

ENICO-1026

Distribution Category:  
UC-10

PURIFICATION OF DIHEXYL N,N-DIETHYLCARBAMYL METHYLENEPHOSPHONATE  
BY MERCURY (II) PRECIPITATION

by

\* N. C. Schroeder,\*L. D. McIsaac and J. F. Krupa

January 1980

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for the  
Department of Energy  
Idaho Operations Office  
Under Contract DE-AC07-79ID01675

\*Now with EG&G Idaho  
Idaho Falls, ID

2025 RELEASE UNDER E.O. 14176

100

## **DISCLAIMER**

**This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

---

## **DISCLAIMER**

**Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.**

## ABSTRACT

Dihexyl N,N-diethylcarbamylmethylenephosphonate (DHDECMP) is an important extractant for partitioning actinides from acidic nuclear waste solutions. A new technique for purifying DHDECMP is presented. Reaction of 20% crude DHDECMP in hexane with 1M mercuric nitrate at 40°C precipitates  $\text{Hg}(\text{DHDECMP})\text{NO}_3$ . DHDECMP, liberated from the precipitate by treatment with caustic cyanide, is >95% pure. The procedure is fast, inexpensive and has a high yield (~85%) compared to previous methods.

## SUMMARY

A new method to purify DHDECMP by precipitation with mercury (II) is presented which is fast and inexpensive compared to previous methods. Efforts to optimize the procedure with respect to acidity, temperature, solvent, and stoichiometry are described in this report.

Initial precipitations of  $\text{Hg}(\text{DHDECMP})\text{NO}_3$  were performed by contacting acidic mercuric nitrate solutions with 20% DHDECMP in a mixed solvent composed of 2 parts decalin, 1 part diisopropylbenzene. Major product losses occur due to solubility of the precipitate in the resultant organic phase. Using 20% DHDECMP in hexane has maximized yields at about 85%.

Time required to perform the purification depends on the rate of the Hg-DHDECMP reaction. Reactions at 40°C are essentially complete after 1 hour.

Formation of  $\text{Hg}(\text{DHDECMP})\text{NO}_3$  causes DHDECMP to lose a methylene proton. Although acid is produced, there seems to be no acid dependence on the reaction as the initial aqueous phase acidity is varied from 0.05M to 1.0M  $\text{HNO}_3$ .

Stoichiometrically, a 1:1 mole ratio of Hg:DHDECMP is sufficient for precipitation. However, to insure complete precipitation and to account for side reactions, a ratio of 1.5:1, Hg:DHDECMP, is recommended.

These experimental results were used to optimize the purification procedure which is briefly described as follows: react 20% crude DHDECMP in hexane with an equal volume of 1M  $\text{Hg}(\text{NO}_3)_2$  - 1M  $\text{HNO}_3$  for 1 hour at 40°C. After washing the precipitate several times with hexane and water, DHDECMP is regenerated by treatment with caustic cyanide.

This procedure has produced >97% pure DHDECMP with yields of ~85%.

## TABLE OF CONTENTS

|                                                                | <u>Page</u> |
|----------------------------------------------------------------|-------------|
| ABSTRACT. . . . .                                              | ii          |
| SUMMARY . . . . .                                              | iii         |
| I. INTRODUCTION . . . . .                                      | 1           |
| II. EXPERIMENTAL . . . . .                                     | 2           |
| 1. General Procedures . . . . .                                | 2           |
| 2. Elemental Analysis of the Mercury Precipitate . . .         | 3           |
| 3. Solubility Studies . . . . .                                | 3           |
| 4. Temperature Dependence of the Hg-DHDECMP Reaction . . . . . | 5           |
| 5. Stoichiometry . . . . .                                     | 7           |
| 6. Acid Dependence . . . . .                                   | 7           |
| 7. Optimized Purification Procedure . . . . .                  | 8           |
| III. CONCLUSIONS . . . . .                                     | 8           |
| REFERENCES . . . . .                                           | 10          |

## FIGURES

1. Temperature Dependence of the Hg-DHDECMP Reaction . . . . .

## TABLES

1. Solubility of  $\text{Hg}(\text{DHDECMP})\text{NO}_3$  in Hexane and 1M  $\text{HNO}_3$  . . . . .
2. Yields of DHDECMP vs Concentration of Crude in Hexane . . . . .

