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Abstract

An Event Driven Simulator for Evaluating Multiprocessing Scheduling (EDSEMS) disciplines is
presented. The simulator is made up of three components: 1) machine model; 2) parallel workload
characterization and 3) scheduling disciplines for mapping parallel applications (many processes
cooperating on the same computation) onto processors. A detailed description of how the simulator
is constructed, how to use it and how to interpret the output is also given. Initial results are
presented from the simulation of parallel supercomputer workloads using “Dog-Eat-Dog,” “Family”
and “Gang” scheduling disciplines. These results indicate that Gang scheduling is far better at
giving the number of processors a job requests than Dog-Eat-Dog or Family scheduling. In addition,
the system throughput and turnaround time are not adversely affected by this strategy.
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1 Introduction

With the advent of parallel Multiple Instruction Multiple Data (MIMD) shared memory computer sys-
tems, the need to support parallel programming has arisen. This need is expressed at many levels
including compiler, loader, library support and the operating system. At the compiler level the most
successful automatic support for parallel programming is microtasking or autotasking {2]. Other strate-
gies for parallel programming usually include some form of user directed parallelism or multitasking
(c.f., [3] or [7]) and require additional language key words (e.g., task common, shared and private) for
shared and/or private data as well as library support for creating and managing tasks or processes (e.g.,
fork, tskstart, locks and barriers). At the loader level data shared between parallel work sections
(tasks or processes) must be put in a shared address space and data which is private to a task or process
must be replicated. At the operating system level there must be some way to have processes share data
(address spaces). On all MIMD shared memory systems that we are aware of, some or all of the above
support for parallel programming is supplied. It is amazing that all of these systems fail to support
parallel multiprogramming in a very fundamental way. They all have process scheduling policies and
algorithms that were designed for serial computers and simply ported to the new parallel environment.
Hence, it is not uncommon for parallel applications to have severe problems on multiprogrammed parallel
systems. Some typical problems are:

e Excessive spin waiting. On systems such as Sequent [7] all locks can, at the discretion of the
developer, either be implemented with spin-waiting or spin waiting with blocking. For reduced
overhead in parallel programming, most users opt for spin waiting without the blocking. This
strategy works fine when there are enough idle CPUs to satisfy the parallel program’s requirements.
On the other hand, when multiple parallel programs are scheduled simultaneously so that at least
one process from some of the jobs are not running, the system tends to “lock-up” quickly (due to
spin-wait barrier synchronization) and most cycles are spent spin-waiting until the end of process’
timeslice.

e Poor average parallel overlap. On a moderate to heavily loaded system environment, such as
that found on most supercomputers, parallel applications use synchronization with blocking. This
relieves the problem of excessive spin waiting, but each process of parallel applications competes
with every other process in the system (based on priority, amount of service, etc.) for allocation
to the next available CPU. Hence, there is a high probability that only a few of the processes of
the parallel application will actually be running at the same time. This can result {depending on
the workload) in high context switching rates for the system as a whole and poor average parallel
overlap for the individual application.

When faced with the problem of reduced system throughput and abysmal performance of parallel
applications in multiprogramming environments, most system administrators decide that running mul-
tiple serial job streams on parallel supercomputers is the most efficient means of machine utilization.
Applications developers take the view that, under these conditions, they would be better off spending
their time working on developing “new physics” (i.e., improving the simulations) than battling with the
problems associated with parallel programming.

This is the situation facing most supercomputer sites today. It is not clear that the “natural”
conclusion reached by system administrators and developers alike to forgo parallelism within applications
is indeed the correct one. In order to counter these religious arguments® for multistreaming parallel
supercomputers with facts, but not incur the cost and inconvenience of experimentation with the “real
system,” a simulator was developed to study scheduling algorithms on MIMD shared memory computers.

This paper describes the Event Driven Simulator for Evaluation of Multiprocessing Scheduling al-
gorithms (EDSEMS). It was developed to study various scheduling algorithms on shared memory mul-
tiprocessors with various workload models. Section 2 describes the simulator from a user’s perspective
and how to set up an input file. Section 6 describes the EDSEMS interactive mode and the batch mode’s
output structure. Section 3 describes the scheduling methods implemented in EDSEMS. Section 4 de-
scribes the unique workload model used in the simulator. Section 5 discusses the implementation details

! Arguments based on assumptions and preconceived notions which have not been subject to the scientific method:
verification.



for the simulator. Section 7 gives results for some scheduling/workload studies done with EDSEMS and
discusses the ramifications.

For the reader wishing to use the EDSEMS simulator the following sequence is recommended: 1 =
2 = 6 = A. Readers interested in modifying the simulator should study: 1 = 3 = 4 = 5. Readers
interested in early simulation results are directed to: 1 =3 =4 =7= 8.

2 User Guide

To run the simulator one needs the EDSEMS executable program, and some input files. (Input files are
not necessary if the default values for the input parameters are acceptable.) The simulator can be run in
interactive or batch mode. Command line switches determine the mode of the run. In batch mode the
simulation is run and the output of the initial parameters, short-term and long-term statistics are printed
to standard out. Command line options include -h, which turns off the printing of the histograms (see
below) and -d Debug.Level which overrides the value of the DEBUG input value (see below).

The remaining flags ~s and -w JID, if present, put the simulator into interactive mode. In interactive
mode, the processes running, as well as the contents of the queues, are displayed via the Curses terminal
interaction library [1]. In this mode short-term and long-term statistics are not printed. To activate
interactive mode one specifies at least one job the user would like to monitor with the ~w - JIB command
line option. This specifies that job number JID should be displayed in reverse videc while it is active in
the system. Up to ten jobs can be monitored in a single run.

The ~g flag overrides the ~w flag. This flag causes processes which are spin waiting, blocked, doing
context switching overhead, or otherwise non-runnable, to be displayed in reverse video. This allows the
user to monitor, in particular, the amount of time the CPUs spend not doing user work.

In either mode optional input files can be specified on the command line. Multiple input files are
allowed, and the files are parsed in the order they appear on the command line. This allows variables
set in previous files to be overridden and is useful when making many similar runs in batch mode, since
smaller input files can be used.

Standard input is used if no argument is given, or if an argument is “”. Although all simulation
parameters have default values, the input files are used to override these defaults. Parameters that can
be modified include: length of the simulation, delta simulated time for short-term outputs, system time
slice interval, system overhead in process exchange, average number of barriers per job, average work
between barriers, and distribution of number of processes per job. Many parameters are given as means
and standard deviations, so that the user can regulate the types of jobs being simulated.

2.1 Input File Structure

The input file format is fairly flexible. Statements can appear in any order and comments can appear
on any line. Comments start with “4” and continue to the end of the line. Input statement lines are
of the format (identifier) = (value). If an identifier is not given a value in the input file, it is set to a
default. Although the input parameters are dimensionless (i.e., they are all relative) it is ueful to think
of the default parameters being given in micro-seconds (1.0E-6 seconds). Identifiers in the input file
must match one from the following list (including case):

e DEBUG (default = 0): Debugging output flag. For each level of DEBUG, the output from that level
and lower levels are printed. The levels print the following information:
0 No debugging output is printed.

1 Simulation time-timestamp for each job creation and completion. At job creation, all pa-
rameters of the job are printed (e.g., number of barriers to execute and mean time between
barriers).

2 Same as 1.
3 Per process statistics every time a process completes.

4 All state changes in the system are reported. This is very detailed debugging output and
generates a tremendous amount of output.



Schiethod (default = 0): Scheduling method. 0 means “Dog-Eat-Dog” scheduling, 1 means “Fam-
ily” scheduling and 2 means “Gang” scheduling. See Section 3 for a detailed description of the
scheduling methods.

GenMethod (default = 0): Job generation method. See Section 4 for a detailed exposition of the
job generation methods. The following values are mutually exclusive:

0 “Min” process job generation method. The simulator tries to keep at least HinProcsInSystem
processes in the system at all times.

1 An “Exponential” distribution with mean DelayMean is used to generate the wait time be-
tween jobs. This method is useful when trying to model “typical” systems with loads that
vary with time.

2 “Load” process job generation method. The simulator generates a new job when the system
“load” is below the user specified minimum MinLoad. This is useful when one is trying to
keep the system at a constant busy level. The “Min” method does not keep the system loaded
m a reproducible way because processes block randomly and cause the load to vary.

NumCPUs (default = 8): Number of CPUs in the simulated system.

MinProcsInSystem (default = 10): Minimum number of processes in the system at one time. This
parameter only has meaning when using the “Min” job generation method.

MinLoad (default = 3.0): Minimum load to keep running in the system. This parameter only has
meaning when using the “Load” job generation method.

DelayMean (default = 500000.0): Mean time between job arrivals. This parameter only has mean-
ing when using the “Exponential” job generator.

SIMMean (default = 1350.0) and SIMStdDev (default = 135.0): At job creation time, each job is
given a mean work between barriers, A, statistic from an normal distribution with mean SIMMean
and standard deviation SIMStdDev. A is used in an exponential distribution to determine the
“base work time” before the next barrier for all processes within the job. (The “SI” stands for
“Synchronization Interval”, which is the work time between barriers.)

