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FOREWORD

The Shippingport Atomic Power Station located in Shippingport, Pennsylvania was
the first large-scale, central-station nuclear power plant in the United States
and the first plant of such size in the world operated solely to produce elec-
tric power. This program was started in 1953 to confirm the practical applica-
tion of nuclear power for large-scale electric power generation. It has
provided much of the technology being used for design and operation of the
commercial, central-station nuclear power plants now in use.

Subsequent to development and successful operation of the Pressurized Water
Reactor in the Atomic Energy Commission (now Department of Energy, DOE) owned
reactor plant at the Shippingport Atomic Power Station, the Atomic Energy Com-
mission in 1965 undertook a research and development program to design and build
a Light Water Breeder Reactor core for operation in the Shippingport Station.

The objective of the Light Water Breeder Reactor {LWBR) program has been to
develop a technology that would significantly improve the utilization of the
nation's nuclear fuel resources employing the well-established water reactor
technology. To achieve this objective, work has been directed toward analysis,
design, component tests, and fabrication of a water-cooled, thorium oxide-
uranium oxide fuel cycle breeder reactor for installation and operation at the
Shippingport Station. The LWBR core started operation in the Shippingport Sta-
tion in the Fall of 1977 and will finish routine power operation on October 1,
1982, After End-of-Life core testing, the core will be removed and the spent
fuel shipped to the Naval Reactors Expended Core Facility for detailed exam-
ination to verify core performance including an evaluation of breeding
characteristics.

In 1976, with fabrication of the Shippingport LWBR core nearing completion, the
Energy Research and Development Administration, now DOE, established the
Advanced Water Breeder Applications (AWBA) program to develop and disseminate
technical information which would assist U. S. industry in evaluating the LWBR
concept for commercial-scale applications. The AWBA program, which is
concluding in September, 1982, has explored some of the problems that would be
faced by industry in adopting technology confirmed in the LWBR program.
Information already developed includes concepts for commercial-scale prebreeder
cores which would produce uranium-233 for light water breeder cores while
producing electric power, improvements for breeder cores based on the technology
developed to fabricate and operate the Shippingport LWBR core, and other
information and technology to aid in evaluating commercial-scale application of
the LWBR concept.

A1l three development programs (Pressurized Water Reactor, Light Water Breeder
Reactor, and Advanced Water Breeder Applications) have been conducted under the
technical direction of the Office of the Deputy Assistant Secretary for Naval
Reactors of DOE.

Technical information developed under the Shippingport, LWBR, and AWBA programs
has been and will continue to be published in technical memoranda, one of which
is this present report.
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ABSTRACT

A Finite Element Procedure for Calculating the
Three-Dimensional Inelastic Bowing of Fuel Rods

An incremental finite element procedure is developed for calculating
the in-pile lateral bowing of nuclear fuel rods. The fuel rod is modeled
as a viscoelastic beam whose material properties are derived as perturbations
of the results of an axisymmetric stress analysis of the fuel rod. The
effects which are taken into account in calculating the rod's lateral
bowing include: (a) lateral, axial, and rotational motions and forces
at the rod supports, (b) transverse gradients of temperature, fast-neutron
flux, and fissioning rate, and (c¢) cladding circumferential wall thickness
variation, The procedure developed in this report could be used to form
the basis for a computer program to calculate the time-dependent bowing as
a function of the fuel rod's operational and environmental history.,
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A Finite Element Procedure for Calculating the
Three-Dimensional Inelastic Bowing of Fuel Rods

(AWBA Development Program)

S. E, Martin

I, Introduction

In most commercial nuclear power reactors, cylindrical or amnnular fuel
pellets are stacked within long closed-ended metal tubes, called the cladding,
which isolate the fuel from the coolant. Such a fuel-cladding assemblage
constitutes a fuel rod. Within the reactor core, a fuel rod is held in
position at intervals along its length by supports, usually referred to as
grids. During normal reactor operation, various factors can cause the fuel
rod to bend, or bow, laterally, This bowing can be induced by transverse
temperature gradients in the fuel rod, transverse fast-neutron flux gradients,
axial loads on the fuel rod, cladding wall thickness circumferential
variations, and grid support motion.

A method for calculating the time-dependent two-dimensional inelastic
bowing of fuel rods was developed in [1]* and implemented in the ROBOT
computer program [2]. The analysis was two-dimensional in the sense that
it was assumed that the rod configuration and displacements were restricted
to a single plane. 1In the method developed in [1], the rod lateral
deflection in each span is approximated by a polynomial and the deflection
is solved for using the Galerkin method [3]. To perform a rod bowing analysis,
the analyst first runs the CYGRO computer program [4] to calculate the
axisymmetric stresses, temperatures, and material states within the fuel rod
as a function of time., This information is then used by the ROBOT computer

program to calculate the time~dependent fuel rod bowing.

The axial forces in an axially restrained fuel rod are related to
the lateral deflections of the rod because bowing tends to shorten the
chord length of the rod. Although the assumption that the bowing is two-

dimensional may sometimes be a good approximation, in general the bowing

* Throughout this report, numbers in brackets denote items in the list of
References. Numbers in parenthesis denote the equations included in the
text.
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is three—dimensional in nature; that is, the rod is deformed into a space
curve which cannot be contained in a single plane, In this case the axial
shortening of the rod with bowing depends on both components of the lateral
deflection and a single-plane analysis of this type of problem does not
accurately model the axial-lateral interaction,

In this report the analysis developed in [1] is extended so that
three-dimensional bowing can be analyzed. Both components of the rod's
lateral deflection are calculated simultaneously and therefore the
interaction between the axial displacements and the lateral displacements
is more accurately modeled., The analysis developed here forms the basis
for a computer program to calculate fuel rod bowing. In order to simplify
the analysis and significantly reduce the computer run time, the variational
method used in [1] is replaced here with a finite element formulation. The
computer run time should be reduced because the structure stiffness matrix which
is obtained is symmetric, positive-definite, and narrowly banded. This
means that the structural stiffness equations can be rapidly solved using
a Cholesky equation-solver [5]. In addition to the above modifications, the
analysis is extended so that the bowing of fuel rods containing duplex fuel
can be analyzed. With duplex fuel, the fuel pellet is generally made of two
materials —— an annular or cylindrical pellet consisting of one material
surrounded by an annular pellet made of another material, This type of fuel
is currently under development for use in water breeder reactors.

The rod incremental finite element equations are formulated in Section IIL.
When solved, these equations determine the time-dependent lateral and axial
deformation of the fuel rod in terms of the support motions and the transverse
fast-neutron flux and temperature gradients. These gradients, and the support
locations and motions, would be user-supplied input to a computer program based
on this method.

To formulate the incremental finite element equations, it is necessary
to know the incremental moment=-curvature and axial force-strain relations of
the fuel rod. These relations can be derived from a knowledge of the fuel rod
material properties, the axisymmetric temperature distribution, and the
axisymmetric state of stress and deformation in the fuel rod, This information
is obtained from a data file written by the CYGRO computer program and is generated
prior to performing the rod bowing analysis. The calculation of the fuel rod

moment-curvature and axial force-strain relations from this data is described in
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Section III, The moment-curvature relations also contain terms which represent
moment-free curvatures which can be induced in the fuel rod by a number of
different mechanisms, In Section IV, all such mechanisms which are currently
known are discussed and expressions for the corresponding induced curvatures
are given.

