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COMPUTATION OF MAGNETIC SUSPENSION OF MAGLEV
SYSTEMS USING DYNAMIC CIRCUIT THEORY*

ABSTRACT

Dynamic circuit theory is applied to several magnetic suspensions associated
with maglev systems. These suspension systems are the loop-shaped coil guideway, the
figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway.
Mathematical models, which can be used for the development of computer codes, are
provided for each of these suspension systems. The differences and similarities of the
models in using dynamic circuit theory are discussed in the paper. The paper
emphasizes the transient and dynamic analysis and computer simulation of maglev
systems. In general, the method discussed here can be applied to many electrodynamic
suspension system design concepts. It is also suited for the computation of the
performance of maglev propulsion systems. Numerical examples are presented in the

paper.
INTRODUCTION

A maglev system uses three electromagnetic forces: the levitation, propulsion,
and guidance forces. These forces determine the dynamic performance of the maglev
vehicle. The computations of these magnetic forces may differ slightly from those in
conventional electrical machines for the following reasons. First, knowledge of three-
dimensional time- and space-dependent magnetic forces are required in a maglev
system because the six directions of motion of a maglev vehicle are determined by these
magnetic forces. Second, space harmonics, which result from the end-effect and the
discontinuous distribution of the magnets aboard the vehicle, play much more
important roles in the performance of a maglev vehicle. Thus, the performance
analysis based on a fundamental traveling wave used in most conventional machines is
inadequate. Third, transient and dynamic performance associated with vehicle
motions, not steady-state performance, is emphasized in the maglev system.

Several approaches are widely used for the computation of magnetic forces in
maglev systems. The finite-element method is one of the more powerful numerical
techniques for solving Maxiwell's field equations. For given boundary conditions and
specified system geometry, one is able to obtain sufficient information for a system by
using two- and three-dimensional finite-element computer codes. However, when a
system involves relative motions with space and time dependences, the finite-element
method becomes difficult because a great amount of computing time is required to obtain
the force-speed or force-time characteristics. In addition, most commercial finite-
element computer codes that are available do not include the problems associated with
moving conductors. Fourier transformation and harmonics analysis, in combination
with numerical techniques, is another powerful method in maglev analysis that can be
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used to determine the lift and drag forces in a continuous sheet guideway. The method,
however, is usually limited to a two-dimensional steady-state analysis with an
assumption of infinite guideway width.

The dynamic circuit theory, also called general machinery theory or mesh-matrix
method, is a suitable approach for maglev applications. It can overcome some of the
limitations mentioned above and can be used to perform three-dimensional
electrodynamic analysis of maglev systems. The dynamic circuit theory treats an
electrodynamic system in terms of space- and time-dependent circuit parameters
governed by a set of differential equations in matrix form. When plate or sheet
conductors are considered, the method divides the conductors into many zones, each of
which carries a different current. The lumped-circuit parameters for every conducting
zone are then determined, and a system of equations are formed. Once the system of
equations is solved for the current distribution, the forces acting between the
electrodynamic system components can be readily calculated in a straight forward
manner. Therefore, the performance of the system can be investigated. Since the
equations are usually solved for the currents in the time domain, the method is well
suited for transient and dynamic analysis and for the computer simulation of
electrodynamic systems, such as maglev trains, electromagnetic launchers, and other
electrical machines. In particular, the method is currently being used at Argonne for
the computer simulation of laboratory experiments, the design and analysis of maglev
test facilities, and studies of conceptual maglev system designs.

