SPLlTPC
FlNDL RELPC
F I NDL NEXTREC
FINDL READER
F l NDL WR l TER
FINDL GETREC

EVALUATE COLUMN LIMITS
EVALUATE CURRENT TOKEN FOR A COLUMN NUMBER
DO FUNCTION FOR EACH LlNE IN RANGE
DO FUNCTION FOR EACH LlNE IN RANGE
EVALUATE CURRENT TOKEN FOR LINE NUMBER
EVALUATE CURRENT TOKEN FOR LINE NUMBER, TOKEN CAN NOT BE A COKblAND
SET L.DEC IN DATA STRUCTURE IF INTEGER BETWEEN 0 AND 99
HANDLE INCREMENT LINE NUMBERS OF FORM +I. -1 ETC.
LOG ERROR MESSAGE
WRITE OUT POINTER TO CURRENT TOKEN AND ERROR MESSAGE
MAKE SURE WE'RE POINTING TO THE NEXT TOKEN
MAKE SURE NO MORE DATA IN INPUT C O W N D LlNE
DO MOVE AFTER OR COPY AFTER
COPY ALL LINES IN RANGE FROM FILEID AFTER CAL.
SET BP TO LlNE CAL. OR LINE BEFORE IF NONE
SETUP FOR CETCA. FIND FIRST LlNE IN RANGE IN FlLE
GET NEXT LlNE IN RANGE FROM FILEID
MOVE OR COPY LINES IN RANOE IN WORKING FILE AFTER CAL.
SE'IUP FOR PLITEMP
PUT LINE AWAY IN FlFO THAT CAN EXTEND TO DISK
FINSH PUTEMP AND SETUP FOR GETEMP
GET NEXT LINE FROM FlFO
RELEASE FlFO
HANDLE BATCH COMMAND
FILL WORKING FILE WITH DATA FROM CURRENT FlLE
SAVE STATE OF WORD AFTER R12
RESTORE WORD BLOCK TO STATE WHEN SAVRWD WAS CALLED
GET A LINE FROM COPY AFTER FID
GET NEXT LlNE FROM CURRENT FILE
CREATE WORKING FlLE & SETUP THE FIRST BUFFER
INSERT LINES AFTER LlNE POINTED TO BY BP
RENUMBER LINES IF NECESSARY
GET LINES FOR INSERTIONS WATCHING FOR LEO=
EVALUATE A FILEID IN ASCII AND PUT RESULTS IN A FILEID BLOCK
SET DEFAULTS IN FILEID BLOCK
SET CLASSIFICATION AND PROPERTY TO MAX IN FID
LOG FILE SECURITY IF > UNCLASSIFIED
GIVEN THE LINE #. SET BP TO POINT TO THE LINE BUFFER OF THE LlNE
MOVE UP/DOWN R14 LINES. SET BP TO RESULTANT LlNE
INSERT LINE L. BEFORE LlNE POINTED M BY BP
INSERT LINE L. AFTER LINE POINTED TO BY BP
DELETE LINE POINTED TO BY BP
REPLACE PATTERN IN LINE BP
COPY A LlNE FRAGMENT
COPY A LINE FRAGMENT
COPY PATTERN INTO LINE NL
RELEASE BUFFER OBTAINED BY GETBUF
GET A BUFFER OF LENGTH IN R14
SPLIT A BLOCK OF LENGTH+N INTO 2 BLOCKS OF LENGTH AND N
COWRESS AVAILABLE BUFFERS INTO ONE IWFFER
SPLIT PAGE AFTER LlNE DP INTO 2 PAGES
RELEASE CURRENT PAGE IF EMPTY
READ IN NEXT RECORD UPDATING IF NECESSARY
READ RECORD F.CUREC
WRITE OUT F.CUREC
GET AN AVAILABLE RECORD

FlNDL GIVREC
FlNDL DWORK
FlNDL LSTREC
FlNDL ERRHAN
LIST LlST
LlST LINENA
LIST FORMAT
LIST PUTCHAR
l.Dt: I T LOG I T
LOGlT LSTlT
OFILE OFILE
OFlLE CRFILE
OFlLE OAFILE
OFlLE SETUP0
OFlLE ASSILU
OFlLE CFlLE
OF l LE RELEASE
OF l LE RELAMEM
OFlLE WRITE
OFlLE HEAD
SAVREC SAVREC '
SAVREC FASTPG
SAVREC GENKEY
SAVREC FRGREC
SEARCH SEARCH
STAT STAT
STAT STATIN
STAT STATIE
STATD STAT
STATD STATIN
STATD STATIE
TERROR TERROR
TERROR FlLE
TERROR FILL
TERROR POINT
TERROR LOG
WORD WORD

GIVE UP A RECORD
DESTROY WORKING FlLE AND RELEASE ALL FREE RECORDS
READ IN RECORD BEFORE F.CUREC
IF I/O ZRROR THEN LOGlT SETTING ERROR
LlST LINE POINTED TO BY BP IN UNFORMATTED OR ASSEMBLY LANGUAGE FORMAT WlTH LlNE NUMBERS
CONVERT LlNE NUMBER TO ASCII
FORMAT A LlNE IN ASSEMBLY LANGUAGE FORMAT
PUT A CHARACTER IN A BUFFER UNTIL END OF LlNE
LOG MESSAGE TO LU 6
LOG MESSAGE TO LU 6
OPEN A FILER FlLE
CREATE A FlLE
OPEN OR ALOCATE A Fl LER Fl LE
COMMON SETUP ROUTINE FOR OFILE. CRFILE AND OAFILE
ASSIGN LO TO PHYSICAL DEVICE NUMBER
CLOSE Fl LER F l LE
RELEASE DEVICE
RELEASE ANY ALOCATED MEMORY FOR FILER
WRITE OUT A LlNE TO FILER OR A DEVICE
READ A LlNE FROM FILER OR A DEVICE
ASSOCIATE A RECORD # WlTH A LlNE # SO CAN FIND LINES FAST
GUESS PAGE NUMBER THAT LlNE NUMBER IS ON AND GET PACE.
CAI.CULATE KEY FOR LlNE NUMBER
DISASSOCIATE RECORD NUMBER FROM LlNE NUYBEK
SEARCH A TABLE OF VARIABLE LENGTH TOKENS
SAVE S'I'ATISTICS IN TASK COWON
START OF STATISTICAL INCREMENT
END OF STATISTICAL INCREMENT
DUMMY ROUTINE TO TURN OFF STATS
DUMMY ROUTINE TO TURN OFF STATS
DUMMY ROUTINE FO TURN OFF STATS
LOG ERROR MESSAGE N TO THE USER
PLACE THE WORD 'FILE' AFTER R3
INSERT MESSAGE N AFTER R3
PLACE AN t TO TOKEN DELIMITER WHERE WORD IS WlNTlNG
I.OG MESSAGE TO LU 6
DECODE TOKENS OFF AN ASCII LlNE

