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ABSTRACT

This report presents an analysis of random uncertainties in the two methods of testing for duct
leakage in Standard 152P of the American Society of Heating, Refrigerating, and Air-Conditioning
Engineers (ASHRAE). The test method is titled Standard Method of Test for Determining Steady-
State and Seasonal Efficiency of Residential Thermal Distribution Systems. Equations have been
derived for the uncertainties in duct leakage for given levels of uncertainty in the measured quantities
used as inputs to the calculations. Tables of allowed errors in each of these independent variables,
consistent with fixed criteria of overall allowed error, have been developed.
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INTRODUCTION

The purpose of this report is to analyze measurement errors in the two tests for duct leakage that are
central to the new Standard Method of Test for Determining Steady-State and Seasonal Efficiency
of Residential Thermal Distribution Systems, currently being developed under the auspices of the
American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc. (ASHRAE). The
test method has been designated by ASHRAE as Standard 152P.[ASHRAE 1997] Standard 152P
accounts for all mechanisms of energy loss in duct systems, including interactions of the duct system
with the building envelope and with the heating or cooling equipment. But the heart of the standard,
and the only energy-loss quantity that is measured directly, is duct leakage.

One of the two duct leakage tests, which is generally referred to as the “house pressure test,”
was developed by Dr. Mark P. Modera of Lawrence Berkeley National Laboratory.[Modera and
Byrne 1997] The derivation of the method, as yet unpublished, was provided to the author of this
report and is discussed herein. The second duct leakage test is the more traditional one that relies
on fan-pressurization of the duct system. Both tests measure duct leakage to zones outside the
conditioned space.

It is important to recall at the outset the distinction between random uncertainty and
systematic bias. Random uncertainties are caused by measurement errors that vary unpredictably
between trials but have an expected value of zero. Systematic bias is the component of measurement
error that is the same for all trials. The scope of this report is limited to random uncertainties.
Accordingly, the term “error,” where it is used without qualification, should be understood to mean
random uncertainty.

ORGANIZATION OF THE REPORT

The report is divided into two major sections, the first dealing with the house pressure test and the
second with the fan pressurization test for duct leakage. Within each section, the equations for error
propagation are developed. These permit the random uncertainties in the supply- and return-duct
leakage rates to be calculated from known or postulated random uncertainties in the measured
quantities that serve as inputs to the leakage calculations. Following this, a criterion of allowable
error in duct leakage is developed and used to calculate the allowable error in each of these measured
quantities. An engineering judgment of the difficulty of attaining the required level of precision for
each measured quantity is then made and explained.

For the house pressure test, the error-propagation relations are given in Equation 24 for
supply leakage and Equation 25 for return leakage. The allowable errors are summarized in Table 1.
For the fan-pressurization duct leakage test, the error-propagation relations are given in Equation 45,
which applies to both the supply and return sides. The allowable errors are summarized in Table 2.




THE HOUSE PRESSURE TEST

The house pressure test is a relatively new way of measuring duct leakage.[Modera and Byrne 1997]
It uses the house envelope itself as a standard of leakage with which the leakiness of the duct system
is compared. It requires a measurement of the envelope flow coefficient, using a blower door, and
several series of measurements of the pressure difference between the house and the attic under
various operating conditions, together with measurements of the pressures in the supply and return
ducts (Figure 1). These pressure measurements are accomplished using a digital manometer and a
set of plastic hoses. Assuming that the blower door test has already been done for other reasons, the
house pressure test can usually be accomplished in less than an hour.

The procedure is as follows. First, measure the flow coefficient of the house envelope with
a blower door. A blower door is a calibrated fan installed in a doorway and used to establish a
pressure difference between the living space and the outside. A single-point measurement (such as
CFM25) is acceptable to the standard, which assumes N = 0.65 in the relationship (flow) «
(pressure)”. Next, run a plastic hose up into the attic and attach the other end to the reference port
of a manometer located within the conditioned space. Run another plastic hose into the return duct
so that its end is approximately midway (within 1 m [3 ft] of the midpoint) between the register and
the return plenum and attach the other end to the input port of a manometer located within the
conditioned space. If the filter is at the furnace, it is removed and the filter access sealed. Another
plastic tube is connected to a pressure pan, which is located near a supply register that is chosen for

its nearness to the main supply trunk.
\
) Hose into attic

Return register open,
then partly blocked

Blower door test |___] Pressure pan on
A a supply register
.
)
O Supply registers open
. | | | | | |
Supply duct
Hosé into - ~Furnace
return duct, - /Sgl?;?rrra{:;]
halfway down '
way @j on, off, on
| |

Figure 1. Schematic of the House Pressure Test for Duct Leakage
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With these preliminaries out of the way, the furnace fan is turned on and allowed to come up
to speed. The house-attic pressure difference (AP) is measured ten times. The AP between the return
duct and the house is measured once. Next, the furnace fan is turned off and allowed to stop. The
house-attic AP is measured ten times. The furnace fan is turned on again. The house-attic AP is
measured ten times, the AP between the return duct and the house is measured once, and then, using
the pressure pan, the AP between the chosen supply register and the house is measured once. Again
the furnace fan is turned off, and the house-attic AP is measured ten times.

At this point the second phase of the test begins. Here, the operating conditions of the system
are deliberately altered by turning the furnace fan on and blocking the return register(s) with a piece
of paper or cardboard until the AP between the return duct and the house is approximately -100 Pa,
or until the register(s) are completely covered if this pressure cannot be reached. The house-attic AP
is measured ten times. The AP between the return duct and the house is measured once, and then,
using the pressure pan again, the AP between the chosen supply register and the house is measured
once. Finally, the fan is turned off and the house-attic AP is measured ten more times. These data
are then input to a set of equations that yield values of supply and return leakage to the outside under
normal operating conditions. The source of these equations and the propagation of errors within
them will now be discussed.

Nomenclature

The following notation will be used in this discussion. In some cases it is shortened relative to what
is in the current Standard 152P draft; in such cases the 152P notation is given in parentheses.

Q, Air leakage rate from supply ducts to the outside under normal operation

Q. Air leakage rate from the outside to the return ducts under normal operation

Q,  Algebraic sum of supply (+) and return (-) leaks under normal operation, with return not
blocked (Qgeasriear i 152P)

Q.zp  Algebraic sum of supply and return leaks with return blocked (Qu.ysqeurg in SPC152)

K Envelope flow coefficient (C,,, in 152P)

K, Supply-duct flow coefficient

K, Return-duct flow coefficient

AP,, House-attic pressure difference with fan on (may be >0 or <0)

AP,; House-attic pressure difference with fan off (may be >0 or <0)

APy  House-attic pressure difference with fan on and return partially blocked (usually <0)

AP,  House-return pressure difference with fan on (assumed >0) (|AP,_,| in 152P)

APy House-return pressure difference with fan on and return partially blocked (assumed >0)
(JAP . gg| in 152P)

AP,  Supply-house pressure difference with fan on (assumed >0) (AP, in 152P)

APgg Supply-house pressure difference with fan on and return partially blocked (assumed >0)
(AP g in 152P)

n Envelope flow exponent, generally taken to equal 0.65 (n,,, in 152P)

nduct Duct flow exponent, generally taken to equal 0.60 (written as a number in 152P)



Equations for Duct Leakage in the House Pressure Test

The derivation due to Mark Modera sets the net leakage from the ducts to the outside equal to the
net inflow of air across the envelope, so that the amount of air in the house remains constant. The
pressure across the ceiling (living space with respect to attic) when the fan is on is AP,,. The
pressure across the floor when the fan is on is developed by assuming that the difference in pressure
under the floor, relative to that above the ceiling, is the same when the fan is on as when it is off,
because the driving forces (stack and wind) have not changed. In that case, the pressure under the
floor, relative to that inside, is 2AP 4 - AP_,. The same relations would hold when the return is
blocked, with the addition of RB to the subscripts. The equations as they appear in SPC152P are:

Q, = L K [sgn(28P, - AP)I38P, - AP " - sign(@P)IAP,IT (1)

o

N —

K [sign(2AP . - APRB)IZAP‘?# - AP |" - sign(AP. ) [AP "] (2)

of

1
Q:rRB - 5

These two quantities can be calculated using the measured values of the pressure differences
and the envelope flow coefficient. Therefore, in what follows Q. and Qg can be taken as known
quantities. It is unnecessary to carry along the right-hand sides with all their complexity.