Analyses of rotating electrical machines based on the general theory of electrical
machines are discussed by Morgan (ref. 1). Analyses of linear machines using the
mesh-matrix method have been reported (refs. 2 and 3). The dynamic circuit theory
used for electromagnetic launcher analysis and simulation was discussed in several
publications (refs. 4,5 and 6). As in the maglev system, the transient and dynamic
performance is emphasized in electromagnetic launcher analyses. In the launcher
analyses, however, a relatively short time period —a fraction of second— is considered
because of the hypervelocity of the projectile. In addition, capacitor banks or a pulsed
generator is used as the power source for electromagnetic launchers. The dynamic
circuit theory used for the computation of a continuous sheet suspension was discussed
by a Canadian maglev group (refs. 7 and 8). In this group's model, the dynamic circuit
theory was combined with a harmonic analysis. The superconducting magnets aboard
the vehicle were replaced by a current sheet that was expressed in terms of a Fourier
Series. A d-q transformation, which is usually used to transform a rotating machine
into a stationary primitive machine, was applied to the direction of motion for all
harmonics. The performance of the continuous sheet guideway was determined on the
basis of the circuit solutions in combination with the superposition theorem.

Although the dynamic circuit theory was discussed with respect to other
applications in several papers, the applications of the theory to various maglev
suspension and propulsion systems have not been discussed. In particular, using
dynamic circuit theory to simulate the performance of a complete maglev system has
not been discussed in previous papers. In this paper, we apply the dynamic circuit
theory to several electrodynamic suspension systems, including a loop-shaped coil
suspension, a figure-eight-shaped null-flux suspension, and a continuous sheet
suspension. We also emphasize a direct computation of magnetic forces without using
Fourier and d-q transformations or past computation processing. The paper provides
mathematical models for various suspension systems and discusses their similarities
and differences in using dynamic circuit theory. These models can be used for the
development of computer codes that are necessary for the design, analysis, and



simulation of large-scale maglev systems. Indeed, work on the development of
computer simulation codes that account for both the electrodynamics and mechanical
dynamics of maglev vehicles interacting with guideways is currently in prograss at
Argonne.

The paper consists of seven parts. The second part introduces the dynamic circuit
theory. The third part discusses the computation of magnetic forces for loop-shaped coil
suspensions. The fourth part deals with the computation of figure-eight-shaped null-
flux coil suspension systems. The magnetic forces in the continuous sheet-type
suspension system are considered in the fifth part. Numeiical examples are given in
the sixth section, and conclusions are presented at the end of the papar.

GENERAL MODEL

Power Conservation and Forces in a Maglev System

A maglev system can be represented by the dynamic circuit model in which the
system energy, power, and forces, as well as other quantities, are expressed in terms of
their circuit parameters. Those circuit parameters, in general, are functions of time
and space. Thus, the dynamic and transient performance of a maglev system can be
determined on the basis of the solution of the dynamic circuit model.

In general, we may consider a maglev system in which m vehicle coils or
conductors interact with n guideway coils or conductors to produce either levitation and
guidance forces, or propulsion forces. All ofthese coils are assumed to be connected to
individual power sources. Thus, the superconducting coils aboard the vehicle can be
represented by letting the terminal voltages and resistances of'the vehicle coils vanish,
the passive guideway conductors can be represented by letting their terminal voltage
vanish, and the propulsion system can be represented by connecting a polyphase power
source to the guideway stator coils. Ifwe let [i] and [e] be column (m+n) matrices made
up of the individual currents and voltages associated with the vehicle and guideway
coils or conductors, respectively, [L] be a square (m+n) x (m+n) matrix, each element of
which represents either the self-inductances of the vehicle and guideway coils (or
mutual inductance between the vehicle coils and guideway coils) and [R] be a diagonal
(m+n elements) matrix composed of the individual vehicle coil and guideway coil
resistances, then we can write the system voltage equations in matrix form, based on
Kirchhoffs voltage law, as follows:

[e] = [RI[]+Hi([L][1]} 1)

We may assume that a maglev vehicle involves three-dimensional motions caused by the
change of the mutual inductances between the vehicle and guideway coils in three
dimensions. Letting vx, vy, and vz be the velocities of the vehicle in the x, y, and z
directions respectively, we can rewrite Eq. (1) in terms of a speed voltage, a voltage
induced due to a relative motion, as