## I. INTRODUCTION

Dihexyl N,N-diethylcarbamylmethylenephosphonate (DHDECMP) has shown desirable extractant properties for partitioning actinides from acidic nuclear waste solutions (1,2,3). A major problem associated with the work has been obtaining sufficiently pure extractant material. Commercially available DHDECMP is ~65% pure and contains numerous impurities, including acidic species which cause deleterious extraction characteristics. Actinides are irreversibly extracted from acidic waste solutions using crude DHDECMP as extractant. Actinides are readily stripped from purified DHDECMP using dilute nitric acid which contains hydroxylamine nitrate to reduce plutonium to valence (III). Previous purification procedures used in our laboratory have been centrifugal molecular distillation and preparative liquid chromatography (4). The former method yields bulk quantities of ~88% pure DHDECMP while the latter method has given several grams of >99% material. Both methods are expensive, require elaborate equipment, have poor yields, and are time consuming. A mercury precipitation method for purifying DHDECMP which is rapid, has a high recovery factor, results in a product of high purity and is inexpensive is reported in this paper.

Chemical means of purifying DHDECMP such as the copper precipitation method used to purify di(2-ethylhexyl) phosphoric acid (5) were explored. Attempts to form precipitates of DHDECMP with rare earth elements and with uranium as well were unsuccessful. Further efforts along this line were thus abandoned.

In a peripheral study to better understand the behavior of mercury (which is present in much of our nuclear waste) with the DHDECMP extractant, mercury loading studies were performed. The extractant was 20% DHDECMP\* in a mixed solvent composed of two parts decalin and one part diisopropylbenzene (DIPB). At high mercury loading a white precipitate formed. After washing the precipitate twice with mixed solvent and water and contacting it with

---

\* This extractant was purified by centrifugal molecular distillation and was 88% pure.

caustic cyanide, the resultant organic liquid was found to be >97% pure DHDECMP. This paper describes our subsequent experimental work to optimize the use of mercury precipitation for the purification of DHDECMP.

## II. EXPERIMENTAL

### 1. General Procedures

All DHDECMP solutions used in this work are reported as volume percents. Crude DHDECMP (65%) was obtained from Wateree Chemical Company, Lugoff, South Carolina. Other chemicals used were reagent grade or better.

Purity of DHDECMP samples, as weight percents, were determined by gas chromatography using an internal spike of tributyl phosphate (TBP). The chromatograph, column and chromatographic parameters have been discussed previously (1). Purified DHDECMP (>99%), used for measuring the response function of TBP:DHDECMP, was obtained from previous work (4).

Elemental analysis for C, H, N, P were performed by Galbraith Laboratories, Inc., Knoxville, Tennessee. Mercury determinations were made by neutron activation.

Acidity of organic and aqueous solutions were determined using procedures developed at ICPP (6).

Distribution coefficients for plutonium and mercury were performed using procedures established earlier (1).

$\text{Hg}(\text{DHDECMP})\text{NO}_3$  (mp 120-122) was recrystallized from 20% benzene - 80% hexane solution.

Mercury - DHDECMP reactions and solubility studies at  $\geq 25^\circ\text{C}$  were carried out in a thermostated temperature bath while being agitated with a mechanical wrist shaker. Solubility studies below  $25^\circ\text{C}$  were maintained at the required temperature with a magnetic stirrer-cold plate.  $^{203}\text{Hg}$  was used to tag  $\text{Hg}(\text{NO}_3)_2$  solutions. Tagged precipitate,  $^*\text{Hg}(\text{DHDECMP})\text{NO}_3$ , was

prepared by reacting DHDECMP with tagged  $Hg(NO_3)_2$ . Gamma-ray spectrometry, using  $NaI(Tl)$  or  $Ge(Li)$  detectors, was used to determine mercury concentrations in aqueous and organic phases.