In general, the initial free shape of a fuel rod is not straight and it is
necessary to fit the initial shape of the rod to a set measured deflection data.
A procedure for obtaining a modified least-squares fit to the data using the
finite element shape functions is given in Section V. The advantage of the new
method is that there are very few restrictions placed on either the number or

the locations of the data points.
Notation

In what follows, both matrix and matrix shorthand, or direct, notation will
be used. For example, a will denote that the quantity a is a vector, or one-
dimensional matrix, and a will denote that a is a matrix of more than one dimension.
E? will denote the transpose of the matrix'g and‘gn1 will denote its inverse. A
bending moment is designated M° if it tends to cause bending in the x=-z plane and

designated W if it tends to cause bending in the y-z plane.

II., The Finite Element Equations

In this section the method of virtual work is used to derive the incremental
finite element equations. This method is equivalent to the Galerkin method used in
[1] and is somewhat more intuitive., To apply the method of virutal work, expressions
for the rod's external and internal work rates must first be derived from the rod's
equilibrium differential equations, After this is done in Section A, the incremental
finite element stiffness equations are formulated in Section B and the element
assembly procedure is described in Section C. Section D discusses the imposition
of boundary conditions and Section E outlines the procedure for back-calculating

the stresses and strains in the element.

A, The Energy Equation

In this analysis, the fuel rod is modeled as a viscoelastic beam which is
supported at discrete points along its length., Figure 1 shows the forces and
moments which act on a differential element of the beam. The z direction is taken
to be along the beam and the x and y directions are transverse to the beam.

Figure 1 also indicates the directions which are taken as positive for the various

forces and moments. By summing the appropriate forces and moments to zero, we obtain
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-ty
5"+ <=0 , (2.1)
s+ =0 , (2.2)
MH* + s¥- = 0 , (2.3)
o)+ s - ™= 0 , (2.4)
™ + q“=0 , (2.5)

y and qz

where M* and @ are the moments acting within the beam, qx, q
are the distributed forces acting on the beam, u and v are the x- and y~-
displacements respectively, T is the axial force, s* and Sy are the x-

and y-direction shear forces respectively, and a prime denotes differentiation
with respect to z. From Equations (2.1)-(2.5), the differential equations

of equilibrium can be written in the form

Z .

T + & - " - ¢%” = 0 (2.6)
y
TVIA + q - (}/Iy)” - qzv) - 0 (2.7)
- Z
T + ¢ = 0 (2.8)

To obtain the energy rate equation, multiply (2.6) by ﬁ, (2.7) by
§, (2.8) by %, and add to obtain

Tu”” u + qxﬁ - M-t U+ TV v+

qy‘.,_ (My)"\.f—qzv'\.r+T'V:7+qz€7=O (2.9)

where w is the z-direction displacement and where a superposed dot denotes
differentiation with respect to time. After some manipulation, Equation

(2.9) can be written in the form
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d

e [SXG + MU+ 87y + Wv” + T&] + [qxﬁ + qy§ + qz@]

X

= M0 + Wy + Tel (2.10)

where € is the axial strain in the rod and is given by
- 2 -
e = v +EwHi+den? (2.11)

Equation (2.11) shows that the axial strain in the rod depends upon both
the axial and the lateral displacements. If the z-displacements are zero,
the lateral displacements can still induce an axial strain in the rod.
Thus, Equation (2.11) represents a nonlinear coupling between the axial
and lateral displacements.

We now consider a finite segment of length £ and integrate

Equation (2.10) over this segment to obtain

3
[0 + ©9” + 7v + Wv* + Tw] .

,Q, . . .
+ fo [qxu + qu + qu] dz

= J’f)’ [MX'[_;” + M ,\;AI + T.e] dz . (2.12)

The left—-hand side of Equation (2.12) represents the work rate of the
external forces acting on the rod segment. The first term in brackets
represents the work rate by forces and moments applied at the ends of the
rod segment and the second term represents the work rate of the distributed
external forces, The right-hand side of Equation (2.12) is the internal
work rate, If we define the stress and strain* to be the vectors ¢ and €

given by

* Note that the quantities referred to here as "stress'" and "strain'" are not
stresses and strains in the usual terminology of solid mechanics. These
terms are used because the quantities defined here play the same role in
the finite element scheme developed here as the usual definitions of stress
and strain play in a finite element model of a solid continuum.
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-6
Mx_1 u*’

o = ||, ad e = | v |, (2.13)
T c

the internal work rate can be written

L
. I T
Woae = o E0dz (2.14)

The external work rate can also be expressed more compactly in

matrix form as

. _sT % oT
W, = BE+ [ UDdz (2.15)
where
B x
u
Uu = v = y
W z

and where P and F are vectors of generalized displacement and force having

components defined by

= u at left end,

Pl

P2 = gy " .

P3 = v " ,

P4 = v* " ,

P = w " , \ (2.17)
Pe = u at right end,

P7 = u’ " R

P8 -y " s

P9 = v " ,

P = w 11

=
o
-
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-7-
and
X
Fl = F at left end ,
X
F, = M " ,
F3 = Fy " s
F4 - My " ,
F. = F° " , (2.18)
> X
F6 = F at right end,
F,oo= M " ,
y "
F8 = Fy s
= "
Fy Mz s
= "
FlO F .

The positive directions for the applied external forces and moments are shown
in Figure 2*.

Using the expressions (2.14) and (2.15) for the internal and
external work rates, the energy rate equation, Equation (2.12), can be

written

Eat bz = P Tz (2.19)

B

This equation expresses the balance between the internal and external

energy rates for quasi-static processes.

B. The Element Stiffness Equation

In this section the expressions for the internal and external

work rates derived above are used in conjunction with the assumed

displacement shape functions to derive the element stiffness equation. It

is assumed that the rod is divided into a set of contiguous segments
which are the finite elements. The two endpoints of each finite element

are its nodes. The set of shapes which the rod segment can actually assume

* To obtain (2.15) from (2.12) it 1s necessary to keep in mind that internal
forces and moments acting on the left end of the rod segment have a
positive sense which is opposite to the positive sense assumed for the
external forces and moments,
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-8

can be regarded as an infinite~dimensional function space (a Hilbert
space). In the finite element method, this infinite~dimensional space is
approximated by a finite~dimensional space. That is, it is assumed that
the shape of the finite element can be written as a linear combination of

a finite set of basis functions called shape functions. 1In particular,

it is assumed here that the shape of the finite element can be approximated

by

or

U =sp

where U and P are defined by (2.16) and (2,17), and where

5, = 1—3(z/2)2 + 2(z/l)3

2 3
5, = 2(2/%) - 22/9% + (2/9)°)
s, = 32/ - 2(2/0)°
S, = 2 - (2/0)% + (/03]

(2.20)
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where £ is the element length and z is a local coordinate which assumes
a value of zero at the left node and a value of 4 at the right node.

The functions S1 through S, and G, through G,, are called the shape

functions and the matrix‘§%is calied the sha;Z matrix. The functions
S1 through S4 are the Hermitian polynomials and are commonly used in
beam-type problems [6].