[e] = [R] [1]+Vx[Gx][1]+Vy[Gy][1]+Vvz[Gz][1] + [L.]"™1] 2)



where [Gx] = d[L]/dx, [Gy] = d[L]/dy, and [Gz] = d[L]/dz. The total time-dependent power
input to a maglev system is

P=[i]T[e] = IT[R][i]+[ITIL]A[]
+vx[ 1 ]T[Gx][ 1] + vy[ i IT[Gyl[ i] + vz[ i IT[Gz][ i ] 3)

where the superscript T stands for the matrix transpose. Since
SCHTIL ][]y =~vx[ 1 ]T[Gx][ 1] + ~vy[ 1 ]T[Gy][ 1]
+2'VZ[ i |T[Gz][1] Hi]g L ][ 1] 4
Eq. (3) can be rewritten as follows
P=[ilT[e] = LT[R ][i]+1A[L]TIL][1]}

+A-vx[1]T[Gx][1] +1 vy[ 1 [T[Gy][ 1] +1 vz[ 1 jTtGIC i ] &)

Equation (5) shows the power conservation of a maglev system. We note in Eq. (5) that
the term on the left represents the total electrical power input to the system, which may
include the power from a stationary power system and the power from the batteries
aboard the vehicle. The first term on the right-hand side represents the dissipated
power of the system, which may include the power losses both in the guideway coils and
in the vehicle coils if superconducting magnets are not used aboard the vehicle. The
second term represents the time rate of change of the magnetic energy stored in the
system, and the last three terms on the right-hand side represent the converted
mechanical power which results in the three-dimensional motion of the vehicle.
Finally, the three force components Fx, Fy, and Fy acting on the vehicle can be obtained
from Eq. (5) by dividing the terms of the converted mechanical power by their
corresponding velocity components vx, vy, and vz, yielding the following:

Fx = i-[i] T[Gx][i] (6)
Fy = i-[i] T[Gy][i] @)
Fz=y [i]|T[Gz][1i] @®)

According to the conventional notation, we may refer to Fx as the force in the direction of
motion, which could be a propulsion force or a magnetic drag force, depending on the
applications of the model, Fy in the horizontal direction, which could be a guidance or a
horizontal perturbation force, and Fz in the vertical direction, which represents a
levitation or a vertical perturbation force.

When the model is used to determine the magnetic drag of an EDS maglev
system, the input electrical power term in the right-hand side of Eq. (5) is zero.
Assuming a vehicle moving in the x direction with a speed vx and neglecting the



induced voltage due to the horizontal and vertical perturbation, we obtain a new power
conservation equation from Eq. (5) as follows:

[IT[R][A]+7§ 7~ [RIT[L][i]j + i-vx[i] T[Gx] [i] =0 ®

In this case, the third term on the right-hand side represents the mechanical power
required by the system to overcome the magnetic drag power of the system. Thus, the
longitudinal component of the magnetic force of a maglev system can be obtained from
Eq. (9) as follows:

Fx="[AIT[Gx] [i]=-"-[R] T[R] [i]-(d-j1-[F] T[] [i] } (10)

Equation (10) shows that the longitudinal component of the magnetic force consists of
two parts. The first part is a dissipative term that represents a drag due to the ohmic
loss, and the second part is due to the change of the magnetic energy stored. The second
part of the force is considered to be a nondissipative or conservative force that may be
negative or positive, depending on the change of the magnetic energy stored in the
system in the direction of motion.

Transformation for the Coil Connections

A maglev system usually involves many coils that may logically be connected in
several different groups to perform different functions, such as levitation, guidance, and
propulsion. For instance, the figure-eight-shaped null-flux coil guideway can be viewed
as two loop-shaped coils connected in opposite direction, and the propulsion coils, in
general, are connected into three groups to form three-phase armature windings.
Other maglev systems are expected to have even more complicated coil connections in
order to perform an integrated maglev function. The dynamic circuit model can be
applied to many maglev systems, ifthe transformation of the coil connections are
considered.