The next step in Modera’s analysis is to express Q,; and Q.5 in terms of the duct leakage
flow coefficients and operating pressures:

Q, = K, AP - K AP™*  (3)
erRB = I<: APS%M B I<r AP r%ud (4)

These two equations can then be solved for K and K_ in terms of Q, Q.zs and the AP’s, all of which
are measured quantities or calculated from measured quantities:

nduct nduct
APR" Q - AP Q_
I<r = ductRB n;:a nduct RBndud (5)
A P Sn A P rRB - A P sRB A P

r




Aprg"d er - Aandud erRB ( 6)

nd; nd; nd; nd
AP APRp® -~ AP AP

s T S,

K =

s

If we now let S = (Apge/AP Y™ and R = (Apgg/AP, " and recognize that Q, = K, (AP,)™=
and Q, = -K, (AP,)""*, the minus sign in the latter expression to make Q, negative, then Equations
5 and 6 become:

_ =S er * erRB

Q- ——== )
_ R er - erRB

Q- ——" ()

These equations may be subject to systematic bias caused by possible failure of real houses to live up
to the underlying theoretical assumptions. As stated in the Introduction, such systematic bias, if it
exists, is beyond the scope of this report, which considers random uncertainty only.

Derivative of a Special Function

In the error analysis, we will need the derivative of quantities of the somewhat complicated form
f(x) = sign(x) |x|". If the first derivative with respect to x is denoted f ’(x), then:

Ifx>0 fx) =x" and hence  f’(x)=nx*!
Ifx<0 f(x)=-(x)" andhence  f’(x)=-n(x)"!(-1)
= n (-x)™!

If x = 0 and n < 1, the derivative is undefined. Since in our case n=0.65, we have to deal with
the fact that the derivative becomes unbounded (i.e. blows up to infinity) as x approaches zero. If
x # 0, however, the derivative is well-behaved and can be generically written as f’(x) =n |x|™! .

Some Partial Derivatives

The first steps in deriving the equations for the errors in Q, and Q, are to take the partial derivatives
of Q,; and Q, x5 With respect to AP, AP+, and APgy:



aQSY 1 n-1 n-1
=-5Kn[|2APqﬁ-APm1 + |AP "]

= Kn|2AP -AP_|*!
OAP 1288~ A%

=0 (9)

aQ.s‘rRB
JAP

on

aCz.\'rR.B
JAP

_ n-1
= Kn|2AP - APy

aerRB 1 n-1 n-1
o = K [|2AP - AP " + AP [

We also need the partials of Q and Q, with respect to Q, and Qzp:

Q. _ R

aQ, R-S

d

Q@ _ 1 (10)
0Q, rp R-S

0Q, S

Q. R-S

aQ, R
aCzsrRB R-S



Propagation of Errors

In order to determine how the errors propagate, we make use of the chain rule for partial derivatives.
The functional structure of Q, or Q, (written generically as Q) vs. the independent and intermediate
variables can be expressed as:

Q =f1(er’erRB’R’S)
Q, =f,(AP, AP _AP,) (11)

erRB = -fB(APan ’APaf’APRB)

Since Q. and Qxp are functions of AP, ,AP; and APy, but R and S are not functions of these
variables, we may write for Q,:

aQs aQs aer + aQs acz.s-rRB

0AP  3Q, AP, 3Q .. OAP

on on

aQ: - aQs aer + aQs aerRB (12)

OAP,  8Q, AP 3Q,., AP,

aQS aQs aer aQs aerRB
+
aAI)RB aer aA‘PRB aCz.srRB aAIJRB

and for Q,.
0 2r d 2r d 2sr J 2r d 2.\'rRB
+

AP, 3Q_ 9AP_ 9Q, .. OAP

on on

aQr aQr aer aQr a(2:rRB ( 1 3)
= +
8AP,  3Q, AP Q. AP

aQr aQr aer + aQr aQ.srRB

aAPRB aer aAPRB aerRB aA‘PRB

which is the same set of equations but with Q, substituted for Q, wherever it occurs.



We can now write the partial derivatives of Qs with respect to AP, AP g, APyg:

aQ
s _RKn [|2AP -AP_|*! + |AP_|"!]
8AP, 2(R-S) g ”
9 Kn ! 1
= [-12AP-APp " + R|2AP-AP, "]
AP,  (R-S)
oQ
. [|2AP AP | + | AP "]
oAP,,  2(R-S)
0Q, -~RQ, - Q(-1)  Q
as (R-S)* (R-S)
aQs _ _Ser * erRB Qr
dR (R-S)? (R-S)
and the same partials for Qr:
aQ
r = KR poap AP [t s AP ]
0AP, 2(R-S) g e "
oQ.
= [|2AP-AP, |"" - S|2AP -AP, "]
AP . (R S) o " on
oQ
r o _K» [|2AP - AP, "1+ [APg "]
OAP,, 2(R-S)
aQr - R er * erRB) - _ Qs
aS (R-S)? (R-S)
aQr _ —Ser * erRB _ Qr
R (R-S)? (R-S)

(14)

(15)



As for the dependence on K, it should be noted that Q,, and Q. are proportional to X, and
that Q, and Q, are linear combinations of Q, and Qg and hence also proportional to K. This implies:

3

Q.2 (16)
aK K

Q Q

aK K

Let us now express the differentials of Q, and Q, in terms of the differentials of the
independent variables and the appropriate partial derivatives:

aQ oQ d
aQ = ~ dAP _+ * dAP . + < dAP,, +
° 9AP " AP, T BAP,
aQ oQ oQ
+—dR + — dS + — 4K (17)
oR oS oK
and
aQ o 0
dQ = — dAP_ + < dAPqﬁ, + % dAP,, +
AP AP AP,
aQ oQ d
+ — dR + —Z 4S + % dK  (18)
oR oS oK

Addition in Quadrature

We now identify the random uncertainty in any independent variable (defined in any consistent way,
such as one standard deviation, 95% confidence limit, etc.) with the differential of that variable. We
further assume that the errors are not correlated in any way. Finally, we will use the notation errX
to mean the consistently defined root-mean-square random uncertainty in any quantity X. Under
these conditions we may write for the error in Q,:



(22 o[22 o (22

. ( ‘;%)2 (@rR)? + ( ‘2%)2 (@rrS)? + (Z_%)Z (eI ]1/2 19)

and for the error in Q,:

eﬂQ,=K aQ’)z@ﬁAﬁﬁz+(ai%)Zﬁmﬂ3ﬁ2+( <‘BC2,):J.(WAPRB)2

AP 7 IAP,,

(2 o (2] (2

12

Substituting then the partial derivatives from Equation 14 into Equation 19, we obtain:

RKn )2 . 12 .
errQ = 2AP -AP |*' + |AP _|"Y} (emAP )% +
Q, [( s s (12884 8P, + [8P, ] (@7AP,)

( Kn
+

2
_ _ n-1 _ n-1\2 2
(R_S)) (-128P -AP """ + RI2AP .-AP, '} (rAP)? +

off

Kn \? . e 2
+(2(R—S)) (lePqﬁ’_APRBl + [APp| ) (errAPgp)” +

' ( (R?E))Z(WR)Z ' ( (R%g)z("”s . (%)2(""102

172
21)

10



and similarly, substituting partial derivatives from Equation 15 into Equation 20 we get:

SKn )2 1 12 2
errQ = 2AP -AP | + [AP |" errAP +
Qr [( 2(R_S) (I w‘ zml I anl ) ( an)

2
_ n-1 _ _ n-1\2 2
) (124P;-APy " - S|24P -AP, "'} (erAP )2 +

’ ( (zfzs)

Kn \? n-1 n-1\2 2
. 2(R—S)) (leP‘ﬁ-APRB| + |AP,| ) (errAPy)? +

12
(22)

- ( (R%q))z("”mz | (R?SS))Z(WS)Z ’ (%) ert?