SISMean (default = 135.0) and SISStdDev (default = 13.5): From a normal distribution with
mean SISMean and standard deviation SISStdDev we choose, at job creation time, a standard
deviation, o, for the noise each process will add to the job-global work between barriers. During
the simulation, each process determines the work time to consume before the next barrier by adding
“barrier noise” to the job-global work between barriers computed from an exponential distribution
(see SIMMean and SIMStdDev, above). The noise is a normal random variable with mean zero and
standard deviation . Each process adds “noise” to the job-global base work time (see SIMMean
and SIMStdDev, above) to simulate load imbalance in the application code. (The “SI” stands for
“Synchronization Interval,” which is the work time between barriers.)

¥BMean (default = 1000.0) and NBStdDev (default 100.0): At job creation time, the number of
barriers a job is to perform is determined from a normal distribution with mean NBMean and
standard deviation NBStdDev. On average, the total runtime of a job is then the mean number of
barriers (NBMean) times the mean work between barriers (SIMMean).

GlobalTimeSlice (default = 100000.0): This is the time slice that each process gets. When its
time slice runs out, it is preempted.

GlobalSpinWaitDelay (default = 1000.0): When a process reaches a barrier, it will hold onto its
CPU and spin wait, waiting for the other processes in the job to reach the barrier, at which point
the process will continue. If the process has not been reactivated within this amount of time, the
process will voluntarily give up its CPU.



e GlobalOverhead (default = 350.0): Thisis the amount of time it takes for the scheduler to complete
a context switch.

e SimLength (default = 1.0E6): This is the length, in simulated time, of the simulation.
e OutputDelta (default = 50000.0): This is the simulation time between the printing of statistics.

e RandomSeed (default = 0): If RandomSeed is negative, the random number generator is not seeded,
thus producing a repeatable sequence. If RandomSeed is positive, the random number generator
is seeded with that value, also producing a repeatable sequence. If RandomSeed is 0, the random
number generator is seeded according to the time, thus producing a different sequence of random
numbers for each run.

e ParArray: This array describes the distribution of the number of processes per job. The values
should be all on one line, separated by whitespace. There must be NumCPUs values, and the sum of
all the values must be 1. The nth value of the array represents the probability that the next job
generated will contain n processes. The default is to give equal probability for all values.

Periodically the simulator will output short-term and long-term statistics. These statistics include:
number of jobs completed, breakdown of time spent for the jobs (i.e. run time, idle time, blocked
time), level of parallel overlap, CPU utilization, load average and other items. The output also includes
histograms showing processes per job, percentage of spin wait time used by each process, and percentage
of time slice used by each process. The output will be discussed in more detail in Section 6.

While the simulation is running, the user can interagate the simulator to determine the progress of
the simulation. This is accomplished with the Unix QUIT interrupt (usually mapped to the CTRL~\
character. EDSEMSresponds to the Unix QUIT interrupt by printing the current simulated time, the
amount of CPU time used by the simulator and the ratio of the two to the terminal. In interactive
mode, this is displayed on the bottom line of the screen.

3 Scheduling Algorithms

Three scheduling disciplines are currently implemented in the EDSEMS simulator: Dog-Eat-Dog, Family
and Gang. Dog-Eat-Dog coresponds to placing a scheduling method developed for a serial architecture
on one with multiple processors. Family coresponds to updating Dog-Eat-Dog so that it knows something
about jobs, but does not take an pro-active role in obtaining processors for parallel jobs. Gang scheduling
coresponds to running jobs with as many CPUs as they request (if at all possible). The following describes
each scheduling method in more detail.

3.1 Dog-Eat-Dog

We called the first method “Dog-Eat-Dog,” because in this discipline, each process in the system com-
petes with every other process for the CPUs, without any cooperation between processes in the same
job. Dog-Eat-Dog is just a textbook implementation of preemptive Round-Robin scheduling [6] on a
parallel architecture.

Today, most computer vendors selling Multiple Instruction Multiple Data (MIMD) parallel architec-
tures (e.g., Sequent, Alliant, Cray, Convex) have simply opted to port process scheduling algorithms
from operating systems designed for serial machines. Consequently, the scheduling discipline has no
knowledge of processes that may cooperate in a parallel computation. These vendors end up with some
variant of Dog-Eat-Dog scheduling.

Dog-Eat-Dog is implemented in the simulator by having one ready queue in the system. Processes
enter the ready queue at the rear. When a CPU becomes available, it is given to the process at the front
of the ready queue. When that process blocks (due to synchronization) or its time slice runs out, it gives
up its CPU and goes to the rear of the ready queue, and the CPU is assigned to the next ready process,

In the EDSEMS implementation, we chose not to have a blocked list. Instead, blocked processes are
also kept on the ready queue. When a CPU is available and a blocked process is at the front of the ready



queue, that process is just moved to the back of the queue, and the next ready process is taken. This
coupled with the fact that processes from parallel jobs come in as a group, imply that processes from a
parallel job are contiguous in the ready queue. Hence, Dog-Eat-Dog tends to schedule parallel jobs in a
manor similar to, but not exactly like, Family scheduling.

3.2 Family

In an attempt to improve the “co-scheduling” of processes from a parallel job, a second method called
“Family” scheduling was developed at LLNL for use in the Networked Livermore TimeSharing operating
System (NLTSS) [5], [10] on Cray X-MP and Y-MP class parallel MIMD supercomputers. A “family” is
just a job, and processes in the same job are called members. Family scheduling can be summarized by
the statement: “When, in the natural course of events, a family member is scheduled, all other runnable
(non-blocked) members in that family are scheduled as CPUs become available” This statement
clearly summarizes Family scheduling when there is only one (or fewer) parallel job running at a time
(a common event in the current workload at LLNL {8]). What to do when there are multiple parallel
jobs wanting to run is a bit more complicated and is described below.

Family scheduling has knowledge of jobs as well as processes and attempts to increase the probability
that family members run simultaneously. The goal is to improve the level of parallel overlap, decrease
spin wait time and blocked queue latency, thus improving system throughput. Family scheduling also
has the feature that it does not take away a process’ CPU unless the process’ time slice runs out or
the process blocks. Consequently, this discipline is very easy to defend politically, because it causes no
disruption of service for other jobs that happen to be running contemporaneously with the family.

In order to account for the fact that many families may be in the system at any one time, we have
opted for two ready queues and a blocked list. One queue is a high-priority queue (HPQ) and the other
is a low-priority queue (LPQ). Processes start out on the LPQ. When a CPU becomes available, the
scheduler assigns the CPU to the first process on the HPQ. If the HPQ is empty, the scheduler assigns
the CPU to the first process on the LPQ, and moves all of its family members to the HPQ. When these
processes are moved to the HPQ, and there are already other family members in the HPQ, then the
remaining family members are placed after the last family member in the HPQ; otherwise, the family
members are placed at the front of the HP(Q). When a process blocks, it goes onto the blocked list, and
when it unblocks, it goes onto the HPQ. If a process is the only family member who has a CPU, and
that process gives up its CPU, then all family members on the HPQ are moved to the rear of the LPQ.

3.3 Gang

A third method that implemented in EDSEMS for scheduling processes on a parallel architecture is
“Gang” scheduling. In this discipline we take the attitude that CPUs are like non-virtual memory on a
Cray?: either you get what you request or you don’t. On Cray class supercomputers you either fit into
memory or you don’t. The available memory changes dynamically, depending on what jobs are currently
resident in memory. Generally, a large memory job will be swapped out to disk for longer periods of
time than a shorter job, but when it is rolled into memory it is given a longer memory “residency time.”
In Gang scheduling, we tried to model this approach to resource allocation by giving jobs (as far as
possible, see the discussion of floaters, below) the CPUs they request or none at all. The more CPUs a
job requests, the longer (in general) it will have to wait to get them.

The goal of Gang scheduling is to deliver the largest possible parallel overlap (average parallelism
delivered to an application) without idling the hardware. This is advantageous for several reasons:

1. The maximum speedup an application can obtain (in terms of run time, not turnaround time) is
the average overlap of processes from the job delivered by the operating system.

2. Due to Amdahl’s law, it is quite difficult to maintain a constant efficiency (speed-up divided by
number of CPUs used) as one adds more and more parallelism. Hence, if a developer goes to
the work of parallelizing his application to level 8, say, and only gets an observed overlap of 2.5

2 Actually, on supercomputers available today, memory and memory-to-CPU interconnects are by far the most expensive
part of the machine! This is in stark contrast to the situation of a decade ago.



(not uncommon running on a Cray Y-MP/832 with NLTSS or UNICOS operating systems), he
is paying the efficiency penalty of eight way parallelism, but actualizing only 2.5 way parallelism.
Thus, the parallel application is paying a double penalty!

3. We want to encourage applications programmers to parallelize their codes because the future of
supercomputing lies in that direction.

4. We have observed times (on the weekend and at nights) when only large memory serial jobs are
in the system. This leads to CPU starvation and significantly reduced system throughput. In the
short term this problem can be alleviated by restricting the maximum size of jobs, but this defeats
the purpose of having supercomputers in the first place!

5. When parallel applications run, they tend to exchange less often and waste fewer cycles spin waiting
if their processes run simultaneously (see Section 7).

