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ABSTRACT 

A nonequflibrium vapor generation model f o r  f lashing flows is pre- 
sented. The model cons i s t s  of a f lashing inception point ,  a bubbly flow 
regime followed by a bubbly-slug regime, an annular o r  annular-mist  re- 
gime, and f i n a l l y  a dispersed-droplet regime. Existence of superheated 
l i qu id  a t  t h e  inception point and beyond is  recognized. The vapor gen- 
era t ion rate in each flow regime is calcula ted from t h e  est imates f o r  in- 
t e r f a c i a l  a r ea  densi ty  and ne t  i n t e r f a c i a l  heat  f lux.  However, t h e  bubble 
number densi ty  a t  t h e  f lashing inceptioq point  w a s  varied t o  obtain opt i -  
mum f i t s  with t h e  void f r ac t i on  da t a  taken in a v e r t i c a l  convergiag-diverg- 
ing nozzle. The i n t e r f a c i a l  a rea  densi ty  a t  t h e  inception point ,  thus 
determined, showed a rapid increase  with the decrease i n  t he  l i qu id  super- 
heat a t  tha t  point. This trend is cor rec t  s ince  in t h e  l i m i t  of thermal 
equilibrium flow where t h e  l i qu id  superheat approaches i e r o ,  t h e  i n t e r -  
f a c i a l  a rea  fo r  heat  and mass t r ans f e r  should approach i n f in i t y .  
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Flashing of Liquid t o  a two-p'hase s i x c u r e  :'rough 
? i p e s  and nozz le s  is an i s p o r t a n t  phenomenon in t h e  
a r e a  of nuc lea r  r e a c t o r  s a fecy ,  energy convers ion and 
space  p ropu l s ion ,  among ochers .  The a n a l y s i s  of such 
flows becomes difficult. p a r t i c u l a r l y  f o r  s h o r t  p ipes  
and nozz le s ,  because  af  t h e  nonequi l ibr ium aspecc  of 
?base change (1). The : rans ic ion from Liquid co 
vapor-Liquid two-p'nase f l o v  by f l a s h i n g  u s u a l l y  cakes 
? l a c e  in s e v e r a l  s t a g e s .  7 i r s t .  t h e  p r e s s u r e  drop 
axperienced by eke b i c i a l l y  subccoled f l o v i a g  Liquid 
ausc  be s u f f i c i e n t  t o  br ing t h e  l i q u i d  t o  a sacuraced 
scace .  2ovever.  .rapor42acion does  noc occur upon 
reaching ;he sacu rac ion . s ; a t s .  because , a  f i n i t e  Liquid- 
rs-vapor :+mueracure d i f f e r e n c e  is required f o r  2'nase 
change. Therefore ,  che l i q u i d  ,becomes superheaced a s  
t h e  j r e s s u r e  d e c r e a s e s  f u r t h e r  and f a l l s  belov :he 
s a c . ~ r a t i o n  va lue .  

Second. bubble  nucleacion,  e i t h e r  homogeneously 
o r  ~ e c e r o g e n e o u s l y ,  begins a f t e r  an "induction" ?e r iod  
 hen a c e r t a i n  l i q u i d  superheac has been accained.  
The degree  of superheac  required f o r  n u c l e a t i . ~ n  nay 
depend on :he f i o v  :ondicions and i h e  c i n e  = a c e  of 
de3ressur-izacion. 3ec,ause of :he scrong depe-dence 
of nucleacion r a c e  on c:le thermodynamic s c a t e  o i  she  
j a renc  phase,  mall changes in che l i q u i d  superheac 
?ay drastically a f f e c c  :he bubble n u c l e a t i o n  r aces .  
The re fo re ,  bubble nucleacion r aces  w i l l  r i s e  q u i c U y  

t o  a peak va lue  a f t e r ' c k e  Lfquld superheac i n c r e a s e s  
above a " threshold"  value .  Hovever ,  che f o r s a t i o n  of 
chese  thermodynamically s t a b l e  vapor a u c l a i  and t h e  
accoapanying l o s s  of l a c e n t  h e a t  by :he Lfquld t o  t h e  
vapor is =?ected co dec rease  che l i q u i d  superheac  
s l i ~ h t l y  so  a s  t o  cause  t h e  n u c l e a t i o n  r a t e  t o  d e c l i n e  
t o  a much l o v e r  va lue .  The y i d t h  of t h e  nuc leac ion  
zone is a' f u n c t i o n  of t h e  phys ica l  p r o p e r t i e s  of cSe 
l i q u i d  and vapor,  t h e  f l a v  v e l o c i t y ,  t h e  depres su r i za -  
t i o n  r a t e .  and o t h e r  f l o v  v a r i a b l e s .  fn  t h e  c a s e  of  
condensat ion in  s ~ p e r s o n i c  i l o v s ,  t c  has  been found 
by Yzgener a d  :;u (2 , t k a t  :he nucSeacLos zona t s  
on ly  a few a i l l i m e c e r s  v ide .  and t h e  t r a n s p o r t  t i s e  
a c r o s s  t h i s  zone is of  t h e  o r d e r  of 10 3s. Bovever. 
it is no t  c l a r  hov v i d e  t h e  bubble  n u c l e a t i o n  zone is 
Li i l a s h i n g  flows. 

T::ird, vapor l r ac ion  ~f :he Liqudd. vhich i s  s t s l  
su?ar!eaced a c  c'e zu r l aca  of chese d i spe r sed  jubb les ,  
doninaces  Cne phase transition.. This .  is che r eg ion  
a f  sisple ,bubble 3rowch. F i n a l l y ,  ac  a v s i d  f r a c t i o n  
of abouc ?O% che 5u5ble  coaqolarfon becomes e f f e c t i v e  
in subscanc ta i iy  a i r s r i n g  t s s  bubbie population and 
. s i t e  d i s c r i b u c l o n .  Laadins aveacua l i :~  to  ' h b b l y - s l u g  
and annular-nisc  r'lov regimes. 

F la sh ing  in c o y e r c h l  p ipes  is aosc  l i k e l y  La- 
i:iaced by ?.ecsrogeneous nucieacl3n of vapor bubbles 
in :he bulk  l i q u i d  and/or  3: c r e v i c e s  3r mic rocav ic i e s  
a iong eke v a l l  z i t s  pr.---rxlst+q. ;as phase. Following 
Csvac i t sch '  s  creacsenc ~f sondensac ion ic: supe r son ic  
noz: Les ! j ) ,  Zuber PC a l .  ?reposed a node1 which - 
itc i o  ar. o-x?ression f o r  t h e  c a l c u i a c i o n  of t h e  mss .- 
:LC:; i 3 c a  af vapor.  - , s v e r  a c r o s s  secc ion  L:cacad 
.. - ,, i poinc a long ab$uc: of conscanc c r o s s  s e c t i o n  A: 

where is =he perfmeter  of :he ducc, J ( F )  is che 
nucleaclon r a t e  per  u n i t  wa l l  a r e a  a t  poinf ; along 
t h e  pipe ,  m(Z,S) is che nass  a c  Z of a vapor bubble 
n u c l a c e d  ac  i, and to is a po in t  upstream from t h e  
n u c l e a t  ion zone. The incegrac ion  e f f  e c c i v e l y  sums 
:he vapor nass of a l l  t h e  bubbles nucleated be fo re  
po in t  Z. Although Oswat i t s ch ' s  model :has been app l i ed  
to  =he s tudy of condensat ion i n  high speed f l o v s  v i c h  
r ena rkab le  success  ( 2 ) ,  i c s  extension co f l a s h i n q  f l o v  
M s  been d i f f i cu l : ,  = a b l y  because of t h e  Lack s f  
unders tanding of t h e  hecerogeneous nucleacion p rocess ,  
and of t h e  nucieacion r a t e s  (J) f o r  f l a s h i n g  f l o v s .  