These equations can be given a simpler appearance if the expressions involving the three AP’s
raised to the n-1 power are grouped into single symbols:
f= 24P _-AP [*} + |AP |
gr = [( ~|2AP-APp ™" + R |2AP -AP, 1)
8s = |(12AP;-APy|"™" - S |2AP -AP, |"))] (23)

B = |2AP - APt + |AP, "

where for the g-functions we take absolute values again at the end to insure positive values. (We
note in passing that these functions can be undefined when quantities inside absolute value signs are
equal to zero. This will be dealt with below.) Substituting into Equations 21 and 22, we obtain:

e[ s () () s
| (RQ.tfs))z(“”"R)2 /| (JR%S))Z(‘”S)2 ' (%)2(""’192 T e
and

11



K 2
arQ = [( &’L)z (errAP ) + ( (Rné;s )2 (errAPqﬂ,)2 + (th—) (errAPp.)°

2(R-S) - 2(R-S)
. ( (R%S’))Z(e”’R)z * ( (RQ_}>)2<errS)2 * (%)2@"102 N (25)

Pathological Behavior of the Functions f, g, and h

Examination of the functions f, g;, g5, and h shows that they can behave pathologically under certain
conditions. “Pathological behavior” in this case refers to the fact that the functions have singularities,
or values of the independent variables for which one or more denominators go to zero, causing the
function to be undefined. In the vicinity of these singularities, the function takes on very large values,
with large variation within a small range of an independent variable. Such behavior can make them
unreliable indicators of the errors they are used to calculate in Equations 24 and 25.

The critical question is this. How large is the range of values of a given independent variable
for which this unwanted behavior occurs? For example, a range of plausible values for AP, is
perhaps from -5 to +5 Pa. If the subset of values of AP, for which the function f'is rapidly varying
is a large fraction of this range, then Equations 24 and 25 may not be very useful. But if the patho-
logical range is very limited, say to a few tenths of a pascal, and if, moreover, there is a reasonable
“fix” that can be implemented within this range, then the difficulty is more apparent than real.

This subject is discussed further in Appendix 1. There it is argued that as a reasonable rule
of thumb, these functions can be used as calculated unless they return a value greater than 4 or are

undefined. This will seldom happen, but in such cases a maximum value of 4 is to be used.

A Criterion of Allowable Error

We will now do a baseline assessment of the relative sizes of errors in each of the independent
variables that would be acceptable in practice. To accomplish this, we will use Equations 24 and 25,
and ask what sizes of these errors would produce a specified error in Q, and Q, , if the factor under
study were the only source of error. The allowed error in Q; or Q, caused by errors in one of the
independent variables will be set small enough that the error in Q, or Q, caused by errors in all the
independent variables will fall within the agreed-upon criterion, under the baseline assumption that

all the independent variables contribute equally to this error.

Before we can estimate the allowable error in each of the independent variables (AP, AP g,
APyp, R, S, and K), we need a reasonable criterion for selecting the allowable error in leakage rate
(Q, or Q). Although the selection of such a criterion is open to discussion, it would appear evident

12



that we could tolerate a larger error in the duct leakage if the leakage is very large than if it is small.
For example, a measurement error of 100 cfm in a 400 cfin leakage will place it between 300 and 500
cfm. For a typical residence, any supply or return duct leakage within this range is probably going
to be large enough to warrant repair. However, a measurement error of 100 cfm in a 100 cfin leakage
will leave us uncertain whether the duct leaks at the rate of 200 cfm or is air-tight.

In the light of this example, let us see what happens under either of two obvious scenarios.
Suppose we specify a maximum allowed error as a percentage of the leakage (say 25%), and suppose
further that we then specify the maximum error that any one independent variable can contribute as
about 40% of this, or 10%. We trust the quadrature law to give us an average allowed error
involving our 6 independent variables as V6 times the allowed error in any one variable--v6 times
10% is very nearly 25%. For large leakage rates this would seem a reasonable choice, but suppose
the leakage is very small, say 40 cfm. Should we demand that the error on this leakage caused by
an error in any independent variable be only 4 cfin? Do we really need 10 cfm overall accuracy in this
case? The answer is almost surely no. If the fan-flow rate is a typical 800 to 1400 cfm, we should
be quite happy if we could determine that supply or return leakage is 40 = 40 cfin, because it would
probably not be worth going to great lengths to find and fix such a small leakage.

This discussion would seem to lead to a compromise of the following sort. Specify a
maximum percentage error in supply or return leakage that is acceptable, but establish a minimum
absolute value of leakage error which will always be acceptable, even if the measured leakage itself
is small enough that use of this value will result in a large percentage error. Then divide these limits
by V6 (approximately 2.5) to obtain the allowed leakage stemming from any one independent variable,
and depend on the addition of errors in quadrature to bring the total error back up to 2.5 times
(rather than six times) as great.

It is recognized that this may be somewhat confusing, so let us go through a numerical
example which contains numbers the author considers to be reasonable. For large leakage rates, let
us establish a 25% error as the maximum allowable. This would mean that we have determined, say,
a 400 cfm leakage rate to within 100 cfm of the true value. This is probably good enough for
decision-making purposes. For low leakage rates, let us make the judgment that knowing the leakage
to within £50 cfim will always be good enough. We then divide these criteria by v6 or ~2.5 when
looking at the effect of errors in any one independent variable, so we demand now that the error in
supply or return leakage caused by error in any independent variable be no greater than 10% of the
measured leakage or 20 cfm, whichever is greater.

With this criterion settled upon, we can now proceed. By setting all the independent-variable

errors but one in Equations 24 and 25 to zero in turn and evaluating the resulting error in the
remaining independent variable, we obtain the following equations. For Q,:

13




r7Q, owed =

r7Q, _liomed

17Q, timed

7Q,_liomed

17Q, _lowed

r7Q, _liomed

and for Q,:

Qe

Q. iiomed

mQr ~allowed

er7Q._liowed

er7Q._liowed

er7Q, owed =

2 (R _S) on-allowed
Kng,
(R _S) Pq?'—allawed
Knh
2 (R _S) RB-allowed
Q
——errR
(R __S) allowed
Q,
err.
(R _S) allowed
I—Cs K e
SKnf orr
2 (R _S) on-allowed
Kng,
(R-S) AL o lowed
Knh
errAP
2 (R _S) RB-allowed
Q
“—errR
(R _S) allowed
Q,
( R- S) allowed
Q,
0 el ,

14
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(27)



These equations may be solved for the allowed errors in the independent variables, taking care
to use the minimum of the two values so obtained:

2(R-S) .
OTAP | s = Knf min{errQ_ .../ R erQ_.../S }
_(R-S) _.
erTAP o toed = Kn Din{errQ, oyl Brs O7Q, el 8s}
2(R-S)
errAPpp timed = Knh min{errQ_ s 7Q, s 1 (28)
R-S )
errR s = (, ) ,) min{er7Q,_yesr 7R, e }
_ (R-S) _.
7S imed = 0 min{er7Q_ias 7R, e

T s = K minderrQ_ /1Q 15 e7Q, i/ 1Q 1 }

The absolute value sign around Q, would normally not be needed since it is almost always a positive
number. (The possibility of negative supply leakage being caused by the static pressure going
negative immediately behind the registers has been suggested.)

We should note here that all of the allowed errors, except that for K, are proportional to R-S.
It therefore behooves us to make R-S as large as possible. By blocking off the return register more
severely, R can be made to increase and S to decrease, because the return duct becomes more
depressurized than with the register unblocked, while the supply duct becomes less pressurized. The
proposed test method specifies that the return register be blocked until the pressure inside the return
duct is 100 pascals. (Anything more, it is feared, might damage the system.) Under these conditions,
R typically has a value between 1.4 and 1.8, while S is typically between 0.7 and 0.9. R will be taken
typically to equal 1.6, S to equal 0.8, and R-S to equal 0.8. We will use these values to benchmark
the allowed errors in the discussion below.

llowable Errors in the Six Independent Variables
Let us now look at each of the independent variables in Equation 28 in the light of this criterion.

Allowable Errors in K. Observing the sixth line of Equations 28, we note that the allowed
fractional error in K (i.e. ertK o4 / K') is the minimum allowed fractional error in Q, or Q,. By the
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criterion we have just developed, the allowed fractional errors in Q, and Q, are never less than 10%,
but may be more if the leakage in question is less than 200 cfm. Since neither fractional error is less
than 10%, their minimum is never less than 10%, and so we will be safe to say that it is good enough
to measure K to within 10%. In cases where both supply and return leakage are small, the allowed
error in K will be greater than 10%, but usually one or another of the ducts will leak more than 200
cfin, and so we will not lose much by establishing a blanket 10% measurement accuracy requirement
on K (or on any other quantity, such as CFM50, from which K is derived).

Allowable Errors in S. We consider separately the cases where the return leakage is greater
than or less than the supply leakage.

Return-Leak-Dominated Systems. In these systems |Q,| > |Q,|, and therefore the allowed
error in Q, must be less than or equal to that for Q,. The fifth line of Equations 28 then tells us that
the allowed error in S is equal to R-S multiplied by the allowed fractional error in Q,, which is never
less than 10%. Using the typical value of 0.8 for R-S, we conclude that the allowed error in S for
return-leak-dominated systems will be at least 0.08.