General transformations for solving electrical machine problems were discussed
by Morgan (ref 1). The transformation for the coil connections is particularly useful for
the maglev simulation and analysis on the basis ofthe dynamic circuit model. Since the
vehicle and guideway coils are usually connected in different configurations that may
need different transformations, it is necessary to partition all the matrices by rows or
columns to form submatrices. Thus, the previously defined current and voltage
matrices expressed in terms of submatrices are

[i]= (ID

and

Ev
e] = 12
[e] Eg a2



where Iv, Ig and Ev, Eg, are the current and voltage submatrices of the vehicle coils and

guideway coils, respectively. The subscripts v and g stand for the vehicle and guideway,
respectively. The inductance matrix becomes

[L] (13)

where the Lv and Lg are the inductance submatrices ofthe vehicle coils and guideway
coils, respectively. Lvg=Lgv are the submatrices that represent the coupling between the

vehicle coils and guideway coils. They are the most important part of the system
because all magnetic forces are generated from this coupling. Similarly, the resistance
matrix in the system may be partitioned into submatrices Ry and Rg as follows:

%V 0 (14)

The Rv becomes a zero submatrix when superconducting coils are used aboard the
vehicle. One can define a transformation matrix [T] as

[R1=

Tv 0
oy L (15)
where Tv and Tg are the transformation submatrices for the vehicle coils and the
guideway coils, respectively, which depend on the connection of the coils. Tv may be a

unit submatrix if the transformation is only applied to the guideway coils. By
introducing the prime quantities as a new system after transformation, one can obtain,
on the basis of power invariance for the current

[11=[T]1] (16)
and for the voltage
[V]'=[T]T[V] (17)

The inductance matrix and its derivative matrix of the new system are as follows:

[L]=[TIT[L][T] (i8)
[GI=[TITLG][T] (19)
[RI -[T]T[R][TI (20)

By substituting the prime quantities in Eqgs. (16) to (20) into Egs. (1) to (10), one can obtain
the power conservation and force equations for the new system. Typical examples for
the use ofthe transformation will be discussed in the following sections.



COMPUTATION OF THE LOOP-SHAPED COIL SUSPENSION

Considerable attention has been given to suspension schemes in which the
superconducting coils are levitated above a loop-shaped coil guideway, as shown in Fig.
1. The coil guideway may be superior to the continuous sheet guideway because of the
former's relatively low magnetic drag force (ref. 9). The loop-shaped coil guideway,
however, produces force pulsations that do not arise in the continuous-sheet guideway.
A steady-state analysis of the loop-shaped coil guideway was performed by Hoppie et al.
(ref. 10) on the basis ofthe Fourier transform method in combination with steady-state
circuit analysis. The dynamic circuit model is well suited for the determination of the
dynamic performance of the loop-shaped coil guideway.

When the dynamic circuit theory is applied to the loop-shaped coil guideway, the
model becomes relatively simple, because the currents in the superconducting coils
aboard the vehicle are usually fixed; the voltages across the individual loop coils are
zero, and a connection transformation for the guideway coils is not needed. Neglecting
vertical and horizontal perturbations and assuming m superconducting coils moving
above n loop-shaped guideway coils, we obtain a system of voltage equations for the loop-
shaped coil guideway from Eq. (2) as

