A MASTER

UCID-17371

Lawrence Livermore Laboratory

PROGRAM MANUAL FOR THE DATA DIRECTOR EDITOR
Patrick R. McGoldrick

February 17, 1977

This is an informal report intended
primarily for internal or limited
|||||“““ _\\ external distribution. The opinions

“ !L e, o || and conclusions stated are those of
i IIH""' iy B || Wi e ety
I A) |) { — U €
I|||l il il K !I'- or 'il“ | 3 ?rl' L' .‘..‘L‘Il 1 < ',) Prepared for U.S. Energy Research &
||||I || ||| ‘“I H “h = i : s ’L‘ JV‘Iﬂ' Development Administration under
(|| l“ | "|l.| ! “I i ﬂLJﬁ J Lj x el i contract No. W-7405-Eng-48.
a2 "i|||'|; H ' L 5
p*Lh |
1l | II I i“'ll 2
i[ﬂ N |||' Ll

.iil:!!lu
|isi!.|;||,

I
nt! !n“l !!« "! !:1
J || || III

1 !!! ’

DISTRIBUTION OF THIS DOGUMENT 1S UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Energy Research
& Development Administration, nor any of their
employees, nor any of their contractors, subcontractors,
or their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility
for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or
represents that its use would not infringe
privately-owned rights.

NOTICE

Reference to a company or product name does not
imply approval or recommendation of the product by
the University of California or the U.S. Energy Research
& Development Administration to the exclusion of

others that may be suitable.

Printed in the United States of America

Available from

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161
Price: Printed Copy $

; Microfiche $3.00

Domestic Domestic
Page Range Price Page Range Price
001-025 $ 3.50 326350 10.00
026—050 4.00 351-375 10.50
051-075 4.50 376400 10.75
076—100 5.00 401 -425 11.00
101125 5.50 426-450 1115
126150 6.00 451-475 12.00
151-175 6.75 476-500 12.50
176—-200 7.50 501--52§ 12.75
201-225 TH5 526550 13.00
226—-250 8.00 551-575 13.50
251-275 9.00 576600 13.75
276300 9.25 601 -up ¥
301-325 9.75

*Add $2.50 for each additional 100 page increment from 601 to 1,000 pages;
add $4.50 for each additional 100 page increment over 1,000 pages.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

-

CONTENTS

Page

ADSLraCt Lt e e e e e e e e e e e e, 1

Introduct ion ..o e e e e e e e e e e e e 1

Editor Structurettt ittt i e i e e i e e 2

The User TasKttt it eeneententeineeneontsnseeennenanas 2

Logical Units0 . iiriiiivennenn.. e e e [3

Reentrant Edit Procedureciineiitiiiiiiiiienienrnnennnsasas 3

Editor Data Structure it iiecoaan. e e ... 4

The WOorKing File ...ttt it ittt ittt et ineaannannenns 5

Working-File Structurecciiiiiiiiii i eineernnenns 5

The Edit Bufferttt ittt tan ettt eseenenesneeananas 7

S Editor Operationt e e i it et e 10

Finding a Lineottt it 10

Copy and Move Afterc.o00.s e e 11

Editor Statistics ittt it tiiinnenns P 12

Statistical Results e e i i et i e e e e e e e 12

The Editor and Other Operating Systems i ... 14

USET CONSOIE «tie e et e et ittt ettt et et eeneeeanenaneseaanseeanane. 14

Filer 1/0 and Dynamic Memory Allocation 14

Logical Units i i e ittt it et 15

Files and Devices e e e e PSP 15

REf eI eI S & i ittt ittt i ene s ten st et atestosaeeneneeenssetenseaenaensenass 17

Appendix A: Listing of the Editor Data Structure 18

Appendix B: Editor’s Modules and Procedures in Order of Appearance 22

Appendix C: Editor’s Modules and Procedures Alphabetized by Procedure 25

Appendix D: Editor’s Modules and Procedures Alphabetizcd by Module 28

Appendix E: Listing of the Editor Modules

(on fiche, inside the back cover: page numbers apply to lisling only)

1) 2 0 = 1

EDITR ittt aeaenseensoeenensasotnsaeaenenoonanosnenns 3

EDITTETcciiiiinninnn ot e e ettt e e e 7

N 10). 123, (N 8

04 0 0 I 10

24 1) 23

EDITCA .ottt ittt et 66

8 0 I 88

EDREV i i it ei i ettt e e e 108

EVFILE0cvo0 e et e e e e e PR 110

2 1 1] = 125

FINDL ittt ittt i ittt ittt it taesasasasesnennnsseneoansnsnnan 152

1 1 S TR 188

180T (5 201

OFILE e et i ey Crr e 211

SAVREC .. i i i ettt e e i e e e 225

SEARCH ittt e C o st e e e e e e e e s 237

3 - A TN 240

S - N5 4 250

TERROR PSP 252

WORD . ..vniiinininnnennnnns e e e e e e e e .. 265

NOTICE
This report wss prepated as an account of _vork
sponsored by the United States Government. Neithet
the United States nor the United States Energy
h and D A tus, nor any of
their employees, nor any of their contractors,
subcontractors, or their employees, makes any

warranty, express of implied, or assumes any legal __i i__
liabitity or rosponsibility for the 8

or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

BISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

PROGRAM MANUAL FOR THE DATA DIRECTOR EDITOR

ABSTRACT

The Data Director editor is a powerful, multiuser editor that will aid in
the development and modification of APT part programs, assembly—language
programs, and other text. ’

Some benefits of the editor are:

1) Most of the editor is reentrant, allowing several users to share it.

2) The user can use the editor as though the entire file being edited is in
memory. ,

3) Editing takes place on a working file so that changes are not made to the
original file until desired

4) The editor offers a powerful command set where most commands have the same
syntax.

INTRODUCT ION

~This manual is written to aid those who maintain the Data Director Editor
Program and assumes that the reader is familiar with the editor’s operation. It
further assumes that the reader has read and understood the Data Director Editor
User’s Manual (Ref. 1) and is moderately familiar with Interdata’s assembly
language and RTOS V (Interdata’s real time operating system). This manual also
can aid those who wish to use the editor on other systems and points out
possible problem areas. If this manual is being used to implement the editor on
systems other than LLL’s Data Director system, then certain references to
filenames and other items that exist only in the Data Director should be
ignored.

EDITOR STRUCTURE

To allow several users to edit simultaneously without having one copy of
the editor per user, most of the editor is reentrant and may be shared by many
users. The editor is in two parts: 'the user task, where variables determining
the user identity end editor state are stored, and a reentrant procedure, EDIT,
that performs the editing function.

The User Task

In its simplest form, the user task consists of setting register 12 to a
large expanse of free memory and calling the reentrant procedure, EDIT. EDIT
uses the free memory to store the editor’s state information. Since Working
Files are named and can appear in the same disk partition as others, each user
has to have a unique name for his Worklng File. This name is stored just before
the large scratch area.

EDIT needs to know the input and output device number of the user console.
The device numbers are stored in FILEID blocks [*] and the block’s addresses are

stored before the working filename.

Thus, we can write a simple user task:

Ri12 EQU 12

R15 EQU 15
EXTRN EDIT

*

START LHI R12,SCRATCH ‘R12 = A(SCRATCH)
BAL R15,EDIT CALL THE EDITOR

- SvC 3,0 END OF JOB

.
INFID DC O,INDEVICE,X"4040° 4040 MEANS NOT A FILER FILE
OUTFID DC 0,0UTDEV,X*4040°

DC A(INFID)

DC A(OUTFID)

DC C’EDITUSERO1" WORKING FILE NAME
SCRATCH DS 1742 ‘

END

The size of the scratch area is dependent on some parameters in the
reentrant portion of the editor that can be set at assembly time. A rule of
thumb is that scratch size is equal to the working File’s buffer size plus 718
bytes. The above example user task was written to run with an EDIT that has a
buffer size of 1024 bytes. EDIT'S buffer size is set in file EDITCOMS by label
BUFSIZE (see line 21, Appendix A).

[*] FILEID blocks are blocks of data that identify files to the file 1/0
routines. A user console is considered to be a file by the editor.

-2

The user task is established via the task establisher task (TET) if running
under RTOS. The file EDITTET contains a set of commands to TET to establish the
editor task, and a copy of it is provided with the editor listings.

Logical Units

EDIT uses logical units 1 through 7, which are assigned as follows:

LU 1 - Input file device {0 FILE}
LU 2 - Output file device {NF FILE}
LU 3 - not used

LU 4 — Working—-file disk partition

LU 5 -~ Input commands

LU 6 - Output messages and lists

When creating a user task, only LU 4, 5, and 6 need to be assigned. EDIT
will assign the other logical units to the directory used in an editor command.

Reentrant Edit Procedure

When called, the EDIT procedure handles all the editing functions (i.e.,
obtains commands from the user and performs them). In performing its task, EDIT
calls on other reentrant procedures, which themselves may call even more
reentrant procedures. The package of procedures that is called is labeled the
reentrant section.

The procedures in the reentrant section are packed into modules that can be
separately assembled. On a minicomputer, assembly time can be long. By having
several independently assembliable modules, it takes little time to make a
modification in one procedure. The modules can be added to the reentrant
library or can be linked together with a link editor (TET). The object modules
for the editor are kept in the Data Director in a file called EDITBxxxx., where
xxxx is the month and day the last module was upgraded.

EDITOR DATA STRUCTURE

The editor data structure is stored in the user task and contains almost
all of the editor state information for that user. Procedure INITIAL obtains
the necessary memory from the scratch pointer, register 12, and sets register S
to point to the memory for the structure. Data is referenced by an offset from
register S; LH RX,L.INT(S) for example.