Supply-Leak-Dominated Systems. In these systems Q, provides the minimum allowable error,
and the fifth line of Equations 28 reads

errQ,
errS ., = (R-S) I—Q;’"’”ﬁ (29)

and the clamp on errors in S is likely to be more severe. But we can get a practical lower limit on this
clamp by noting that the minimum allowed error on Q, is 20 cfm while in most residential systems
supply leakage is unlikely to exceed about 400 cfm. Again using 0.8 as a value for R-S, the above
equation yields an allowed error in S of 0.04.

Preliminary measurements indicate that S is easier to measure than R. In one series of tests
conducted by one individual S varied by less than 0.02. In another series conducted by five different
testers, it varied by 0.09 (0.05 if one outlier was eliminated). It is hoped that more comprehensive
testing may enable the measurement of S to be fixed within a limit of 0.04, for example by specifying
that the supply register to be used should be one that is in best communication with the main part of
the supply duct system.

Allowable Errors in R. In the same fashion as above, we consider supply-leak and return-leak
dominated systems separately.

Supply-Leak-Dominated Systems. As the fourth line of Equations 28 indicates, in supply-

leak-dominated systems the allowed error in R is equal to R-S multiplied by the allowed fractional
error in Q. For systems in which supply and return leaks are both larger than 200 cfim, this will result
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in an allowed error in R of 0.8 X 0.1, or 0.08. For systems where the supply leaks are large but
return leaks are small, the allowed error in R will be larger than this. For example, in a system with
measured return leakage of 50 cfm, the allowed fractional return leakage error is 20/50 or 0.4,
allowing therefore an error in R of 0.28.

Return-Leak-Dominated Systems. In these systems, |Qs| is less than |Qr|, and hence the
fourth line of Equations 28 yields

sz-aIIamd
TR gy = (R-S) — 2522 (30

In systems where return leaks dominate, the limitations on errors in R can be severe, as shown in the
following example. Suppose Q, <200 cfin, 50 errQ, g = 20 cfin. Suppose also that Q, 1s high, say
400 cfim. In this case the allowed error in R will be 0.8 X 20 / 400 or 0.04. At first sight, this seems
to be a mirror image of the situation with S. Unfortunately, R has been found to be much more
subject to variability than S. In the series of tests by one individual mentioned above, the measured
values of R had a range of nearly 0.5, although some of these measurements were made at points in
the duct outside the limits specified by the standard. In the series conducted by five different
individuals, in which the attempt was made to follow the standard, the values of R had a range of 0.3
(0.16 if one outlier is eliminated). The house used in the second series had five return registers, which
complicated the determination of where in the return duct the measurement should be made. These
examples, though preliminary, indicate that the measurement procedure for R needs to be specified
with care in the standard, particularly for systems with more than one return register.

A rule of thumb for the allowed error in R for return-leak dominated systems can be generated
by using R-S=0.8 and the minimum allowed error in Q, = +20 cfm. (Since the system is return-leak-
dominated, the supply leakage is likely to be less than 200 cfm.) This gives the simple relation

err:Ra.llowcd = 16/ lQrI

Allowable Errors in APgy. The first thing we need to note, on examining the third line of
Equations 28, is that the allowable error in APy is dependent on K. This is in contrast to the
allowable errors in R and S, which do not depend on K. Since K is in the denominator of the
expression in Equations 28, it means that the allowed error in APy will be less in a leaky house than
in a tight one. This is reasonable, in that the house pressure test uses the house as a standard of
comparison. If the house were very leaky (e.g. the windows were open) the house pressure would
not change at all when the fan came on. So let us establish two houses, a leaky house and a tight
house, defined by their blower-door leakage tests as CFM50. The leaky house will be defined to have
CFMS50 = 4000, while the tight house will have CFM50 = 2000. The K values are defined as either
cfm/Pa’* (IP) or m*/s-Pa®** (SI), so to obtain the IP value of K one needs to divide by 50° or
12.72, while the SI value is obtained by first converting cfin to m*/s and then dividing by 50, for
an overall conversion factor of 3.71 X 10°. Thus the K values for the tight and leaky houses we have
chosen will be 157 and 314 cfm/Pa®* or 0.074 and 0.148 m®/s-Pa®5.
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We will use the benchmark 20 cfim allowed error in either Q, or Q,, assuming that at least one
of these quantities will usually be less than 200 cfm. Then using the typical value of 0.8 for R-S, and
n=0.65, we obtain the following expression for the allowed error in APgg:

errAP

RB-allowed 0.3/h (31)

for the tight house and half this value for the leaky house. (Note that the numerical coefficients are
the same regardless of whether flows were measured in cfin or in m%/s, as long as pressures are in
pascals.)

To determine the allowed error in any particular case, it is possible to evaluate the h-function
and compute. For an understanding of the magnitudes of error that would in general be allowed, it
is necessary to investigate the behavior of this function for reasonable values of its variables.

Figure A-1 in the Appendix shows the behavior of the f-function, as a function of AP g, with
AP, as a parameter. The discussion of the h-function in the Appendix shows that this same chart can
be used to visualize the behavior of h, if APgy is substituted for AP, as the parameter.

The h-function, then, can take on quite a range of values, from a little more than 1 up to the
practical upper limit of about 4, as discussed in the Appendix. To get a slightly more detailed
perspective, we should note that APy is usually a decidedly positive number, seldom close to zero,
because blocking the return biases the system strongly in the direction of larger return leakage, which
tends to pressurize the house. The only exception is the circumstance where supply leakage
dominates sufficiently that blocking the return still does not bring the return leakage up to the level
of that in the supply. As for AP g, it, too, is likely to be positive because of stack effect, unless the
test is performed on a hot summer day. So we should look at the right-hand half of Figure 1, and
note two main kinds of cases: first, where we are not close to a singularity, in which case h is likely
to be between 1 and 2, and second, where we are close to a singularity, in which case h is likely to
be between 2 and 4. The first case is by far the more probable. So we will take 1.5 as a
representative value of h, and therefore the allowed error in APyg will be approximately 0.2 pascals
for the tight house and 0.1 pascals for the leaky house. But we will add the caveat that the allowed
error is likely to be less when APgg is within 0.5 Pa of either zero or 2AP .

Allowable Errors in AP_,. The first line of Equations 28 is similar to the third line except for
two things: the function h is replaced by the function f; and that the allowed errors in Q, and Q, are
divided by R and S, respectively.

The fact that R and S are involved in the min function requires us to look at it somewhat
differently than in the previous case:
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. If Q, < 200 cfim, then the first term in the min function (errQ, yomeq / R)is certainly less than
the second term (errQ,. o4/ S), and for the typical R=1.6 the min function equals 12.5 cfin.

. If Qs is between 200 and 400 cfm, the first term controls (for typical R and S values of 1.6
and 0.8) and the min function will ramp from 12.5 to 25 cfim as Qs goes from 200 to 400 cfm.

. If Q, > 400 cfm, we can benchmark the min function by saying that if Q, is less than 200 cfm,
the second term controls and for the typical S=0.8 the min function has a value of 25 cfim.
If both leakages are large this procedure will underestimate the allowed error in AP, , so this
provides a lower limit on the allowed error, i.e., the allowed error could be greater and so
using 25 cfim as the output of the min function is conservative..