In most problems of practical interest, the axial strain in
the fuel rod will be nearly uniform over lengths which are modeled by a

single finite element. Therefore, the axial shape functions G, through

1
G10 will be defined so as to make the axial strain uniform within the
element., To derive the forms of these functions, we assume that the axial
strain ¢ given by Equation (2.11) is uniform (i.e. does not vary with z)

and solve for w’ to obtain
1 2 2
wilz) = ¢ - 5 Lwh™ + "7]

To solve for the axial displacement w(z), we integrate this equation with

respect to z to obtain
- L2 2
wz) =ez-3 [T + &9 d +x (2.21)

where k is the integration constant. Using the shape functions for the

. ’ .
lateral displacements, u and v’ can be written

4
u =

') ’ 4
S . P Py z S2 . . ( . )

10 10
1=

p i 1=1

where Sji represents the shape function in the jth row and ith column
of the shape matrix, Substituting these expressions for u’ and v’ into
Equation (2.21) gives

10 10

w(z) =ez=- £ I A,.P.P. +k (2.23)
i=1 j=1t 3t J
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where the matrix Aij is given by

4

1 7 ' ’
Ay =3 JIsyy S5 + 8y 5551 dz . (2.24)

The w displacements at the ends of the element are the axial nodal displacements
P5 and PlO’ that is

w(0) = and w(t) =P

P5 10 °

Substituting z = 0 and z = 4 into Equation (2.23),we get the two equations

10 10
P,,=¢e¢d= ¥ T A,.() P, P, +k
10 i=1 j=1 ij i7]

where the fact that Aij(o) = 0 has been used. From these two equations we

can solve for the strain ¢ and the integration constant k to obtain

k=P (2.25)

10 10
= (1/2) [Plo - P5 + 121 321 Ai,(L) Pi Pj] . (2.26)

()
I

Substituting these back into (2.23), we get

10 10 "
w(z) = (1/4) [PIO - P5 + .§ .é A, (L) Pi Pj] z
i=1 j=1

10 10
- X Z A, (z)P,P,_+P
i3

5 - (2.27)
i=1 j=1
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This equation can be written in the form

10
w(z) = ¥ G, P, (2.28)
i=1 *

where the Gi functions are the axial shape functions and are given by

10 10
G,(z) =(z/4) A, () P, - T A, (z) P, if i #5 or 10
1 j=1 1] ] j=1 1] J
Gs(z) =[1 - (z/4)] , Glo(z) = (z/L) .

Use of these axial shape functions ensures that the axial strain within
the element will be uniform regardless of the lateral deflections.

Using Equation (2.20) and Equation (2.26), the strain vector
defined by (2.13) is given by

E =

=E)

P (2.29)

-~

where’E is the strain matrix, given by

Sll Sii 0 0 0 Sol Sla 0 0 0 ‘1
2 4
- ¥ rd 4 s ¥}
B=|o0o o ss 0 0o o sIs/o0 (2.30)
LJ1 Iy I3 J, Js T I, g Jg Jyg

where
10
= Z: 3
Jj /L) 1 Aij(L) Pi if j #5 0r 10 (2.31)
J5 =~ (1/2) , JlO = (1/4) . (2.32)
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The strain rate vector is given by

=3P (2.33)
where B is the strain rate matrix, given by
iy ‘e &) ¢ 0 0 0
S S 0o O 0 83 S4
2 24 ¢’ 'y 2.34
B = 0 0 S1 82 0 O 0 Sy S4 0 ( )

Substituting (2.20) and (2.33) into the energy equation, Equation

(2.19), gives

o T L &T T g sT T
= d
PE+ [ [P'S bl dz=[ [} a]dz,
which can be written
T (F + [2 s dz ~ [* 8T 5 dz] = 0 (2.35
_ — O =~ — Z O ~ g z —_— L4 )

By the principle of virtual work, 2 can be varied independently of the term

in brackets in (2.35). This implies that the term in brackets must equal

zero, Therefore, we have

F=fl8od-[lsTpas . (2.36)
This equation relates the nodal forces on the element to the stresses which
exist inside the element.

Our goal here is to relate the nodal forces F to the nodal
displacements P. The usual procedure for accomplishing this is to first
relate the stress in Equation (2.36) to the strain using the material
stress-strain relation, and then relate the strain to the nodal displacements
using Equation (2.29). However, as is shown in Section IIIL, the

constitutive equation (stress—strain relation) is incremental and of the form
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Ag=DAgeg+E (2.37)
where a A indicates increment and D and E are matrices which do not depend
upon either A 0 or A ¢, To use Equation (2.37) in (2.36) we must also put
(2.36) in incremental form, To do this, expand (2.36) in a Taylor series
and retain only firste-order terms to obtain
Yoo bog b
F + AF = P
E,+0F= [, 8,0, dn+ [ B 0o dz+ [ 080 dn
L [
T T
Jog by az= 1 5"t

which, after re-arranging becomes

2 g 2
T T T

AF = -

F J, B, b0 az + [ ABT o dz - f ST b dz + ¢ (2.38)
where

% )
_ T T
c = J B g dz -~ [ s" b dz -F_ . (2.39)

A zero subscript indicates that the quantity 1s evaluated at the start
of the increment. The C vector can be interpreted as a force correction
term which corrects for any force imbalance at the beginning of a time step.

The second integral on the right-hand side of (2.38) can be

written
% T
J 28" 0 4z = x; ap (2.40)
where
L
EC = (2/%)‘5 Jo To dz (2.41)

where To is the axial force, and wherelé is defined by (2.24). The matrix

EC is called the geometric, or initial stress, matrix,
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We now assume that the incremental constitutive equation

%
of the material is known in the formc
Ao = D Ac +E., (2.42)

When (2.42) is substituted into the first integral on the right-hand side
of (2.38), that term becomes

L L
T T T
foBobode=f B Dbcdzt [ B Edz . (2.43)
From Equation (2.33) we obtain
A'E = B AP . (2.44)

When (2.44) is substituted into (2,43) we obtain

L A L
T _ T T

JoBo b de = U B, DB, de) bR+ [, B E d (2.45)
or

. T = . T

] B Ao dz=X2AP+ [ B Edz (2.46)

0O ~0 — ~ 0 L0 —
where

RS S AN A (2.47)

The matrix K is called the initial displacement matrix or large displacement

matrix [6].
When (2.46) and (2.40) are substituted into (2.38), we obtain

£
- - T
AF = (K+K)AP+ [ B Edz
. T
- [, s dbdz+¢C (2.48)

* The calculation oflg and E will be described in Section III,



WAPD-TM~1498
~15=

or

AF = KAP +H . (2.49)
This set of ten equations represents the element incremental stiffness
equations, The matrix K is the incremental stiffness matrix and the
vector H is the nodal force increment which would occur even if there
were no increment in the nodal displacements.

The integrals appearing in Equation (2,48) and the integrals which
define g; 56 and C are all easily evaluated using Gaussian
quadrature. The stiffness matrix K and force vector H are calculated
for each element starting with the~first element., Because the stiffness

matrix is symmetric, not all components need to be calculated.

C. The Global Stiffness Equations — The Assembly Procedure

It will be shown in this section that the global, or structure,

stiffness equations can be written in the form

K; AP + H, = AF, (2.50)

where K, is the symmetric global stiffness matrix, AP is the nodal parameter

incremegt vector for the entire structure, EG is an initial force increment
term, and AEG is the net external force increment on the nodes., As each
element stiffness matrix and force vector are generated, they are used to
construct the global stiffness matrix and global force vector.