Sohacgi and S e s h o c b  (2) c a r r i e d  ouc such a c a l -  
cu lac ion  f o r  f l a s h i n g  f l o v  of Liquid a i c rogen  and com- 
~ a r e c i  t h e i r  r s s u l c s  z i c h  che =per-hencal  z ~ s u l t s  of 
Sinoneau (6). There were t;io unknovn paramecers -31 
t h e i r  hecerogeneous nucl'eac ion equa t ions ,  one j e i i g  
t h e  number of e f f e c t i v e  n u c l a c i o n  s i r e s  per u n i t  a r e a ,  
and t h e  o t h e r  being che c o n t a c t  a n g l e  becveen Liquid 
n i t r o g e n  and :he s u r f a c e  of !he he te rogene i ty .  They 
decerpined t h e s e  unknovn paramecers by "Sesc - f i t s "  :a 
t h e  ucperimencal daca.  buc they d i d  noc apply  che 
a n a l y s i s  cc any s t em-wa te r  daca.  

To c i r c m v e n c  t h e  above d i f f i c u l c : ~ ,  Xu ac a 1  (3 
r r s c e d  t h e  nucleacion and bubble provth  separacel:; and 
proposed a conduc:ion c c n t r o l l e d  vapor :eneracion 
aode l  zh ich  ;las f i r s :  a p p l i e d  K O  'zke axperimencal daca 



of Seocreuw (5). ihe l o c a l  vapor '  qene ra t ion  r a t e  
depends p r h a r i l y  on three quantities which a r e  ua- 
h o w  a p r i o r i :  

a .  t h e  onse t  of  f l a s h i n g  o r  b c e p c i o n  ; ro int ,  
ZWG . 

b. t h e  Initial void f r ac t ion .oo ,  a t  t h e  p o l a t  
of inc ep c ion.; and 

c .  a q u a n t i t y ,  C y  . . vh ich  is r e l a t e d  t o  t h e  , 
a m b e r  of bubblas ,Ceneraced a t  :he ince?:fun ? o i n t .  

The va lues  of t h e s e  t k r e e  ? a r a n e t = r s  v e r e  d e t e r -  
n L ~ e d  independently by c t e  " b e s t - f i t "  co t h e  void 
f t a c z i a n  l a t a  (2). Zn r.1111:y chay a r e  a l l  r e l r c a d  t a  
;na anochet.  For a p l e ,  i f  =he l i q u i d  superheat  a t  
:he i n c e p c r ~ n  ?ornc AS s?eci:i&. bo th  :he f l a s h m q  
a n s e t  l o c a c i m ,  ZylC ~ n d  :ne c t i t r c a l  b c j b l a  r ad ius  a t  
:he o n s e t  Location czn be decera ined.  The va lue  s f  
:he z r c i a l  void f r a c t i o n ,  . is :hen u n i q u d y  re- 
Laced t o  :he bubble >umber :%sit- a t  t h e  Lnceoclon 
poinc.  

Semi-enpirfcal c o r t a l ~ c i o n s  (2 and 2) a r e  now 
a v a i l a b l e  f a r  .determining :ke i i q u i d  s u ~ a r h e a t  a t  t h e  
Plashing fscepcion poinc.  This paper vil:, t h e r e f o r e , ,  
c o n c e n t r a t e  on d i s c u s s i n p  a 3echanisc;c nonequi l ibr ium 
vapor gene ra t ion  nodel  a p p l i c a b l e  f o r  t h e  f l a s h l ? ~  
zv..ro-?kasa i l s v s .  T t e  2odel  r e q u i r e s  4 ~ r i ~ r i  :cl.~v- 
Lsdge of t h e  l i q u i d  suoerc.eac a t  che f l a r h h g  bee?- 
t i a n  ? o i n t  and uses  zhe bubble a m b e r  d e n s i t y  st c>e 
b c e p t i o n  ? o h t  a s  a "Erae" laramecar .  This  aa rasece r  
is :hen ava ica t ed  ftom :he P 1 z i h L ~ 3  ax=ee'lenc zcn- 
cucted i n  a ver:ical convers ing-diverging aoz,zle (2). 

m e  hea t  : ronster  doninaced vapor 3eneracion r a c e  
per unic, volune E o l l o w i n ~  f l a s h i n g  h c e ? t i ~ n  can be 
s iven  by: 

vhere  a .  is t h e  t o t a l  Liquid-vapor i n t e r f a c i a l  a r e a  
per u n i t  volume of t h e  sLucure,  4': is :he n e t  Sea t  
f l u  co t h e  i n t s r f a c e ,  and L is cke l a t m t  heac of 
vapor i za t ion .  30th a and 4" a r e  flow regime depen- 

i d e n t ,  and a r e  f u n c t i o n s  of cke thermodynamic s t a t e  
and flow v a r i a b l e s .  Therefore ,  t o  c a l c u l a t e  a i  and . 9 ,  q,  it is necessary  t o  'mow, a p r i o r i .  in which flow 
re'gime t h e  system is expected t o  be. Ln t h i s  model, 
a s i a p l e .  f low regime zap f o r  v e r t i c a l  f lows is assum- 
4 :<here :ke f low regime is a f u n c t i o n  of t h e  l o c a l  
void t r a c t i p n  sn l$ .  Thus. a bubbly flow, a bubbly- 
~ 1 ~ 2 ,  an  annular  and/or  annu la r -mis t  r e g h e ,  and 
f f ~ a l l y  a d i spe r sed  d rop lac  flow a r e  assumed t o  s c c u r  
a t  success ive ly  higher  void f r a c = i o n  ranges ,  a s  shown 
k~ 7 igure  1. The void  f r a c t i o n s  a t  t h e  t r a n s i t i o n  
7 0 - h t s  a r e  assumed t o  be 

.4 more e l aborace  flow r e g h e  aap x y  be used in 
che f u t u r e  i f  daened necessa ry .  

, The i n t e r f a c i a l  a r e a  d e n s i t i e s  and .che  heac t r a n s -  
f e r  'coef f  i c i e n t s  a p p l i c a b l e  t o  i n t e r f  a c i a l  h e a t  t r ans -  
f e r  f o r  eacn f l o u .  r e g l a e  shown in Ffsure  1 a r e  d t s -  
cussed below. ,- T ~ c e p t t o n  , 

Cb l a x  

?igur'e' 1. The Flow Xegines Xap e ,. 
Subble Yucleat ion Zone, 0 < .1 < 1 

- 3 

The bubble n u c l e a t i o n  zone +s :he po in t  af  f l a s t -  
i n3  incep t ion ,  and LC s e r v e s  a s  t h e  s t a r t i n g  po in t  of 
cne vapor ~ e n e r a c i o n  c a l c u l a t i o n .  I t  'is assumed = h a t  
a c e r z a i n  numb& s f  bubbles a r e  nuc lea t ed  in chi2  
Inarrow" zone and t k e  n e t  vapor s e n e r a t i o n  a t  a 
i ocac ion  downstream w i l l  be dominared b.1 che  ~ u b b l e s  
nuc lea t ed  in t h i s  zone. Th i s  assumption is suppor ted 
by t h e  work of Jones  and Zuber (12) who found :Sat 
t h e  r a t e  of bubble volume growth is a s t r o n g  func t ion  
of grovch t h e ' .  Therefore .  t h e  c o n t r i b u t i o n s  of the" 
bubbles nuc lea t ed  do,wnscream of t h e  bubble n u c l e a t i o n  
zone o r  . t h e  f l a s h i n g  incep t ion  poinc is neg lec ted  
in c h i s  s tudy.  Th i s  is s i m i l a r  t o  che assumption 
used by ' a n y  of t h e  e a r l i e r  r e s e a r c h e r s  ( e . g . ,  Bdvards 
(2) ) . 