'Ri if ILn LI2 Lin Tii’
R2 h n L21 L22 L2n g 4
dt
Rn- ~in. - Lni + Lmmn  -in-

11 GI2 ++ Gim
21 G2 G2m
2

nl v Gnm

where [j (j=I,m) are the currents in superconducting coils aboard the vehicle, Ly (i=I,n

and j=1,n) is the mutual inductance between the ith and jth loop coils on the guideway,
and Rj (i=l,n) is the resistance ofthe ith loop coil. Both Ljj and Rj are constant if'the
dimensions of the loop coil are selected. Gy (i=l,n and j=I,m) is the derivative with
respect to x of the mutual inductance between the ith loop coil on the guideway and the jth
superconducting coil aboard the vehicle and is a function of space and time. The
unknowns in Eq. (21) are the currents of the loop coils in the guideway. The formulas
used to evaluate self-inductances and the mutual inductances can be obtained (refs.9
and 11) and the derivative of the mutual inductances can be determined numerically
from the mutual inductances. Equation (21) cannot be solved directly because matrix
[G] in the right-hand side is a function of time and position. One simple numerical
approach is to solve Eq. (21) at successive time steps with step size At. Thus, for given
initial conditions and determined matrix [G], one can solve Eq. (21) as a set oflinear
algebraic equations for the unknowns dij/dt (j=I,n), rather than solving the linear

differential equations for ij. The currents at time t are found by adding dij/dt At to the
previous currents, i.e.



ji(t-At)

() 1 > dii/dt"
12(0 2(AY - dindt
(22)
. in(t) . .din/dt.
_in(t-At)

Iterations between Eq. (21) and (22) will determine the currents in all loop coils as a
function oftime. The currents as a function of position are also obtained from the above

results because of the relation Ax=vx At. After finding currents in the loop coils, we are

able to determine the longitudinal, the lateral guidance, and the vertical suspension
forces ofthe system as functions of time and displacement from Eq. (6) to (8):

n m

Fx= X X ii Gx.jl; (23)
L]
n m

Fy = X X ii Gy.ij!) (24)
I
n m

Fz=X X ii Gzilj (25)

I
The three components of the magnetic force given by Eq. (23) to (25) include force
pulsations, which depend on the geometry and the material characteristics of the loop
coils. Time-average forces can be found from Eq. (23) to (25) by taking the time averages
over any desired period. In practice, it is a reasonably good approximation to consider
only the mutual inductances between the several coils on the left and right ofa given
coil. Thus, Egs. (23) to (25), and all the mutual inductances and their derivative

matrices discussed previously, are simplified. Finally, the total power dissipated in the
loop coils as functions oftime or position is

P=[iIT[R][i "X Ri{ (26)
i=l

Similarly, one can determine the time average power from Eq. (26) by taking its time
average over any pulsation period.

COMPUTATION OF THE FIGURE-EIGHT-SHAPED
NULL-FLUX COIL SUSPENSION

The figure-eight-shaped null-flux coil suspension and guidance system shown in
Fig. 2 is a variation of the null-flux suspension concept invented by J. Powell and G.
Danby in the late 1960s. It is currently being incorporated into the new Japanese maglev
systeml2 and has become a very important maglev concept. The major features are that
it can provide both suspension and guidance forces with a relatively small magnetic



drag. In particular, it can provide zero magnetic drag at the null-flux equilibrium point
and can be very helpful in starting a maglev vehicle. The Japanese have succeeded in
designing and testing several versions of the electrical dynamic suspension (EDS)
maglev system based on this null-flux suspension concept.

The computation of figure-eight-shaped null-flux suspensions discussed in the
literatures (refs. 12 and 13) was based on field and harmonic analyses. In this section,
we apply dynamic circuit theory to the figure-eight-shaped null-flux coil suspension
system. As mentioned beforce, one ofthe advantages of the approach is that it can
predict transient and dynamic performance based on a simple and direct solution. For
general purposes, we assume that m superconducting coils interact with n figure-eight-
shaped null-flux coils as shown in Fig. 3 and that the n null-flux coils comprise 2n
loops. Assuming the currents in the superconducting coils are fixed and neglecting the
speed voltage terms resulting from the motions in the y-z plane, we can write general
voltage equations in matrix form for the 2n-loop system. Since the currents in the upper
loops equal those in the lower loop but have the opposite spatial orientation, the system
has only n-unknown currents, and we can apply a connection transformation to the
system as discussed previously. Using Eq. (16) we can determine the transformation
submatrix for the guideway coils Tg from the current relations, ij = -intj (j=1,n) as

follows:

T, . (27)
1 1]

Since the transformation is only applied to the guideway null-flux coils, the
transformation submatrix for the vehicle coils Tv is a unit matrix. Using Egs. (2), (15) to
(20), and Eq. (27), we obtain the voltage equations in matrix form for the null-flux coil
system after transformation as

Ri Lll L12 ' oo Lin .
R2 0 1 L L22 L2n ... il
12 21 ll_]
0 dt
RnJ L, v Lnn
Gii GI2
11
G21 G2 12
(28)
Gnl

where ij (j=1,n) is the current in the j” null-flux coil and the prime is omitted because
the currents in a 2n-loop system are equal to that in a n-null-flux-coil system. The

(=L m) are the currents in the superconducting coils. The individual elements in the
coefficient matrices after transformation are given as follows:



11

Rj — Rj + Rn+j J — l,n (29)
Lij = (Lij + Loti,ntj) " (Lijntj + Lj,nti) {=1nan(lj = 1)n (3Q)
Gjj = Gij - Gnti,j i=Lnandj=1m (31)

where the prime quantities in the left-hand side represent the lumped-circuit

parameters of the null-flux coil system. Rj is the resistance of the jth null-flux coil, Ljj is

the mutual inductance between the ith and jth null-flux coils, and Gjj is the derivative of
the mutual inductance between the 1™ null-flux coil and the jib superconducting coil.
The right-hand side represents the parameters before transformation. Thus, Rj and Rntj
are the resistances in the upper and lower loops of the jtb null-flux coil respectively, Ljj (i
= 1,2n and j = 1,2n) is the self or mutual inductances between the individual loop coils,
and Gjj and Gntij are the derivatives of the mutual inductances between the upper and

the lower loop of the itb null-flux coil and the jth superconducting coil respectively. Ifwe
assume all loops of the null-flux coil to be identical, Egs. (29) and (30) can be simplified
as follows:

Rj =2Rj=2R (32)
Ljj _ 2(Ljj-Lj ntj) (33)

Using Egs. (31) to (33), we can rewrite Eq. (28) in terms ofthe individual loop-coil
parameters as follows:

R ii Ln-Ljntl Li2-LIn+2 Lln Li2n il
R h L21-L2,n+l L22-L2,n+2 L2n~L202n 4 12
. ' dt
RJ .Lni LnnH Lnn Lni2n -in -
GIlI-Gn+1,1  GI2-Gn+i,2 " Gim-Gn+tim "I
vx G21-Gnt2,1  G22-Gn+2,2 G2m"Gn+2,m 12
2
Gni-G2n,1 o Gnm"G2n,m  Jm.

Several important points should be noted in Eq. (34). First, the currents induced in the
null-flux coils are due to the speed voltages in the right- hand side of Eq. (34). The speed
voltages are given by the product of the vehicle speed vx, superconducting coil current |j
(j=1,m), and the derivative of the mutual inductance between the moving vehicle coils
and the stationary guideway coils. This means that the suspension force depends upon
the product ofthe above three factors. Secondly, by comparing Eq. (34) with Eq. (21), one
can show that the currents induced in the null-flux coil guideway are much smaller
than that in the loop coil guideway for given superconducting coil currents and vehicle
speeds. Equation Eq. (34) shows that for the best situation, (which assumes the



superconducting coils to be far away from the null-flux equilibrium point, that is,
Ly»Lntij and Gy» Gntjj), the current induced in the null-flux coil guideway is only
about one-half of that in the loop-shaped coil guideway because the speed voltage term in
the right-hand side of Eq. (34) is about one-halfofthat of Eq. (21). From the view point of
the lumped electric circuit parameters, the resistance and the self-inductance in each
null-flux coil are two times larger than that in a single loop coil. In addition, the
currents may be further reduced due to the reversed connection between the upper and
lower loop coils which would result in a negative contribution from their mutual
inductance. Both factors are observed in Eq. (34). Thus, we can conclude that the
suspension forces in the null-flux coil guideway are much smaller than that in the loop-
shaped coil guideway.