Within each element, the nodal parameters are numbered from 1 to
10. The element parameters are also numbered according to a global numbering
system. In the global numbering system, the parameters of the first element
correspond to global parameters 1 through 10. The 10 parameters of the
second element correspond to global parameters 6 through 15, etc.

Suppose now that the stiffness matrix and the force vector for the
first element have been determined. The stiffness equations for that element

will be of the form
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1

[xbypap g+t =part (2.51)

1
where K* is a 10x10 matrix and the components of AP, E} and AE} are
numbered from 1 to 10 corresponding to the local numbering system. We
can now express the above set- of equations using the global numbering

system to get

L
o
L = - o
=

R R & e LV 10 10
o (2.52)

_ 1L |

Equation (2.52) says exactly the same thing as Equation (2,51); the only

difference is that the parameters have now been assigned their global

numbers, which for the first element, are identical to the local numbers.
Now consider element number 2, The element stiffness equations

will again be of the form

(K21 (AP 1+ [H] = [8FP ) (2.53)

but now, the parameters which are labeled 1 through 10 locally will be
labeled 6 through 15 in the global system. Therefore, in the global

system, Equation (2.53) becomes
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- . - - -
0 JI_ 0 P 0 | 0
| f AP H'z' E‘“g—
2
oK o : : '
( ' 2 2
. e — P+ M) = s (2.54)
l ' ]
0 { \
! '
5 0 | 0 ' 0 0
|
! AP
- I ' _J 5N . L

Equations similar to (2.52) and (2,54) could be written for all of the elements.
The objective is to solve for the net external force acting on the nodes.

The forces E} given by equations such as (2,52) and (2.54) are the forces
exerted on the element i at its nodes; thus, the forces f} can also be
interpreted as the negatives of the forces exerted on the nodes by the
elements, If the node is to be in equilibrium, the external forces acting
on the node must be equal to the sum of the negatives of all other forces
acting on the node. Therefore the global stiffness equations are obtained by
simply adding together all of the element stiffness equations written in global
form. For a structure with five elements, this will produce a matrix

stiffness equation in the form:

— e B ot -‘ e — = et
K, AP, Hy AF
-~ \ 1 1
0 1
KZ [} 1
- 210 f10 8F10
Ky AP g
K 1
U 1
0 ' \
| \
t \ !
K
o - SRyl Ly =" 30
K, 8P + H, = AF. . (2.55)
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Thus, in setting up the KG and EG matrices there will be an overlap of

five parameters between elements. The K, matrix will be symmetric and

G
have a half-bandwidth of 10. This matrix can be stored in a compressed

form; the exact form will depend upon the equation solver used.

D. Boundary Conditions

Equation (2.55) is a relation between the nodal force increments
and the nodal displacement increments. To specify a particular type of
support or loading on the structure, some of the displacement increments
may be specified, some of the force increments may be specified, or a
relation between some of the force increments and displacement increments
may be specified. Figure 3 shows a representation of the various types of
boundary conditions which can be used to model the rod supports. For simplicity
only the x-z plane is shown. At support number 1 force—type* boundary
conditions are assumed for all degrees of freedom, while at support number 2
displacement boundary conditions are applied. At support number 3,
flexible boundary conditions are applied to all degrees of freedom and a
support axial displacement is alsoc assumed., At support number 4 a frictional
boundary condition is applied in the axial direction, a displacement boundary
condition is applied in the x-direction, and a rotational force (i.e. a
moment) boundary condition is applied in the x-z plane.

We now consider how Equation (2.55) can be modified so as to

enforce the various boundary condition types.

(a) Specified Force Boundary Condition

This is the easiest type to enforce. The force increment
is merely substituted into the appropriate row of the AEG matrix, All

other components of AF

are initiall ero.
F. ally zero

* "TPorce" and "displacement" are used in a generalized sense here., They
may refer to a moment and an angle for some of the degrees of freedom.
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(b) Specified Displacement Boundary Conditions

In this case, one of the equations of (2.55) is replaced by
an equation which simply states that the appropriate displacement increment
equals the specified value. If the ith displacement increment is specified,
a simple way to do this is to multiply (KG)ii by a very large number, say
L. Next set Gh)i to zero and set (AFG)i to L x (specified displacement
increment). Numerically, this has the effect of setting up an equation

of the form

L x AP = L x (Specified AP

1 i)

or

APi = (Specified APi)

since the other terms in the equation will be numerically negligible.

(c) Flexible Boundary Conditions

With this type of boundary condition there will be a relation

of the form

AFi = c APi + (AFi)0 (2.56)

where Ci may depend upon P, and Fi is the force increment exerted on the

i
flexible element. This equation can be regarded as an element stiffness
equation of a flexible element joined only to the variable i. Therefore
it can simply be added to the global stiffness equations., To do this,

add Ci to (KG)ii and add (AFi)o to (gc)i.

(d) Frictional Boundary Conditions

A frictional boundary condition can be either a displacement
or a force boundary condition, depending on the magnitude of the particular
nodal force. If the force is less than the slippage force, the boundary
condition specifies that the displacement increment is zero., If the force

exceeds the frictional force, the calculation is re-~done and the nodal force
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is set equal to the slippage force. The frictional force must always

oppose the motion of the rod. 1f the displacement increment of the rod is
ever in the same direction as the frictional force, the boundary condition

is changed to again set the displacement 1increment to zero and the calculation
is re-done. Several iterations may be required before the right combination
of boundary conditions is found. To reduce the number of computations
involved in this iterative loop, the frictional boundary condition should be
inserted last. Before inserting the frictional boundary conditions, the
matrices K., H, and AF_. have been modified by inserEion of all other boundary

G’ =G =G 0

conditions., Denote these modified matrices by K., EC and AEG. These

matrices can be saved so that new frictional boundary conditions can be
easily tried if a guess turns out to be wrong. In addition, these matrices
can be used to evaluate the nodal forces at nodes which are assumed not to
slip. This procedure is discussed more fully in the next section. For
simplicity, it is assumed that frictional boundary conditions apply

only to axial displacements,

E. Calculation of the Nodal Displacement, Stress, and Strain Increments

The nodal displacement increments can be obtained by solving the
equation

* *
K_AP = (AF (2.57)

*
~G — ‘-G_HG)

where a * denotes that the quantities have been modified by insertion of
all boundary conditions., Equation (2.,57) can be solved for AP using a library
subroutine for solving equations with a banded, symmetric, positive-definite
coefficient matrix,

If the problem involves frictional boundary conditions, the
assumptions used to formulate the boundary conditions must be checked at
this time. If the slippage force has been applied to any of the nodes,
the axial displacement Increment must be opposite the direction of the
applied loads; otherwise, the assumptions must be changed and the calculation
re-done, Next, the axial nodal forces are calculated from the equation

AF, = K_OP+H

G ~G G
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L3 A
where EC andEG are the matrices which were saved before insertion of the

frictional boundary conditions., If the axial forces are such that nodes
which were assumed not to slip must have slipped, the calculation must be
re-done, This process is repeated until the correct boundary conditions
are obtained.