The way that Gang scheduling is implemented in EDSEMS is that at all times there is exactly one
job who is the “owner” of the system. If that job needs additional CPUs, the scheduler preempts other
jobs (not processes) and takes away their CPUs. When the owner’s time slice runs out, the job goes to
the end of the ready queue, and a new owner is chosen.

Depending on the workload, the number of processes per job can vary widely. Typically, there are
not enough processes in the owner to utilize all available CPUs (see Section 7). If the owner is the only
job allowed on the CPUs at a time, then the CPU idle time will be high. Therefore, in order to increase
throughput, it is necessary to schedule additional processes and jobs to the idle CPUs. However, it is
important that entire jobs are scheduled if at all possible, in order to keep the level of parallel overlap
high.

To solve this problem, we allow multiple jobs to be running at once, but each running job has a
different priority. The owner is the job with the highest priority. If a job needs more CPUs, it is free
to preempt any other running jobs with lower priority. However, if it is unable to get enough CPUs by
preempting lower-priority jobs, it must release its CPUs. We call these non-owner jobs “cycle suckers.”
When a cycle sucker is first scheduled, it is given the lowest priority.

Unfortunately, even with cycle suckers, our simulations typically showed between 5% and 15% idle
CPU time, depending on the parsllelization level of the workload. This high idleness is a result of the
Gang scheduling method’s inflexibility in breaking up any job and running individual processes when
all jobs have too many ready processes to fit on the idle CPUs. Consequently, CPUs go idle until a job
can fit. Clearly a modification to Gang scheduling is needed to avert this situation.

The necessary modification comes in the form of choosing what we call “floaters” when there are
idle CPUs and no jobs that will fit. In this situation, the scheduler chooses, as a last resort, a process
from the job with the least number of processes, and schedule that process to the available CPU. If the
owner or & cycle-sucker jobs need an additonal CPU then a floater is preferentially preempted before
preempting lower-priority cycle suckers.

As a summary, when a CPU is available, the scheduler first tries to schedule it to the highest priority
job that is waiting for CPUs. If there are no such jobs, the scheduler tries to schedule a job which has
no more ready processes than the number of available CPUs (it also takes into consideration the jobs
who are in the process of giving up their CPUs). If all jobs have too many ready processes, then the
scheduler chooses a floater. The floater chosen is a ready process from the job in the system with the
fewest processes.

When a cycle sucker gives up its last CPU, all cycle suckers with lower priority move up in priority.
When the owner gives up its CPUs, a new owner is chosen. Since our goal is for system owners to have
many processes, and jobs with many processes tend to be found at the front of the ready queue (since
jobs with fewer processes are more likely to be cycle suckers), the new owner is the job at the front of
the ready queue.

Even after making these changes, the system did not behave quite to our liking. In particular, in an
eight-CPU system, the four-process jobs got worse treatment than the other jobs. Often, a four-process

job would make its way up through the ready queue, when four CPUs would become available. Being
the first job to fit, that job would be schicduled as a cycle sucker.



Typically, four or more CPUs become available only when four or more processes of the owner become
blocked. In this case, it is likely that very soon the last process in the job will reach the barrier, causing
the four blocked processes to become unblocked. Then, since the newly scheduled four-process job is the
lowest-priority cycle sucker, that four-process job is the first to be preempted. The job then goes to the
end of the ready queue without doing much work, thus increasing its ready queue latency.

For this reason, we decided to have two ready queues: a high-priority queue (HPQ) and a low-
priority queue {(LPQ). The idea is that jobs with many processes should typically be in the system only
as owners, while jobs with few processes should only be cycle suckers. The LPQ would be for jobs with
many processes and jobs entering the system, while the HPQ would be for jobs with few processes.

Jobs entering the system go at the rear of the LP(}. When a job’s time slice runs out, it goes to the
back of the LPQ), to give jobs with few processes in the LPQ a chance to rise to the HPQ. When a job is
preempted for some other reason, it goes to the back of the HPQ. Cycle suckers are chosen by searching
first through the HPQ, and then through the LPQ, for a job that will fit.

When choosing a new owner, at first thought, one might decide to choose the job at the front of
the LPQ, since the jobs with many processes would seem to end up there. However, consider the
following scenario in an eight-CPU system: An eight-process job is the owner. When its time slice runs
out, suppose that seven of its processes are either spin waiting or blocked. This means that after the
remaining process gives up its CPU, it will go to the back of the LPQ, while the other seven processes
will be blocked and will go onto the blocked list (BL). Now suppose that a CPU becomes available, and
there are no other jobs on the ready queues with just one ready process. Then, since our eight-process
job has only one ready process, it will be scheduled. Soon that process will reach the next barrier,
causing the other seven processes to unblock. However, the job will not be able to get seven more CPUs,
so it will give up its CPU, causing it to go to the back of the HPQ.

The last thing we want is for an eight-process job to be on the HPQ. Since the LPQ is rarely
empty, that job will seldom get a chance to be an owner again. For this reason, the owner is chosen by
comparing the jobs at the front of the LPQ and the HPQ, and taking the job with the most processes,
giving preference to the HPQ in case of a tie. This allows the eight-process job to leave the HPQ quickly.

4 Workload Characterization
4.1 Background

The value of various scheduling methods for shared memory MIMD parallel computers depends heavily on
the workload on the computer. If the workload is totally serial (multiple jobs streams) the simple minded
approach of Dog-Eat-Dog scheduling is fully justified and the expense of keeping track of both jobs and
processes is not warranted. Similarly, if the workload is predominantly parallel with no synchronization
between the processes of a job, it really makes no difference if they are coscheduled or not!

We are interested in the effects of scheduling on parallel scientific computation. Primarily, we wish
to determine if the two competing forces (system throughput and job turnaround time vs. coscheduling
of parallel applications) can both be accommodated in some fashion. Therefore, we focus our attention
on a workload model based on parallel applications with frequent synchronization requirements. The
synchronization requirements modeled are based on the barrier construct. This construct requires that
all tasks (portions of parallel work) must reach a certain point (said to be the barrier point) in the
computation before any are allowed to proceed. This construct is used extensively in the Cray Research,
Inc. style multitasking parallel execution model and is based on the idea that the programmer describes
the control of each task [3]. This construct is quite useful in scientific computation. For instance, in
the Alternating Direction Method (ADI) for solving time dependent partial differential equations, one
sweeps through a grid in one direction, giving a few grid lines to each task, and then sweeps through the
grid in a perpendicular direction again giving out a few grid lines to each task. Before the computation
begins one must be certain that all the needed data is available for use. Similarly, before the second
sweep can begin, the first sweep must be complete. Barriers are one way to guarantee the required data
integrity.

In determining how to model the barrier synchronization of processes within a job, one must know
several parameters: how long does the application run; how often does synchronization occur; how well
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Figure 1: Work between barriers in parallel simple. The dots with error bars are the mean and plus/minus
one standard deviation of the work between the 13 work barriers. The average is taken over the first
25 iterations. Sorting the work between barriers yields the curve; which looks vagely exponential with
some small amount of noise added in.

are the processes balanced (i.e. do they all do the same amount of work or do some processes wait
significantly longer at barriers than others)? A detailed description of these issues is discussed in [8].
Suffice it to say that we adopted a model based on a parallelized version of the SIMPLE code [4]. The
SIMPLE code solves a hydrodynamics and heat conduction problem with (2-Dimensional) cylindrical
geometry. The SIMPLE execution flow starts with a single process and then immediately generates any
additional processes needed for the run, sets up the initial data (in parallel) and then begins the first
time step. For the parallelization of SIMPLE two locks (one for I/O and another for global dot product
accurnulation) and 17 or so barriers are required. The solution method SIMPLE employs timesteps
initial values for temperature, pressure, density and grid positions using explicit hydrodynamics and
an ADI technique for heat conduction. Each time step requires 13 barriers. The timestepping loop is
repeated until the user-specified simulation termination time is reached.

A four process SIMPLE benchmark utilizing a 256 x 256 grid and 86 timesteps runs in about 28.3
Cray X/MP416 CPU seconds on a dedicated machine. CPU seconds is the charge rate for all four
processes. The real time turnaround was much shorter. Production codes typically use much larger
grids and many more timesteps and hence have prolonged runtimes. This SIMPLE benchmark result
implies that each process executed 86 x 13 = 1,118 barriers. By looking at a tracefile of the parallel
execution [9], we determined that each process does about 5.4 seconds of useful work (i.e., not counting
task creation, process suspend, spin wait times and tracing overhead). Hence, the useful work between
barriers is, on average, 5.4 = 1,118 ~ 4.8 milliseconds (see Figure 1, where the time is given in Cycles
= 8.5 x 10° seconds).

‘We model the SIMPLE based workload with the following assumptions:

1. Jobs enter the system with the number of processes between one and the number of CPUs on the
machine who participate in the computation for the duration of the job. Since SIMPLE starts as



a single process and then very quickly becomes many processes which live until the bitter end of
the computation, this is a reasonable assumption and simplifies the bookkeeping enormously.

2. Job runtimes are determined by the number of barriers they perform and the average amount
of work between barriers they do. This is exactly what SIMPLE benchmark does: modulo the
non-trivial process creation time. This assumption implies that the cumulative CPU demand for
jobs is linear in the number of processes in the job.