Overall yields for recovery of DHDECMP were determined by gas chromatography. A weighed sample of crude DHDECMP solution was spiked with a known weight of pure TBP before purification. After purification of a known weight of crude DHDECMP the resultant organic was spiked with TBP. The spiked crude and purified DHDECMP solutions were analyzed by gas chromatography. A comparison of TBP and DHDECMP peak areas in both solutions leads directly to a determination of yield.

Yield for the recovery of DHDECMP from  $Hg(DHDECMP)NO_3$  was determined by weighing the recovered DHDECMP obtained after treating a known weight of precipitate with caustic cyanide.

## 2. Elemental Analysis of the Mercury Precipitate

Analysis of the recrystallized organomercury compound for C, H, N, P and Hg gave 34.66%, 6.25%, 4.56%, 5.04% and 32.07%, respectively. This is consistent with a composition of  $Hg(DHDECMP)NO_3$  where the corresponding theoretical values are 34.59%, 5.97%, 4.48%, 4.96% and 32.57%. Acid produced when purified DHDECMP is reacted with mercuric nitrate is equivalent to the amount of DHDECMP available. This suggests that DHDECMP deprotonates at the methylene carbon on forming the precipitate. Whether or not mercury attaches at this carbon or to an oxygen of an enolate form of DHDECMP subsequent to deprotonation is speculative at this point.

## 3. Solubility Studies

The purification procedure removes aqueous and organic soluble impurities from the mercury precipitate. However, major product losses occur due to the solubility of  $Hg(DHDECMP)NO_3$  in the mixed solvent system decalin/DIPB. In addition, rotary evaporation of these solvents from the precipitate and purified DHDECMP is difficult. Results of solvent scoping studies to find a more suitable solvent, showed the mercury compound to be soluble in benzene, carbon tetrachloride, dichloromethane, acetone and

crude DHDECMP with limited solubility in diisopropylbenzene and alcohols of  $C_5$  or less. It is insoluble in decalin, hexane and other aliphatic solvents. The study indicates that hexane would be an ideal solvent for the purification procedure.

A more quantitative estimate of the solubility of  $Hg(DHDECMP)NO_3$  in hexane and  $1M$   $HNO_3$  is shown in Table 1. These values were determined by equilibrating traced precipitate with these solutions at the various temperatures. Centrifuged aliquots were then taken for gamma-ray spectrometry and their concentration determined by comparison to known standards.

TABLE 1

| <u>Solubility of <math>Hg(DHDECMP)NO_3</math> in Hexane and <math>1M</math> <math>HNO_3</math></u> |                  |                                                 |
|----------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------|
| <u>Hexane (g/L)</u>                                                                                | <u>Temp (°C)</u> | <u><math>1M</math> <math>HNO_3</math> (g/L)</u> |
| 3.13 $\pm$ 0.05                                                                                    | 40               | 0.17 $\pm$ 0.02                                 |
| 1.02 $\pm$ 0.02                                                                                    | 25               | ---                                             |
| 0.53 $\pm$ 0.03                                                                                    | 15               | ---                                             |
| 0.321 $\pm$ 0.003                                                                                  | 0                | ---                                             |