After the nodal displacement increments have been calculated,
the stress and strain increments at the element Gauss points can be

calculated., The strain increments are given by
Ae = B AP (2.58)

After the strain increments have been calculated, the stress increments
are easily calculated using the constitutive equation (2.42),

The procedure described above represents a single time-step
iteration. It has been found that a significant improvement in the time
integration accuracy can be achieved by using two iterations per time
step., With this method, the first iteration is performed as described
above and the average values during the time step of the nodal displacements
are approximately calculated. The stiffness equations for the rod are
re-calculated using these average values and the time step is then re-taken.
This procedure is similar to the second-order Runge=-Kutta method used in
the solution of ordinary differential equations. Because the rod constitutive
equations are not re-evaluated for the second iteration, the computer run
time will not be significantly increased by using two iterations rather

than one,

ITI, The Constitutive Equation of the Fuel Rod

The purpose of this section is to formulate the fuel rod constitutive

equation in the form

Ao =D g +E. 3.1

The constitutive equation for fuel rods containing either single-zone or
duplex fuel is modeled using a method which is essentially the same as
the method originally formulated in Reference [1], The fuel-cladding
interaction model has been slightly modified and has been extended to

account for fuel-fuel interaction in duplex fuels,
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The formulate Equation (3.1), the assumption is made that the effects
of bending do not significantly change the incremental stress=-strain
relations associated with the axisymmetric deformations of the rod. Experience
has shown that this is a valid assumption because the stress variations
due to bending are usually small compared to the axisymmetric stresses.
This assumption makes it possible to assign incremental stress=-strain
relations using an axisymmetric fuel element analysis program such as
CYGRO [4]. Material properties and material constitutive relations used

in the bowing analysis are identical to those used in CYGRO.

A. The Ring Constitutive Equations

The CYGRO computer program calculates the cylindrically symmetric
stresses and deformations in a fuel rod by dividing the rod cross—section
into a set of finite elements in the form of concentric rings as shown in
Figure 4. The stress within each ring is assumed to be constant, To
formulate the constitutive equation (3.1), it is assumed that the stresses
due to bending and support constraints can be regarded as a perturbation
of the CYGRO-calculated axisymmetric stress state.

In terms of the perturbational stress in the z direction, Sz,
the total strain rate in the z direction, é;, can be approximated by

3 € 3 &

ot _ cZ
e, = G 5 )5, 573

ez .
- ) Sz +eg, (3.2)

L] *
where €z is the creep strain rate, €z is the elastic strain rate, and

€y is the induced strain rate, The i?duced strain rate is the strain
rate which would occur even if Sz and Sz were zero and accounts for effects
such as thermal expansion, flux-induced stress-free growth, and the CYGRO-
calculated axial strain rate. The first partial derivative in (3.2) is
the zz component of the creep compliance matrix and is calculated from the
creep constitutive equations. The second partial derivative in (3.2) is
just the zz component of the elastic compliance matrix. These quantities are
calculated in CYGRO and written into a data file.

If it is assumed that plane cross-sections of the rod remain plane during

bending, the total axial strain rate in one of the CYGRO rings can be written
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tF =t + 5 rcos 8 + ky r sin 6 (3.3)

where Ky and k¥ are the curvatures of the fuel rod in the x~z and y-z
planes respectively, & is a uniform axial strain, and r and € are polar
coordinates in the plane of the cross section with r=0 at the center of
the rod and =0 along the x~axis. This arrangement is shown in Figure 5,

Combining Equations (3.2) and (3.3), we obtain

s S
z 7 _ X .y . . .
= +===R"rcos® +g’ rsine + (¢ - &, ) (3.4)
Vk Ek iz
where the notation
1 (a ecz) [ (3 eez)
s e BTG

has been used. Note that the constants V, and Ek are obtained from the
CYGRO data file. The k subscript denotes that the quantity is for the
kth CYGRO ring. We now make the assumption that the induced strain rate
can be written in the form

g, =& +-E§1 r cos 8 +-£§l r sin 8 (3.5)

.1
where ¢ 1is the uniform axial strain rate calculated by CYGRO and where

xi i
K and Ky

Kk x are the induced curvatures for ring k., This is equivalent

to the assumption that if only induced axial strains were present, plane
cross sections of the rod would remain plane. The induced curvatures are
the moment=-free curvatures caused by non-axisymmetric environmental and
structural factors such as transverse temperature gradients, transverse
fast-neutron flux gradients, and cladding wall thickness eccentricity.

The calculation of these curvatures is discussed in Section IV,
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Substitution of Equation (3.5) into (3.4) gives

(* - éii) r cos 0 + (¢ - éil) rsin 0+ (6-¢) . (3.6)

SZ
£ +
v

w
i

Integrating (3.6) over the ring cross-section gives
(3.7)

T .
ko og- &Y A

k
—_ 4 —= =
Vk Ek

is the ring cross-sectional area given by

where Ak
2 2
A = 1 (g = T

and where Tk is the axial force on the ring, given by

Multiplying (3.6) by r cos © and integrating gives
(3.8)

% + -E% - - ghr

where Ik is the moment of inertia of the ring cross-sectional area about

the y axis, given by
(3.9)

_ 4 4
Ik = (‘rr/4)(rko - rki)

X
and Mk is the x~-component of the moment acting on ring k, given by

cos O dA .

Mﬁ B fAK r Sz
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Similarly, multiplying (3.6) by r sin © and integrating gives

mo, -
ot EE = 7 - éil)lk (3.10)
k k

where Mi is the moment acting in the y-z plane, given by

y ,
Mk r Sz sin 0 dA ,

o

and where I, is again given by (3.9). Equations (3.7), (3.8), and (3.10)

k
are differential equations which characterize the behavior of a single

ring. Because the rod deflections and slopes are assumed to be small,

y

X
the curvatures Kk and K’ can be approximated by

KX - d"u
dz2
(3.11)
y d2v
K = > .
dz

To obtain the incremental equations, Equations (3.7), (3.8), and

(3.10) are multiplied by a time increment At to obtain

o X, X X (3.12)
AMi a; AT+ by
Y = y (3.13)

Yy .Y
AMk ak Ak + bk

(3.14)

z z
ATk ak Ae + bk
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]
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e

"

- B (I, % i +M;:/vk) At
- B (I %

- EkcAk & +-Tk/Vk) At
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(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Once the curvature and axial strain increments are obtained using the

finite element procedure, the moment and axial force increments can be

back calculated using Equations (3.12), (3.13), and (3.14).

The beginning=-

of-time-step values of the axial force and moments used in Equations
(3.18), (3.19), and (3.20) are obtained by keeping track of the sum of

the increments of these quantities.

The Fuel and Cladding Constitutive Equations

The total moment or axial force acting in either the cladding or

one of the fuel zones is equal to the sum of the moments or axial forces

in the rings contained in the cladding or fuel zone.