The offsets are defined via a STRUC assembler pseudo-opcode in the file
EDITCOMS. Modules that use the data structure obtain EDITCOMS at assembly time
via a COPY EDITCOMS pseudo-opcode. This permits the data structure to be
changed without changing every module; reeassembly is all that is required.

Appendix A is an assembly listing of the Editor Data Structure.

THE WORKING FILE

When a file is opened for editing, the lines in the file are inserted into
another disk file known as the working file. This file contains the lines, the
line numbers and the pointers that place the lines in numerical order.

When lines are deleted, inserted, or modified, it is the contents of the

working file that are changed. Only when an NF or END command is executed are
‘the lines in the working file written to the opened file or to a new file.

Working-File Structure

The working file consists of one or more disk pages linked together in a
doubly linked list. The disk partition that is to hold the working file must
first be formatted in a special way. Tbese specially formatted disk partitions
are known as "filer" partitions, because they are compatible with Interdata’s
“filer"” routines. Formatting of the disk partition may be done with task
SF1024, which sets up its logical unit 4 to a 1024 byte record size. The disk.
partition for the working fiie need only be formatted once, as long as the
partition is not aberrated by any nonfiler oriented tasks.

The sector numbers of the first and last working-file pages are called the
head of the list of working-file pages and are stored in memory as FIRSTREC and
LASTREC (see lines 105 and 106, Appendix A). When a page on the disk points to
the head, its nexl pointer or last pointer is set to zero.

When any of the working file’s pages are brought into memory, the page in
memory is called the "edit buffer”. The definition of the edit buffer, and
hence any page on disk, is found on lines 135 through 144 in Appendix A.

. B.FIRST through B.TOP is a structure that contains lines of text with their line
numbers and will be discussed in the next section, "The Edit Buffer.”

Each working-file page contains lines of text, if the file is not empty.
The pages are ordered in that all line numbers on a page must be less than all
line numbers on the next page and greater than all the line numbers on the
previous page. Lines are not allowed to cross page boundaries. (See Fig. 1 for
an example of the working file.)

Page 4

File index — 0 | B.NXTREC
0 B.LSTREC
No lines
Page 4
File index —— 0
0
Lines 1
to 10
Page 4 Page 7
File index — 7 — 0
0 — 4
Lines 1 Lines 22
to 21 to 23
Page 4 Page 7 Page 3
File index —— 7 —— | Next page |[—— 0
0 ' «— 4 «—! Last page
Linegs 1 : Lines 22 lLines n
to 21 to 45 to m

Fig. 1. Example of the working file. Line numbers n to m are greater than any
other line numbers in the file. The pointers that form the linked list of
pages are sector numbers, and can be listed in a random order as the free
pages are obtained from the filing system. The head, {FIRSTREC. LASTREC}, in
this example is {4,4}, {4,4}, {4.7}., and {4,3}, respecllively.

The editor has a rule that unless the working file is empty, all pages must
contain lines. As pages become empty from deletions, they are removed from the
list, until only the page pointed to by the index remains. This page is allowed
. to be empty and signals an empty working file.

When the working file is first created, only one empty page exists. As

lines are added, the page fills until it is full. When a new line is to be
added and the current page is full, a new page must be added to accommodate the
new line. This is done by splitting the current page, after the appropriate
line, into two pages. Each page will be full sized, so at least one page will

be able to hold the line to he inserted.
When the working file is forgotten (FF), it is merely destroyed and the
pages are returned to the filing system. To manipulate the working file, the

following procedures are used:

MUDULE PRUCEUURE PURPOSE

EDITF CWORK CREATE WORKING FILE & SETUP THE FIRST BUFFER
FINDL SPLITPG SPLIT PAGE AFTER LINE BP INTO 2 PAGES
FINDL RELPG RELEASE CURRENT PAGE IF EMPTY

FINDL NEXTREC READ IN NEXT RECORD UPDATING IF NECESSARY

FINDL READER READ RECORD F.CUREC

FINDL WRITER WRITE OUT F.CUREC

FINDL GETREC GET AN AVAILABLE RECORD

FINDL GIVREC GIVE UP A RECORD

FINDL DWORK DESTROY WORKING FILE AND RELEASE ALL FREE RECORDS
FINDL LSTREC READ IN RECORD BEFORE F.CUREC

The Edit Buffer

The edit buffer is a disk page of the working file in memory. The buffer
is defined in lines 128 through 131, and again separately in lines 136 through
144 in Appendix A. Lines of text, with their line numbers and length, are
stored in the edit buffer in numerical order in a doubly linked list. The head
of the list is B.FIRST and B.LAST, pointing to the first and last lines in the
buffer. All links in the edit buffer’s list are offsets from B.FIRST.

B.AVAIL is a link to a list of available or free lines. This is used when
spliting a page into two pages. For one page on disk, the lines after the line
where the insertion is to go are made available by placing a link to it in
B.AVAIL. The added page then has the lines from B.FIRST to the place of the
insertion made available. This makes page splitting very fast, as CPU time is
not used for freeing lines until a space is to be needed when an insertion is to
be made.

Each line in the edit buffer is stored in a line buffer defined by lines
147 through 154 in Appendix A. Each line buffer has two link fields., BP.NEXT
and BP.LAST, pointing to the next line and to the last line in the list.
BP.INT + BP.DEC/100 form the line number. BP.SIZE is the actual size of lhe
line to follow, in bytes. BP.LINE is the start of the line that is BP.SIZE big.

If BP.SIZE is odd then the line ends on an even byte boundary. All line
buffers are forced to end on an odd byte boundary due to technical limitations
in the Inderdata computer (Halfword instructions only work on even byte
boundaries). Also, in RTOS, all 1/0 must end on an odd byte boundary, so a
carriage return is added to any line that ends on an even boundary. BP.SIZE
remains unaffected by the above.

Adding or deleting an item to or from a doubly-linked list is
straightforward and is explained in detail in Ref. 2. The insertions and
deletions in EDIT are done by procedures INSERT, below label NOTEVEN, and
DELETE, below label DELETEZ.

Since line buffers are variable in léngth, the editor engages in dynamic
storage allocation in the edit buffer from B.BOTTOM to B.TOP for storage. The
dynamic storage algorithm is a modified form of Knuth’s boundary tag method
(Ref. 3). Our version of Knuth’s algorithm requires no "available list” unless
the page has been split. [If the page has been split, all line buffers on the
availahle list are released before the algorithm is evoked.

In the edit buffer, a free space is noted by a tag (most significant bit is
al), followed by the size of the free space. Thus, a 512 byte free space looks
like this:

1 512

508 byte free space

1 512

A 2 byte free space looks like:

Filled spaces (i.e., line buffers) do not need a size field before and
after them, as their size is kaown and the first and last words in . the buffer
cannot have the tag set. This is assured by making a rule that the edit buffer
must never be larger than 32,767 bytes. This ensures that BP.NEXT is less than
32,767, and the tag bit is off in the 16 bit field. Also, the editor only edits
lines that are 7-bit ASCII. This ensures that the tag bit cannot be set on the
end of the line buffer.

The memory allocation procedure, GETBUF, uses the first—fit method by
scanning line buffers and free spaces until it finds a free space large enough
for the insertion. |If none is available in one piece, but there is enough free
space in the edit buffer, GETBUF will call COMPRESS to compress all the free
space to the top of the buffer. Memory is released by RELBUF, which makes tags
and size fields for the released line buffer and recombines the buffer with any
other adjacent free space:

1 10

Recombined
1 20 free space
1 20 1 30

The procedures below are used to manipulate the edit buffer:

MODULE PROCEDURE PURPOSE

FINDL INSERB INSERT LINE L. BEFORE LINE POINTED TO BY BP

FINDL INSERT INSERT LINE L. AFTER LINE POINTED TO BY BP

FINDL DELETE DELETE LINE POINTED TO BY BP

FINDL RELBUF RELEASE BUFFER OBTAINED BY GETDBUF

FINDL GETBUF GET A BUFFER OF LENGTH IN R14

FINDL SUBSPLIT SPLIT A BLOCK OF LENGTH+N INTO 2 BLOCKS OF LENGTH AND N
FINDL COMPRESS COMPRESS AVAILABLE BUFFERS INTO ONE BUFFER

EDITOR OPERATION

Finding a Line

" When a line is to be operated on by the editor, the page that the line is
on must first be brought into memory (if not in already), and a pointer
(register BP) must be set to the address of the line’s buffer. This operation
is called finding a line and is performed by procedure FINDL. All references to
lines at FINDL’s level are by line number.

FINDL accomplishes the above by calling a procedure (FASTPG) to guess the
page that contains the line number and bring it into memory if it‘’s not in
already. FINDL then starts at the first line in the page and tests for the
desired line number, searching up or down, until the line is found or it has
moved past where the line should be. Procedure MOVE allows FINDL and other
procedures Lo eusily move DD up oi duwin a number of lines frum ils current
position. MOVE brings in new pages as necessary.

Procedure FASTPG guesses what page the desired line number is on. FASTPG
will either guess the page and bring it into memory, or will let the page
currently in memory stay as being close enough. FASTPG uses a hashtable,
RECORDS, where the sector numbers of pages are stored. The hashing method is
such that numbers near each other tend to hash to the same number. Procedure
GENKEY generates keys into the hashtable by the following formula.

KEY = FLOOR(MAXKEY * desired line number/MXNUM)

where:

FLOOR is the lcast intcger function.

MAXKEY is the maximum number of entries in the table.

MXNUM is the maximum !ine number and is arbitrarily chosen.