1 

3 - 
a. 

J 
il - 
a 

g - - 
2 

; - 
n - - - 

The l o c a t i o n  of f l a s h i n g  incep t ion  aay  be  deca r -  
nined a i c h e r  from che f l a s h i n g  incep t ion  c o r r e l a t i o n s  
(9 and 2) o r  from zuper imenta l  obse rva t ion .  A t  t h e  
Fnce?cion po in t .  t h e  vapor is assumed t o  be i n  t h e  form 
of c t i t i c a l  s i z e d  bubbles.  r i c h  r a d i u s  Rcr :  

Y 
d - 
7 
0 - - 
d - - - 
z z  - -  d z 
z 

. u - 
a : . -  
Z 

3ubb l y  

.Flow 

The c r i t i c a l  r a d i u s  is of =he  o r d e r  of a few 
microns f o r  t y p i c a l  l i q u i d  superheat  ( o r  p r e s s u r e  junder - 
shoo t )  va lues  found e x p e r f a e n t a l l y  a t  f l a s h i n s  incep- 
t i o n .  hc t h e s e  s i z e s  t h e  bubbles can c e r t a i n l y  be  
considered t o  be s p h e r i c a l  and t o  s o v e  with :he l i q u i d  
.~i:hout s l i p .  ?%us :he fo l l swing  expres s ions  can be 
w r i t t e n  :o s t a r t  t h e  ca lc i l lac ion f o r  vapor gene ra t ion :  

Bubbly-Slug 

Flov 

' 



vhere X is che l n t c i a l  qualicy and Nb,, i r  t h e  n u b a r  
of bub,bfas per u n i t  ~ L u c u r e  volume a t  t h e  inception 
;oinc vhich nay be relacad co :he packiaq densi ty (2) 
;!-zough che f l ~ u  3ecmetry. 

l o r  r c , L  ' "D m q e  -he ,Olov is assumed t o  5e 
5. :he jubsl; :eg?ae. -. -apor s i s c s  tn t h e  f o n  
~i 5ubbi.a~ of uniE'an s i z e ,  nitkough noc necesaaril:: 
i p i r a r i i l l .  Eowever, an e?ui7ralmt s j h e r e  rad ius ,  ;u, 
can be defined such c'hac the bubble v o l u ~ e  is vric:en 
PO 

vhere t h e  subscri?c s s  s tands f o r  sceady-scace bubble 
motion, and the  bubble ?eclec number is defined a s  
2 ~ ~ ~ 2 / a , ~ .  For a  spher ica l  cap, ' t h e  heac t r a n s f e r  race 
based on t h e  sur face  area of the  equivalsnc sphere i s  
e s t h a c e d  t o  be about 20% hfg'ner than chat f o r  t h e  
sphere (20). This escimace agrees . . r i th  t h e  Calderbank 
and i o c h i e i ' s  model (21) and it is in f a i r  a g r e a e n ;  
with t h e i r  ex3erinenc.s. Thus, in cerms of che heat 
cransfer  coefficient based on the  equivalent sphete ,  

vher a  C1 - 2 . 3  f o r  spheres 

= 2.38 f o r  spher ica l  caps 

7vo s h p l e  ~ x p r e s s i o n s  a r e  found fn the  l i t e r a t u r e  
. ir. senera l .  the  bubbles w i l l  aove f a s t e r  than ;he which provide a  smooth t r a n s i t i o n  Prom che ? l e s s e t -  

jur~oundizg li;uid. Because a f  che complexity of Zvick expression a t  c  + 3  t o  t h e  steady-s.caceheac t rans-  
k ~ p l e a e n c ~ q  a general  form i f  t h e  bubble r i s e  ve loc i ty  f e r  c o e f f i c i e n t  a t  c -a. These are:  
s prascrFjrd 3!: : j a i l i s  (3). a si ;npl i f ied forn  of t h e  
,:ator a r i f z  ve;.aciz:r is adopted here: 

L/Z . C1 V ; C  

( i 2 )  
I 

-; = 1 . 2 1 .  (8) 
a; and - - 

iz' ; > C.j \ I : i \ i L d )  . 70: j c  O.j\l:~/i.~~,.). a 

l i n e a r  Lncaqoiacion jecveen zero and . che above value 
is used. The re lac ive  ve loc i ty  5etween the  jubbles 
and the  surrounding l iqu id  is then 'caiculaced from 

For t h e  - n c e r f a c i a l  neat t r a n s f e r  c o e f f i c i e n t ,  
it has been found (9 rhac even . for  bubble grovth 
during a  v a r i a b l e  l i q u i d  superheat condit ion,  the  
?Lesset-Zvick (16) o r  Zorster-Zuber (17) type of heac 
zransfer  c o e f f i c i e n t  m y  be usea f o r  snor t  cine. How- 
aver, f o r  a bubbly f  lov  srith r e l a t i v e  ve loc i ty ,  these 
expressions should be ztodified in such a  vay that t h e  
convective heac cransf e r  due t o  the re iac ive  ve loc i ty  
is a l s o  accounted f o r .  The senera1 =pression should . 
s a t i s f : ~  the  l i m i t k g  behavior of the heac t rans fe r  
process a t  both c-i3 and t  - m, vnere t is t h e  : h e  
f r ~ m  ~ u b b l r  nucleat ion.  .it the  incegtion point ,  zhe 
zranslent  conduccion dominates t h e  beat t r a n s f e r  
?recess so =.Sac the  general sxpression snould approach 
:he ?lessee-Zwick o r  'orster-Zuber expression a t  c  - 0. 
'-'owever, a s  the  bubbles "age", =he convective neat 
r r a n s f s r  due co t h e  re lac ive  ve loc i ty  becveen the 
5ubbles and l iqu id  s t a r t s  co domhate.  a s  shown by 
xoifo-r: (13). Therefore, a t  t - =, :he g e e r a l  a- 
r e s s i o n  should y ie ld  che s teady-state  convect ive heat 
t rans fe r  c o e f f i c i e n t  i o  the bubbles. 

The staady s t a t e  heac t r a n s f e r  race co a  soheri- 
-31 bubble ztovhg a t  constant speed in an i n f k i t e  
Liquid i s  given by =he 3oussinesque solut ion (E) 
;rnich ;lay be ~ ~ p r a s s e d  a s  

The f i r s c  i s  due t o  .Ueitsandrov ec a l . '  (z) a s  nodif icd 
by Saha (j) and che second co 'nolfarc (2). Since both 
of these exprassions ;Jere based on intuitive' phpsicai 
argusents ,  it is noc c l e a r  .dhich is more r e a l i s t i c .  
Xoce, however, chat :Jolfar t ' s  expression always y i e l d s  
a  g rea te r  value f o r  h t  . For :be present ca lcu la t ions ,  
t h e  modified Xleksandrov expression (Equation i 2 )  v i t h  
Cl = 2.0 is used. 