3. The work that each process does between specific barriers is close to, but not exactly the same as,
the work the other processes do. In other words, the applications in the system are generally well
load balanced. This assumption may not be valid (cf. [8]), but gives a “worst case scenario” for
parallel scheduling algorithms. This is due to the fact that if the applications are well balanced,
then any process wait times at barriers is known a priori to be introduced by deficiencies in
coscheduling the processes of the job. Since we are interested in determining the effectiveness of
scheduling parallel applications this “worst case scenario” is justified.

4. We do not model the memory requirements of a job nor worry about how many jobs fit into the
“real memory” of a Cray type parallel supercompter or page faulting in “virtual memory” IBM
type parallel mainframes. We feel this added complexity will only obscure the results.

5. We do not model I/O requirements of the workload. This is an area for further research: a model
for parallel applications’ I/O requirements is needed.

6. We do not model terminal interaction nor the operating system requirements for messages (system
interrupts). Again, this is an area for further research. Although models for terminal interaction
exist, models for message based operating systems do not.

To implement the above assumptions, we use the following scheme. When the job is created, the
number of barriers it will have is determined by sarpling a normal distribution. The mean and the
standard deviation of this distribution are simulation parameters (NBMean and NBStdDev, see section 2).
By using a normal distribution we can tune the workload to have a wide variety of run times (by making
the standard deviation large) or make all the jobs identical (by making the standard deviation small).
Also determined at job creation time is the mean work time between barriers. This mean work time is
also generated from a normal distribution whose mean and standard deviation are simulation parameters
(SIMMean and SIMStdDev, see section 2).

The actual CPU demand for each process between barriers is computed based on this mean. Since
work between barriers can be thought of as a waiting time, an exponential distribution is sampled to
get the “job-global” per-process work time before the next barrier. To model load imbalance we add
some “white-noise” to the job-global per process work time to compute each process’ actual work time.
This noise is generated by sampling a normal distribution with mean 0. The standard deviation of this
distribution is a job parameter, and that job parameter is generated at job creation by sampling yet
another normal distribution whose mean and standard deviation are simulation parameters (SISMean
and SISStdDev, see section 2).

The number of processes for each job is a user-specified distribution. For each value between 1 and
the number of CPUs, the user specifies the probability that the job will have that many processes. This
makes it possible to generate any kind of distribution for the number of processes per job.

The final workload characteristic concerns how often a new job arrives. Three methods are currently
provided. The first method (the “Min” method) tries to keep the number of processes in the system
constant. The number of processes in the system is a simulation parameter. In the second method (the
“Load” method) tries to keep the system load constant by adding jobs when the load is less than a user
specifed minimum. This method is different from the Min method because blocked processes do not
contribute to the system load. In the third method (the “Exponential” method), the arrival of new jobs
is determined by an exponential distribution. The mean arrival rate is a simulation parameter. Neither
of these methods provides a truly accurate model of an actual system.

Let Exp(A~!) denote a sample from a random Exponential variable with mean A, and let Normal(y, o)
denote a sample from a random Normal variable with mean y and standard deviation .

When a job is started, it is given the following parameters:



s Number of Processes = P ~ user-specified process-per-job discrete distribution (Parirray)

Number of Barriers = B ~ Normal(NBMean,NBStdDev)

e Mean Base Work Time between barriers = W ~
Normal({SIMMean, SIMStdDev)

e Mean “Noise” in process synchronization intervals = V ~
Normal(SISMean,SISStdDev)

When the job as a whole is ready to resume after a barrier, the job-global per process work time before
the next barrier is W ~ Exp(W). Each process’ actual CPU demand before the next barrier (the
amount of work it will do) is W + Normal(0.0, V).

If the “Min” job generation method is being used, then the number of processes in the system at a
time is kept nearly constant at MinProcsInSystem by generating jobs with P processes until at least
MinProcsInSystem process are in the system. If the “Exponential” job generator is used, then after
generating a new job, the time that elapses before generating another job is given by Exp(DelayMean).

5 Implementation

5.1 Underlying Structure

Before writing the simulator, it was necessary to decide what type of simulator it should be. Specifically,
we had to determine whether it should be time-based or event-driven.

In a time-based simulation, each step of the simulation represents a fixed amount of time. At each
step, the modules of the simulation must communicate with each other. Each module bases its next
actions on the previous actions of the other modules.

An event-driven simulation works in much the same way as a time-based simulation, except that the
modules actually set “events” for the future. When the time comes for a module’s event, that module
performs its action, possibly stimulating other modules in the simulation.

A time-based simulation works best when state changes occur in fixed time intervals (i.e., the time
scales of various aspects of the simulation are of the same order of magnatude), or when all or most of
the simulation modules change state at every time step. An event-based simulation works best when
events do not happen at regular intervals and few modules are affected by each event. Clearly, in a
simulation like this where time scales range from micro-seconds to seconds, an event-driven simulator
makes the most sense. For this reason we decided to use an event-driven simulation.

5.1.1 The Event Director

In this implementation, the “event director” runs the simulation. Any module of the simulation can set

events with the director or cancel previously set events. For example, when a process gets a CPU, the

scheduler will set an event to preempt that process when its time slice runs out. However, if the process

gives up its CPU before its time slice runs out, then the scheduler must cancel that preemption event.
The director contains four methods:

e SetEvent (): This function takes as arguments the function to be called, a pointer to that function’s
(single) argument, and the time that the function should be called.

e CancelEvent(): To cancel a previously set event, CancelEvent() must be called with the same
arguments that were passed to SetEvent ().

e GetTime(): This function simply returns the current simulated time.

o NextEvent(): This function tells the director to call the next chronological event. The main

program, after setting some initial “seed” event to get the action started, simply calls NextEvent ()
over and over again inside a loop.
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5.1.2 The Job Generator

The job generator creates new jobs. First, it generates the job parameters, which are: number of
processes, number of barriers, mean work time between barriers, and standard deviation of noise in
synchronization intervals. Then it initializes a job with those parameters, and enters that job into the
scheduler.

The generator also determines when to generate the next job. The “Exponential” generator deter-
mines the delay before generating the next job, and sets an event for that time. The “Min” generator,
however, determines at each simulation step whether another job needs to be generated in order to
keep a minimum number of processes in the system. The “Load” generator, like the “Min” generator,
determines at each simulation step whether another job needs to be generated. With this generator, the
minimum number of processes in the system is dynamically tuned so that the user specified system load
is maintained. To do this a moving average of the instantaneous system load {as opposed to the time
weighted average system load) is used to measure the load. An event is generated every so often (most
likely 10xGlobalOverhead) to compute the instantaneous system load and update the moving average.
Pertodically, (most likely after 100 moving average updates), a line is fit to the load moving average
and an estimate of the number of processes required to keep the system load at the user specified value
made.

The job generator methods, which are actually function pointers, are:

e InitGen{): Initializes the private data. It also makes sure that ParArray is valid.

e GenNewJob(): This simply tells the generator to generate a new job.

5.1.3 Jobs

Jobs are created and started by the job generator. A job owns its processes, and controls barrier
synchronization. The job methods are:

e InitJob(): A job is created by calling InitJob(), which initializes the job’s private data. The
operations on a job are:

e StartJob(): Creates its processes, initializes them, and enters them into the scheduler.

e HitBarrier(): When a process reaches a barrier, it calls HitBarrier() to inform its owning job.
The job tells the process whether to wait for the other processes, whether to continue on (if it is
the last process of the job to reach that barrier), or whether to give up its CPU (if it has finished
execution). When the last process of the job reaches the barrier, the job tells the other processes
to stop spin waiting and continue, or to become unblocked if they are currently blocked.

e UpdateDFG(): When a process completes and gives up its CPU for the last time, it calls DoneForGood ().
It then calls UpdateDFG() to let the job know that it is completely done. When the last process calls
UpdateDFG(), the job updates the job statistics and deallocates the job’s and processes’ memory
in the simulator.

e UpdatePar(): This is called just before a process gets or gives up a CPU. UpdatePar() simply
updates the parallel overlap statistics.

5.1.4 Processes

Processes are created and started by their owning jobs. When a process is running, it owns a CPU.
Each process contains several flags which, when examined, tell the state of the process, such as: running,
ready, blocked, spin waiting, or giving up its CPU. The following methods operate on processes:

e ProcUpdateStats(): When a process’ run state changes (i.e. rununing, ready, spin waiting,
blocked), it calls ProcUpdateStats(). These statistics are added to the system-wide statistics
when the job completes.
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StartProc(): This just initializes the process’ private data. After calling StartProc(), the owning
job takes care of entering the process into the scheduler.

GotCPU(): When the scheduler assigns a CPU to the process, GotCPU() is called. GotCPU() takes
the CPU and starts doing work.

GiveUpCPU(): When the scheduler preempts a CPU, that CPU calls GiveUpCPU() to tell the
process to start giving up its CPU. The process adjusts its remaining time slice and starts the
context switching.

UnblockSync(): When the last process of the job calls HitBarrier(), the job calls UnblockSync()
on all of its processes. If a process is spin waiting, it starts its next segment. Otherwise, the process
becomes unblocked and starts competing for a CPU again.