Thus, the fuel zone

or cladding constitutive equations can be obtained by summing the ring

constitutive equations to obtain

and

Z Z

ATpy = Agy Begy + By
X X X X
AMg, = Apy Axgy + By
v Y LY y
AMg; Apy BKgy ¥ By s

AT = A% Ae + B?
C [o] C C
= A% ac® 4+ BF
C C C C
aw = A a4+
C Cc C C

1,2

(3.21)

(3.22)
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where the f1, f2 and c subscripts denote "fuel zone 1", '"fuel zone 2",

and "cladding' respectively. It will be assumed that fuel zone 1 is the inner
fuel zone and fuel zone 2 is the outer fuel zone, If the fuel is single-

zone, then only fuel zone 2 is present., In the above equations the A's

and B's are given by

z z z z
A = Y a s B = 7 b
fi £1 k fi £1 k
X y , X
A., = AL, = ¥ a 1=1,2
fi fi 1 k
X X y y
B b b , B X b
fi £1 k fi £1 k
and
z  _ z z
Ao = T Boo= By
c c
X _ L.y _ X
Ac AC z ak
c
x X Y ..y
Be = % b, B, = i bk

where the notation %i and E indicates that the summation is over the
rings in either fuel zone i or the cladding, If a fuel ring is cracked on a

plane perpendicular to the z-direction, the constant VP is set to a very

~

small number for that ring, This has the effect of making the ring very weak,

thereby making the axial forces and moments in the ring go to zero.

C. Fuel-Cladding Interaction Model

The bending interaction of the fuel and cladding is assumed to take
place through a coupling element which is assumed to have an elastic

bending stiffness Ga given by

¢ = [

. l_na]z E T,0<T <1

9
£2 k "k
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and a bending viscosity given by

W = z
a Bafzvklk,ﬁago

where n and B are constants and where, again, cracked rings are ignored in the
summations., The constants ﬂa and Ba are supplied as input to the bowing

analysis program. The constitutive equations for the interaction element will be

w5 TS

a a

MZ ﬁz o

——— 4+ — =

W G “a *
a a

and the incremental forms of these equations will be

AMz = AZ AKz + Bz (3.23)

AMZ = AZ AKZ + BZ (3.24)
where

A = A7 =@

a a a

B = - (¢ MW ) At

a a a a

gy = - (¢ M/W ) At

a a a a



-29- WAPD-TM-1498

A similar type of interaction element is used to account
for the bending interaction of the two fuel zones., The bending stiffness
and viscosity for this element is defined by
b

p = 1R L

b f1

[}
I

(3.25)

and

W = B I V .
b= Bl Yk K

Again, ﬂb and Bb are user~supplied constants. The incremental constitutive

equations for the fuel-fuel interaction element will be

X X X X

N (3.26)
y - y y y

AM Ab AKb + Bb (3.27)

where

By = - (G M,/W,) At > (3.28)
y
Bz = - (G ME/Wb) At

S

If there is only one fuel zone, the constitutive equation for the fuel-fuel
interaction element will not be calculated.

The form of the rod constitutive equation (3.1) will depend upon
the interaction state of the fuel zomes and the cladding. For fuel rods with
duplex fuel, there are four possibilities given by:

(1) no fuel~fuel or fuel-cladding interaction,

(2) fuel~cladding interaction only,

(3) fuel-fuel interaction only, and

(4) fuel-fuel and fuel-cladding interaction.
For single-zone fuel, it is assumed that only states (1) and (2)

are possible. The constitutive equations corresponding to these four

states are given below.
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No fuel~fuel or fuel-clad interaction

The constitutive equations of the fuel rod will be
AMX - AX AKX + BX
c c
= A A+ B (3.29)
C C
AT = A" Ae + BT
C C
The axial strain and curvature increments in fuel zone 2 will be
x
AKfz - - (B /AfZ)
ad, = - (8.0,
£2 g2/ 8¢9 (3.30)
begy = = (BgylAgp) .
If the rod has duplex fuel, the strain increments in zone 1 will be
X X ,.X
bkgy = = (Bgy/Ag)
A - 87, /a) (3.31)
f1l f1'7f1 *
z .2
Aegy = = (Bgy/Ag)
(2) Fuel-ciadding interaction only
In this case, the rod constitutive equation will be
X X X X X XN
A A B A + B A
ac = (A% ~ £2 2] AE + [B + L2 z 2 £2,
f? + A Af2 + Aa
y A?Z A y Y 4 Bzz Ay + By A¥2 >
M = [Ac —37——————] A+ [BC v v ] (3.32)
Afz + A AfZ + A
_ z z z z
AT = [AfZ + Ac] de + [Bgy + Bc] . s
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The strain increments in fuel zone 2 will be

X X X N
X Ay X Bey - B,
Bkgy = (= X 1o = [ X ]
AY + AT, AY + A, (3.33)
y y y
A B - B
gy = bt 0 - SRR ‘
Aa + Afz Aa + Afz
Ae - Qe
£2 /

and the curvature increments in the fuel-cladding interaction element will be

MK = At - AK?Z
a (3.34)
= Yy _
AKz Ax AK¥2 .
If the fuel is dual zone, the strain increments in zone 1 will again be
given by Equations (3.31).
(3) Fuel-fuel interaction only (Duplex fuel only)
The fuel rod constitutive equation will be
at = a* AT+ B*
c c
o = A ad + B
(3.35)
AT = A% Ae +B®
c c
The strain increments in fuel zone 2 will be given by
X X, X 3
Ak, = = B2/A2
y = _ nYyaY 3.36
bk, B /A ( )
_ z z z z
Begy = = (Bgy *+ Bpy)/(Apy + Agy)
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where b'e pd
AX o X Afl Ab )
= AT e 2
2 f2 AX 4 p¥
£1 T A
y Y
AY _ Ay + Afl Ab
2 f2 YooY
At A
X X X . X
BX = x4 of1fy By Ay
2 £2 X, X
£1 7t Ay )
and
Y Y L oY LY
oY y . Br1 Ay By Ap
2 T Bgp * Yy .
AL T 4

X X X
Ay x B, = By
Ak = [ ] Ak + [——'_—‘—‘ ]
f1 Ax + Ax £2 Ax + X
f1 v A £1 v A
y y .y
y Ab y Bb Bfl
Ak = [————] 0k, + ] ]
fl Ay + y- £f2 Ay " y
£1 £ T A
hegy = Begy o

The curvature increments in the fuel-fuel interaction element will be

X X
Ak = AKfZ AKfl

Tl o X

- y y
A AKfl .

Ak Kf2 -

(3.37)

(3.38)

(3.39)
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(4) Fuel-fuel and fuel-cladding interaction (Duplex fuel only)

The fuel rod constitutive equations will be

X X X X X X
A A B A+ B. A
o R R e
Aa + A Aa + A2
y I I
A= AL+ =] A+ [B] 4 ) (3.40)
Aa + A2 AT+ A2
~ z z z z z z
AT = [Afl+Af2+Ac] Ae + [Bfl+Bf2+Bc]

where Ag, AZ, Bg and Bz and Bz are defined by Equations (3.37). The
strain increment in fuel zone 2 will be given by
AKfZ =1 X x] b+ 1 X x]
A+ A A + A
a 2 a 2
A B - B
A,sffz = 5] o+ ] (3.41)
AY + A A+ A
a 2 a 2
A = A
€y £

The strain increments in fuel zone 1 and the curvature increments 1in the

fuel-fuel interaction element are given by Equations (3.38) and (3.39).

The

curvature increments in the fuel-cladding interaction element are given by

Equation (3,34).
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The fuel rod constitutive equations given above for the four
possible interaction states are used whenever the interaction state is
unchanged during the time step., If the interaction state changes during
a time step, the elastic Interaction between the fuel zones or cladding
induces a jump in their curvatures at the beginning of the time step.