Using then the typical values R=1.6 and $=0.8, for the tight house this reduces to the
following:

errAP s = 02[f  if Q < 200 ¢fm
Q
if 200 < Q. < 400 (32)
10001 *

0.4/f i Q > 400 ofn

The behavior of the f-function can be seen in Figure A-1, in the Appendix, where the
parameters are now those actually shown on the chart. (Note that for negative values of AP, the
graphs will look the same except that they are reflected about the vertical axis AP =0, i.e. a mirror
reflection.) The main difference between this case and that of APy is that we are somewhat more
likely to be in the vicinity of a singularity, since AP,,, is not skewed to the right as APy is. In
particular we are more likely to be near AP, = 0 than toAPg; = 0, so the general trend of values for
the f-function (over the range of AP g values) is likely to be somewhat higher than the trend of values
for the h-function (over the same range of AP g values). So typical values of f will be somewhat
higher than the typical values of h in the preceding case. We will therefore take 2.0 as the typical
value of f, with the same caveat about watching for singularities. The resulting formula for the
allowed error in AP, is then:

erAP, . =01 ifQ < 200 gfm

Q
. if 200 < Q. < 400 33
2000 7 < 53

02 i Q > 400 gfm

for the tight house and half these values for the leaky house.
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Allowable Errors in AP & The second line of Equations 28 is similar to the first and third,
except that the function g, which replaces f or h in this equation, has two forms, g; and g5. These
differ on which coefficient, R or S, appears in the second term of the definition (Equations 23).
Figures A-3 and A-4 in the Appendix show some values of this function for the case AP, =-1. The
behavior shown is typical of these functions. Because they are the absolute values of the differences
of two absolute values that often tend to cancel, these functions are usually considerably less than 1,
except near their singularities, which in the case of the g-functions occur at AP, =2 APz and AP,
=2 AP We will benchmark the allowed error by saying that the larger of these two functions
(usually gp) is typically about 0.5 (except near singularities) and the the associated allowed error in
its associated Q (usually Q, ;o) 1S 20 cfim, making the output of the min function in this case equal
to 20/0.5 or 40. This results in an allowed error in AP g, for the tight house, of [0.8 / (157 X 0.65)]
X 40 or 0.32 Pa. For the leaky house the allowed error would be half this large. It should be noted,
however, that there is more variability here than in the case of AP_, and APgy because not only do
the g-functions have singularities (like f and h) but they also can take on quite low values (even zero)
in certain specific cases. This means that the actual allowed error in AP 4 can be considerably more
or less than the above values, but they still represent reasonable benchmark values.

Summary

For each of the six active independent variables (K, AP, AP g, AP, R, and S), Table 1 presents
the allowable errors resulting from this criterion. (Note that K is called C,,, in Standard 152P.) The
likely points of difficulty are pointed out in the table. One is the value of R in return-leak dominated
systems. This analysis calls for a precision in the area of 0.03 to 0.04, while preliminary experiments
indicate that the measured value of R may show considerably more variation than this unless the
measurement procedure is very carefully specified. This means that the value of supply leakage can
be quite questionable in return-leak dominated systems. The value of S appears to be easier to
characterize, and should be measurable to within the stated error maximums.

The allowed errors in the pressure differences are generally smallest for AP, next smallest
for APgg, and least restrictive for AP g, except when these variables are such that a singularity is
approached in one or more of the functions £, g, and h.

The other point of difficulty is in leaky houses. Since the house serves as the pressure
standard, if the house is very leaky its usefulness in this role diminishes. The extreme case would be
if one tried to do the house pressure test with the windows open, in which case the observed house-
attic pressure differences would all be the same and the results would be meaningless.

On the other side of the coin, there are situations where the allowed errors in some of the
quantities are large. The flow coefficient, for example, should be measurable to within 10% using
a blower door. Also, it is likely that S can be measured reliably to within +£0.02, so the restrictions
on errors in this quantity are likely to be met. When the return leakage is small, the value of R does
not have to be known with any great precision. Finally, the limits on the errors developed here are
based on the requirement that the errors on both Q, and Q, must be kept within defined bounds.
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Table 1. Allowed Errors in Independent Variables of House Pressure Test for Duct Leakage

Independent Allowable Error Difficulty in meeting
Variable error criterion
g Systems with Supply Systems with Return
Leakage Dominant Leakage Dominant
K, the envelope 10%, independent of which leakage is dominant. | Should be easy to
flow coefficient meet.

AP,,, the house-
attic pressure
difference with the
furnace fan on

Allowed error depends on envelope air tightness
but not on dominant leakage.

Tight house: errAP,, ,poneq is £ 0.1 to 0.2 Pa
Leaky house: errAP,, ;,.cq is = 0.05 to 0.1 Pa
(Less if AP,, is within 0.5 Pa of AP, or zero)

Hardest to meet in
leaky houses, if Q, is
low, or when AP, is
near a singularity in
the f-function.

AP g, the house-
attic pressure
difference with the
furnace fan off

Allowed error depends on envelope air tightness
and supply duct leakage.

Tight house: errAP g 10es = £0.32 Pa

AP i Leaky house: errAP g pooeq = = 0.16 Pa

Hardest to meet in
leaky houses or if
AP, is near a sing-
ularity in g; or

(Less if AP, is within 0.5 Pa of AP,, or APgy) gs.AP &
APy, the house- Allowed error depends on envelope air Hardest to meet in
attic pressure tightness. leaky houses or
difference with the | Tight house: errAPpp ;... is + 0.2 Pa when APpy is near a
furnace fan onand | Leaky house: errAPgg ;...q is £ 0.1 Pa singularity in the h-
the return blocked | (Less if APyy is within 0.5 Pa of 2AP,, or zero) function.
R, the ratio of +0.07 for |Q,| >200 cfin | £0.04 if |Q,| =400 cfm | Hardest to meet
return-duct £0.14 for |Q,| 100 cfim | +0.08 if |Q,| =200 cfm | when return leakage
pressure with return | +0.28 for |Q,| = 50 cfm | £0.16 if |Q =100 cfim | is large; then
blocked to return- uncertainty in Q,
duct pressure with tends to balloon.
return unblocked,
to the 0.6 power
S, the ratio of +0.04 +0.08 Should be relatively
supply-duct easy to meet.
pressure with return
blocked to supply-
duct pressure with
return unblocked,
to the 0.6 power

Note: Tight house defined as CFM50=2000; leaky house defined as CFM50=4000.
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Sometimes it may happen that one of these quantities will be well determined but the other is less well
known, which means that the house pressure test will often yield much useful information even when
the above criteria are not met. Again, in return-leak dominated systems, it will be common for the
return leakage to be known within 25% but the supply leakage to be in greater doubt, on a percentage
basis.

Another plus is that whenever one error is less than the allowed maximum, this permits
another allowed maximum to be relaxed. A countervailing negative factor is that the determination
of allowable errors has ignored any possible systematic bias in the test method. The extent of such
bias, if any, is at present unknown. So it is emphasized at the conclusion of this discussion that
these upper limits should be used as relative guidelines, not as absolute requirements.

FAN PRESSURIZATION TEST

The fan pressurization technique uses a blower door to pressurize the living space to 25 Pa
at the same time that the supply or return ducts are pressurized to the same pressure using a duct
blower. (See Figure 2.) A blower door is a calibrated fan installed in a doorway and used to establish
a pressure difference between the living space and the outside. The duct blower is a smaller
calibrated fan that is used to establish a pressure difference between the inside and the outside of a
duct system in which the register openings have been sealed. The blower door is normally used to
measure the air leakage flow coefficient of the house envelope. Here it is used to establish the same
pressure in the living space that the duct blower established in the ducts. The purpose is to negate
any leakage between the duct system and the interior of the house. Any leakage that is measured is
therefore assumed to go to the outside. The leakages measured using fan pressurization with duct
blower and blower door should, theoretically, be directly comparable to those measured-using the
house pressure test.

In order to measure leakage rates for the supply and return ducts separately, a temporary air
barrier is set in place between the return plenum and the furnace. Leakage to the outside from each
of the two duct systems is measured at a standard pressure, which is set at 25 Pa in Standard 152P.
A method of estimating the actual operating pressure in each duct system is given in the standard.
The standard relationship between pressure difference and air flow from small leaks is is then used
to correct the measured leakage on each side (supply and return) of the duct system to the value
appropriate for the actual operating conditions on that side.
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Figure 2. Schematic of the Fan Pressurization Test for Duct Leakage

Supply leakage is usually measured first. The duct blower is attached to one of the openings
to the supply duct and all the other openings are sealed. These openings include the registers and the
fan access opening in the furnace, which is on the supply side of the return-plenum barrier. The
standard allows the tester decide which opening to use as the attachment point for the duct blower,
with the proviso that it should be connected to the supply trunk by as short and easy a flow path as
possible. A plastic hose is then inserted into one of the (sealed) supply registers, with preference to
one that is as near as possible to the supply trunk.

The blower door is now energized and the house pressurized to 25 Pa with respect to
outdoors, and at the same time the duct blower is used to equalize the pressure measured in the
supply duct with that in the living space.