The ' fn te r fac ia l  area densicy is ca lcu la ted  Prom 
t h e  iollowing urpression: 

regardless  ,of -dhecher che bubbles a r e  spheres a r  not .  
:-'.owever, a  nect?od 3f calculating zne v a r i a t i o n  of 
equ5ralent jubble radius. ,i., and che void t r a c t i o n ,  2, 
is required. 

In the  bubbly f l o v  regime, it is aisumed chat no 
bubble coalescence or d i s in tegra t ion  rakes place. 
%us, t h e  bubble rad ius  changes only a s  a  r e s u l t  of 
vaporkzation or  condensacion a t  t t e  in te r face ,  



This equa t ion  is equ iva len t  t o  Equat.ion ( 2 )  v r i t t a n  
on t h e  b a s i s  of u n i t  l n c e r f a c i a l  a r e a  r a t h e r  , than 
u n i t  voltme. ,Also. t h e  vapor phase ,is assumed t o  be  
3t s a t u r a t i o n .  

To c a l c u l a t e  t h e  void t t a c t i o n  a ,  an equa t ion  f o r  
t h e  conse rva t ion  of bubble number f o r  t h e  bubbly flow. 
reglme vas  u t i l i z e d .  For s t eady- s t a t e ,  t h i s  equa t ion  
r a s u l c s  in t h e  f a l lowing  s imple  express ion:  

The bubble d e n s i t y ,  !I, . can nov b e  c a l c u l a t e d  a t  any 
c r o s s  sec t ion .  and r h s  void  f r a c t i o n  t a n  then be  c a l -  
:ulataa from: 

The Liquid superheac is calc . t lp ted  f r &  t h e  mix- 
:zrb energy equa t ion  by assuming t h e  vapor p ' b s e  t o  . 
be a t  s a t u r a t i o n ,  and t h e  f low t o  be a d i a b a t i c .  

h  o + + - (5 )' - c o n s t a n t  . ' 

a 

3ubbly-Slue Flov 

A s  t h e  void f r acz ion  i n c r e a s e s ,  bubbla eoa le s -  
i e n c e  jecones  i i p n i f i c a n t .  TulLoving 3uk le r  and 
T a i c a l  (3). it is asstined h e r e  t h a t  when :04 PO. 3 

Y X  
sone ~f  t h e  bubblcs bes in  t o  coagu la t e  ;o f o r a  Larger 
bubbles;  -anile :he uchers  c ~ n t i n u e  t o  $row by vapor i -  
zacion a c c ~ r d i n g  t o  che r a c e  and mechanism d i scussed  
above. Thus, cwo c l a s s e s  of bubbles c o e x i s t  fn c h i s  
f low r e g e e ;  t h e  l a r g e r  bubbles  formed by coagu la t ion  
and t h e  smal ler  o r i g L i a l . b u b b l e s .  As. a r e s u l t  of 
vapor i za t ion  a t  t h e  i n t e r f a c e ,  both  c i a s s e s  of bubbles 
S r Jv ,  a l thouqh a t  d i i f e r e n c  r a t e s .  .is t h e  coagu la t ion  
i ~ c r e a s e s .  t h e  number of :he smal ler  bubbles dec reases . '  
The l a r g e r  bubbles r e s u l t i n g  from coagu la t ion  a r e  
probably a o t  s p h e r i c a l .  They m y  e i t h e r  approach t h e  
s p h e r i c a l  cap shape, o r ,  i f  w is comparable t o  o r  
3 reace r  than t h e  p i p e .  r ad ius .  they may a c q u i r e  an' 
e longated c : r l indr ica l  shape r i c h  a  rounded head. 
These L a t t e r  bul le t -shaped bubbles a r e  c a l l e d  t h e  
Taylor  bubbles.  and they a r e  u s u a l l y  sepa ra t ed  by 
l i q u i d  ( o r  bubbly-liquid) r q i o n s .  

Since  t h e  vapor s e n e r a t i o n  cakes p l a c e  on t h e  
s u r f a c e  of t h e  TayLor bubbles a s  we l l  a s  on t h e  small  
3ubbles ,  t h e  vapor :enera t ion r a t e  o r  t h e  t o t a l  hea t  
z rans fe r  r a t e  is .:he s.m of che :vo components: 

irhere t h e  subsc r ipcs  T and 5 d e s i g n a t e  j u a n c i t i e s  
?ercaining t o  t h e  Taylor bubbles and :he s m a l l  bubbles.  

?Fgure ?, r h i c h  i l l u s t r a t e s  t h e  aomenclature f o r  
t h e  bubbly-siug flow reg h e  in a c i r c u l a r  pipe.  shows 
:he Taylor bubbles,  t h e  :mit c s i i  in , ~ h i c h  one Taylor 
5ubbla nay 5 e  found on t h e  average,  and che =mal l  
bubbles in t h e  bubbly-liquid zone between two con- 
jecucive  Taylor 5ubblas.  The Taylor bubbles a r e  
assuned t o  be c : r l i iders  of l eng th  Z.\TB~ and r ad ius  BT. 

. UNIT CELL 

K t  i s  a l s o  assumed chac s i  r:le void Etac:ion i n c r e a s e s ,  
t h e  Taylor  bubbles absorb l o r  s cck  in) t h e  r.eighboring 
.smaller bubbles and evencza l lp  merge r i t h  one another  
t o  ' form a  cont inuous  vapor co re .  This  r e p r e s e n t s  t h e  
end of :he bubbly-slug 'regime and che beginning of . 
che annular  flow r e p h e  ;rhich has  been assumed co , ,  

occur a t  Y = .x Therefore ,  a t  a = *3 
S s a x '  s  =lax1 

2 XT 
i .  I 

D V"srnax  
and '9 = LC . 

(20) 

hssuming thac  t h e  length-co-diameter r a t i o  of t h e  
Taylor bubbles ,  A T ,  remains t h e  same f o r  che a n t i r e  
bubbly-slug region.  t h e  to l lowing =press ion  can be 
de r ived  f o r  :he l e n g t h  of t h e  u n i t  c e l l :  

.. . 

Therefore ,  t h e  sroid f r a c t i o n  due t o  :he .Taylor bubbles 
a lone  is given by 

v, 8 3, 3 

and :he h c e r f a c i a l  a r e a  d e n s i c ~ r  due :s t h e  Taylor  
'aubbles can be given by 



Taylor bubbles ,  and '6  is bounded by sb -, L . . ~ . ,  

yo id  c b t  i f  che  Length-to-diame$er r a t i o  or' t h e  
Tay lo r  b u b b 1 e . i ~  5 ,  t h e  s u r f a c a  a r e a  of t h e  c;io ends 
ar' t h e  c y l i n d e r  is on ly  10% of t h e  coca1 s u r f a c e  a r e a .  
Xoreover,  che  heac t r a n s f e r  a t  . t h e  L a t e r a l  s u r f a c e  of 
a  Taylor  bubbla  is expected t o  be more a f f i c i e n c  than 
chac a t  t h e  ;;ro a d s  because  of h igne r  r e i a t i v e  vel -  
o c i t y .  The re fo re ,  f o r  t h e  c a l c u l a t i o n  of vapor sen- 
e r a t i o n .  t h e  i nee rPac i , a l  a r e a  d e n s i t y  due  t o  t h e  
Tay lo r  bubb le s  can  be  approxlsaced a s  