The three-dimensional magnetic forces, the longitudinal magnetic force Fx, the
null-flux lift Fy, and the vertical guidance force Fz are obtained from Egs. (6) to (7), and
(31) as follows:

n m PMij  3Mn+ii ] 35
Fx EE 3x dx ( )
i=1 j=1
; HE é pPMij OMntiij (36)
y i = . dy dy .
n m PNMNij 3 Mn+i, j (37)
bz E E dz dz

Equations (35) to (37) illustrate that all magnetic forces in the null-flux coil guideway are
determined by the difference of the forces acting on the upper loop and the lower loop
coils. All magnetic forces vanish at the null-flux equilibrium point, as expected.

CONTINUOUS SHEET SUSPENSION

A continuous sheet guideway is one of'the basic levitation methods for
electrodynamic suspension maglev systems. The repulsive levitation force is generated
by the interaction between the superconducting coils aboard the vehicle and the eddy
currents induced in the conducting sheet. The computation of lift and drag forces for
continuous sheet guideway is discussed in the literature (refs. 14 and 15). In particular,
combining the Fourier transformation method with a numerical approach seems to be a
powerful method. Most of these methods, however, neglect edge effects due to the finite
width ofthe guideway and are based on steady state analyses.

When the dynamic circuit method is applied to a continuous sheet guideway, it
divides the plate or the sheet conductors into many zones as shown in Fig. 4, each of
which carries a different current. The circuit parameters for every conductmg zone are
then determined, and the system of equations is formed. The number of conducting
zones is determined by the need for accurate computation. When the current
distribution is known by solving the system of equations, the performance of the system
can be calculated. When the circuit parameters are evaluated on the basis ofa finite



length of the conducting zone in the y direction, the edge effect of the guideway is taken
into consideration.

If we assume an m superconducting magnets moving above a conducting sheet
guideway which is divided into n conducting zones, we can write the voltage equations
for the sheet guideway in matrix form as

Ri 11" In Ln .+ Lin " " st !
R2 o h . L21 122 L2n d A2 | sl
0 dt
Rn. -in- - Lni o « Lom- -in. . Vsn.
Gn GI2 + Gin
G21 G622 G2m (38)
Gnl v Gnm

where Rj and Ljj (ij=l,n) are the resistances and inductances of the conducting zones,
and Gjj is the derivative of the mutual inductance between the ith conducting zone and
the jth superconducting coil. In Eq. (38) a column voltage matrix [Vs] appears which
represents the unknown voltages across the finite width of the conducting sheet. We
may call this a side-voltage which does not exist in either the loop-shaped coil guideway
or the figure-eight-shaped coil guideway. To solve the currents induced in each
conducting zone, two additional conditions must be imposed. First, the total current

flowing in the conducting sheet must be zero. Second, side-voltages across all
conducting zones must be equal, that is

il +142 +is +........ +in-i +in - 0 (39)
and
vs! =vs2 =......... = Vsn.i = Vsn = Vs (40)

Thus, Egs. (38) to (40) involve n+1 equations. For given initial current conditions, we can
solve the nt+1 equations as a set of coupled linear equations for n unknown current
derivatives and one side-voltage Vs. The currents in the conducting zones at time t are

obtained by adding di/dt At to the currents at t-At as shown in Eq. (22). Continuous
iterations will determine the currents in all the conducting zones as a function of time
or displacement. Following the solution of these currents, we are able to find all
magnetic forces acting on the superconducting coils as given by Eqgs. (6) to (8). In the
continuous sheet guideway, Fx is the longitudinal magnetic force, Fy is the lateral force
due to the edge effect in the finite width guideway, and Fz is the repulsive suspension
force.