It remains to determine the average operating static pressure within the duct system under
normal operation. In Standard 152P, this is estimated by averaging pressure-pan readings taken at
all the supply registers. A pressure pan is a temporary barrier placed over a register such that no air
can pass from that register into the room. A pressure tap in this barrier allows the pressure difference
between the still air inside the register and the room air to be measured. The operating supply duct
leakage is then set equal to the measured leakage at 25 Pa multiplied by the 0.6 power of the ratio
of the average pressure-pan reading to 25 Pa. (The power 0.6 is used by the standard as the
exponent in the flow-pressure relationship for duct leakage.)
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The leakage from the outside into the return duct is measured in a similar manner, except that
in this case the duct blower must be attached to a return register, since the fan access opening
communicates only with the supply side. To measure the return-duct operating pressure, the
pressure pan technique is used unless there are fewer than five return registers, in which case one-half
the return plenum pressure is used instead.

Nomenclature

The following nomenclature will be used. All quantities apply separately to supply and return ducts.
That is, for supply ducts, add a subscript s to everything, and for returns add a subscript r.

Q Leakage rate to outside from duct in question (may be supply or return)

Qs Actual leakage to outside @25 Pa AP duct with respect to (w/r/t) outside

Qasin Actual leakage to inside @ 25 Pa AP duct w/r/t inside

Qasmmeas Measured leakage to outside @25 Pa AP duct with respect to (w/r/t) outside

AP, House-ambient pressure difference in pascals under actual measurement conditions
(target value = 25 Pa)

APy Duct-house pressure difference in pascals under actual measurement conditions
(target value = 0)

P Measured duct operating pressure, average of pressure pan readings at each of n

registers (or ¥z the return plenum pressure for return ducts with < 5 registers)

Relationships Among the Leakages

The intent of the duct leakage measurement by fan pressurization, using both duct blower and blower
door, is to measure Q,;. Generally, the actual measured quantity Q ,, will differ from this
somewhat because of experimental error. A significant part of this error could arise because of
leakage to the inside under a slight imbalance between the ducts and the house. Although with
careful measurement technique this is normally expected to be small, it is not negligible, and in cases
where most of the ductwork is within the conditioned space, it could even become the dominant
source of error. so in order to account for all sources of error, we write

AP, + Apdh) 0.6 . AP, ’0.6

Qosmeas = st(——zs— (34)

where the first term measures the leakage to the outside and the second term gives leakage to the
inside, under the actual test conditions. For the target conditions AP, =25 and AP4 = 0, Equation
1 reduces t0 Q,speas = Qas.

Under the assumptions embodied in the test method, the duct leakage to the outside under
actual operating conditions is equal to
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P )0.6

— 35
35 (35)

Q:st(

Equation 34 can now be solved for Q,:

25 0.6 signAP, | AP, |%°
Q25 = Q25meas( ) ~ Xasin = dhoé (36)
APha + APdh (AP, ~+ AP )*
Substituting this into Equation 35 yields:
(o) | =
= ——— - _signAP ,, |—— 37
Q APha + A-Pdh QZSmeas QZSmSlgn dh 25 ( )

This is our basic equation for Q, on which the error analysis will be based.

The above equations are subject to possible systematic bias, due to a variety of causes that
may include the following:

. For the 25 Pa leakage measurement, the pressure in the duct is assumed to be the same
everywhere, but it may in fact vary from place to place because of pressure drops associated
with leakage;

. The pressure-pan technique of determining the average operating pressure of the duct system
may be biased;

. The leakage may occur preferentially at places where the pressure is higher or lower than the
measured pressure;

. The exponent in the pressure-flow relationship may be different from the assumed 0.6.

As stated in the Introduction, systematic biases are not within the scope of this report, which
considers random uncertainty only.

Error Propagation

The next step will be to take partial derivatives of Q with respect to the independent variables Q,,...,
P, AP, , and AP, . Since Q,y;, is not measured, we do not take it as one of the independent
variables, but instead as a parameter on which the relative importance of the error in AP, will

depend.

25




One other item of note is that, once the partial derivatives have been taken, it will often be
admissible to set AP,, + AP, equal to 25 pascals. we may not, of course, do this before taking the
derivatives as that would mask some of the variations which it is our purpose to detect.

The partial derivatives, then, are as follows.

FOI' QZSmcas:
30 _ ( p )0.6
ClOJ AP, + AP,
~ 0.145 p° (38)

For P:

aQ _ 04 -o. . AP, b6

5 =0.6 P (APha * APdh) ° (QZSmeas - QZSinSZgnAPdh | 95

=0.0870 P°* (Q,,,.. - 0.145 Q,. signAP, |AP, |*°) (39)

For AP,

oQ _ 0.6 -1.6 . AP, pe

@ =-0.6 P™° (AP, + AP,) Qysmeas ~ LosinSGNAP 95

~ -0.00348 P%° (Q,, . - 0.145 Q,, signAP,|AP, |*°) (40)

The calculation of the partial with respect to AP, is more complicated, as shown in Equation 41.
Here, however, we face a problem. The derivative that remains in the second term is equal to
0.6 |APg, | ¢, and we are interested in computing errors for a central value that is at or very near
APg4 = 0, precisely the value for which this function is undefined .
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Q =( P )0'6( ~Qys,, 4 SEgnAP, |APdhlo.6) +
AP, \AP_+AP.) \ 5500 AP,
AP 6 _ 0.6
(o] ot
25 (AP, + AP )"

) -0.6P°%% ( . (AP, + AP,) d signAP, |AP, |*°
(APha + APdh)l'é 25meas 25in 250.6 d APdh

. l dlt r.6 )
- . St —
25in gn dh 25

d signAP, |AP, |6

25in
d AP,

= -0.00348 pP%6 (Q

25meas

+3.62 Q

AP . p6
- 0.145 Q,,, signAP,, \%F ) (41)

Fortunately, there is a way around this problem. The purpose of calculating the derivative
is to obtain an estimate of how much the function varies for a given amount of variation in the
independent variable. In general, for a monotonically increasing (or decreasing) function f{x) that is
defined over a suitable domain around x=0 but whose derivative is undefined at x=0, one can
determine, for x ranging from -errx to +errx, that the function varies from f(-errx) to flerrx). One can
then define an “erzatz derivative” equal to the slope of the line joining the points {-errx, f(-errx)} and
{errx, flerrx)}. Obviously the value of this “derivative” will depend on the value of errx, but when
substituted into later formulas requiring a derivative, it will serve the function of relating the variation
in the function to the variation in the independent variable.

In general, this erzatz derivative, which we will denote by the symbol d*/d*, will equal
[f(errx)-f(-errx)]/(2 errx). In the case of the derivative appearing in Equation 41, we have

. . 0.6 .
d* sign AP |AP, |%° _ errAPy,” ~(~errAP ;)% - errAP 0% (42)
dx* APdh 2 errAPdh *
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where by errAP % is meant (errAP 4)%¢, though we will not usually write the parentheses, in the
interest of brevity. Substituting this into Equation 41 then yields

_9Q | 000348 PO5 [Q
aAP,

+3.62 Q,_ errAP; %] (43)

25meas 25in

We now introduce the quadrature formula for the error in Q as a function of the errors in the
independent variables:

o] (22 e+ (2 -

1/2

(22 e (22 s

(44)

If we now substitute Equations 38, 39, 40, and 43 into Equation 44, and assume that the central or
most likely value of APy, is zero, we obtain

errQ = [ (0.145 P%°)? (erQ,,, . )* +
+ (0.0870 P°* Q,, ) (errP)* + (45)
+ (0.00348 P*° Q,, )* (arAP, )* +
-0.4 12
+ (0.00348 P (Q,,.. + 3.62 Q,,, errAP, " Y2(errAP,)?

Allowable Errors

In the same manner as with the house pressure test, with the duct pressurization test we will do a
baseline assessment of the relative sizes of errors in each of the independent variables that would be
acceptable in practice. We will use Equation 45, and ask what sizes of these errors would produce
a specified error in Q, if the factor under study were the only source of error. As with the other test,
this will give us a way of estimating which of the factors going into the overall error estimate are
likely to cause the most trouble.
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By setting all of the independent-variable errors but one in Equation 45 equal to zero in tumn
and evaluating the resulting error in the remaining independent variable, we obtain the following
equations. (Recall that Q here can be either Q, or Q,.)

_ 0.6
TTQ e = 0145 P2 errQ,g i

Q.. = 0.0870 Q,.  P* erp (46)

Qs = 0-00348 Q. PO erAP, .

Qe = 0-00348 PO (Q,,  +3.62 Q,q, AP %, ) erAP, .

As with the house pressure test, these equations can be solved for the allowed errors in the
independent variables, as functions of the allowed error in Q. This is straightforward for the first
three:

Qs ons-alioea = 6-90 P err Q owed

-1
errP b= 115 P%* Qu . errQ_ . (47)
- -06 -1

A difficulty arises, however, with the last of the four, namely AP, ;... because it appears to the -0.4
power in the parentheses. This results in an equation with the unknown to the 1.0 and 0.6 powers,
which is not generally solvable in closed form.