Comblnhg Equations (25) chtough (29), one o b t a i n s  
che f o l l o v i n g  expres s ion  f o r  +: , 

(3 - .1, 
'3 = 

max) '3 nax 

( "s max - &a m a x  
1 

Zquacion (30) cogetk.er v i c h  E q u a c i ~ n  (14) prov-ides 
:he i n c a r f a c i a l  a r e a  densFcy due CJ :he Tay lo r  'Jubblas 
a l o z e .  It v a s  s t a t e d  e a r l i a r  chac in  cSe ? r=senc  
s tud? ,  = 0.3 and a = 0.a. , "b zw , s a a x  , The advantage  or' t h e  above expres s ion  is :>at. it 

obvLqtas che need f o r  t u r t h e r  a d j u s u e n c  of t h e  para- 
3 e t e r .  . 'I 

Since  most of t h e  i n t e r f a c e  an  :he Taylor  bubble  
is :he l a t e r a l  s u r f a c e  of t h e  c y l i n d e r ,  t h i s  a r e a  is 
probably r e s p o n s i b l e  f o r  a o s t  of che  heac t r a n s f e r .  
The hea t  t r a n s f e r  coe f f  i c i e n c  t o  t h e  cplL.adrica1 sur-. 
f acos -  is approxisaced by t h a t  co iiquic! f i l s s .  Th i s  
approximat ion is t h e  same a s  cha t  used f o r  t h e  s l u g  
f l o u  regime, Fn ' I IMC-PL i  code (2; 2)). The fo l lowing  , 

~ ~ . u p r o s s i o n  due  t o  L f n e ~ n  (a ' is used in X A C - ? L A  a s  
;re11 a s  'b t h i s  s tudy : '  

t h e  ave rage  vo id  f r a c t i o n  of t h e  bubbly-slug 
f low i n c l u d e s  vapor volumes i n  che ~ a y l o r , b u b b l e s  a s  
.de l l  a s  t h e  sma l l  bubblas.  I f  :he volume of a  smal l  
bubble  is denocad .by V j ,  :hen 

. -. . . xu t S t L  = - = c o n s t a n t  0.3073 , 

uhe ra  T_& = ? I k / V g  is :he vo'd f r a c t i o n  due  t o  :he s z a l l  
bubbles: .it ?= - and 3, = 0 .  A; 
2 a 3 - w' % e r e f o r e ,  a. ,. = s ' b , t h e r e  v i l l  b; a  l i q u i d  r i l m  r eg ion  or' vqi- 
* ~ = e  (: ) V ;r ich no bubbles .  TSis Leads :a 

che i d e a  0 2  %X"af!ectivelt volume of t h e  bubbly a h -  

vhe ra  c i s  :he Liquid s a e c i i i c  h e a t .  
P 2 

;he above c o r r e l a t i o n  v a s  ob ta ined  from condensat ion  
of s c a m  over  subcooled l i q u i d  f i lm .  ICS d i r ec :  a p p l i -  
cac lon  t o  t h e  c a s e  of evapora t ion  of Liquid f i l m  aay  
be  ques t ionab le .  In a d d i t i o n .  :he e f f e c c  uf vapor 
shez r  is no t  inc luded.  Therefore ,  :he s e a r c h  f o r  a  
b e c t a r  'neat t r a n s f e r  c o r r e l a t i o n  f o r  Taylor  bubblas  
should con t inue .  

cu re ,  s-htch aay be * k i t t e n  a s  

Tor t h e  sma l l  bubbles  3 che bubbly-liquid m k -  
cars becween two Taylor  bubbles ,  t h e  t 7 t e r f a c i a l  a r e a  
d e n s i t y  is s i v e n  by: 

;rhere f  = 3 f o r  a % -, 

and f = 1 f o r  a,= 3 s max' 

One p o s s i b l e  exp res s ion  f o r  F is. 

and she  nodif  l e d  Aleksandrov equa t ion ,  d l s c u s s e d  
e a r l i e r ,  continues t o  be  U S C ~  f o r  che h e a t  t r a n s f e r  
coe f f  l c i e n c  . 

!ie.uc. 2.' is d e f i n e d  a s  t h e  void  f r a c t i o n  due  t o  :he 
,all b h b l e s  on :he b a s i s  o f  che " e f f e c t i v e "  volume 
J F  :he bubbly a i u t u r e ,  i . a . ,  

The vapor d r i f t  v e l o c i t y  ix t h e  s l u g  Plow r e g h e  
has been given by Zuber and ' indlay (27) , among oche r s  
a s  

C o n s i s t e n t  v i c h  :he e a r l i e r  a s s u a p t i o n  :.hat bubble 
coa l e scence  s c a r c s  a t  .-b 3. she  l o c a l  void frac:ion 

3 v u  in :he bubbly s i x c u r e  of :he a;bbly-slug f low is a s -  
sumed never  co acceed 25 -. Thus, a s  che ave rage  
.'aid f r a c c i o n  2 i n c r e a s e s  beyond 3, m a ,  some smal l  
bubbles  a r e  removed from che bubbly r eg ion  t o  Cow 

Zowever, L7 :he, .law .loid Sraccion range of t h e  bubbly- 
s lug  r e g a e ,  t h e  flow f i e l d  is s c i l l  dominated by :he 
ssali j ubb le s  and no t  5y :he Taylor  bubbles.  TSere- 
f o r e ,  :he r e l a t i v e  v e l o c i c y  should  s t i l l  be  h f l u e n c e d  



n o s i l y  by t h e  r i s e  veloc:ties of t h e  small bubblas,  -9ssuming s p h e r i c a l  d r o p l e t s ,  t h e  h t e r f a c i a l  . 
wich no d i scon t lnuous  c:hange in v . Thus. t h e  vapor a r e a  d e n s i t y  can be given by: 
d r g t  v e l o c i t y  in bubbly-slug f l o g  is assymed t o  be .  
g iven by t h e  following~volume-averaged axpreseions:  a - .w. . 

i . C  d - .- (40) 

v - ( I V  * a T ~ g f , T ) / a  
3 0 s I . b  

( 3 A )  Also. t h e  r e l a t i v e  v e l o c i t y  of :he d r o p l e t s  can be  
given by: 

l 

and 114 

I v - v  / ( l - z j  (35) 
32 31 (41) 

vhe re  vgj ,b is decernined from Equation (8) and *rgj ,T 
from Zquacion (33)  . The r e l a t i v e  v e l o c i t y  c a l c u l a t e d  The convec t ive  heac c r a n s f e r  t o  l i q u i d  d r o p l e t s  
irom C,quacion (35) is :ken us& in ::le c a l c u l a c t o n  of 'has been invescigaced by a number of r e sea rche r s .  
:he hea t  c r a n s f e r  c o e f f i c i e n t s  ;15 and h~ in t h e  Xosc of t h e  daca  can be c o r r e l a t e d  by che rxp res s ion  
jubbiy-slug ragime. 

.innulac and .AnriuLar-?4ist ?;OW , 

. b ? s l a r  and annular-?nisc flow cake p lace  in t h e  vhera  t h e  d r o p l e c  Susse le  number is 
s:ansicionai r eg ion  becveen che bubbly-slug and che 
d i spe r sed  d r o p l e t  r e g i n e s .  As p o t i ~ e d  o u t  e a r l i e r ,  Xud - h , . 