ClearCPU(): When a process finishes its context switching overhead, it tells its CPU that it is
finished. The CPU then calls C16arCPU() to tell the process officially that it no longer has a CPU.

ProcWaiting(): This function returns whether or not the process is ready. Since ProcWaiting()
is called so much, it was made into a macro, rather than a function.

GetTimeSlice(): This function returns the process’ remaining time slice.

5.1.5 Process Queue

The process queue methods allow inserting and deleting a process anywhere in the queue. Standard
queue and stack functions are provided as well. The process queue methods are:

InitQueue(): This function is called when a queue is first created. It simply sets the head and
tail pointers to NULL.

- PutFront(), PutRear(), GetFront(), GetRear(): These are the standard queue/stack functions.

They allow pushing and popping a process to/from the front or rear of the queue.
PQSize(): This function returns the number of elements in the queue.

DeleteElt(): This function allows a specific process to be deleted from the queue. If the process
was not in the queue, NULL is returned; otherwise the process is returned.

Insafter(): This function allows a process to be inserted in a specific location in the queue.
Unfortunately, if InsAfter() is called, the caller must have knowledge of the queue structure,
since a pointer to a queue element must be passed. This pointer is the element after which the
process is to be inserted.

PQPrint(}: Although PQPrint{() is not called in the simulation, it provides a method for printing
the contents of a queue. It is very useful to call PQPrint () while stepping through the simulation
with dbx or dbxtool, especially when designing a new scheduler.

5.1.6 The CPUs

The CPUs are controlled by the scheduler. When they are not idle, they are “owned” by a process. The
following methods operate on: CPUs:

InitCPU(): When the scheduler creates the CPUs, it calls InitCPU() on each one, in order to
initialize each CPUs private data.

CPURelease(): When a process gives up its CPU and finishes the context switching overhead, it
calls CPURelease(). The CPU then resets its owner field, tells its owning process to reset its CPU
field and finally lets the scheduler know that it has just become idle. Note that this is only called
when the process still has work left to do (see DoneForGood()).
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e DoneForGood(): This is just like CPURelease(), except that DoneForGood() is called after the
process is completely finished and is releasing the CPU for the last time.

e CPUAvailable(): This function simply returns whether the CPU is idle.

e CPUAssign(): When the scheduler assigns a CPU to a process, it calls CPUAssign(). CPUAssign()
sets its owner field, and then tells its owner to start working.

s CPUPreempt(): When a process’ time slice runs out, or the scheduler preempts the process for any
other reason, it calls CPUPreempt () on that process’ CPU. The CPU then tells the process to start
giving up its CPU. The scheduler and the CPU also pass a status variable to inform the process
why 1t is being preempted.

e AvailableCPUs(): This function simply returns a count on the number of idle CPUs in the system.

5.1.7 The Scheduler

While the director is the heart of the simulator, the scheduler is the most important part. There are
several methods, which have different complexities in different schedulers. All of these methods are
accessed by calling function pointers, which are initialized to the methods corresponding to the chosen
scheduler at the beginning of execution. The methods are:

e InitSched(): This function creates and initializes the CPUs and the ready queues and blocked
lists.

e SchEnter(): When a process is created, it calls SchEnter() to register itself with the scheduler.
The scheduler typically puts the process on the ready queue, and it might try to assign a CPU to
the process.

e TimeSliceRanOut(): A process calls TimeSliceRanOut() when it is about to give up its CPU
after being preempted because its time slice ran out. This function restores its time slice to its
original value, calls CPURelease() and usually does something with the process, such as put it on
the ready queue.

e ProcBlocked(): This is just like TimeSliceRanOut (), except that a process calls ProcBlocked()
when it gives up the CPU because it blocked. The scheduler might put the process on a blocked
list instead of a ready queue.

e ProcDone(): A process calls ProcDone() when it is about to give up its CPU because the process
completed. ProcDone() is usually identical to TimeSliceRanOut(), except that the scheduler
probably will not put the process back on the ready queue.

e SchProcPreempted(): This is just like TimeSliceRanOut (), except that a process calls SchProcPreempted()
when it gives up its CPU because the scheduler preempted it for some reason besides its time slice
running out. In the current schedulers, TimeSliceRanOut() and SchProcPreempted() behave
identically, but in other types of schedulers that might be implemented, they might behave differ-
ently.

e 1d1eCPU(): When a CPU becomes idle, it calls Id1eCPU(). The scheduler will usually cancel any
preemption event that was set for that CPU, and it might try to assign that CPU to the next
ready process.

e BecameUnblocked(): When a process changes from being blocked to being unblocked, it calls
BecameUnblocked (). This function will probably move the process from a blocked list to a ready
queue.

e JobUnblocked(): When the last process in a job reaches a barrier, the job reactivates the spin
waiting and blocked processes in that job. After reactivating them, the job calls JobUnblocked ()
to let the scheduler know that all the processes have been reactivated. Usually, the scheduler will
then try to assign available CPUs to ready processes.
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5.1.8 Statistics

There are three statistical gathering methods: job statistics, queue size/load average statistics, and CPU
utilization statistics. Each of these has four methods (although these are not the actual method names):

®

Init(): Initializes the data, and possibly allocates memory for some of the data.
Restart(): Re-initializes the data, but without allocating any additional memory.

Update(): This is usually called just before some change is made, so that the statistics can be
updated.

Print{): This prints out the statistics gathered so far.

5.1.8 Histograms

The histograms are similar in operation to the statistical objects, except for the way they are printed.
There are three methods for histograms:

5.2

InitHist(): This is called to initialize the histogram. The argurmnents passed to InitHist() are
the minimum and maximum values and the number of “buckets”.

HistData(): When a value is passed to HistData(), the function decides which bucket the value
goes in and increments the number of values in that bucket.

HistPrint{(): This function graphically displays the histogram. It also shows the percentage of
values that fell in each bucket.

The Life of a Process

Here are the major steps a process goes through from creation to completion:

The generator creates a new job and calls StartJob().

StartJob() creates a process, initializes it with StaxrtProc(), and enters it into the scheduler with
SchEnter().

When the process gets scheduled to an available CPU, the scheduler calls CPUAssign(). The CPU
calls GotCPU() to tell the process to start working.

If the process’ time slice runs out while it is still working, or the scheduler wants the process
to give up its CPU for some other reason, then the scheduler calls CPUPreempt() on the CPU.
CPUPreempt () then calls GiveUpCPU() on the process, and the process starts giving up its CPU.

When the process reaches a barrier, it calls HitBarrier() and starts spin waiting. When all the
processes in the job have reached the barrier, the job calls UnblockSync() on all the processes and
then calls JobUnblocked(). If the process is spin waiting when UnblockSync() is called, then it
just starts doing work on the next barrier. If the process is blocked when UnblockSync() is called,
then it calls BecameUnblocked() to let the scheduler know that it is now unblocked.

When the process starts spin waiting, there is a maximum time that it will spin wait. If it spin
waits for that amount of time without UnblockSync() being called, it will start to give up its
CPU.

When a process finishes giving up its CPU, it calls either TimeSliceRanOut (), ProcBlocked(), or

SchProcPreempted() to tell the scheduler that the CPU is now available and to let the scheduler
know why it gave up its CPU.
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5.3

When the process reaches its last barrier and calls HitBarrier(), the job lets the process know
that it has completed. Then the process starts giving up its CPU. When it finishes giving up its
CPU, it calls DoneForGood() to let the scheduler know that its CPU is now available and that the
process is done. Then the process lets its owning job know that it is completely done by calling
UpdateDFG(). When the last process in the job calls UpdateDFG(), the job updates the final job
statistics and deallocates memory for the job and its processes.

Data Structures

Following are the important data structures of each component:

5.3.1 Job Data Structure
As defined in file job.h, the job fields are:

NumProc: The number of processes in the job. Initialized at job creation.

Proc: An array of process pointers. Proc is dynamically allocated at job initialization, with size
NumProc.

StartTime: The starting time of the job. StartTime is used only to calculate job turnaround
time.

ParLastUpdate, ParRunTime, ParSum: These fields are used to calculate the parallel overlap.

LeftDFG: This is initialized to NumProc and is decremented each time a process completes and
calls UpdateDFG(). When LeftDFG reaches 0, the job knows that all processes in the job have
completed.

NumBax: The total number of barriers in the job. It is initialized when the job is created.
Mean: The mean of the mean work between barriers. It is initialized when the job is created.

StdDev: The standard deviation of the “noise” in work between barriers. It is initialized when the
job is created.

Reached: The number of barriers the job has reached. When Reached + 1 == NumBar and a
process calls HitBarrier(), then the process has reached its last barrier and can give up its CPU
for good.

ProcsLeft: The number of processes that have not yet reached the current barrier. When a process
calls HitBarrier(), ProcsLeft is decremented. When ProcsLeft gets to 0, the job reactivates
spin waiting processes and unblocks blocked processes. At the beginning of each synchronization
interval, ProcsLeft is initialized to NumProc.

FamPriority: In Family scheduling, FamPriority is used to tell the priority of the job.
ThisBarrier: This is the mean base work time for the current barrier.

Ident: This is the unique name of the job. It is used only to distinguish the jobs when examining
debugging output.