When a page is split, the first line number in the new page is used to
generate a key where the sector number of the page is stored (procedure SAVREC):

RECORDS(KEY) = sector number

When a line number is presented to SAVREC to be placed in the hashtable and
the line number produces a key greater than that in the table, MXNUM is
increased and the sector numbers are relocated down in the table. MXNUM is
generally increased by 25% so that the relocation operation does not have to
take place too often, and the table retains its effectiveness. When pages are
released from the working file, procedure FRGREC removes the page from RECORDS
if the sector number was in it.

The following routines permit finding lines and moviﬁg BP up and down lines in
the edit buffer: :

-10-

MODULE PROCEDURE PURPOSE

FINDL FINDL GIVEN THE LINE #, SET BP TO POINT TO THAT LINEIS LINE BUFFER
FINDL MOVE MOVE UP/DOWN R14 LINES, SET BP TO RESULTANT LINE

SAVREC SAVREC ASSOCIATE A RECORD # WITH A LINE # SO CAN FIND LINES FAST
SAVREC FASTPG GUESS PAGE NUMBER THAT LINE NUMBER IS ON AND GET PAGE.
SAVREC GENKEY CALCULATE KEY FOR LINE NUMBER

SAVREC FRGREC DISASSOCIATE RECORD NUMBER FROM LINE NUMBER

Copy and Move After

Copy and move after from a working file is accomplished by copying all
lines in RANGE into a temporary disk file and then inserting into the working
file all the lines in the temporary disk file.

The temporary disk file has no name and is in essence a FIFO (first-in,
first—out queue) that is in memory. Lines are pushed into the FIFO as the lines
in RANGE are found. When the FIFO overflows, the lines in it are put to disk
giving more room in the FIFO for new entries. Thus when copying or moving small
numbers of lines there probably won’t be any disk activity concerning the
temporary file.

Move after is accomplished in the same way as copy after, except that the
lines in RANGE are deleted from the working file as they are pushed into the
FIFO. Copy after from a FILEID does not need a temporary disk file. The FILEID
is opened, and all lines in RANGE are inserted directly into the working file.
Following are the routines for copy and move after:

MODULE PROCEDURE PURPOSE

EDITCA DOMACA DO MOVE AFTER OR COPY AFTER

EDITCA CAFILE COPY ALL LINES IN RANGE FROM FILEID AFTER CAL.
EDITCA FNDCAL SET BP TO LINE CAL. OR LINE BEFORE I[F NONE

EDITCA SETGETCA SETUP FOR GETCA, FIND FIRST LINE IN RANGE IN FILE

EDITCA GETCA GET NEXT LINE IN RANGE FROM FILEID
EDITCA CAWORK MOVE OR COPY LINES IN RANGE IN WORKING FILE AFTER CAL.
EDITCA SETEMP SETUP FOR PUTEMP

EDITCA PUTEMP PUT LINE AWAY IN FIFO THAT CAN EXTEND TO DISK
EDITCA ENDPUT FINSH PUTEMP AND SETUP FOR GETEMP

EDITCA GETEMP GET NEXT LINE FROM FIFO

EDITCA RELTEMP RELEASE FIFO

Appendices B through E provide complete listings of the editor’s modules
and procedures. '

-11-—-

EDITOR STATISTICS

The editor keeps statistics in itself. See lines 172 to 186 in Appendix A.
These statistics can be of use in determining the effectiveness of certain
algorithms. We can gather statistics from several users simultaneously and can
accumulate them over a long period of time to give accurate results.

This method is much better than random testing, since EDIT users do not
access lines randomly. Often, an EDIT user will start at the front of his file
and move through it, editing as he goes. Or, the user may edit in only a small
area of his file. Thus, these statistics give a true reflection of the
cfficiency of our algorithms.

There are three routines involved in gathering statistics:

MODULE PROCEDURE PURPOSE

STAT STAT SAVE STATISTICS IN TASK COMMON
STAT STATIN START STATISTICAL INCREMENT
STAT STATIE END STATISTICAL INCREMENT

Since there are only three statistics routines, they can be as simple or as
complex as desired. We can modify them to make distributions or other"
statistical items of interest. When we no longer care about statistics, the
routines can be removed or can be modified to do nothing.

Statistical Results

Table 1| gives the results of nine days worth of editing taken at different
times. Files of differing lengths (300 to 2400 lines) were edited, but most of
the editing was done on the larger files. The working-file page size for Table
1 was 512 bytes.

-12-

‘Table 1. Statistical results.
Day
1 2 3 4 5 6 7 8 9

Number of calls to FINDL 212 138 180 185 29 45 49 252 572
Number of page faults during FINDL 1109 666 414 838 8 17 45 183 305
Total number of page faults 2278 1573 1766 1785 232 399 264 1161 3157
Number of disk 1/0°s 3453 2462 3441 2694 358 927 960 1515 4839
Number of insertions 9509 4807 13334 8045 1839 3593 9742 2825 10808
Number of dclctions 16614 1784 24256 1710 57 1140 13 111 1798
Number of lines listed - - - - 378 483 405 2703 5569
Number of compresses 219 7 20 4 0 4 2 13 72
Number of released pages 34 101 134 292 0 61 0 2 101
Number of page splits 968 701 772 743 102 487 929 217 696
Number of times AVAILSTK overflowed - - 12 - 0 - - 0 8
Number of times AVAILSTK underf lowed - - 81 - 11 - - 24 80

The first four columns of Table 1 represent statistics taken before FASTPG
to FINDL

was implemented.
before FASTPG was implemented.

Notlice the higher percentage of page faults per call
The average number of page faults per call to

FINDL before FASTPG was implemented was 4.345, while the average number of page
faults per call to FINDL after implementation was 0.551.

improvement .

This was an 877
It may be possible to obtain even better improvement, and the

statistics will allow us to see the results of experiments with different

algorithms.

-13-

FASTPG was improved again in early October 1976, and the average
number of page faults per call to FINDL decreased to 0.341.

. THE EDITOR AND OTHER OPERATING SYSTEMS

The editor was written to operate on an advanced version of RTOS-5 and
should run under standard interdata RTOS with no modifications (assemble EDITR
with assembly option SVC1t EQU 0). With modification, EDIT should be able to
run under any opereting system. In this section, | will outline functions that
the editor uses that may differ between our version of RTOS-5 and other syétems.

The editor or system may have to be modified to get the editor to operate at its "

full potential.

The editor can be assembled with assembly option NOFID EQU 1. With this
option, the editor will allow no FILEID’s on an open, NF, or END command, so the
user can assign LU 1 to the source file and LU 2 to the output file with the
user’s operating system’s supervisor. This option solves most of the problems
listed below.

User Console

EDIT can operate with any ASCII input device as its command input and any
ASCII output device for its comments. However, there is some extra power to be
gained if the editor is run on a system with the FULL DUPLEX DRIVER controlling
the user console (See Ref. 4.)

The editor prompts and reads via a single SVC 1. This causes no conflict
on most systems, since the function code for this SVC is both the read and write
bits set. On most systems this causes a read without the editor’s prompt
character.

Multiple commands can be input per line in the editor. These commands are
separated with an X’Al1° code. As this character cannot be typed on most
terminals, a way must be found to implement it if one wants multiple commands
per line. Our FULL DUPLEX DRIVER inserts X'Al° into the user buffer whenever
linefeed is typed, and it echos "!" as a command separator.

Filer 1/0 and Dynamic Memory Allocation

If any filer files are opened or NFed, the editor needs 1K more memory.
The editor uses dynamic memory allocation (SVC 2 oplion D) to get it.
" Therefore, if one wishes to open or NF a filer file on a system without dynamic
memory allocation, the routines ALOMEM and RELMEM will have to be modified to do
get—storage (SVC 2 option 2) and release-storage (SVC 2 option 3). The routines.
are between six to nine lines long, so their modification should be fairly
simple. The above does not apply if the editor modules are assembled with
assembly option NOFID EQU 1.

14—

Logical Units

The editor makes logical to physical unit assignments dynamicaliy while
running. These are all made by procedure ASSILU in module OFILE. Since EDIT
was designed to run under RTOS, this 12-line procedure fetches the UTCB poinfor
(SVC 2 option 5) ard sets the physical unit by indexing into the logical unit
table. ASSILU must be rewritten to operate the editor under operaling systems
that do not have the same UTCB format for 1/0O assignments. The rewrite shoulid
be fairly simple, since the current procedure. ASSILU, is not complex, being
only 12 lines long. The above does not apply if the editor modules are
assembled with assembly option NOFID EQU 1.

Files and Devices

The editor was designed to operate with the Data Direclor filing system,
which is a set of procedures that are linked to the editor. A brief discussion
of the filing system is included here so thalt a user can decide if changes
should be made to it. If the editor modules are assembled with assembly option
NOFID EQU 1, the following does not apply.

FILEID is the name or identification of a file. FILEID is what is typed
after a C(create), O(open), NF(new (ile), END, or maybe CA{(copy afler) command.
Procedure EVFILE evaluates FILEID and sels up a FILEID block (FID). All the 1/0
that the editor does is done by routines CRFILE, OFILE, OAFILE, READ, WRITE. and
CFILE. (The editor does random reads and writes to the working file directly,
but that does not concern us here and should be no problem to all but the most
restrictive operating systems.) These procedures do 1/0 to the device in the
FID block. All devices.are treated as though they are files.

The FID block tells whether the file is a filer file or 1/0 device. The
FID block also gives the file name, security level, and attributes of the file’
(see F. structure in EVFILE). Therefore, procedure EVFILE simply maps a
symbolic FILEID into a FID block. To create custom mapping there are several
alternatives.