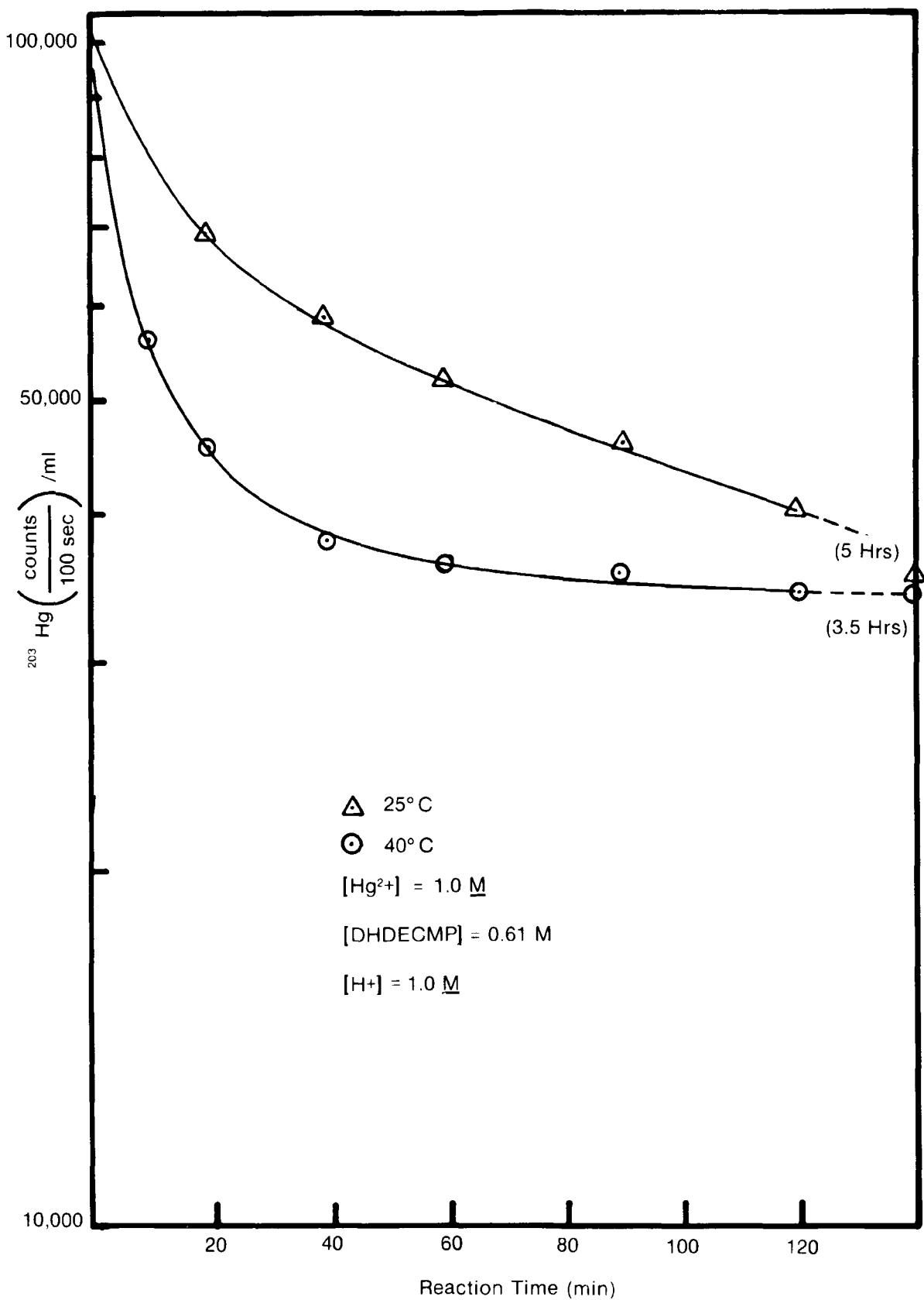
Aqueous samples were difficult to obtain free of suspended  $Hg(DHDECMP)NO_3$ . The only value obtainable for this solution was at 40°C.

As solvent scoping studies showed,  $Hg(DHDECMP)NO_3$  is soluble in crude DHDECMP. To limit the solubility of the mercury compound during the precipitation reaction, starting crude DHDECMP was made 20% in hexane. As Table 2 shows, this concentration also produces the best yield for a one-hour reaction at 40°C.

TABLE 2

Overall Yields of DHDECMP vs % Crude DHDECMP  
in Hexane<sup>a</sup>

| <u>% Crude DHDECMP</u> | <u>Yield (%)</u>           |
|------------------------|----------------------------|
| 10                     | 74                         |
| 20                     | 81 (85,86,86) <sup>b</sup> |
| 30                     | 74                         |


a) Precipitation reaction at 40°C for 1 hour with 1M  $\text{Hg}(\text{NO}_3)_2$  - 0.1M  $\text{HNO}_3$

b) Precipitation reaction at 40°C for 1 hour with 1M  $\text{Hg}(\text{NO}_3)_2$  - 1.0M  $\text{HNO}_3$

Since recovery of DHDECMP is ~98% for the caustic cyanide step, the overall yields in Table 2 indicate that major product losses are due to solubility in the organic phase after precipitation. This is not surprising since impurities present after precipitation are organophosphates, phosphonates and phosphites (1).