=he p resen t  model t h e  flow pac te rn  changes Prom 
:he bubbly-slug regime co che pure  annu la r  Elov r e g i n e  ehe d rop lac  Xrvnolds number is 

J v  d a t  .J - 
' ls 

- 0.8.  pure  annu la r  flow, t h e  i n t e r -  
f a c i a l  area?%msi:; and t h e  h e a t  cransf  e r  c s e f f i c i e n t  3 e  - d 2 
a r e  given by: , 8 

and :he capor  ? r a n d t l  number is 

and 

The s i cuac ion  5 z c m e s  camplicacsd a s  Crop ie t  
ancra'inment begins .  ;he onser, of d r o p l e c  ent ra inment  
Jay  b e ' i e c a m i a e d  fram :he c o r r e l a t i o n s  of I s h i i  and 
Crolnes  (18) . Bowever ,. t h e r e  a r e  major u n c e r r - a h t i e s  
r ega rd ing  t h e  r a c e  of ent ra inment  and t h e  s i z e s  of 
d r o p l e c s  an t r a ined  in i b e  vapor core .  'ur ther  in- 
v e s t i s a t i o n  is required in c h i s  a r e a .  

:*hen 2 xd, che i i q u i d  is assumed t o  be f u l l y  
d i spe r sed  a s  d rop iacs .  The va lue  of ld is assumed 
:a be 0.35. .Ucarnaclveiy ,  che =ac t  va lue  of 2 can 
be ca l cu laced  from :he =ode1 t o r  :he annular-mis$ flow 
a s  che l i q u i d  f i l m  a t  t h e  w a l l  d r i e s  our because of 
i r o p l e c  encraurmenc and f i b  evaporat ion.  In che 
d i s p e r s e d  d r o p l e t  regime, che d r o p l e t  size nay be 
2xpressed in t e n s  o i  a c r i t i c a l  d r o p l a t  Veber number. 

' J a l l i s  (2) suggested r-he c r i t i c a l  ~ e b e r  number a s  
12 f o r  d rop lacs  in  a low . ~ i s c o s i r , y  c a r r i e r  gas ,  vhere- 
a s  Gyarnachy (2) found :he l F t e r a t u r e  va lue  ai Ue d 'n che range of 3 t o  15. i i a l i i s ' s  v a l u e  of L2 appears  
reasonable ,  t h e r e f o r e  

- 
In :5e above aquacions  2 is t he  viscosi:y, k i s  t h e  
t h e r 2 a l  conductivity, and s u b s c r i ? t  3 r e f e r s  co =he 
vapor.  Ranz and X a r s h a l l  (30) found C3 = 0.6 f o r  
v a r i a u s  i i q u i d  a r  s o l i d  s p h i e s  i n  a i r  o r  ocher z l u i d s .  
Lae and Ryley (2) ia s x p e r i a e n t s  on evaporat ion of 
r a c e r  d r o p l e t s  i n  superheated steam, found cbac 
C3 = 0.76, f o r  che Zeynolds number range of 54 co 250. 
Since  t h e  tvo a r e  c l o s e  t o  each ocher and Lee and 
ly1e:rts c o r r e l a t i o n  appears  t o  be v a l i d  f o r  d r o p l e t ' :  
l eyno lds  numbers up t o  L0.000, Lee and WLey ' s  (2);. 
c o r r e l a t i o n  is used he re  f o r  d i spe r sed  d rop lec  flow;. 

COMPARISON W I T H  =PE,SLYE?ITAL DATA 

The p resen t  s o d e l  has  been app l i ed  co a sceady- 
s t a t e  f l a s h i n g  e x p e r b e n t  conducted in a v e r t i c a l  
converging-diverging Xozzle. The d e c a i l s  of che LK- 
per-henc is given in ,Refe rence  11. The t e s c  s e c t i o n  
;ras j ade  of stainless s t e e l  v t t h  a coca1 lengch of 
0.737m. inc lud ing  a synnnecrical converging-diverging 
porr-ion of O.559m in l a g c h .  t h e  ins ide  d i ame te r s  
a t  both ends v e r e  0.0Slm and che t h r o a t  i n s i d e  d i a -  
meter %as 3.025m. I n i t i a l i y  i u b ~ o ~ l a d  s a t e r  ac Low 
pres su res  ( 2  co 3 ba r )  en te red  che case s e c t i o n  a c  t h e  
bocr-sm and fiowed upwards. .As =he a r e s s u r e  decreased.  
f l a s h i n g  began near  t h e  t h r o a t  and cvo-phase o i v c u r e  
Eloved through t h e  d ive rg ing  p a r t  of s l e  nozzle .  
? r e s s u r e s  and area-averaged void f r a c t i o n s  v e r e  sea-  
sured a long t h e  Length of r-he t e s c  secc ion .  The 
accuracy of che p res su re  measurement s a s  ir ichin 12 of 
t h e  reading and thac  f o r  t h e  void f r a c t i o n  was v i t h i n  
0.05. The accuracy t o r  t h e  f l u i d  c a p e r a c u r e  mea- 
suremenc vas  wi th in  0. iOc.  

h computer ?rogram s a s  s r r ic te!  f o r  :ke ?resen: 
(39) s o d a i  d e s c r  i j e d  e a r l i e r .  Steady-stace balance  .-qua- 

:ions f o r  sass and energy v e r e  a p l o v e d .  So nome?tua 
aquacion vas  used; L ~ s c e a d ,  t h e  ~ v ~ e r i a e n t a l  ? r e s s u r e  
d i s t r ibuc i . cn  vas  h p o s e d .  Since  che aax-um void 



f r a c t i o n  isr t h e  experiments stmulaced was l e s s  than 
0.3, on ly  t h e  models developed f o r  t h e  bubbly aad 
t h e  bubbly-slug regimes v e r e  prograrmned. The Eollow- 
ing nLxt?te n a s s  and mixture  energy aqua t ions  were 
used f o r  boch of t h e s e  tegimes: 

GA conq tan t  (46) 
and 

h  + (-5' - c o n s t a n t  
n 2 sa 

Assuning t h e  vapor abase t o  b e  a t  s a t u r a t i o n ,  t h e  
s p e c i f i c  e n t k l p y  f o r  t h e  Liquid phase v a s  c a l c u l a c e d  
by 

h  - ch  

h~ - m(l -c )q  (43) 

... h e r e  c is r h e  vapor n a s s  conce3c ra t ion  and is de- 
f i n e d  by c  - .:3,/: . Tke Liquid superhear  vas  then 
:alcuLa:ai :tm3 a 

h ,  - 
T - 7 = L -  

s a  t 
(A9) .- 

PI - - 
Far .ioir! frac:ion c a l c ~ l a t i o n ,  Equations (15) through 
(17) ;rere z sed  f o r  t h e  bubbly flow r e g b e  vhe re  bubblss  
ve re  cracked a s  they  z rev .  Sovever,  in t h e  bubbly-slug 
r e g h e .  a  a o r e  g a o e r a i  fonn of t h e  vapor mass equacion 
vas  used. The aqua t ion  eapLoyed.vas: 

( p a i  + \a isb)  (TI - Tsac) I ; : ( *  r P 

CZ v L .  (50 )  

:he . loid f r a c c i o n  was then c a l c u l a t e d  f rm 

' 1  = :< 
[S - (1;:;) c /;.I 4 2 v . I S  (51) 

3 3 . 3 ;  

'or a  ~ i - . - e n  s imula t ion ,  :he h p u c  c o n s i s t e d  o f :  

1.. The e f f e c t i v e  3eoEecqr of t h e  converginq- 
d ive rg ing  a o z z l e  (&). 