1) Keep the Data Director formats. O .HSR means open a file from the
high~speed reader. A list of device codes can be found in EVFILE in
DEVTABLE for the mnemonic and DEVICE for the physical unit number. These
two tables can be enlarged with custom devices if desired.

0 FILENAME means open a filer file, FILENAME, on the default filer library
(label DFDEVICE in EVFILE).

O .DOC:FI1LENAME means open & filer file, FILENAME, on the DOC filer library.
A table of filer library mnemonics to physical disk partitions is contained
in tables DIRTABLE and DIRDEV in EVFILE.

If the system on which EDIT is to be implemented uses filer files. then
DIRTABLE and DIRDEV could be modified to suit. Caution: the Data Director
filer differs from the standard Interdata filer in several important
respects:

-15-

2)

3)

a) Ten-character f{ilenames.

b) File security, attributes, date, and time of creation are stored before
the first data record in the file (transparent to most filer users).

¢) Filer can be called with a reentrant call.

d) The filer block has been shortened from 66 to 24 bytes (see FILER label
BUFFER) .

e) The filer block and filer record buffer may be split in memory (see AREC
in filer BUFFER).

f) Register 12 must point to a scratch area of 56 bytes that can be reused
by other routines between filer calls. :

In the Data Director operating system most user tasks do not call
filer. They make FID blocks and call CRFILE, OFILE, OAFILE, READ, WRITE
and, CFILE in order to remain device independent on a file level. The
editor assumes through the above six procedures that the physical record
size of the filer records is less than or equal to 512 bytes.

Rewrite EVFILE to provide one’s own mapping between symbolic FILEID’s and
FID blocks. This could be done so that all FID blocks made are devices and
not filer files. For example, O 4 could mean open a file from device 4, the
card reader.

Rewite CRFILE, OFILE, OAFILE, READ, WRITE, and CFILE to handle filing as it
exists in one’s own operating system. .

-18-

REFERENCES

P. R. McGoldrick, Data Director Editor User’s Manual, Lawrence Livermore
Laboratory, Rept. 17372 (1977).

D. E. Knuth, Fundamental Algorithms (Addison-Wesley, Reading, Mass., 1973),
vol. 1, pg. 278. ’

Ibid., pg. 441.

P. R. McGoldrick, Full Duplex CRT and Teletypewriter Driver, Lawrence
Livermore Laberatery, Rept. UCID=16861 (1975). '

-7

APPENDIX A: LISTING OF THE EDITOR DATA STRUCTURE

PROG= *NONE* ASSEMBLED BY CAL 03-066R04(16-BIT)
1 **EDITCOMS
2 * 9/28/76 PRM
3 [Ay S—
4 ® CONSTANTS
0000 0080 5 MINUSF EQU X’R0° MINUS INCREMENT FLAC
0000 000D 6 CR EQU 13
0000 0020 7 BLANK EQU X’20°
0000 00A! 8 LEOM EQU X°A1’ LOGICAL END OF MESSAGE
0000 0008 9 LOVHEAD EQU 8
0000 000A 10 BOHEAD EQU 10 BUFFER OVERHEAD
0000 8000 11 EMPTY EQU X°8000° EMPTY FLAG
FFFF FFFF 12 FIRST EQU -1 CODE FOR FIRST LINE
FFFF FFFE 13 LAST EQU -2 LAST LINE
14 W et o it et i M . o e
15 ¢ SYSGEN PRAMETERS FOR EDIT BUFFER
186 * SIZE OF STACKS FOR AVAILABLE RECORDS
0000 000A 17 AVAILSZ EQU 10
0000 0003 18 OVLSTKSZ EQU 3
: 19 * BUFFER SIZES
0000 0082 20 LLENGTH EQU 130 MAX LINE LENGTH < 255 & EVEN
0000 0400 21 BUFSIZE EQU 1024 EDIT BUFFER SIZE (MULTIPLE OF 256)
0000 0028 22 MXKEY EQU 40 # OF KEYS TO WORKING FILE
0000 0190 23 MXNUMI EQU 400 INITIAL § OF LINES FOR FASTPG
25 o
26 * EDIT DATA STRUCTURE DEFINITION
FFFF FFF4 27 WORKNAME EQU -12 NAME OF WORKING FILE (BY CALLER)
28 S. STRUC
0000 29 EO0J DS 1 END OF JOB IF TRUE
0001 30 CERF DS 1 LOG COMMANDS IF TRUE
0002 31 TCF DS 1 TYPE CHANGES IF TRUE
0003 32 BATCHF DS 1 DOING BATCH IF TRUE
0004 33 ASMF DS 1 "ASSEMBLY FORMAT [F TRUE
0005 34 APTSYNF DS 1 APT SYNONYMS ON IF TRUE
0006 - 35 APTCKF DS 1 APT SYNTAX CHECK IF TRUE
0007 36 SYMF DS 1 SYMBOL IF TRUE
37 o
38 * CURRENT FILE
0008 39 FC.OPN DS 2 A(FILER BLOCK) IF OPEN,0 IF UNOPEN
0004 40 FC.DEV DS z PHYSICAL DEVICE
000C 41 FC.IATTR DS 1 DESIRED ATTRIBUTES
000D 42 FC.FATTR DS 1 FILES ATTRIBUTES
000E 43 FC.NAME DS 10 A FILE NAME
44 o
45 * SUB STRUCTURE FOR TOKEN GETTER
0018 46 W.BUF DS 1
0019 47 W.CODE DS 1 TOKEN TYPE
0014 48 W.LENGTH DS 2 LENGTH OF TOKEN
001C 49 W.VALUE DS 4 VALUE OF ASCI1 # IN BINARY

~18-

0020
0022
0023
0024
0025
0026

0028

0029

0024
00AB
00AE
00B0
00B2
00B4
00B6

0oB8
00BA
00BB

00BC
QOBE
00BF

00co
ooc2
00C3

ooc4'

00C6
00C?
[+]0f:]
00CA
00CB

oocc
00CE
00D0
0ooD2

00D4
00D5
00D6
QOEER

00F8
00FA

W.LINEPT DS 2 A{ INPUT LINE)
W.STATE DS 1
W.STATUS DS 1
W.LDELIM DS 1 LEFT DELIMITER
W.RDELIM DS i RICHT DELIMITER
W.IPNTR DS 2 POINTS TO END OF TOKEN+1
L]
DS 1 JUST TO EVEN UP HALFWORD BOUNDRY
ESCHAR DS 1 START COMMAND LINE WITH LEOM
LINE DS LLENGTH-1 ROOM FOR A LINE
LINEND DS 3 END OF LINE
SVC.FUNC DS 2 SVC PRAMETER BLOCK
SVC.STAT DS 2
SVC.B DS 2
SVC.E DS 2
SVC.PROM DS 2
.
* LINE NUMBER
L.INT DS 2 INTEGER PART
L.DEC DS 1 DECIMAL PART
L.INC DS 1 INCREMENT OFF LINE #
L]
* CURRENT LINE
LC.INT DS 2
LC.DEC DS 1
LC.INC DS 1
L
* LINE § FOR START OF PAGE LISTING
P.INT DS 2
P.DEC DS 1
P.INC DS 1
L]
* START AND END LINE NUMBERS [N RANGE
LS.INT DS 2
LS.DEC DS 1
LS.INC DS 1
LE.INT DS 2
LE.DEC DS 1
LE.INC DS 1
.
¢ ASSOCIATE RANGE, PATTERN ADDRESSES
PATSTART DS 2 A(START OF PATTERN)
PATLEN DS 2 PATTERN LENGTH
RPATS DS 2 A(START OF REPLACEMENT PATTERN)
RPATLEN DS 2 LENGTH OF REPLACEMENT PATTERN
L]
* START AND END COLUMN NUMRFRS
COL.S DS 1
COL.E DS 1
L
AVAILSTK DS 2%AVAILSZ+4 AVAILABLE RECORD STACK
OVLSTK DS 2°0VLSTKSZ+4 OVERFLOW STACK
H .
* SECTOR NUMBER OF RECORDS IN WORKING FILE (FOR FAST SEARCH)
MXNUM DS 2 MAX LINE # INTRGER PART
LASTREC DS

19

2 DISK ADDR OF LAST RECORD

00FC
00FE

014E
0150
0151
0152
0154
0156
0158
0154
015E
0162
0164
0165

0166
0168

016C
016E
0170
056C

0000
0002
0004
0006
03FC
03FE

0000
0002
0004
0006
0007
0008
000A

0000
0002
0003
0004

0000 O14E

0000 01F6
0000 0173

FFFF FFFC
FFFF FFFE

161

FIRSTREC DS
RECORDS DS
*

*eMMTMWTMTM MY VYW &

2
2°MXKEY

BLOCK FOR EDIT BUFFER

.BLOCK
.AREC
.OFLG
LU

.PSIZE
.CUREC
. ISEC
. 1LOC
.PREVS
.NEXTS
.EXP

.UFLG
.CODES

ERCODE

ST,
.