5.3.2 Process Data Structure

As defined in file process.h, the process fields are:

Ouner: This is a pointer to the job to which the process belongs.

myCPU: If there is a CPU assigned to the process, then myCPU is a pointer to that CPU. Otherwise,
this field is set to NULL.
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e WhichList: If the process is in a ready queue or blocked list, WhichList is a pointer to that list.

o RemainingTime: This is the remaining time that the process must run before it reaches the next
barrier.

e StartTime: This is the time that the process got its CPU.

e FinishTime: If the process is running, FinishTime is the time when it will reach its next barrier.
If the process is spin waiting, FinishTime is the time when, if it is not reactivated, it will stop
spin waiting and begin giving up its CPU.

o SpinWaitDelay: This is the maximum time that the process will hold on to its CPU and wait for
reactivation after it reaches a barrier.

® Overhead: This is the amount of time it takes for the process to release its CPU.
o TimeSlice: This is the remaining time slice of the process.

e TnitialTimeSlice: When a process’ time slice runs out, it is preempted and its TimeSlice is
reset to InitialTimeSlice.

e Ident: This is the unique name of the process. It is used only to distinguish the processes when
examining debugging output.

e PrevTime, WorkType, WorkTimes: These fields are used to keep track of certain statistics, such as:
time spent running, ready, spin waiting, blocked, and doing system overhead; turnaround time;
and number of exchanges.

In addition, each process has the following flags, which can be used to determine its run state:
e DoingOverhead: This is set when the process is giving up its CPU.
e SpinWaiting: This is set when the process is spin waiting, waiting to be reactivated.

e BlockedSync: This is set when the process is blocked. It is set as soon as the process starts giving
up its CPU to become blocked.

e Inactive: This is set when there is some reason that the process should not be scheduled. For
example, after a process completes, but before all the processes in the job have completed, Inactive
is set, so that the scheduler will know not to try to schedule it. Currently, Inactive is used only
in the Gang scheduler.

6 Interpreting the Simulator Output

After reading in the input files, the value of each input parameter is displayed. In addition, if the random
number generator was seeded, then that seed is displayed. When the generator is seeded randomly
(RandomSeed = 0), printing the seed makes it possible for the user to recreate the simulation.

Other than the displaying of the input parameters, the outputs from batch mode and interactive
mode are completely different. Interpreting the output in each mode is described below.

6.1 Batch Mode

In reading this section one might want to have Appendix A close at hand for easy reference. The
frequency of output in batch mode is determined by the input parameter OutputDelta. Short-term and
long-term data are displayed every OutputDelta units of simulated time. At the beginuing of every
output cycle the date and time are given. Next the current simulation time (Current Time, in micro-
seconds), amount of CPU time used in the simulation so far (Cpu Time, in micro-seconds) the ratio of
simulation time to CPU time (Ratio) and the moving average instantaneous load (Load, see Section 5.1.2
for more information on this quantity). Next the period simulation over which the following statistics
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were gathered is printed. The above information makes it easy to determine the length of time the
simulation has run and how long it took to compute the system. This is useful in determining how much
longer the simulation will run (when looking at intermediate results) and how much CPU time it will
require.

Following the header information are the short-term and/or long-term statistics. Both are given as
groups of tables. The data in each table has a unique mnemonic identifier at the beginning of the line to
make filtering out specific tables with grep easy. For every table the first two characters are ST or LT to
denote short-term or long-term statistics. The next one, two or three characters denote the information
in the table:

Mnemonic | Description

TP Throughput

APP Average Per-Processes

sDS Standard Deviation Per-Process
0_ Queue Length

CPU CPU Utilization

Short-term statistics, which are collected between the previous output time and the current time,
are displayed first if they are displayed at all. When the user chooses OutputDelta to be the same as
SimLength, then the short-term statistics are identical to the long-term statistics and are therefore not
printed. The job and process completion (throughput) statistics are printed first. These statistics are
grouped so that jobs with the same number of processes in them are reported on a single line. Then
overall system totals are given. This lets the user know how many jobs completed with each level of
parallelism and what the overall system performance was. For example, the line with “ProcsInJob =
27, “JobsComp = 60” and “ProcsComp = 120” means that for this short-term statistics gathering period
(from simulation time 900000954.300896 to time 1000000009.050145) 60 jobs with 2 processes in them
completed. This added 120 processes to the completion total.

Next, for each level of parallelism, per-process average and standard deviation statistics are dis-
played. That is, the first table is the per-process mean (the second table is the per-process standard
deviation) averaged overall jobs with the same level of parallelism (i.e., Proc = 8 statistics are computed
over all processes belonging to completed jobs with eight processes in them). The final line is the system
wide (labeled Tot) average and is computed over all processes in the system. All time units are in
mili-seconds: apposed to micro-seconds like the input. The statistics displayed in the columns are:

s ReadyQu: ready queue latency. The time each process spent while it was ready to run but not
scheduled on a CPU.

e UserWrk: user work time. The amount of time each process spent doing useful user work. On
average, this value should be SIMMean x NBMean.

e Sys: system work time. The amount of time each process spent context switching.

® SpinW: spin wait time. The amount of time each process spent waiting in a CPU for other processes
in the job to synchronize.

e BlockQu: blocked queue latency. The amount of time each process spent blocked due to interprocess
synchronization.

e Ovrlp: average parallel overlap. For each job, the time weighted average number of processes with
CPUs, when at least one process in the job has a CPU. This is a measure of how well the scheduling
method is delivering the machine to individual jobs. For n-process jobs, the mean is between 1
and n, with n being optimal. For 1-process jobs, the mean is 1 and the standard deviation 0, no
matter what the scheduling algorithm.

e Turn Around: average turnaround time. The amount of time the processes of a job (and hence
the job itself) spends in the system, from entry to completion.
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e Cntx Swtch: average number context switches. The number of context switches each process
required averaged over processes that completed.

The next shori-term statistics displayed are the average lengths for the various queues and the system
load average. These statistics are displayed in two columns, the first for the mean and the second for
the standard deviation. The system load at a given machine state, p;, is defined as the number of ready
processes plus the number of running processes, divided by the number of CPUs. The system load
average, P, is the time weighted average of the system load, viz.:

Z{\’Sltates 6T, X pi

1

Z‘N.S‘tatea 6Tz

e

p:

Where N States is the number of states the machine has been in during the statistics gathering period,
6T; is the length of time the machine was in state 4 and p; is the system load at state 1.

The final short-term statistics displayed are the CPU utilization statistics. There are two columns:
the first column represents the time spent in that area, and the second column represents the percentage
of total CPU time spent in that area. The second column should sum up to 100%. The breakdown of
CPU wutilization is:

# Idle Time: percent of total CPU resources spent idling. To be specific Idle Time is computed via

100 x iy Ldle
OutputDelta x NCPU’

where Idle; is the amount of time processor ¢ was idle.

e User Work Time: percent of total CPU resources spent running user code, exclusive of spin wait
time. This is computed in a similar fashion to Idle Time, viz.:

Ef‘;ﬁpv User;

OutputDelta x NCPU’

160 x

where User; is the amount of time processor ¢ was running the user code, but not spin waiting.

e System Overhead: percent of the total CPU resources spent process context switching. This
statistic does not include spin wait time.

® Spin Wait Time: percent of the total CPU resources given to processes that were actively spin
waiting,.

The next group of data displayed in the output stream is the long-term statistics. The format of the
long-term statistics is identical to the short-term statistics, but long-term statistics are collected from
the beginning of the simulation to the present time and they are never reset.

Finally, the long-term histograms are displayed. The minimum and maximum values of each bucket
are displayed at the left of each row. In the middle of each row appears a number of asterisks, corre-
sponding to the number of items in that bucket. At the right of each row, the percentage of total items
in that bucket is displayed. The top bucket contains items that were greater than the maximum value
for the histogram, while the bottom bucket contains items that were less than the minimum value (see
InitHist()).

The rows of numbers at the bottom of the histogram are meant to be read vertically, from top to
bottom (see Figure 2). These are meant to be a guide to how many items are in each bucket. For
example, in the piece of a histogram pictured below, the bucket shown contains about 110 items, since
the last asterisk is in the column that contains the digits “1” “1” “0” (110). This bucket contains 11.19%
of the total items.

The following long-term histograms are displayed:

® Processes per job: This histogram shows how many processes each job which was started had.
The percentages shown at the right of the rows should compare closely with the values of the user
input array ParArray. If there is a discrepancy, then the SimLength is too short and all the other
statistics are subject to doubt.
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Figure 2: Portion of histogram output showing labels and a single column of asterisks.

e Percentage of spin wait used: When a process finishes spin waiting, the amount of time it
spent spin waiting is recorded as a percentage of the maximum time it could have spent, and this
value is put into the histogram. Of course, the less spin wait used the better.

e Percentage of time slice used: This works much the same as the Percentage of spin wait used
histogram, except that it measures the amount of a process’ time slice it used after it gives up its
CPU. If the process completes during its time slice, and gives up its CPU for good, then an item is
put into the first bucket (the one for 100% and up), so as not to bias the other buckets. If processes
consistently give up the CPU before their time slice is up this indicates some combination of the
following system imbalances: the distribution of work between individual processes within a job
is not balanced (i.e., the parallel workload is imbalanced); the spin wait time is too short; the
scheduling algorithm is not doing a good job at giving overlap to the jobs. These effects can be
tuned with simulator parameters and hence one can determine the dominate cause of the problem.