2 .  , The nozz le  :rile= c o n d i t i o n s ,  i. e . ,  p r e s s u r e  
t m p e r a t u r e ,  and v e l o c i t y  o r  f l o v  r a t e .  

3. The exper-ental  p r e s s u r e  d i . s t r ibuc ion  
a long t h e  Lzngch s f  t h e  nozz le  (11). 

'or a11  che runs  considered he re ,  t h e  f l a s h i n g  incep- 
, . ::on ? o i n t  v a s  taken t o  be a t  t h e  nozz le  th roac .  Th i s  
is based on t h e  expe r t senca l  void f r a c c i o n  daca  a s  
.dell. a s  t h e  s tudy .o f  Abuaf, + t  31. (2, 2) vh ich  
shoved t h a t  che f l a s h i n g  b c e p t i o n  po in t  according t o  
:he .Uaingir-Lienhard c a r r e l a t i o n  (9) w a s  indeed ve ry  
c l o s e  t o  o r  a t  t h e  nozz le  chroac.  The c r i t i c a l  bubble 
r a d i u s  ac  t h e  t h r o a t  7 re s su ra  vas  c a l c u l a t e d  by us ing  
33uac;on (31,  and a  bubble aunber d e n s i t y  a t  che in- 
c e p t i o n  p o i n t ,  :,,,, ;-as assumed t o  s t a r t  t h e  c a l a -  
l a t i o n .  A narcnrng technique vas  used t o  c a l c u l a c e  
a l l  che . l a r i a b l e s  (=cepe p r e s s u r ~ , )  a long :he i m g c h  
af che nozzle.  .Axial s:eps o r  mesh s i z e s  v e r e  small 
anou3n t o  a s s u r e  a  conversed r e s u l t .  The a x i a l  vo id  . 
f - a c t i o n  p r o f i l e  cs lculacet i  by t h e  compucer program 
xas  then compared v i c h  che area-averaped void  f r a c c i o n  
daca.  Ia c a s e  of unsatisfactory a g r e a e n c ,  t h e  f r e e  
? a r u l e c e r ,  Yb,5, 2as  va r i ed  u n t i l  a  " b e s t - f i t "  between 
t h e  c a i c u i a c e d  and :he zieasured void  f:actions .vas 

. o b c a i ~ e d .  .. 

A zoca l  of ij runs  were s k u l a c e t i  ~ i c h  :he ?re- 
s en t  model. They can be grouped under :he fa l lowing 
i ~ u r  secs :  

. . 
'1. Runs 353,338, and 362. a l l  w i th  approxi- 

mate ly  t h e  sane  i n l e t  ' a t e r  :emperacute 
of 100°C, bu t  w i th  l n c r e a s i a g  mass f low 
r a t e s .  

2.  Suns 145, 133, 137,  and 344 ,  a l l  w i th  ap- 
?roxinateLy r h a  same i n l e t  y a t e r  cmpera -  
cu re  of 1 2 l 0 ~ ,  but  v i t h  inc reas ing  m s s  
f l o v  r a t e s .  

3. Runs 291. 234. 1 7 3 .  2 i 8 .  and 2 9 6 .  a l l  v i t h  
approxfmately t h e  same i n l e c  temperature  
of 149'~.  but  , v i t h  inc reas ing  n a s s  f l o v  
r aces .  

. h n s  268 ,  306, and 309, v i c h  approximately  
cbe sane h l e c  zace r  t e 3 ? e r s t u r e  of 149°C 
and che same sass flow race .  5uc v i t h  de- 
c r s a s i n g  axi: pressure .  

Some r e s u l i s  of the calculation wick t h e  "opti3um" 
v a l u e s  of bubble number densicy a c  ck.e ' i x e p c i o n  po in t  
a r e  shown in F i g u r e s  3 chcough 5. i t ,  :an be n o t i c e d  
chac t h e  agreement in :he bubbly f l o v  r e g b e .  i . e . .  
a < 3.3 ,  is  qu ice  reasonabla .  Bowever, cke re  is s t i l l  
roon f o r  h p r o v e a e n t  ti t h e  5ubbl::-slug r e g h e ,  1. e . ,  
8 . 3  a < 0.8. Fur the r  examination of che i n c e r f a c i a l  
a r e a  and heac t r a n s f e r  a o d e l s  used in t h i s  reg* is 
requ i red .  This  inc ludes  extending che bubbl:: flow re- 
3 h e  up t o  a  void frac-cian o f  9 . i  o r  0 . 5 .  a s  suggested 
by t h e  comparisons. 

Tab le  L provides  a  summary of :he c a s t  c o n d i t i o n s  
and :he opcimun va lues  of t h e  i u b b i e  number d e n s i t y  a c  . 
t h e  f l a s h i n g  incep t ion  po in t .  Yo c l e a r  c u t  r e l a t i o n -  
s h i p  between t h e  mass flow r a t e  acd eke i i q u i d  super- 
hea t  a t  t h e  f l a s h i n g  h c e p t i o n  p o t l t  :an be found. 
However,  hen che optt;J.um va lues  f o r  t h e  bubble nuncer 
dens iey  a t  t he  incep t ion  ?o inc ,  X5 o ,  a r e  p l o t t e d  
agaL3st. t h e  l i q u i d  superheat  a t  cn8 incep t ion  poinc, 
l ? ~ , ~ ,  a c l e a r  t rend can ie found a s  shun t r  7 i q u r e  6 .  
The gpcizium nusber of bubbles a e  t h e  incep t ion  p o 9 t  
seems t o  inc rease  uncLl a  l i q u i d  superheacing of 3 C 
is reached. T h e r e a f t e r ,  t h e  heac t r a n s f a r  r a c e  t o  che 
i n t e r f a c e  is so  l a r g e  cha t  fewer nunber of bubbles a r e  
needed t o  be nuc lea t ed  a s  t h e  l i q u i d  superheacing a c  
t h e  i ccep t fon  po in t  i nc reases .  The phenomenon can be 
b e c t e r  understood when t h e  i n t e r f a c i a l  a r e a  densic:: a t  
che incep t ion  p o b c ,  F.e.. a t v o ,  2h icn  is equal  t o  
r * ~ ~ $ , ? r ~ , ~ ,  is p l o t t e d  a g a i n s t  t h e  Liquid superheaeing 
a t  t h e  incep t ion  po in t .  This is shown in F igure  7 .  1: 
is  ince resc ing  co no te  :hat alchough :he bubble number 
d e n s i t y  decreased a s  che l i q u i d  superheaeing dropped 
below 3 ' ~ .  che i n t e r f a c i a l  a r e a  d e n s i t y  cont inued co 
i n c r e a s e  monoconicallv a s  t h e  l i q u i d  superheacing Ce- 

0' 
c reased aven below 3 C .  T5 i s  is c o n s i s t e n t  ;r ich t h e  
r equkzmen t  chac a s  t h e  flow approacnes a  t h e r n a l  
e q u i l i b r i u a  f l o v ,  i . e . .  ATl - 0, :he i n t e r f a c i a l  a r e a  
f o r  heac and n a s s  t r a n s f e r '  nusc approach i n f i n i t y .  i c  
should a l s o  be noced zhac a s  i T L  - 9, t h e  c r i t i c a l  
bubbla r a d i u s  Xcr --. Therefore:Othe bubble aumber 
d e n s i t y ,  Yb,,, does  not have co approach i n f i n i t y  a s  
F2 ,, - 0 .  This  exp la ins  t h e  appa ren t  c o n t r a d i c t i o n  
iietveen Tigures  6 and 7 .  