In the constitutive equations for the fuel zones, the cladding, and the
interaction elements, this curvature jump is accounted for by: (1) changing
the initial curvature used in the constitutive equation, and (2) adding

a jump term to the constitutive equation to correct the curvature increment.
In addition, if interaction is established during a time step, the initial
curvatures of the appropriate interaction element must be set. If there

is a jump § in the initial curvature of a fuel zone, cladding, or interaction

element, the incremental constitutive equation becomes

MM = A [Kl - (KO + 8] +B (3.42)

The above equation can be re-written as

M

A A+ (B = Ab)

A Ak + Bnew . (3.43)

The above equation shows how the B term is modified when the jump in the
initial curvature is known.

The curvature jumps are assumed to take place elastically and
therefore the cquations used to calculate the jumps will make use of
the instantaneous elastic bending moduli of the fuel zones, the cladding,

and the interaction elements. These elastic moduli are defined by

D = I
o : Ek Ik (3.44)
De, = ; EP Ik (3.45)
£2
Dey = b Ek Ik (3.46)

fl
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n
a

b, = 6, = [z na] ) (3.47)
nb

Db = Gb = [T——_ﬂ—] Dfl . (3.48)

The equations will also make use of the parameters Yg and

Yb’ called the contact efficiencies, which represent the ratio of the
observed curvature jumps to the curvature jumps which would be obtained

if there were perfect interaction (i.e. elastic behavior and equal curvatures
after interaction). Like ﬂa, Ba’ ﬂb and Bb’ these constants are determined

experimentally and are provided as input to the bowing analysis computer

progtram,

Because there are four possible interaction states in a fuel rod
with duplex fuel, there will be twelve ways in which the state can change.
In fuel rods containing single-zone fuel, only two of the twelve state
changes are possible. The curvature jumps to be used for the twelve
possible state changes will now be given., For convenience, a superscript
£ will denote either x~ or y~direction terms. The interaction state

changes can be visualized with the aid of the diagram shown below.

fuel-fuel

-

no fuel~fuel

interaction

3
1
4
10~

\\\‘

fuel-cladding

+
fuel-cladding
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In what follows, expressions for the jump terms are given without
derivation. These expressions can be derived by considering the displace-
ment changes which occur in a set of inter=-connected "springs' (representing
the fuel zones, cladding, and interaction elements) when the connectivity
of the system is suddenly changed. Such a system of inter=-connected
flexural springs can be visualized using an analogous set of linear springs
(or elastic elements) connected as shown in Figure 8. In this diagram,

force 1s analogous to moment and displacement is analogous to curvature.

(1) No interaction — fuel-cladding interaction

This type of state change can occur in fuel rods with either

single~zone or dual-zone fuel. In this case

3 f2 g g
s = =v_ [ 1 (k7 = «g, ) a
¢ a Df2 +D o} f2o
D
e ¢ : \
8¢ = Y lpvp ] (¢ m k) (3.49)
f2 o} o
g:
Gfl 0 J
and
£ n D., +D
o a £2 c o

(2) Fuel-cladding interaction = no interaction

This type can also occur in fuel rods with either single-zone or
dual-zone fuel.

sE g W

- - /) T
£2 2 %

= Mg,/ 8%, g (3.50)

|
=]
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(3) No interaction - fuel-fuel interaction

N
D
& f1 £ g
§ = -y, [=———] - K )
£2 b Dfl + Df2 f2o flo
D
3 £2 g g
85, = v, =] (., - K;1)
f1 b Dfl + sz f20 flo
(3.51)
s = o
c
n, D + D
£ b fl £2 £ £
K = {1-v_I 1} (x -K2.)
b b ' (D, + Dg,) £2 £1_
J
(4) Fuel-fuel interaction - no interaction
£ £ h
82 = - (1/D. ) 2
fl
1’ M
§5. = - (0../D.,) &= > (3.52)
£f2 f1' "f2 f1l °
£ -
e 70 y,

(5) Fuel=fuel interaction = fuel=fuel and fuel=-cladding interaction

l

D
2 I £ N
- Y'd (D D ) (K' - K'fz )
2 c 0
Dc
Y, (D r_— ) (k> - Kéo )
2 c o o
b ¢
Deq + Db £2 (3.53)
£ £
¢ - 581
n D, +D
2 c & £
{1~y | 137 -k
a n (D2 + Dc) o) 20 Y,
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where D2 is the fuel stiffness, given by

D = D + Efl_gh__
2 £2 Dfl + Db

(6) Fuel-fuel and fuel-cladding interaction - fuel-fuel interaction
only

For this case we have

g _ M§ (3.54)
6f2 (1/D2) % k
where D2 was defined in case (5). (
Next,

s . [ Dy, | 2 N

fl Db + Dfl £2

£ £ £
8 = 62 - &

b f2 fl > (3.55)
& £
8 = -

c (DZ/DC) 6f2 J

(7) Fuel-cladding interaction - fuel-fuel and fuel=-cladding interaction

For this case, we have

5 N
£ £1 £ £
65, = =Y, [—ai] (xf, - Kgy )
£2 b Dy + 0 f2 T “f1
D
£ 6 g 3
& =y ] (<l - kP
£1 b 1o+, (2 £1_
D
£ a £ g (3.56)
Gc —[DA+D]6f2
C a
s = &5 _ &b
a c f2
£ N, Pgg * D £ £
K = {1 -y [t O gy (ki - k2 ) J
bo b n (Dgy + Dy f2, 1,
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where D6 is given by

D6 = [Df2 +

(8) Fuel-fuel and fuel-cladding interaction = fuel-cladding
interaction only

In this case,

£
S % - A/ BN
£l
85 = - .. /p,) & (3:37)
£2 £1°767 “f1
D
£ _ a g
80 = I35 %
C a
- D
£ _ c . &
6a [D + D ] 6f2
C a

where D6 was defined in the above case,

(9) No _interaction — fuel-fuel and fuel-cladding interaction

This case and the remalning cases can be obtained by
combining previous cases, In each of the remalning cases, the fuel-fucl
interaction and fuel-cladding interaction both change during the time step
and the order in which these two changes are assumed to occur may influence
the final result. In the case considered here (l.e. both fuel-cladding
and fuel-fuel interaction established) it will be assumed that the fuel-fuel
interaction is established first. First apply case (3) to obtain the
updated values for the initial curvatures of fuel zones 1 and 2 and the
initial curvature of the fuel-fuel interaction element. Next, apply case (5)
to again update the fuel zone curvatures, update the cladding and fuel-fuel
interaction element curvatures, and set the initial value of the fuel-cladding

interaction element.
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(10) Fuel-fuel and fuel-cladding interaction — no interaction

In this case it will be assumed that the fuel-cladding interaction is

broken first and then the fuel~fuel interaction is broken. First apply

case (6) and then apply case (4).

(11) Fuel=fuel interaction only = fuel=cladding interaction only

It will somewhat arbitrarily be assumed that fuel~cladding
interaction is established and then fuel-fuel interaction is broken.

First apply case (5) and then apply case (8).

(12) Pyel-cladding interaction only — fuel-fuel interaction only

Finally, assume fuel-cladding interaction is broken first and
then fuel~fuel interaction is established. Apply case (2) and then apply

case (3).

D. Post-Time-Step Processing

After the increments In the cladding curvatures and axial strain
have been calculated from the finite element solution procedure it is
necessary to back~calculate the curvature and axial strain increments in
the fuel and the curvature increments in the interaction elements. In
addition, the stress increments in the fuel and cladding rings and in
the interaction elements must also be calculated.