ATSAV

EQU
Ds

DS
DS

¢ EDIT BUFFER
E.NXTREC DS
E.LSTREC DS

ED

M1
AT

L TR

Tomwwo®

BP
BP
BP
BP
BpP
Bp
BP

NS1ZE
TR

DS
ENDS
EQU
EQU

NN - e

& N

2
2
BUFSIZE-4

BUFS1ZE/2-BOHEAD

" ED43

EDIT BUFFER DEFINITION

.FIRST
. LAST
LAVAIL
.BOTTOM DS
.TOP

DEF[NITION OF

.NEXT
.LAST
. INT
-DEC
.SI12E
.LINE

.NXTREC EQU
.LSTREC EQU

STRUC
DS
DS
Ds

DS
ENDS

STRUC
DS

ns

DS
DS
DS
DS
ENDS

¢ FILER BLOCK

Fi
Fl
Fl
Fl

Fl1.PSIZE

-2

.AREC
.OFLG
Ly

0_

STRUC
DS
DS
DS
DS

D= NN

-4
-2

UFS1ZE-10

NP N

A(RECORDS ORDERED BY LINE #)

A(FILER RECORD)

OPEN FLAG

LOGICAL UNIT §

PHYSICAL SIZE OF FILER RECORDS
CURRENT OPEN RECORD §

INDEX SECTOR #

INDEX LOCATION

UPDATE FLAG

ERROR CODE
ROOM TO SAVE DATA FOR STATISTICAL INCRE

TOP OF EDIT PAGE
A(LAST RECORD) ON DISK
EDIT BUFFER

1/2 OF AVAILABLE BUFFER

LINK TO NEXT BUFFER ON DISK
LINK TO LAST BUFFER ON DISK

HEAD OF DOUBLY LINKED LIST
A(LAST LINE)

A(AVAILABLE LINE LIST)
BOTTOM OF AREA FOR LINES

A LINE BUFFER IN THE EDIT BUFFER

[R\

LINKED LIST OF LINES IN EDIT BUFFER
POINTS TO NEXT LINE

POINTS TO LAST LINE

LINE # INTEGER PART

DEC IMAL PART

SIZE OF LINE

THE LINE

A(FILER BUF)

OPEN FLAG

LOGICAL UNIT #
SI1ZE OF FILER BUF

0006
0008
000A
000C
0010
0014
0016
0017
0018

0000

0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C

0000R

0000 0088

162
163
164
185
166
167
168
169
170
171
172
173
174
175

177
178
179
180
181
182
183
184

186
187
188
189

F1.CUREC DS
F1.ISEC DS
Fl.ILOC DS
F1.PREVS DS
Fi.NEXTS DS
Fi.EXP DS
F!1.UFLG Ds
F1.CODES DS

- ENDS

—_— e A NN

* TASK COMMON DEFINITION OF "STATISTICS

TSKCOM STRUC

NFINDL DS
NPGFAULT DS
NPGFTOT DS
NDIO DS
NINSERT DS
NDELETE DS
NLST DS
NCOM? DS
NRELPG DS
NSPLIT DS
NGIVREC DS
NCETREC DS
- ENDS
L
EOF EQU
END

~21-

— - e bt e g e e e e e e

X 88°

OF SEARCHES FOR A LINE §

OF PAGE FAULTS DURING FINDL
TOTAL # OF PAGE FAULTS

OF DISK 1/0°S

OF INSERTIONS

OF DELETIONS

NUMBER OF LINES LISTED

NUMBER OF COMPRESSES

OF RELEASED PAGES

OF PAGE SPLITS

OF TIMES AVAILSTK OVERFLOWED
OF TIMES AVAILSTK UNDERFLOWED

EOF CODE

APPENDIX B: EDITOR’S MODULES AND PROCEDURES IN ORDER OF APPEARANCE

MODULE PROCEDURE PURPOSE

EDIT EDIT PERFORM EDITING FUNCTION

EDIT INITIAL CREATES AND INITIALIZES THE DATA STRUCTURE OFF R12
EDIT GETCMD GET COMMAND FROM INPUT DEVICE, PROMPT =

EDIT GETINS GET LINE FOR INSERT, PROMP =

EDIT DOCMD DO COMMANDS IN INPUT BUFFER UNTIL ERROR OR END OF LINE

EDIT LOGON RESET OR SET CERF TO LOG ALL EDITOR INTERACTIONS

EDIT OFF TURN OFF ALL OPTIONS

EDIT APTSYN TURN ON/OFF OPTION APTSYNF FOR APT SYNOMYNS

EDIT APTCK TURN ON/OFF OPTION APTCKF FOR APT SYNTAX CHECKER

EDIT ASM TURN ON/OFF OPTION ASMF FOR ASSEMBLY LANGUAGE FORMAT

EDIT TC TURN ON/OFF OPTION TCF FOR TYPE CHANGES OPTION

EDIT ONOFF DECODE ON/OFF ON COMMAND LINE, SET R14 TO ZERO IF ON ELSE I IF OFF

EDIT SETTOKEN SET UP DATA STRUCTURE TO DECODE TOKENS ON COMMAND LINE
EDIT GETTOKEN GET NEXT TOKEN ON COMMAND LINE

EDIT END TERMINATE EDIT [DO NF, FF END EOJ]

EDIT € CREATE A WORKING FILE

EDIT O OPEN FILE TO A WORKING FILE

EDIT SETUPOC COMMON SETUP ROUTINE FOR O AND C

EDIT NF WRITE OUT WORKING FILE TO FILEID

EDIT FF FORGET FILE BY DESTROYING THE WORKING FILE
EDIT NUMCMD HANDLE NUMBER INPUT AS A COMMAND

EDIT BL INSERT NEXT LINE BEFORE FIRST LINE IN RANGE
EDIT AL INSERT NEXT LINES AFTER FIRST LINE IN RANGE
EDIT LF * LIST THE FIRST LINE IN RANGE

EDIT LA LIST ALL LINES IN RANGE

EDIT DFL DELETE FIRST LINE IN RANGE

EDIT DAL DELETE ALL LINES IN RANGE

EDIT P LIST A PAGE OF LINE STARTING WITH FIRST LINE IN RANGE
EDIT Q RELIST A PACE OF LINES STARTING WITH P.INT
EDIT RFP REPLACE PATTERNS IN FIRST LINE IN RANGE
EDIT RAP REPLACE PATTERNS IN ALL LINES IN RANGE

EDIT CA COFY AFTER

EDIT MA MOVE AFTER

EDIT NXTNUM PUT NEXT LINE NUMBER I[N WORKING FILE TO LE.
EDIT SETCMDUP COMMON SETUPS FOR MOST COMMANDS USING RANGE
EDIT FSTRNG FIND FIRST LINE IN RANGE

EDIT EXPRNG EVALUATE EXPLICIT RANCE OF FORM LINEf,LINE§
EDIT ASORNG EVALUATE ASSOCIATIVE RANGE

EDIT REPRANGE EVALUATE REPLACEMENT RANGE

EDIT PATTERN EVALUATE PATTERN ON COMMAND LINE

EDIT PATDELIM DETERMINE IF A CHARACTER IS A PATTERN OR SYMBOL DELIMITER
EDIT COLIMITO BVALUATE COLUMN LIMITE

EDIT COLUMN EVALUATE CURRENT TOKEN FOR A COLUMN NUHBBR
EDIT ALRANG DO FUNCTION FOR EACH LINE IN RANGE

EDIT ALRANG1 DO FUNCTION FOR EACH LINE IN RANGE

EDIT LINENUM EVALUATE CURRENT TOKEN FOR LINE NUMBER

EDIT RNUM EVALUATE CURRENT TOKEN FOR LINE NUMBER, TOKEN CAN NOT BE A COMMAND
EDIT DECNUM SET L.DEC IN DATA STRUCTURE IF INTEGER BETWEEN O AND 99
EDIT INCR HANDLE INCREMENT LINE NUMBERS OF FORM +1. -1 ETC.

-22-

EDIT
EDIT
EDIT
EDIT
EDITCA
EDITCA
EDITCA
EDITCA
EDITCA
EDITCA
EDITCA
EDITCA
EDITCA
EDITCA
EDITCA
EDITF
EDITF
EDITF
EDITF
EDITF
EDITF
EDITF
EDITF
EDITF
EDITF
CEDIT
CEDIT
CEDIT
CEDIT
CEDIT
CEDIT
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
EVFILE
EVFILE

TERR
TERORS
CLEANTOK
CLEANCMD
NOMACA
CAFILE
FNDCAL
SETGETCA
GETCA
CAWORK
SETEMP
PUTENP
ENDPUT
GETEMP
RELTEMP
BATCH
FILWRK
SAVRWD
RSTWRR
GETC
GETF
CWORK
ILC
RENUMBER
GLINES
NXTRNG
RNG
CHKEXRNG
CHKASRNG
FNDPAT
SYMBOL
FINDL
MOVE
INSERB
INSERT
DELETE
REPAT
FRAGCOPY
COPY
PATCOPY
RELBUF
GETBUF
SUBSPLIT
COMPRESS
SPLITPG
RELPG
NEXTREC
READER
WRITER
GETREC
GIVREC
DWORK
LSTREC
ERRHAN
EVFILE
DEFILE

LOG ERROR MESSAGE
WRITE OUT POINTER TO CURRENT TOKEN AND ERROR MESSAGE
MAKE SURE WE'RE POINTING TO THE NEXT TOKEN

MAKE SURE NO MORE DATA IN INPUT COMMAND LINE

DO MOVF. AFTER OR COPY AFTER

COPY ALL LINES IN RANGE FROM FILEID AFTER CAL.