The following two histograms are only displayed when the Gang scheduler is used.

e Size of system owners: When a new owner is chosen under Gang scheduling, the number of
processes it contains is recorded in this histogram. Recall that owners with many processes are
desirable.

e Size of cycle suckers: When a cycle sucker is chosen in Gang scheduling, the number of pro-
cesses it contains is recorded in this histogram. In general, it is desirable to have cycle suckers
have fewer processes in the job than owners.

8.2 Interactive Mode

SimTime:264671 ProcInSys:24 JobInSys:9 ProcComp: 1 JobComp: 1
Family Idle: 0.33% User: 94.72% System: 0.75% SpinWait: 4.21%
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Figure 3: Example of interactive screen displaying overall system statistics and queue status.

In interactive mode, the contents of the queues are displayed using the Curses [1] screen manipulation
package (see Figure 3). In particular, the identification of each active process in the system is displayed.
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The identification of a process consists of the identification of its owning job and its number within the
job.

Each queue (including the run or CPU queue) is allocated one or more pairs of rows. Several
processes are displayed on each pair of rows. The first row of the pair contains the job identification, and
immediately below it on the second row is the process number. The contents of the queues are displayed
in this manner, where the process at the front of the queue is displayed on the first pair of rows on the
left.

At the top of the screen, general system statistics (gathered from the beginning of the run) can be
viewed. On the first line of the terminal the simulated time (SimTime; assumed to be in microseconds),
the number of processes currently in the system (ProcInSys), the number of jobs currently in the system
(JobInSys), the number of processes which have completed (ProcComp) and the number of jobs which
have completed (JobComp) are displayed. On the second line is the scheduling method (“DogEatDog”,
“Family”, or “Gang”), and the cumulative CPU utilization statistics (idle time, user work time, system
overhead, and spin wait time) are displayed.

Scheduling Effect on Job Overlap

R ' 1 1 T

—a&— DED Load 2
—a— DED Load 4
—@— DED Lload 6
ad
Load

—&— Family Load
& Family Lo
—e— Family
- Gang Load
—+— Gang Load
—&— Gang Load

2
4
6

2
4
6

Average Overlap
'
T

fon ) A I}

2 4 6 8
Number of Processes in Job

Figure 4: Parallelism delivered (overlap) to jobs with various numbers of processes in them. Job mix is
half serial and half parallel.

In Figure 3, 264671 simulated microseconds have passed. There are 9 jobs and 24 processes currently
in the system, and one job and one process have completed. We are using the Family scheduling method.
The CPU activity is broken down as follows: 0.33% idle, 94.72% user work, 0.75% context switching and
spin waiting 4.21% of the time. Processes 0.0, 1.4, 3.0, 5.0, 3.1, 2.0, 0.1 and 7.0 all have CPUs, where
we are using “job index”.“process index” notation. The LPQ (Low-Priority Queue) is holding processes

20



9.0, 8.5, 8.6, 8.7 and 6.0. In the HPQ (High-Priority Queue) we find processes 1.0, 1.1, 1.2, 1.3, and
1.5. Processes 8.3, 8.4, 8.0, 8.1, 8.2 and 6.1 are on the blocked list. It is iteresting to note that, in this
example, more processes are in the blocked queue, and hence can not be scheduled, than in either the
LPQ or HPQ. With Family scheduling this is often the case.

Highlighting is used to display two types of processes. If the ~s command line flag is used, then
processes which are blocked, spin waiting, or giving up their CPUs, are highlighted (displayed in standout
mode). If the -w JID flag is used to specify several jobs to watch (and the -s flag is not used) then only
the selected jobs are highlighted no matter what their state is.

7 Results

Simulating parallel applications on supercomputer production systems is quite difficult because most
MIMD supercomputers are currently being run in multiple stream mode (i.e., many serial jobs run
contemporaneously instead of parallel applications). Hence, it is impossible to predict what levels of
parallelism (number of processors in a job) and efficiency (e.g., load balancing and choice of paraliel
algorithm) future workloads will display. However, we can look at scheduling methods from the per-
spective of how they allocate resources to any type of load presented to them and determine where the
weaknesses of each are. This will allow us to start determining the extent of research necessary to truly
understand the issues of parallel application scheduling on MIMD supercomputers.

7.1 A Moderately Parallel Workload
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Figure 5: Throughput is larger and average turnaround time is smaller for Gang scheduling vs Dog-Eat-
Dog or Family. Job mix was half serial and half parallel.

The first thing to consider is how do current and proposed scheduling methods fare with a fixed mod-
erately parallel workload? Do the old scheduling methods deliver the machine to the parallel jobs in an
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Figure 6: Number of exchanges per process (a measure of thrashing) is smaller for Gang scheduling vs
Dog-Eat-Dog or Family. Job mix is half serial and half parallel.

efficient manner? In giving the CPUs to the parallel jobs with Gang scheduling, do we have to pay a
penalty in throughput and/or turnaround time?

In all of the following tests we will keep most of the job and system parameters fixed and look at
the effects of modifying one parameter. Unless otherwise stated the jobs and system parameters that
are used in the simulations are: SIMMean = 4090.0, SIMStdDev= 409.0, SISStdDev= 204.5, NBHean
= 122, FBStdDev = 90, HumCPUs = 8, GlobalTimeSlice = 1.0E5, GlobalSpinWaitDelay = 1.0E3,
GlobalOverhead = 350.0 and SimLength = 1.0E9.

All of these machine and system parameters are taken from NLTSS running on a Cray Y-MP832
(6.0 Nano-Second clock cycle). Only one type of application is modeled: SIMPLE (see Section 4). The
number of barriers is chosen so that the expected runtime of each job (ignoring synchronization delays,
spin waiting and process exchange overhead) is about 0.5 seconds.

In Figures 4 through 6 the workload is broken up into half serial jobs (number of process per job
is 1 for half of the jobs generated) and the other half of the workload is parallel (number of processes
per job greater than 1 for half of the jobs generated). In particular, ParArray= (0.5, 0.125, 0.0, 0.125,

0.0, 0.125, 0.0, 0.125). Hence, the probability of getting a job with 2, 4, 6 or 8 processors in it is gh
and no jobs with 3, 5 or 7 processes are considered. For this study, we consider the effectiveness of the
three scheduling methods when the load is increased. Runs were made with a load of 2.0, 4.0 and 6.0.
Figure 4 displays how the three scheduling methods give the requested CPUs to the jobs. From this
figure we can see that Dog-Eat-Dog (DED, in the legend) never gives an overlap of more than 2.5 and
as the load increases, that peak drops to about 1.5. Family scheduling does a bit better with a peak
of about 3.0 and does not seem to be too affected by the change in load. Gang, on the other hand, is
basically linear in the number of processes in the job: delivering over 98% of the processors requested,
no matter the load. In fact, Gang scheduling gets slightly better as the load increases. This is due to the
fact that when the load is higher the probability of picking the larger jobs (higher number of processes)
as “floaters” decreases. So Gang scheduling is able to give the resources that jobs request, but at what

22



penalty? We could get the same overlap behavior from dedicating the machine to one job in turn. Figure
5 shows that throughput and response time are not degraded by going to Gang scheduling over Family
or Dog-Eat-Dog. In fact, we see that throughput is enhanced by around 11% because the parallel jobs
do less spin waiting with Gang scheduling. Turnaround times are reduced and the reduction grows as
the number of processes in the job increases. This is again due to the fact that parallel jobs spend much
less time spin waiting and have far fewer exchanges to the system. The latter is observed by viewing
Figure 6. ,

7.2 More Parallelism Anyone?

Overlap for LCC M2 Workload

& & L4 = & -2 9

- [ | > i N A i
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System Load

Figure 7: Low levels of workload parallelism and light load combine to cause all scheduling methods
difficulty. As the load increases, so does Gang’s ability to deliver overlap. On the other hand, Family
and Dog-Eat-Dogs’ overlap performance degrade as load increases.

Now that an understanding of the various scheduling methods with a moderately parallel workload has
been established, a more complicated test can be constructed. In this test, all system parameters are
held constant except for the parallelism the workload displays and the system load. Four workloads (M1,
M2, M3 and M4) that are probable parallel extensions of the current serial workload at the Livermore
Computing Center (LCC) are constructed (see Table 1). As we move from workload M1, to M2 through
M4 the amount of parallelism is increased from most jobs being serial (80% of the jobs generated have
one process) to only a few serial jobs (20% of the jobs generated have one process).

Overlap results for workload M2 are displayed in Figure 7. Similar overlap results are obtained with
the other workloads. All methods deliver 1.0 overlap to serial jobs (Any(1) in the legend of Figure 7).
For the level of parallelism displayed in the M2 workload it is possible to have 4 and 8 processor jobs
running at the same time (with no others) at load levels 1.0 and 1.5. Similarly, we could have 2 and
8 processor jobs or 1 and 8 processor jobs running at the same time. Hence, some of the time (when
the 1, 2 or 4 process job owns the machine) the 8 process job will have to be broken up. This causes
the dip in the observed overlap for Gang(8) at low system load. Even with this degraded overlap, both
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Figure 8: System throughput (on left) shows a distinct difference between Gang scheduling and the
others for virtually all system loads and all workloads. Turnaround times (on right) start out the same,
but increase much more rapidly for Family and Dog-Eat-Dog scheduling as load is increased for all
workloads.