#### 4. Temperature Dependence of the Hg-DHDECMP Reaction

Initial precipitation reactions, conducted at room temperature, generally took several hours to form a precipitate. In order to reduce the time necessary to perform the purification procedure, the effect of temperature on the precipitation reaction was studied at 25° and 40°C. The rate of these reactions were monitored by observing the decrease in mercury in the aqueous phase with time. For each run, eight sample tubes containing equal volumes of the reactants (0.61M DHDECMP and  $^{203}\text{Hg}$  traced 1M  $\text{Hg}(\text{NO}_3)_2$  - 1M  $\text{HNO}_3$ ) were reacted. Tubes were removed periodically, centrifuged, and one ml aliquots of the aqueous phases analyzed for  $^{203}\text{Hg}$  at a standardized geometry. The results (Figure 1) show that the reaction is essentially complete after one



ICPP-A-4652

FIGURE 1. Temperature Dependence of the Hg - DHDECMP Reaction

hour at 40°C. Under these conditions, a precipitate forms in about 30 minutes. Higher temperatures are not advised due to possible degradation of DHDECMP in the presence of acid.

### 5. Stoichiometry

Stoichiometrically, a 1:1 mole ratio of Hg:DHDECMP should be sufficient to precipitate  $\text{Hg}(\text{DHDECMP})\text{NO}_3$ . However, best yields are obtained under excess mercury conditions. This not only insures complete precipitation but also makes up for mercury that may be consumed by impurities. In contrast to purified DHDECMP, crude material generates ~5-10% more acid than available DHDECMP, indicating that other mercury reactions may be occurring. For these reasons, a mole ratio of at least 1.5:1, Hg:DHDECMP, is recommended.

### 6. Acid Dependence

Precipitation of  $\text{Hg}(\text{DHDECMP})\text{NO}_3$  produces an equivalent amount of acid. Initial acidity of the mercury nitrate solution may have substantial effects on the Hg-DHDECMP reaction. To study this, mercury distribution coefficients were measured as a function of initial aqueous phase acidity. Non-equilibrium effects caused by  $\text{Hg}(\text{DHDECMP})\text{NO}_3$  precipitation were avoided by using dilute (0.0027M) solutions of traced mercuric nitrate. Nitrate concentration was held constant throughout the acid range by adjusting with  $\text{NaNO}_3$ . A 0.5M solution of purified DHDECMP in hexane was used as the extractant. Equal volumes of each phase were contacted for 1 hour at 40°C. Distribution coefficient measurements showed no difference over the acid range 0.05M to 1.0M  $\text{HNO}_3$ . This is in contrast to the results in Table 2 where yields were slightly better at higher acid. Explanation of this is not obvious. It should be noted that the acid dependence was studied under dilute mercury conditions as compared to the precipitation reaction. There are indications that two separate reactions may occur depending on whether micro or macroscopic amounts of mercury are present. Since the purpose of this paper is to report on a purification process of a potentially important extractant, the theoretical aspects of this reaction will be pursued at a later date.

## 7. Optimized Purification Procedure

The previous studies have established optimum conditions for purifying DHDECMP by mercury precipitation. The complete procedure for purifying 10 grams of DHDECMP is given below.