SET BP TO LINE CAL. OR LINE BEFORE IF NONE

SETUP FOR GETCA, FIND FIRST LINE IN RANGE IN FILE

GET NEXT LINE IN RANGE FROM FILEID

MOVE OR COPY LINES IN RANGE IN WORKING FILE AFTER CAL.
SETUP FOR PUTEMP :

PUT LINE AWAY IN FIFO THAT CAN EXTEND TO DISK

FINSH PUTEMP AND SETUP FOR GETEMP

GET NEXT LINE FROM FIFO

RELEASE FIFO

HANDLE BATCH COMMAND

FILL WORKING FILE WITH DATA FROM CURRENT FiLE

SAVE STATE OF WORD AFTER R12

RESTORE WORD BLOCK TO STATE WHEN SAVRWD WAS CALLED

GET A LINE FROM COPY AFTER FID

GET NEXT LINE FROM CURRENT FILE

CREATE WORKING FILE & SETUP THE FIRST BUFFER

INSERT LINES AFTER LINE POINTED TO BY BP

RENUMBER LINES IF NECESSARY

GET LINES FOR INSERTJONS WATCHING FOR LEOMS

SET BP & CURRENT LINE TO NEXT LINE IN RANGE

SET BP & CURRENT LINE TO NEXT LINE IN RANGE

CHECK TO SEE IF LINE POINTED TO BY BP IS IN EXPLICIT RANGE
CHECK LINE, BP, TO SEE IF IT°S IN ASSOCIATIVE RANGE
FIND PATTERN OR SYMBOL IN A LINE

DETERMINE IF A CHARACTER IS A SYMBOL .
GIVEN THE LINE #, SET BP TO POINT TO THE LINE BUFFER OF THE LINE
MOVE UP/DOWN R14 LINES, SET BP TO RESULTANT LINE

INSERT LINE L. BEFORE LINE POINTED TO BY BP

INSERT LINE L. AFTER LINE POINTED TO BY BP

DELETE LINE POINTED TO BY BP

REPLACE PATTERN IN LINE BP

COPY A LINE FRAGMENT

COPY A LINE FRAGMENT

COPY PATTERN INTO LINE NL

RELEASE BUFFER OBTAINED BY GETBUF

GET A BUFFER OF LENGTH IN R14

SPLIT A BLOCK OF LENGTH+N INTO 2 BLOCKS OF LENGTH AND N
COMPRESS AVAILABLE BUFFERS INTO ONE BUFFER

SPLIT PAGE AFTER LINE BP INTO 2 PAGES

RELEASE CURRENT PAGE IF EMPTY

READ IN NEXT RECORD UPDATING IF NECESSARY

READ RECORD F.CUREC

WRITE OUT F.CUREC

GET AN AVAILABLE RECORD

GIVE UP A RECORD

DESTROY WORKING FILE AND RELEASE ALL FREE RECORDS

READ IN RECORD BEFORE F.CUREC

IF 1/0 ERROR THEN LOGIT SETTING ERROR

EVALUATE A FILEID IN ASCI! AND PUT RESULTS IN A FILEID BLOCK
SET DEFAULTS IN FILEID BLOCK :

2N
A

EVFILE
EVFILE
LIST
LIST
LIST
LIST
LOGIT
LOGIT
OF ILE
OFILE
OF ILE
OFILE-
OF ILE
OFILE
OFILE
OFILE
OFILE
OFILE
ALOMEM
ALOMEM
SAVREC
SAVREC
SAVREC
SAVREC
SEARCH
STAT
STAT
STAT
STATD
STATD
STATD
TERROR
TERROR
TERROR
TERROR
TERROR
WORD

SATTR
LATTR
LIST
LINENA
FORMAT
PUTCHAR
LOGIT
LSTIT
OF ILE
CRFILE
OAFILE
SETUPO
ASSILU
CFILE
RELEASE
RELAMEM
WRITF
READ

- ALOMEM

RELMEM
SAVREC
FASTPG
GENKEY
FRGREC
SEARCH
STAT
STATIN
STATIE
STAT
STATIN
STATIE
TERROR
FILE
FILL
POINT
LOG
WORD

SET CLASSIFICATION AND PROPERTY TO MAX IN FID

LOG FILE SECURITY IF > UNCLASSIFIED

LIST LINE POINTED TO BY BP IN UNFORMATTED OR ASSEMBLY LANGUAGE FORMAT WITH LINE NUMBERS
CONVERT LINE NUMBER TO ASCII

FORMAT A LINE IN ASSEMBLY LANGUAGE FORMAT

PUT A CHARACTER IN A BUFFER UNTIL END OF LINE

LOG MESSAGE TO LU 6

LOG MESSAGE TO LU 6

OPEN A FILER FILE

CREATE A FILE

OPEN OR ALOCATE A FILER FILE

COMMON SETUP ROUTINE FOR OFILE, CRFILE AND OAFILE
ASSIGN LU TO PHYSICAL DEVICE NUMBER

CLOSE FILER FILE

RELEASE DEVICE

RELEASE ANY ALOCATED MEMORY FOR FILER

WRITE OUT A LINE TO FILER OR A DEVICE

READ A LINE FROM FILER OR A DEVICE

ALOCATE N CONTIGUOUS BLOCKS OF MEMORY

RELEASE N CONTIGUOUS BLOCKS OF MEMORY

ASSOCIATE A RECORD §# WITH A LINE # SO CAN FIND LINES FAST
GUESS PAGE NUMBER THAT LINE NUMBER IS ON AND GET PAGE.
CALCULATE KEY FOR LINE NUMBER)

DISASSOCIATE RECORD NUMBER FROM LINE NUMBER

SEARCH A TABLE OF VARIABLE LENGTH TOKENS

SAVE STATISTICS IN TASK COMMON

START OF STATISTICAL INCREMENT

END OF STATISTICAL INCREMENT

DUMMY ROUTINE TO TURN OFF STATS

DUMMY ROUTINE TO TURN OFF STATS

DUMMY ROUTINE FO TURN OFF STATS

LOG ERROR MESSAGE N TO THE USER

PLACE THE WORD °FILE® AFTER R3

INSERT MESSAGE N AFTER R3

PLACE AN t TO TOKEN DELIMITER WHERE WORD 1S POINTING
LOG MESSACE TO LU 6

DECODE TOKENS OFF AN ASCI1 LINE

24

A

APPENDIX C: EDITOR’S MODULES AND PROCEDURES ALPHABETIZED BY PROCEDURE

MODULE PROCEDURE PURPOSE

EDIT AL INSERT NEXT LINES AFTER FIRST LINE IN RANGE
ALOMEM ALOMEM ALOCATE N CONTIGUOUS BLOCKS OF MEMORY

EDIT ALRANG DO FUNCTION FOR EACH LINE IN RANGE

EDIT ALRANG! DO FUNCTION FOR EACH LINE I[N RANGE

EDIT APTCK TURN ON/OFF OPTION APTCKF FOR APT SYNTAX CHECKER
EDIT APTSYN TURN ON/QFF OPTION APTSYNF FOR APT SYNOMYNS
EDIT ASM TURN ON/OFF OPTION ASMF FOR ASSEMBLY LANGUAGE FORMAT

EDIT ASORNG EVALUATE ASSOCIATIVE RANGE
OFILE ASSILU ASSIGN LU TO PHYSICAL DEVICE NUMBER

EDITF BATCH HANDLE BATCH COMMAND

EDIT BL INSERT NEXT LINE BEFORE FIRST LINE.IN RANGE
EDIT C CREATE A WORKING FILE :

EDIT CA COPY AFTER

EDITCA CAFILE COPY ALL LINES IN RANGE FROM FILEID AFTER CAL.

EDITCA CAWORK MOVE OR COPY LINES IN RANGE IN WORKING FILE AFTER CAL.
OFILE CFILE CLOSE FILER FILE

CEDIT CHKASRNG CHECK LINE, BP, TO SEE IF IT’S IN ASSOCIATIVE RANGE

CEDIT CHKEXRNG CHECK TO SEE IF LINE POINTED TO BY BP IS IN EXPLICIT RANGE
EDIT CLEANCMD MAKE SURE NO MORE DATA IN INPUT COMMAND LINE

EDIT CLEANTOK MAKE SURE WE'RE POINTING TO THE NEXT TOKEN

EDIT COLIMITS EVALUATE COLUMN LIMITS

EDIT COLUMN EVALUATE CURRENT TOKEN FOR A COLUMN NUMBER

FINDL COMPRESS COMPRESS AVAILABLE BUFFERS INTO ONE BUFFER

FINDL COPY COPY A LINE FRAGMENT

OFILE CRFILE CREATE A FILE

EDITF CWORK CREATE WORKING FILE & SETUP THE FIRST BUFFER
EDIT DAL DELETE ALL LINES IN RANGE

EDIT DECNUM SET L.DEC IN DATA STRUCTURE IF INTEGER BETWEEN O AND 99
EVFILE DEFILE SET DEFAULTS IN FILEID BLOCK
FINDL DELETE DELETE LINE POINTED TO BY BP

EDIT DFL DELETE FIRST LINE IN RANGE

EDIT DOCMD DO COMMANDS IN INPUT BUFFER UNTIL ERROR OR END OF LINE
EDITCA DOMACA DO MOVE AFTER OR COPY AFTER

FINDL DWORK DESTROY WORKING FILE AND RELEASE ALL FREE RECORDS

EDIT EDIT PERFORM EDITING FUNCTION

EDIT END TERMINATE EDIT [DO NF, FF END EOJ]

EDITCA ENDPUT FINSH PUTEMP AND SETUP FOR GETEMP

FINDL ERRHAN IF 1/0 ERROR THEN LOGIT SETTING ERROR

EVFILE EVFILE EVALUATE A FILEID IN ASCI1i AND PUT RESULTS IN A FILEID BLOCK
EDIT EXPRNG EVALUATE EXPLICIT RANGE OF FORM LINEf#,LINE#

SAVREC FASTPG GIIRESS PAGE NUMBER THAT LINE NUMBER 1S ON AND GET PAGE.
EDITCA FNDCAL SET BP TO LINE CAL. OR LINE BEFORE IF NONE