Dog-Eat-Dog and Family scheduling do worse than Gang for light system loads. Furthermore, their
performance decreases as the load increases.

Figure 8 displays the combined results for all scheduling methods and workloads. The left hand
graph in Figure 8 shows that Gang scheduling does poorly with regard to system throughput if the large
parallel jobs have to be broken up. This serves as an indication of the lower limit of Gang scheduling’s
usefulness in lightly loaded systems. Turnaround times, on the other hand, are much less sensitive at
lower system loads and hence the difference between the scheduling methods is negligible. As the system
load increases, Family and Dog-Eat-Dog scheduling are much less able to respond to the load due to the
higher levels of context switching. Hence, the slope of the lines in the right hand graph in Figure 8 is
much larger for Family and Dog-Eat-Dog when compared with Gang scheduling.

Probability of generating the next job with specified number of processes |

Number of Processes

Workload | 1 2 3 4 5 6 7 8
M1 0.800 0.000 0.000 0.100 0.000 0.000 0.000 0.100
M2 0.600 0.133 0.000 0.133 0.000 0.000 0.0060 0.134
M3 0.400 0.200 0.000 0.200 0.000 0.000 0.000 0.200
M4 0.200 0.266 0.000 0.266 0.060 0.060 0.000 0.268

Table 1: Probability of generating a job with 1, 2, 4, or 8 processes in it for the LCC jobs classes M1,
M2, M3 and M4. Jobs with 3, 5, 6 or 7 processes are not generated.
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8 Conclusions

We have presented a methodology for testing scheduling methods for parallel supercomputers. The ED-
SEMS simulator described here is a flexible tool for evaluating various workload, machine and scheduling
method models. This tool is sorely needed at present due to the lack of literature on parallel scheduling
trade-offs.

Preliminary results with the EDSEMS simulator indicate that Gang scheduling is far superior to
Dog-Eat-Dog and Family scheduling for shared memory supercomputers with various parallel workloads
when synchronization is considered. It is the real effect of processes spin waiting and giving up CPUs
at barrier synchronization points (a control based synchronization which requires that all processes in
a computation reach a certain point before any are allowed to proceed) that introduces enough system
overhead to warrant special treatment of parallel jobs from a system throughput and turnaround time
perspective.
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A Sample Simulator Input and Output
In most input files only the parameters that need to be different from the defaults are changed. The
following is a sample input file that for an eight processor system that has one half of the jobs being

serial and one half being parallel with probability % that they will have 2, 4, 6 or 8 processes in them.
All units are in micro-seconds.
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# General simulation parameters...

SchiMethod: = 2 # for GANG scheduling

SimLength = 1.0E9

OutputDelta: = 1,0E8

GenMethod = 0. # Keep MinProc: jobs in- the system...
MinProcsInSystem = 24 # Nuwber of active processes.

¥ Job: Generation: criteriom...

# Should: look like: SIMPLE...

SIMMean: = 4090.0 # Mean work between barriers
SIMStdDew: = 409.0 # StdDev iz 10% of SIMMean
SISMean = 0.0 # Noise has zero mean:

SISStdDev = 204.5 # 5% of SIMHean

NBMean = 122 # Mean number of barriers per job.
NBStdDev: = 90

# Serial 2 3 4 5 6 7 8
ParArray = 0,500 0.125 0,000 0.125 0.000 0.125 0.000" 0.126

The above input file generated a great deal of output and the following is only the initial parameters
and the final Short~term statistics and Long-term statistics output. The run was made on a
Sun 3/160+-FPA.

DEBUG: = 0

SchMethod = 2

GenMethod: =: ()

NumCPUs: = 8
MinProcsInSystem = 24

MinLoad = 3,000000
DelayMean: = 500000.. 000000
SIMMean: = 4090, 000000
SIMStdDev = 409.000000
SISMean: = (,000000
$1SStdDev = 204, 500000
KBMean = 122.000000
NBStdDew =90, 000000
GlobalTimeSlice = 1006000.000000
GlobalSpinWaitDelay = 1000.000000
GloballOverhead = 350,000000
SimLength = 1000000000, 000000
OutputDelta: = 100000000.000000
RandomSeed = 0

ParArray = 0,5000 0.1250 0.0000 ¢.1250 0.0000 0.1250 0.0000 0.1250

Repeatable random seed: 620082279

Fri Aug 25 15:04:45 1989
Current Time 1.000000e+09 Cpu Time 3.33e+09 Ratio 3.00e-01 Load 3.23e+00

Short-term statistics from time 900000954.300896 to time 1000000009.050145:

Job: and Process Completion (Throughput) Statistics

ProcsInJob JobeComp ProcsComp
STTP i 213 213
STTP 2 60 120
STTP 4 45 180
STTP 6 60 360
STTP 8 58 464
STTP Total 4386 1337

Average Per-Process Statistics
MiliSec MiliSec MiliS MiliS MiliSec Turn Catx
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Proc ReadyQu UserWrk Sys SpinW BlockQu Ovrlp Around Swtch

STAPP 1 656 588 4.31 0 0 1.00 1248 12.3
STAPP 2 1534 561 9.15 12 58 1.85 2175 26.1
STAPP 4 2177 498 10.68 19 242 3.43 2949 30.5
STAPP 6 1338 557 4.93 25 119 5.58 2046 14.1
STAPP 8 1089 574 4.69 37 60 7.82 1765 13.4
STAPP Tot 1274 560 5.90 23 91 5.00 1954 16.9
Standard Deviation Per-Process Statistics
MiliSec MiliSec MiliS MiliS MiliSec Turn Cnix
Proc ReadyQu UserWrk  Sys SpinW BlockQu Ovrlp Around Swich
STSDP 1 560 344 4.21 0 0 0.00 821 12.0
STSDP 2 1099 322 8.40 11 103 0.14 1409 24.0
STSDP 4 1857 273 14.00 14 503 0.66 2292 40.0
STSDP = 6 853 340 4.30 22 250 0.45 1229 12.3
STSDP 8 643 335 6.18 35 140 0.20 1044 17.7
STSDP Tot 1073 330 7.68 27 253 2.60 1418 21.9
Queue Length Statistics
Queue Avg StdDev
STQ Low-priority Ready Queue 11.66 4.30
STQ High-priority Ready Queue 5.40 3.52
sSTQ Blocked List 1.23 1.79
STQ Load Average 3.13 0.35
CPU Utilization
STCPU  Idle Time: 5005047.42 0.83%
STCPU  User Work Time: 755777109.40 94.47Y,
STCPU  System Overhead: 7966350.00  1.00%
STCPU  Spin Wait Time: 31243931.17 3.91%

Long-term statistics from time 0.000000 to time 1000000009.050145:

Job and Process Completion (Throughput) Statistics

ProcsInlob JobsComp ProcsComp
LTTP 1 2250 2250
LTTP 2 573 1146
LTTP 4 532 2128
LTTP 6 550 3300
LTTP 8 565 4520
LTTP Total 4470 13344
Average Per-Process Statistics
MiliSec MiliSec MiliS MiliS MiliSec Turn Cntx
Proc ReadyQu UserWrk  Sys SpinW BlockQu Ovrlp Around Swtch
LTAPP 1 651 567 4.26 0 0 1.00 1222 12.2
LTAPP 2 1385 560 8.40 11 58 1.85 2023 24.0
LTAPP 4 2223 570 11.17 21 244 3.37 3071 31.9
LTAPP 6 13256 570 4.63 27 110 5.66 2037 13.2
LTAPP 8 1070 562 4.51 36 55 7.76 1727 12.9
LTAPP Tot 1273 566 5.89 23 90 4.89 1958 16.8
Standard Deviation Per-Process Statistics
MiliSec MiliSec MiliS MiliS MiliSec Turn Cntx
Proc ReadyQu UserWrk  Sys SpinW BlockQu Ovrlp Around Swich
LTsop 1 578 325 3.85 0 0 0.00 817 11.0
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LTSDP 2 984 321 6.82 i1 119 0.15 1284 19.5
LTsDP 4 1760 339 13.06 20 453 0.67 2268 37.3
LTSDP 6 850 326 4.65 27 261 0.49 1226 13.3
LTSDP 8 599 331 4.62 32 111 0.42 956 13.2
LTSDP Tot 1076 329 7.26 28 246 2.62 1437 20.7
Queue Queue Length Statistics

Queue Avg StdDev
LTQ@ Low-priority Ready Queue 11.53 4.37
LTG High-priority Ready Queue 5.44 3.56
LTQ Blocked List 1.20 1.73
LTQ Load Average 3.12 0.34

CPU Utilization:
LTCPU Idle Time:
LTCPU User Work Time: 7563416447 .80 94.54Y%

LTCPU  System Overhead:

48313127.69  0.60%

78831550.00 0.99%

LTCPU  Spin Wait Time: 309438946.91  3.87%
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Histogram: Percentage of time slice used
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Histogram: Size of system owners
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Histogram: Size of cycle suckers
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