NUMERICAL EXAMPLES

Several computer codes for different guideway options have been developed based
on the model discussed in this paper. Numerical examples are given only on the figure-
eight-shaped coil suspension because of the limited length of this paper. Table 1 shows
the dimensions of a superconducting coil and the null-flux coils used as numerical
examples. A computer simulation is performed on a single superconducting coil



moving above a null-flux coil guideway with a 20-cm equivalent air-gap, as shown in
Fig. 2. The time-averaged null-flux lift, magnetic longitudinal force (which equals the
magnetic drag force), and the horizontal guidance force are shown as functions of the
vertical displacement in Fig. 5. This figure shows that, as expected, all time-averaged
forces disappear at the null-flux equilibrium point, and that they are symmetrical about
the axis y=0. Fig. 6 shows the time-averaged forces as a function of vehicle speed from
which one can see that the lift-to-drag ratio is about 20 at a high speed, and that a drag
peak appears at 20 m/s. This implies that the dimensions of the null-flux coils may be
optimized; for instance, the resistance of the null-flux coil may be reduced. Two options
may be considered for the reduction of the coil resistance: one is to increase the cross-
section of the aluminum coils, and the other is to use a copper conductor for the null-
flux coil guideway.

Force fluctuations associated with the null-flux coil guideway are shown in Fig. 7,
which shows that all forces fluctuate around their average values. Typical fluctuations
for the null-flux lift and the horizontal guidance forces are about 10%. The frequency of
the fluctuations is determined by the vehicle speed divided by the average length of the
null-flux coil. Thus, for v=67 m/s and a coil length of 0.55 m, the frequency is 122 Hz.

Table 1 Dimensions of Superconducting Coils and Null-flux Coils

Superconducting coil

length 1.5 m
width 05 m
current 550  kA-T
Figure-eight-shaped null-flux coils
length 05 m
height/loop 035 m
gap between upper and lower loops  0.05 m
gap between null-flux coil 0.05 m
cross-section 9 cm?2
material aluminum
Equivalent Air gap 20 cm
CONCLUSION

Dynamic circuit theory, as applied to the maglev problem, treats all magnetic
forces acting between components of a maglev system as arising from changes in
magnetic energy stored in that system. This paper shows that mathematical models
based upon this theory can be readily constructed to represent moving vehicle magnets
interacting with stationary conductor arrays distributed on a guideway. Models of three
types of guideway conductors were considered in order to demonstrate the utility and
versality of the approach. Very general expressions were given for the forces between
vehicle and guideway components for all three types of guideway conductors. This
showed that, in general, single-loop conductors provide larger lift force than null-flux
loop conductors. Numerical results of computer codes based on the mathematical
model of a null-flux loop guideway conductor array were also given. In conclusion, the
dynamic circuit theory provides a powerful approach to analyzing complex and
heretofore difficult to handle problems involved in maglev system design.



Fig. 1 A Sketch of Loop-shaped Coil Suspension

Fig. 2 A Sketch of Figure-Eight-Shaped Coil Suspension
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Fig. 3 Dynamic Circuit Application to the Figure-Eight-Shaped
Null-Flux Coil Suspension
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Fig. 4 Dynamic Circuit Theory Application to the Finite Thickness
and Finite Width Continuous Sheet Guideway
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Fig. 5 Time-Averaged Null-Flux Lift, Magnetic Drag, and Horizontal Guidance
Forces vs. Vertical Displacement with a Vehicle Speed of 67 m/s
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Fig. 6 Time-Averaged Null-Flux Lift, Magnetic Drag, and Horizontal Guidance
Forces vs. Vehicle Speed with 11-cm Vertical Offset
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Fig. 7 Force Pulsations in Null-Flux Coil Suspension System
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