~ t b ~ u g h  ' igure 5 aay s e r v e  a s  a  yuidance f o r  che 
s e l e c r i o n  of che a p r k u m  bubble xumber d e n s i t y  a t  t he  
F n c e ~ c i o n  poinc once ihac  ?oinc  is d e c e m i n e d ,  it muse 
be r e a l i z e d  chac :he daca  base f a r  ' i ~ u r e  5 is quiz2 
L b i c e d .  J n l v  one nozz le  s i z e  w a s  used, and t h e  
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Tabla  1. Suramarv of T e s t  Cond i t i ons  and ? r e s e n t  Xodel Ca lcu la t tons*  ' 

\ 
dh 

\ 
\ 

o ' b  
\ 
\ 

0 \ 

Burr so .  

353 

353 

362 

- .  i ~ g u r e  6 .  The Optimum Bubble !lumber Densicy a c '  T i s u r e  7 .  The I n c e ? f a c i a l  Area 3 e n s i t y  a t  t n e  
t h e  Inception ? o i n t  vs.  t h e  L icu id  :ncepcion ?otzc: 7s. t h e  i i q ~ i d  Super- 
j upe rbeac ,  a c  t h e  i n c e p t i o n  J o i n c .  heac a c  che  lncepcion ?o inc .  

T,('c) $(kq/mZs) 1 p o ( b a r )  l T z  .a ('c) 

( 145 15566 - j  1.762 5 . 3 1 ' 1  2 5 1 0 .  1 0  i 
i ,  133 j 121.2 I 18658 : 1.630 1 7.29 1 1 x 1 0 ' ~  / 137 , i 121.2 / W 0 1  ! 1.682 

! 31.4 i 121.3 1 27935 : 1.922 
t 10 : 1 9 1  I 11a.9 1 53336 : t.63 ! 5 . 3  1 x 10 

i LQ9.3 ;' 5 0 6 1  0.047 1 5 .  2 x 1 0  
LO 

i 184 

I Ir.192 ! 3.; 
i ! i48.7 / 13068 

LO 
. . 373 

: 178 1 148.7 / 261-9 8 :< 10 
LO 

796 i 148.9 i 27118 . ! & . I 7  i 3.7  8 :c 10'~ 

loo. o 
100.0 

* The s u b s c r i p c  "o'! r e f e r s  co che f l a s h i n g  h c e ~ c f c r .  aotnc .  

3 .&a 
2.6: 

1.il 

7.38 

i . 3 1  

1 .63 

I . i 6  

? .82. 

2.27 

1.73 

! .64  

1 . k l  

2 68 

304 

309 

3 
%,e(No/m) 

3.043 , 
I 

0.965 i 

0.11 I I 
39.; j 

. 8 

0.367 j 
0.557 i 
3.79 / 
3.OA 

k.52 I 
"13 1 
1.35 

9.125 

1897a ' 01955 1.65 

99.7 , 28316 10.919 2 . 1 3  1 1 x 1 0 ~ ~  

$;(um) 

148.9 / ~ 8 0 9 1  i k.057 

Lb8.9 18133 1 5.997 

. l  x zol0 . . 

ai,o(m2/m3) 

4 . 9 1  / 3 x 1 0 "  

5 . 2 5  . 5 x 1 3 ' '  
I I 

349.1 1 18217 

25116 0.950 1.30 1 r 10" 

16.3 

6 . 2  3.935 

10.27 

20.3 

0 .5  x LO" 

15.5 , 

18.7 23.5 



&.per-eats were conducted on ly  a t  low p r e s s u r z s  and 
t enpe ra tu res .  Therefore ,  t h e  d a t a  base  %st be ex- 
panded f i r s t  t o  develop a s e n e r a 1  c o r r e l a t i o n  :'or t h e  
bubble aumber d e n s i t y  o r  t h e  h t & r f a c l a l  area d e n s i t y  
a t  t h e  tncep t fon  polnc. Purehemore ,  t h e  &el f o r  

. t h e  bubbly-s lug, f low regLPle should be  h p r o v e d ,  and 
t h e  same f o r  t h e  annu la r -a i sc  f low has  EO be  develop- 
ed. 

SLWL49Y CONCL'JS ION 

1. A model of vapor j e n e r a t i p n  f o l l o w b ~  f l a s h i n g  
incep t ion  has been praposed including t h e  i n t e r f a c i a l  
a r e a  d e n s i t y ,  hea t  t r a n s f e r  c o e t ' i c i e n t s  f o r  vapor i r a -  
t i o n  and t h e  r e l a t i v e  v e l o c i t y  fn a l l  f low rogknes 
zaver'ng t h e  void  f r a c t i u n  zange 9 < .CL < 1.0. :he 
xodel  f o r  a n n u l a r - a i s t  f low !-as EOC :tee been ccmpleted 
i l ~ h o u g h  a sone ra1  i i t-eccion :has ':em s p e c i f i e d .  

2 .  Since most of t h e  nozz le  d a t a  wi th  vnicfi t h e  
model was compared a r e  wi th in  O ' h < 0.3, t h i s  l a c k  of  
a i e i i n l t e  =ode1 f o r  t h e  annclsr -mis t  f l o v  d=d no t  
pose any problen. 

3 .  Com?arison of :he s o d e l  p r e d i c r i o n s  wi th  t h e  
axpe raaenca l  area-averaged .JO id  f z a c t i o n  d i s c r i b u -  
c ions  obta ined Fn a v e r t i c a l  converghg-d ive rg  in3 
aozz la  shoved a r easonab le  a s r e m e n c  in =he bubbly 
flow r e g a e .  Xowever, t h e r e  is s t i l l  room f o r  is- 
proverienc s, %= bubbllr-slua r e g b e .  

4 .  3 e  opcis lm 5ubble  aumoer d e n s i t y  3t ir.ce?cfon. 
! decerziined, from " t e s = - f i t "  c o n s i d a z a c i ~ n s .  in- 5 0 '  
c r i a s e d  vi:?, ::-.e l i q u i d  su?erheac  ac  L>co?cion, iIi . , 
u n t i l  a l i q u i d  superheat  of 3 ' ~  xas  reached. The '" 
jubb ie  zuaber  d i n s i t - I  i i c r e a s e d  a s  t h e  l i q u i d  super- 
heat k c r e a s e d  beyond 3 ' ~ .  

5. The i n t e r f a c i a l  a r e a  d e n s i t y  c a l c u l a t e d  ?ran t h e  
c r l c i c a l  bubble r ad ius .  and t h e  o p t b u m  bubble number 
i ens i ' l y  a t  i ncep t ion  ~ r o n o t o n i c a l l y  v t t h  a 
dec reas ing  Liquid supe rhea t .  Th i s  t rend is c o n s i s t e n c  
o i t h  t h e  b c e r f a c i a l  a r e a  requi:emenc f o r  a t h e r s a l  
equ i l ib r ium flow. 

The a u t h o r s  wouid l i k e  t o  thank Yzs. 'I. Sanborn 
f o r  her  help  i n  developing and running t h e  computer 
?=ogram used f o r  c h i s  s tudy .  Typing of Yrs. J .  V .  
\!uller and >nn C .  Zorc is a l s o  apprec ia t ed .  
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