EDIT FSTRNG FIND FIRST LINE IN RANGE

EDIT FF FORGET FILE BY DESTROYING THE WORKINC FILE

TERROR FILE PLACE THE WORD °FILE° AFTER R3

TERROR FILL INSERT MESSAGE N AFTER R3

EDITF FILWRK FILL WORKING FILE WITH DATA FROM CURRENT FiLE

FINDL FINDL CIVEN THE LINE #, SET BP TO POINT TO THE LINE BUFFER OF THE LINE

CEDIT FNDPAT FIND PATTERN OR SYMBOL IN A LINE

—25-

FORMAT
FRAGCOPY
FRGREC
GENKEY
GETBUF
GETC
CETCA
GETCMD
GETEMP
GETF
GETINS
GETREC
GETTOKEN
GIVREC
GLINES
1LC
INCR
INITIAL
INSERR
INSERT
LA
LATTR
LF
LINENA
L INENUM
LIST
LOG
LOGIT
LOGON
LSTIT
LSTREC
MA
NXTNUM
MOVE
NEXTREC
NF
NUMCMD
NXTRNG
0
OAFILE
OFF
OFILE
ONOFF

P
PATCOPY
PATDELIM
PATTERN
POINT
PUTCHAR
PUTEMP
Q

RAP
READ
READER
RELBUF
RELAMEM

FORMAT A LINE [N ASSEMBLY LANGUAGE FORMAT

COPY A LINE FRAGMENT

DISASSOCIATE RECORD NUMBER FROM LINE NUMBER
CALCULATE KEY FOR LINE NUMBER

GET A BUFFER OF LENGTH IN R14

GET A LINE FROM COPY AFTER FID

GET NEXT LINE IN RANGE FROM FILEID

GET COMMAND FROM INPUT DEVICE, PROMPT =

GET NEXT LINE FROM FIFO

GET NEXT LINE FROM CURRENT FILE

GET LINE FOR INSERT, PROMP = *

GET AN AVAILABLE RECORD

GET NEXT TOKEN ON COMMAND LINE

CIVE UP A RECURD

GET LINES FOR INSERTIONS WATCHING FOR LEOMS

INSERT LINES AFTER LINE POINTED TO BY BP ,
HANDLE INCREMENT LINE NUMBERS OF FORM +1, -1 ETC.
CREATES AND INITJALIZES THE DATA STRUCTURE OFF R12
INSERT LINE L. BEFORE LINE POINTED TO BY BP

INSERT LINE L. AFTER LINE POINTED TO BY BP

LIST ALL LINES IN RANGE

LOG FILE SECURITY IF > UNCLASSIFIED

LIST THE FIRST LINE IN RANGE

CONVERT LINE NUMBER TO ASCII

EVALUATE CURRENT TOKEN FOR LINE NUMBER

LIST LINE POINTED TO BY BP IN UNFORMATTED OR ASSEMBLY LANGUAGE FORMAT WITH LINE NUMBERS
LOG MESSAGE TO LU 6

LOG MESSAGE TO LU 6

RESET OR SET CERF TO LOG ALL EDITOR INTERACTIONS
LOG MESSAGE TO LU 6

READ [N RECORD BEFORE F.CUREC

MOVE AFTER

PUT NEXT LINE NUMBER IN WORKING FILE TO LE.

MOVE UP/DOWN R14 LINES, SET BP TO RESULTANT LINE
READ IN NEXT RECORD UPDATING IF NECESSARY

WRITE OUT WORKiNG FILE TO FIiLEID

HANDLE NUMBER INPUT AS A COMMAND

SET BP & CURRENT LINE TO NEXT LINE IN RANGE

OPEN FILE TO A WORKING FILE

OPEN OR ALOCATE A FILER FILE

TURN OFF ALL OPTIONS

OPEN A FILER FILE

DECODE ON/OFF ON COMMAND LINE, SET R14 TO ZERO IF ON ELSE 1 IF OFF
LIST A PAGE OF LINE STARTING WITH FIRST LINE IN RANGE
COPY PATTERN INTO LINE NL

DETERMINE IF A CHARACTER IS A PATTERN OR SYMBOL DELIMITER
EVALUATE PATTERN ON COMMAND LINE

PLACE AN t TO TOKEN DELIMITER WHERE WORD IS POINTING
PUT A CHARACTER IN A BUFFER UNTIL END OF LINE

PUT LINE AWAY IN FIFO THAT CAN EXTEND TO DiSK
RELIST A PAGE OF LINES STARTING WITH P.INT
REPLACE PATTERNS IN ALL LINES IN RANGE

READ A LINE FROM FILER OR A DEVICE

READ RECORD F.CUREC

RELEASE BUFFER OBTAINED BY GETBUF

RELEASE ANY ALOCATED MEMORY FOR FILER

-26—

OFILE RELEASE RELEASE DEVICE

ALOMEM RELMEM RELEASE N CONTIGUOUS BLOCKS OF MEMORY

FINDL RELPG RELEASE CURRENT PAGE IF EMPTY

EDITCA RELTEMP RELEASE FIFO

EDITF RENUMBER RENUMBER LINES IF NECESSARY

FINDL REPAT REPLACE PATTERN IN LINE BP

EDIT REPRANGE EVALUATE REPLACEMENT RANGE

EDITF RSTWRD RESTORE WORD BLOCK TO STATE WHEN SAVRWD WAS CALLED

EDIT RFP REPLACE PATTERNS IN FIRST LINE IN RANGE

CEDIT RNG SET BP & CURRENT LINE TO NEXT LINE IN RANGE

EDIT RNUM EVALUATE CURRENT TOKEN FOR LINE NUMBER, TOKEN CAN NOT BE A COMMAND
EVFILE SATTR SET CLASSIFICATION AND PROPERTY TO MAX IN FID

EDITF SAVRWD SAVE STATE UF WUky AFPTER RiIZ

SAVREC SAVREC ASSOCIATE A RECORD # WITH A LINE # SO CAN FIND LINES FAST
SEARCH SEARCH SEARCH A TABLE OF VARIABLE LENGTH TOKENS

EDIT SETCMDUP COMMON SETUPS FOR MOST COMMANDS USING RANGE

EDITCA SETEMP SETUP FOR PUTEMP

EDITCA SETGETCA SETUP FOR GETCA, FIND FIRST LINE IN RANGE IN FILE

EDIT SETTOKEN SET UP DATA STRUCTURE TO DECODE TOKENS ON COMMAND LINE
OFILE SETUPO COMMON SETUP ROUTINE FOR OFILE AND OAFILE

EDIT SETUPOC COMMON SETUP ROUTINE FOR O AND C

FINDL SPLITPG SPLIT PAGE AFTER LINE BP INTO 2 PAGES

STAT STAT SAVE STATISTICS IN TASK COMMON

STATD STAT DUMMY ROUTINE TO TURN OFF STATS

STAT STATIE END OF STATISTICAL INCREMENT

STATD STATIE DUMMY ROUTINE FO TURN OFF STATS

STAT STATIN START OF STATISTICAL INCREMENT

STATD STATIN DUMMY ROUTINE TO TURN OFF STATS

FINDL SUBSPLIT SPLIT A BLOCK OF LENGTH+N INTO 2 BLOCKS OF LENGTH AND N
CEDIT SYMBOL DETERMINE IF A CHARACTER IS A SYMBOL

EDIT TC TURN ON/OFF OPTION TCF FOR TYPE CHANGES OPTION

EDIT TERORS WRITE OUT POINTER TO CURRENT TOKEN AND ERROR MESSAGE
EDIT TERR LOG ERROR MESSAGE

TERROR TERROR LOG ERROR MESSAGE N TO THE USER

WORD WORD DECODE TOKENS OFF AN ASCIi LINE

OFILE WRITE WRITE OUT A LINE TO FILER OR A DEVICE

FINDL WRITER WRITE OUT F.CUREC

-27-~

APPENDIX D: EDITOR'S MODULES AND PROCEDURES ALPHABETIZED BY MODULE

MODULE PROCEDURE PURPOSE

ALOMEM ALOMEM ALOCATE N CONTIGUOUS BLOCKS OF MEMORY

ALOMEM RELMEM RELEASE N CONTIGUOUS BLOCKS OF MEMORY

CEDIT NXTRNG SET BP & CURRENT LINE TO NEXT LINE IN RANGE

CEDIT RNG SET BP & CURRENT LINE TO NEXT LINE IN RANGE

CEDIT CHKEXRNG CHECK TO SEE IF LINE POINTED TO BY BP IS IN EXPLICIT RANGE
CEDIT CHKASRNG CHECK LINE, BP, TO SEE IF IT’S IN ASSOCIATIVE RANGE
CEDIT FNDPAT FIND PATTERN OR SYMBOL IN A LINE

CEDIT SYMBOL DETERMINE IF A CHARACTER [S A SYMBOL

EDIT EDIT PERFORM EDITING FUNCTION

EDIT INITIAL CREATES AND INITIALIZES THE DATA STRUCTURE OFF Ri12
EDIT GETCMD CET COMMAND FROM INPUT DEVICE. PROMPT = .