Take 18.1 ml of crude DHDECMP (~65% pure) and make into a 20% solution with hexane. React with an equal volume of 1M  $\text{Hg}(\text{NO}_3)_2$  - 1M  $\text{HNO}_3$  for 1 hour at 40°C. After cooling, centrifuge and discard the organic and aqueous phases. The white amorphous precipitate is vigorously washed twice with 90 ml of hexane and water (45 ml of each); centrifuging after each wash. If centrifuging is not possible, the precipitate can be collected by vacuum filtration and washed with the same volumes of hexane and water. If washings are inefficient, recrystallization from 17 ml of 20% benzene - 80% hexane solution will free the precipitate from entrained impurities. DHDECMP is regenerated by contacting the precipitate with 55 ml of 0.5 M  $\text{Na}_2\text{CO}_3$  - 2M KCN solution for 30 minutes; 25 ml of hexane being added to dissolve the liberated DHDECMP. The hexane-DHDECMP phase is then contacted with 15 ml of fresh cyanide solution for 15 minutes. This is followed by equivalent volume water washes until neutral. (Complete removal of mercury is checked by acidifying a portion of the organic phase with 1M  $\text{HNO}_3$ . A copper bead is then added to the acidified organic phase to see if any mercury plates out. If positive, more cyanide washings are necessary.) After centrifuging, the organic phase is filtered and the hexane removed under slight vacuum using a rotatory evaporator. The recovered product is clear and colorless with a purity >95%, generally about 97%. Impurities present are approximately equal amount of dihexyl hexylphosphonate and the octyl, hexyl homologue of DHDECMP.

## III. CONCLUSIONS

In practice, this method has produced 100 ml quantities of >95% pure DHDECMP within one day using simple laboratory equipment. This is in marked contrast with previous methods, especially when higher purities were sought (i.e., liquid chromatography).

The precipitation reaction between DHDECMP and mercuric ion is the slowest step in the procedure. Carrying out the precipitation at 40°C will essentially complete the reaction in one hour.

Overall yields are eventually dependent on the quality of starting crude DHDECMP. Impurities present after precipitation dissolve  $\text{Hg}(\text{DHDECMP})\text{NO}_3$ . Lower crude DHDECMP purities having more residual impurities will therefore dissolve more precipitate with a concomitant reduction in overall yields. Even so, 65% crude DHDECMP, which has been the commercially available product, will give 85% yields.

Of course the real proof of the method lies in the extraction characteristics of the recovered material. In our actinide partitioning studies with DHDECMP, extraction has always been successful. Reversing this process, or stripping is acutely influenced by impurities which form organic soluble complexes under dilute acid conditions (3). Plutonium (IV), which is the most difficult actinide to strip when impurities are present, is readily stripped from DHDECMP extractant purified by this method.

Finally, the possibility exists for extending this procedure to other similar extractants. Initial experiments show that other homologues of DHDECMP will also precipitate. Experiments to expand the method to these and other compounds will be reported on at a later date.

## REFERENCES

1. L. D. McIsaac, J. D. Baker, J. F. Krupa, R. E. LaPointe, D. H. Meikrantz and N. C. Schroeder, Study of Bidentate Compounds for Separation of Actinides from Commercial LWR Reprocessing Waste, Allied Chemical Corporation - Idaho Chemical Programs, Idaho Falls, Idaho, ICP-1180 (February 1979).
2. J. D. Baker, L. D. McIsaac, J. F. Krupa, D. H. Meikrantz and N. C. Schroeder, Experimental Mixer Settler Actinide Partitioning from Acidic ICPP Wastes, Allied Chemical Corporation - Idaho Chemical Programs, Idaho Falls, Idaho, ICP-1182-Rev., (August 1979).
3. W. W. Schulz and L. D. McIsaac, Bidentate Organophosphorus Extractants: Purifications, Properties and Applications to Removal of Actinides from Acidic Waste Solutions, ARH-SA-263.
4. N. C. Schroeder, L. D. McIsaac, D. H. Meikrantz, J. F. Krupa and J. D. Baker, "Purification and Properties of Dihexyl N,N-diethylcarbamylmethylenephosphonate", J. Inorg. Nucl. Chem., "in print".
5. J. A. Partridge and R. C. Jensen, "Purification of Di-(2-ethylhexyl) phosphoric Acid by Precipitation of Copper (II) Di-(2-ethylhexyl) phosphate", J. Inorg. Nucl. Chem., 31, p. 2587, (1969).
6. Idaho Chemical Processing Plant (ICPP): Analytical Chemistry Methods Manual, Vol. 1., Method 5012, (July 1978).