With a reasonable approximation, however, the equation can be transformed into something
more tractable. The trick is to assume that APy, ;.4 raised to the 0.1 power is approximately equal
to 1. This is unlikely to cause much error, because x*! is such a slowly varying function that even if
x is as much as 3 or as little as 0.3 assuming x = 1 only introduces an 11% error in this term.

Formally, we substitute Y = APy, ;1...s"" into the last of Equations 14, yielding

Q,.. errAPo".s,,
794 P erQ,,,,, = — ” =+ 0.276 Losmeas TPy stea (48)
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with y = 1 on the first iteration. This is quadratic in APy gy~ As such it has two solutions, but
since we need to have the answer come out positive (so we can take its square root) we have

_QZSin/Y M ‘/Q;Si"/yz + 88 QZSmeas P-0.6 6'eralltmred

0.5
errAP, " . = 49)
rreloned 0.55 Qysprras (
from which the allowed error can easily be calculated:
2
—Q i /Y + QZ in/YZ + 88 Q P_O.é eera
err APdh_ oy = 25in \/ 25 25meas lowed ( 50)
“ 0.55 Q

25meas

Application of the Allowable-Error Criterion to the Four Independent Variables

Following the argument used with the house pressure test, we will use the criterion that the error in
each of the Q’s (Q, and Q,) must be less than 25% or 50 cfm, whichever is larger. With four
independent variables, this means that each one may contribute 1/V4 of this or 12.5% or 25 cfm,
whichever is larger.

One simplification here is that we measure the two Q’s independently, not together as with
the house pressure test. We therefore don’t have to worry about what’s going on in the return side
when we’re doing the supply side, and vice versa.

Allowable Errors in Q... To get the allowed error in Q,s,.,, We note that Q is given
approximately by

= —_— 51
Q QZszas 2 5 ( )
and so, when Q > 200 cfm,

errQ . =0.125Q =0.0181 Q,__ P°° (52)

25meas

Then, using the first of Equations 16,

errQ,e g = 6.90 pos (0.018Q25mmP°'6) = 0.125Q,,, .. (33)
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This should not be a surprising result. When Q < 200 cfm, the allowed error in Q due to errors in
this variable is 25 cfim, and

enQZSmeas-aIlomd = 172 P_O.é (54)

Note that if P = 25 Pa, this reduces to 25 cfm, as it should, since then Q,,_.. = Q.

A 12.5% measurement error in flow rate should be achievable. A duct blower manufacturer
quotes an accuracy in measured flow rate of £3%. This, of course, is far from the whole story, yet
it does indicate that instrument error is unlikely to be a barrier to these kinds of measurements.

Allowable Error in P. Following the method of the previous section, if Q > 200 cfm, then
using the second of Equations 47,

11.5 P%* Qp,,s (0.0181 Q. P%%)  (55)

TP e

0.208 P

If Q <200 cfm, again the allowed error in Q due to this variable is 25 cfm, and

erP, =115 P%* Q,, . (25)
0.6
- 288 po+ é (%) (56)
_417P
Q

For Q = 200, this reduces to errP,y,,.; = 0.208 P, as above, but for Q < 200, the allowed error in P
is greater than 0.208 P.

The pressure P in residential ducts will usually fall in the range 20 to 100 Pa, with the supply
ducts tending to have somewhat less (absolute value) pressure than the returns. So the allowed error
in P will fall in the range 4 to 20 Pa for leakage rates above 200 cfim, with higher values for lower
leakage rates. Achieving this level of measurement precision should not be a problem in most cases.

Allowable Error in AP,,. Again following the same method, this time with the third of
Equations 47, we obtain for the case Q > 200 cfm:
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mAPha-alIamd = 287P 0 Q2_51meas (00181 QZSmea: Po'é) (57)
=52
For Q <200 cfm:
erAP, . = 287P°° Q,5 . (25)
0.6
- 7175 pos L (ij (58)
Q\25
_ 1040
Q

This is always greater than or equal to 5.2 Pa. Thus, the minimum error requirement on AP,, is
5.2 Pa. Since blower doors are generally adjusted to within 1 pascal or less of the target pressure
difference, this allowable error requirement is easily met.

Allowable Frror in AP,.  Again using the same methods as before, but this time with
Equation 50, we obtain, for the case Q > 200 cfin,

“Qusl¥ + | Qsl T + 88 Q... PO (0.0181Q,,, P*°)
errAPdh'd”ﬂWtd= O 55 Q

25meas

2

2 2
- _QZSin/Y M ¢Q25in/‘y2 + 1.59 QZSmeas (59)
0.55 Q

_| 9~ \/ o’ + 1.59)2

0.55

25meas

where 0 = Qu5:0/(Y Qasmeas) -

If Q <200 cfm, then
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2

_QZSin/Y * ¢Q225in/y2 + 88 Q25mea$ P-O.é (25)

errAP =
dh-allowed 055 stm
2
_ Qysin . Qasin . 2200 Q. \2
2 0.6
| e Y Qo P (60)
0.55

-0 +‘/02 + 319/Q 2
0.55

with o defined as before.

We noted above that these equations could be solved iteratively by putting y = 1 initially and
then, when the first value of errAP,, is obtained, taking that to the 0.1 power to get the next
iteration’s value of y. Convergence is generally obtained very quickly, within two or three iterations.
The allowed error is a strong function of 0. This is to be expected, as this ratio is high when there
is a lot of leakage to the inside, just the situation when a nonzero pressure difference between the
ducts and the house will lead to significant errors. Some results are as follows:

Ratio of inside to Allowed Error in Pressure Difference Between the
outside duct leakage | Ducts and the House: errAP g y...« (pascals)
Qs Qosmes Q > 200 cfin Q=100 cfm

0 5.3 10.5

0.5 2.6 6.7

1 1.3 4.1

2 0.4 1.7

5 0.05 0.2

Most duct systems have much less leakage to the inside than to the outside, with the ratio Q,5,/Q,s.c.c
being less than 0.5 and usually 0.2 or less. Unless the ducts are mostly in the conditioned space,
meeting the error constraints on AP, should be no problem.
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Summag Yy

Table 2 presents the allowable errors for each of the four independent variables (Q,syc.., P, AP, and
APg). The criterion of allowable error is the same as that used for the house pressure test. It would
appear that meeting the criterion of error should not be difficult, except for ducts whose leakage to
the inside greatly exceeds that to the outside.

In view of the perceived difficulties of meeting some of the criteria for the house pressure test,
one might be tempted to conclude that fan pressurization is more accurate. While that might be true,
it is still possible that systematic biases (which are not captured in this analysis) might skew the results
for the fan pressurization test sufficiently that the house pressure test actually is, on average, the more
accurate of the two. Thorough investigations of systematic bias in all methods of testing for duct
leakage are clearly warranted.

Table 2. Allowed Errors in Independent Variables of Fan Pressurization Test for Duct Leakage

Independent Variable Allowable Error Difficulty in meeting
rers
I£Q > 200 cfin If Q < 200 cfm error criterion
Qu5meas, the measured 12.5% >12.5% Should be easy to
duct leakage at 25 Pa (i.e. less stringent) meet.
P, the measured 21% >21% Should be easy to
pressure difference (1.e. less stringent) meet.
between the ducts and
the outside under
normal operation
APy, the house- 52Pa >52Pa Should be easy to
ambient pressure (i.e. less stringent) meet.
difference produced by
the blower door
(target: 25 Pa)
APg, the duct-house | 2.6 Pa ifinside duct | @ Q = 100 cfm: Should be easy to
pressure difference leakage is half that 6.7 Pa ifinside duct | meet except for
produced by the duct | to outside. leakage is half that to | leaky ducts that are
blower (target: 0 ) 0.4 Pa if inside duct | outside, 1.7 Pa if mostly in the
leakage is twice that | inside duct leakage is | conditioned space.
to outside. twice that to outside.

Note: In this test it doesn’t matter whether the house is tight or leaky.
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APPENDIX 1. PATHOLOGICAL BEHAVIOR OF FUNCTIONS f, g, AND h

Examination of the functions f, gg, g5, and h, as defined in Equations 23 shows that they can behave
pathologically under certain conditions. “Pathological behavior” in this case refers to the fact that
the functions have singularities, or values of the independent variables for which one or more
denominators go to zero, causing the function to be undefined. In the vicinity of these singularities,
the function takes on very large values, with large variation within a small range of an independent
variable. Such behavior can make them unreliable indicators of the errors they are used to calculate
in Equations 24 and 25.