EDIT GETINS GET LINE FOR INSERT, PROMP = *

EDIT DOCMD DO COMMANDS IN INPUT BUFFER UNTIL ERROR OR END OF LINE

EDIT LOGON RESET OR SET CERF TO LOG ALL EDITOR INTERACTIONS

EDIT OFF TURN OFF ALL OPTIONS

EDIT APTSYN TURN ON/OFF OPTION APTSYNF FOR APT SYNOMYNS

EDIT APTCK TURN ON/OFF OPTION APTCKF FOR APT SYNTAX CHECKER

EDIT ASM TURN ON/OFF OPTION ASMF FOR ASSEMBLY LANGUAGE FORMAT

EDIT TC TURN ON/OFF OPTION TCF FOR TYPE CHANGES OPTION

EDIT ONOFF DECODE ON/OFF ON COMMAND LINE, SET R14 TO ZERO IF ON ELSE 1 IF OFF

EDIT SETTOKEN SET UP DATA STRUCTURE TO DECODE TOKENS ON COMMAND LINE
EDIT GETTOKEN GET NEXT TOKEN ON COMMAND LINE

EDIT END TERMINATE EDIT [DO NF, FF END EOJ]

EDIT C CREATE A WORKING FILE

EDIT 0 OPEN FILE TO A WORKING FILE

EDIT SETUPOC COMMON SETUP ROUTINE FOR O AND C

EDIT NF WRITE OUT WORKING FILE TO FILEID

EDIT FF FORGET FILE BY DESTROYING THE WORKING FILE
EDIT NUMCMD HANDLE NUMBER INPUT AS A COMMAND

EDIT BL INSERT NEXT LINE BEFORE FIRST LINE IN RANGE
EDIT AL INSERT NEXT LINES AFTER FIRST LINE IN RANGE
EDIT LF LIST THE FIRST LINE IN RANGE

EDIT LA LIST ALL LINES IN RANGE

EDIT DFL DELETE FIRST LINE IN RANGE

EDIT DAL DELETE ALL LINES IN RANGE

EDIT P LIST A PAGE OF LINE STARTING WITH FIRST LINE IN RANCE
EDIT Q RELIST A PAGE OF LINES STARTING WITH P.INT
EDIT RFP REPLACE PATTERNS IN FIRST LINE IN RANGE
EDIT RAP REPLACE PATTERNS IN ALL LINES IN RANGE

EDIT CA COPY AFTER

EDIT MA MOVE AFTER

EDIT NXTNUM PUT NEXT LINE NUMBER IN WORKING FILE TO LE.

EDIT SETCMDUP COMMON SETUPS FOR MOST COMMANDS USING RANGE

EDIT FSTRNG FIND FIRST LINE IN RANGE

EDIT EXPRNG EVALUATE EXPLICIT RANGE OF FORM LINE#.LINE#

EDIT ASORNG EVALUATE ASSOCIATIVE RANGE

EDIT REPRANGE EVALUATE REPLACEMENT RANGE

EDIT PATTERN EVALUATE PATTERN ON COMMAND LINE

EDIT PATDELIM DETERMINE [F A CHARACTER IS A PATTERN OR SYMBOL DELIMITER

- ~28-

EDITF
EDITF
EDITF
EDITF
EDITF
EDITF
EVFILE
EVFILE
EVFILE
EVFILE
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL
FINDL

COLIMITS
COLUMN
ALRANG
ALRANG!
L INENUM
RNUM
DECNUM
INCR
TERR
TERORS
CLEANTOK
CLEANCMD
DOMACA
CAFILE
FNDCAL
SETGETCA
GETCA
CAWURK
SETEMP
PUTEMP
ENDPUT
GETEMP
RELTEMP
BATCH
FILWRK
SAVRWD
RSTWRD
GETC
GETF
CWORK
ILC
RENUMBER
GLINES

INSERB
INSERT
DELETE
REPAT
FRAGCOPY
copy
PATCOPY
RELBUF
GETBUF
SUBSPLIT
COMPRESS
SPLITPG
RELPG
NEXTREC
READER
WRITER
GETREC

EVALUATE COLUMN LIMITS

EVALUATE CURRENT TOKEN FOR A COLUMN NUMBER

DO FUNCTION FOR EACH LINE IN RANGE

DO FUNCTION FOR EACH LINE IN RANGE

EVALUATE CURRENT TOKEN FOR LINE NUMBER

EVALUATE CURRENT TOKEN FOR LINE NUMBER, TOKEN CAN NOT BE A COMMAND
SET L.DEC IN DATA STRUCTURE IF INTEGER BETWEEN O AND 99
HANDLE INCREMENT LINE NUMBERS OF FORM +1, -1 ETC.

LOG ERROR MESSAGE

WRITE OUT POINTER TO CURRENT TOKEN AND ERROR MESSAGE
MAKE SURE WE'RE POINTING TO THE NEXT TOKEN

MAKE SURE NO MORE DATA IN INPUT COMMAND LINE

DO MOVE AFTER OR COPY AFTER

COPY ALL LINES IN RANGE FROM FILEID AFTER CAL.

SET BP TO LINE CAL. OR LINE BEFORE [F NONE

SETUP FOR GETCA, FIND FIRST LINE IN RANGE IN FILE

GET NEXT LINE IN RANGE FROM FILEID

MOVE OR COPY LINES IN RANGE IN WORKING FILE AFTER CAL.
SETUP FOR PUTEMP

PUT LINE AWAY IN FIFO THAT CAN EXTEND TO DISK

FINSH PUTEMP AND SETUP FOR GETEMP

GET NEXT LINE FROM FIFO

RELEASE FIFO

- HANDLE BATCH COMMAND

FILL WORKING FILE WITH DATA FROM CURRENT FILE

SAVE STATE OF WORD AFTER R12

RESTORE WORD BLOCK TO STATE WHEN SAVRWD WAS CALLED
GET A LINE FROM COPY AFTER FID

GET NEXT LINE FROM CURRENT FILE

CREATE WORKING FILE & SETUP THE FIRST BUFFER
INSERT LINES AFTER LINE POINTED TO BY BP

RENUMBER LINES IF NECESSARY

GET LINES FOR INSERTIONS WATCHING FOR LEOMS
EVALUATE A FILEID IN ASCIl AND PUT RESULTS IN A FILEID BLOCK
SET DEFAULTS IN FILEID BLOCK

SET CLASSIFICATION AND PROPERTY TO MAX IN FID

LOG FILE SECURITY IF > UNCLASSIFIED

GIVEN THE LINE #, SET BP TO POINT TO THE LINE BUFFER OF THE LINE
MOVE UP/DOWN R14 LINES, SET BP TO RESULTANT LINE
INSERT LINE L. BEFORE LINE POINTED TO BY BP

INSERT LINE L. AFTER LINE POINTED TO BY BP

DELETE LINE POINTED TO BY BP

REPLACE PATTERN IN LINE BP

COPY A LINE FRAGMENT

COPY A LINE FRAGMENT

COPY PATTERN INTO LINE NL

RELEASE BUFFER OBTAINED BY GETBUF

GET A BUFFER OF LENGTH IN Ri4

SPLIT A BLOCK OF LENGTH+N INTO 2 BLOCKS OF LENGTH AND N
COMPRESS AVAILABLE BUFFERS INTO ONE BUFFER

SPLIT PAGE AFTER LINE BP INTO 2 PAGES

RELEASE CURRENT PAGE 1F EMPTY

READ IN NEXT RECORD UPDATING IF NECESSARY

READ RECORD F.CUREC

WRITE OUT F.CUREC

GET AN AVAILABLE RECORD

—29-

FINDL GIVREC GIVE UP A RECORD

FINDL DWORK DESTROY WORKING FILE AND RELEASE ALL FREE RECORDS

FINDL LSTREC READ IN RECORD BEFORE F.CUREC,

FINDL ERRHAN IF 1/0 CRROR THEN LOGIT SETTING ERROR

LIST LIST LIST LINE POINTED TO BY BP IN UNFORMATTED OR ASSEMBLY LANGUAGE FORMAT WITH LINE NUMBERS

LIST LINENA CONVERT LINE NUMBER TO ASCII
LIST FORMAT FORMAT A LINE IN ASSEMBLY LANGUAGE FORMAT
LIST PUTCHAR PUT A CHARACTER [N A BUFFER UNTIL END OF LINE

1L.OGIT LOGIT LOG MESSAGE TO LU 6
LOGIT LSTIT LOG MESSAGE TO LU 6
OFILE OFILE OPEN A FILER FILE

OFILE CRFILE CREATE A FILE

OFILE OAFILE OPEN OR ALOCATE A FILER FILE

OFILE SETUPO COMMON SETUP ROUTINE FOR OFILE, CRFILE AND OAFILE
OF ILE ASSILU ASSIGN LU TO PHYSICAL DEVICE NUMBER

OFILE CFILE CLOSE FILER FILE

OFILE RELEASE RELEASE DEVICE

OFILE RELAMEM RELEASE ANY ALOCATED MEMORY FOR FILER

OFILE WRITE WRITE OUT A LINE TO FILER OR A DEVICE

OFILE READ READ A LINE FROM FILER OR A DEVICE

SAVREC SAVREC = ASSOCIATE A RECORD # WITH A LINE §# SO CAN FIND LINES FAST
SAVREC FASTPG GUESS PAGE NUMBER THAT LINE NUMBER IS ON AND GET PAGE.
SAVREC GENKEY CALCULATE KEY FOR LINE NUMBER

SAVREC FRGREC DISASSOCIATE RECORD NUMBER FROM LINE NUMBER
SEARCH SEARCH SEARCH A TABLE OF VARIABLE LENGTH TOKENS

STAT STAT SAVE STATISTICS IN TASK COMMON

STAT STATIN START OF STATISTICAL INCREMENT

STAT STATIE END OF STATISTICAL INCREMENT

STATD STAT DUMMY ROUTINE TO TURN OFF STATS

STATD STATIN DUMMY ROUTINE TO TURN OFF STATS

STATD STATIE DUMMY ROUTINE FO TURN OFF STATS

TERROR TERROR LOG ERROR MESSAGE N TO THE USER

TERROR FILE PLACE THE WORD ‘FILE° AFTER R3

TERROR FILL INSERT MESSAGE N AFTER R3

TERROR POINT PLACE AN t TO TOKEN DELIMITER WHERE WORD 1S POINTING
TERROR LOG 1.0G MESSACGE TO LU 6

WORD WORD DECODE TOKENS OFF AN ASCil LINE

PL/crs