The critical question is this. How large is the range of values of a given independent variable
for which this unwanted behavior is experienced? For example, a range of plausible values for AP,
is perhaps from -5 to +5 Pa. Ifthe subset of values of AP, for which the function f is rapidly varying
is a large fraction of this range, then Equations 24 and 25 are not very useful. On the other hand, if
the pathological range is very limited, say to a few tenths of a pascal, and if, moreover, there is a
reasonable “fix” that can be implemented within this range, then the difficulty is more apparent than
real.

The term “pathological behavior” has been used loosely up to this point. It is time to define
it more precisely as follows, which we will do by defining its opposite, “normal behavior.” A function
will be defined as behaving normally or pathologically at each value of the independent variable under
consideration. The definition will depend on selection of a “criterion of normality,” W, which is
discussed more fully below.

For any given value of an independent variable, then, select a restricted domain of that
variable centered on the given value and having a width equal to twice the error in the variable. For
example, if the given value of AP, is denoted by AP, , the restricted domain of AP, will be AP, -
errAP, < AP, <AP, . +errAP,.

The next step is to calculate the average value of the function (f, gz, g5, or h, as the case may
be) over the range of the independent variable as defined above, and compare this with the value of
the same function at the central value (AP, in this case).

The function is defined as behaving normally if its value for the given independent variable
is within W percent of its average value over the restricted domain as defined above. If the function
is slowly varying, or even if it varies rapidly but linearly, the average value over such a domain will
be very close to its value at the midpoint of the domain. However, if the domain includes a
singularity, all bets are off.

The above definition is motivated by the realization that the theory of errors using derivatives
is only valid if the derivatives are well behaved in the regions of the independent variables that are
within error bars of the central or most probable value. If, for example, we calculate an error using
the above approach and one of the derivatives happens to have a singularity, that does not mean the
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the error is actually infinite, because as soon as we go away from the singularity by even the slightest
amount, the derivative becomes finite. Hence the derivative’s value at the central value of the
independent variable is not representative of its behavior over the entire domain inside the error bars.
More representative would be the function’s average value over the domain within the error bars,
It should be noted that this average value can be finite even if the domain contains a singularity. And,
in fact, for values of n between zero and unity, this will always be the case for the functions (f, 2z, 8s,
and h).

Selection of Suitable Domains of Independent Variables. Later on, when we consider what

magnitude of error in AP, can be considered to be “allowed” using reasonable criteria, permissible
variations on the order of 0.1 or 0.2 Pa will generally be found. Although this remains to be seen,
in this section we will use 0.1 and 0.2 Pa as “plausible” errors, on either side of a central value of the
independent variable under study..

The £-Function. The first of these functions that we will analyze is the function f, defined in
Equation 23 as

f= AP, - 2AP "'+ AP U (AI-1)

The independent variable whose contribution to the errors in Qs and Qr requires the use of this
function is AP,,. This is seen by examining the first term in Equations 24 and 25.

Since n < 1 (Standard 152P uses n = 0.65 as a typical exponent for envelope air flows),
singularities occur when either quantity within absolute value signs is zero, i.e. AP, = 2AP ; and
AP, = 0. Figure A-1 shows the behavior of f over a wide range of AP values, for several values
of AP, as a parameter. Only positive or zero values of AP, are studied in this figure, since for
negative values of this quantity, the f-function will look the same but reflected about the vertical axis.
One can see that, except when AP, = 0, there are two singular points, in the vicinity of which f takes
on very large values. (When AP, = 0 there is only one singularity.)

Figure A-2 shows values of the ratio £, where fis the value of the function f with the value
of plotted on the horizontal axis and the central value of parameterized, while f,. is the average value
of f as varies above and below its given central value by an amount errAP_, . In Figure 2 the value
of errAP,, is 0.2 pascals.
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Figure A-1. Behavior of the f-function vs. AP ¢ for Various Values of AP,

7AW
1.4
Apon=0-5— e —-—--- APon=2
1.2} e Al%n:O.-"" - w—--~—-----—AF")h=1 """
|
1
---------- |“:‘: B ittt R
081 L . e
0.6
-4 -3 -2 -1 0 1 2 3 4
AP
off

Figure A-2. Ratio of f{AP,) to the Average Value of f over the Range AP, - 0.2 to AP, + 0.2
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These ratios indicate the amount by which the error in Q, or Q, due to errors in AP, will be
overestimated or underestimated if the function fis used in Equation 28, rather than going all the way
back to the definitions of Qs and Qr in Equations 7 and 8. It is apparent that for AP,_ values farther
from zero than its error (i.e. 0.5, 1, and 2) this ratio is extremely close to 1 for almost all values of
AP, As AP approaches 0.5 AP,,, this ratio first dips to about 0.8, then shoots off to infinity.

This behavior is explained in the following way. For a value of AP 4 that is about one-half
to one error bar away from the singularity, the function f underestimates the error because the set of
possible values of AP, includes the singularity and the high values of f nearby, leading to a higher
average. On the other hand, when AP is very close to the singularity, its value can be quite high,
and yet the average will include lower values of f farther from the singularity.

Stated in simple terms, using the function f'in the error calculations is almost always a very
good approximation, good to within 1%. As a singularity is approached, however, the function f first
can underestimate the error by as much as 20%, then turns around and can overestimate it by an
unlimited amount if the values of AP, and AP, are extremely close to the singularity. (Again, being
close to the singularity means AP, and AP g having values that make one of the absolute values in
the function f get very close to zero.

So how close is close? The answer is that as long as the quantities AP, and AP, - 2 AP
are at least 0.1 pascal away from zero, the use of the function f will not produce more than about a
20% overestimate or underestimate of the error due to errors in AP, and will almost always be much
more accurate than this. The possibility of being so close to a singularity as to drastically
overestimate the error (or have fundefined if the input values are exactly at a singularity) can be dealt
with by the following proviso: the value of f shall be limited to no more than 4, in units of Pa®3*,

And so, boiling this down even further, we redefine the function f as follows: Compute f
according to the first of Equations 23. Ifits value is greater than 4, or if it is undefined, set it equal
to 4.

Another good thing that should be pointed is that because AP, is only one of six sources of
error, combining according to the quadrature law, even if we are close to a singularity for the f-
function, the actual overestimation or underestimation of Q, and Q, will usually be quite small because
of the addition of errors in quadrature.

The h-Function. Examination of Equations 23 shows that the h-function has the same form
in the independent variable APyy that the f-function has in the independent variable AP, . So Figure
A-1 can be used to visualize the behavior of h if APy is substituted for AP, as the parameter.
Therefore, whatever conclusions are valid for f and AP, are also valid for h and APz . So we
conclude immediately that in calculating the error in Q, and Q, due to errors in AP, use h as
calculated unless it exceeds 4 or is undefined, in which case the value 4 is to be used.
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The g-Functions. The g-functions, which govern the errors in Q, and Q, due to error in AP g,
are more complicated beasts, for two reasons. First, they incorporate both AP, and APy, and not
just one or the other as is the case with fand h. Second, they also incorporate either S or R. Thus,
instead of one independent variable and one parameter, as in the case of f and h, we have one
independent variable (AP in this case) and three parameters (AP,,, APgg, and either R or S).

Figures A-3 and A-4 show the variation of the functions gz and gg for a representative value
of AP, =-1 and three compatible values of APy (0, 1, and 2), with typical values of S and R equal
to 0.8 and 1.6, respectively. Like f, this function has singularities around which it “goes off to
infinity,” and broad regions of the independent variable over which it varies slowly.

It should be noted that, in general, because the g-functions are built up from a difference of
two absolute values, they tend to have smaller values than f or h, which are sums. This reduces the
size of the error in Q, and Q, that is due to AP ;. However, for some values of the three pressure
differences, one will be near a singularity and then the contribution of AP 4 to the errors in the Q’s
will be large.

We have yet to perform integrals over variations in AP g analogous to what we did for the
independent variable AP, in the function f For now, it is recommended that the calculated values
of g-functions be used unless they should be greater than 4. This will seldom happen.

Figure A-3. Behavior of gg vs.AP g for Various Values of APy, with AP, Fixed at -1 Pa.
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Figure A-4. Behavior of gy vs. for Various Values of APgg, with AP, Fixed at -1 Pa.
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