The fuel zone and interaction element strain increments are given by
Equations (3.30), (3.31), (3.33), (3.34), (3.36), (3.38), (3.39) and (3.41).
Once the fuel and cladding strain increments have been calculated, the stresses
in the individual rings can be calculated. The moment and axial force increments
in the rings are given by Equations (3.12), (3.13), and (3.14). The moment
increments in the interaction elements are given by Equations (3.23), (3.24),
(3.26) and (3.27) if there is interaction, otherwise, these moments are set to
zero. If the fuel is single-zone, the curvatures and axial strain in
fuel zone 1 and the curvatures of the fuel-fuel interaction element are not

calculated,
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E. Summary

In summary, a fuel rod incremental constitutive equation of the

form

X X
AMy Dll 0 0 AKy El
= 0 Ax + E
AM 0 D), 2
AT 0 0 Dy, Ae Eg

has been derived. The particular values of the D's and E's used depends
upon the state of contact interaction between the fuel zones and the cladding.
(1) No fuel-fuel or fuel-cladding contact - Use (3.29).
(2) Fuel-cladding interaction only = Use (3.32).
(3) Fuel-fuel interaction only - Use (3.35).
(4) Fuel-fuel and fuel-cladding contact — Use (3.40).

If the interaction state changes during a time step, modify the constitutive
equation using (3.43). The value of ¢ to use in (3.43) depends upon how
the interaction state changed. Values for § for the twelve ways that the

state can change were given by Equations (3.49) - (3.57).

IV, The Induced Curvatures

In the formulation of the ring comstitutive equations in Section III it
was mathematically convenient to use the concept of "induced" curvatures.
An induced curvature is defined to be a curvature which would occur in a
ring if there were no bending moments acting within the ring. In other words,
it is the moment-free curvature (or curvature rate) at an axial location of
a CYGRO ring. A number of different mechanisms have been identified which
can cause a moment—free curvature of a fuel rod and these are discussed in
this section. All of the curvature contributions discussed here are included
in one-dimensional form in the current version of the ROBOT program [2].
This section serves to document the current methods for calculating these
induced curvature contributions and to extend the methods so that curvatures
in the x-z and y-z planes can be calculated simultaneously, All of the
material behavior models used in the calculation of these curvatures are identical
to the corresponding models used in the CYGRO program, Constants appearing in

these models have values which are the same as determined for use in CYGRO,
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Figure 6 shows two cross—-sections of a CYGRO ring element. As shown,

points P Pyl and P are located on the average ring radius and on

P
x1’> "x2° y2
the x and y coordinate lines. Differences in the axial strains at these
points will cause the ring to bend in the x-z and y-z planes. If it is
assumed that plane cross-sections remain plane during bending, the curvature

increments induced in the ring are given by

, P p
2 = e Lo ne ¥ /a (4.1)
yA Z
P P
i .2
VA Z
Paa Fxo  Byg Poo

where Aaz s Aez ’ Aez and Aez are the axial strain increments at
points le’ sz, Pyl and Py2 respectively, d is the average ring diameter

( = outer radius + inner radius), and where second-order strain terms have
been neglected. The strain increments in Equations (4.1) and (4.2) are

each a sum of strain increment contributions from various mechanisms such

as stress—free growth and thermal expansion. From Equatiomns (4.1) and (4.2),

the total induced curvature increments can be written as

xi x4

AT = AKa (4.3)

A st (4.4)

Q™M ™

xi i . ;
where Ak~ and AKy are the curvature increments from the yth mechanism
a a

and are given by

xi Paa P

= - f 4.5

Ak, (Aezu e, )/d (4.5)

. P P
Yo e Tt - ae 7H/a 4.6)
AKa (A62a Asza Y/ (
Pa P Py Yoo
where Age s Ag X s Ae M , and Ae y are the strain increments associated

zZo Zg, zg, Zo,

with the oth mechanism. The various types of induced curvatures will

now be discussed.

A. Fuel Swelling Curvature (Fuel Rings)

The z-direction strain due to fuel swelling is given by
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% T R S By e, £+ Ao, v (F, (1op))] (4.7)

where

RZ = gz~direction strain director
Cl’ C2, C3 = constants

P = hydrostatic pressure

T = temperature

S = tabular function of P and T

f = depletion

p = porosity

VS = tabular function of (£f/(1-p)).

If there is a fission rate gradient across the fuel rod, the depletions at

<1° sz, Pyl and Py2 will be different and therefore the

z~-direction strains due to swelling will be different at these points.

the points P

The depletions at the four points can be calculated from the nominal fission
rate and the fission rate gradient. These depletions are then used in
Equation (4.7) to calculate the z-direction strains. Performing this
calculation for the beginning and end of the time step and taking the
difference in the calculated strains gives the strain increment for each

of the four points. These strain increments are then used in (4.3) and

(4.4) to obtain the curvature increment.

B. Fuel Densification Curvature (Fuel Rings)

The fuel densification z~direction strain rate is given by

where Rz is the z-direction strain director and éh is the volumetric

strain rate associated with the hth pore class and is given by
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lilym
1 2 1/3 )
. = == - + P (e) +S e 1In € 4,8)
Ch 7 {v[a.5m Ns (1 €h) eh] ( h) v°h h (
where
e = volume fraction of pore class h
T = effective viscosity obtained from the steady-state
creep equations
Ns = number density of the pores in class h
v = surface tension
S = constants .
y

The function P (GH) is given by

P (eh) = - % [(cr + g + cz)/ln (1+V801/eh)]

where

Gz = stresses

= golid volume fraction associated with the pore.

The effective shear viscosity n depends upon the fission rate, If there

is a transverse gradient of the fission rate, n and €, will be different

h

at the points le, PXZ’ Pyl and Py2' Thus, the densification strain rates

at these points will be different, thereby inducing a curvature rate in

the ring,
The procedure for calculating the curvature increment is as follows.

The fission rates at P ., P _, P and P are calculated from the nominal
x1 x2 vl y2

fission rate and the fission rate gradient. The effective shear viscosity
n is calculated for each of the four points and then Equation (4.8) is

integrated over the time step to obtain the updated value of e and Ac_ .

h h

. tot ficati
h <1’ PxZ’ Pyl and Py2 gives the total demsification

strain increment at each of these points., The strain increments are then

Summing the Ae, 's at points P

used to obtain the curvature increments using (4.5) and (4.6).
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C. Fission Rate Gradient Curvature (Fuel Rings)

In the fuel the creep strain rate's dependence upon the fission

rate is given by

: = G [e +Qf b
€ , L8, +Q og] (4.9)
where GZ is the z-direction strain director, éo is the generalized strain

rate which would occur if the fission rate were zero, Q is a constant,

f is the fission rate, and og is the generalized stress, The transverse

fission rate gradient causes the creep strain rates at points P P

x1’> "x2°
P 3 and Px4 to be different and thereby induces a curvature rate in the
X

ring.
From (4.9), the axial strain rate at le will be

o = |3 + f - .

€ GZ [eo Q oy ( o = 8y rav)] (4.10)
where Eo is the nominal centerline fission rate, gX is the x-component
of the fission rate gradient, and - is the average radius of the ring.

Similarly, the axial strain rate at PX is given by

2

52 = cz [éo + Q o (fo + g rav)] . (4.11)

Substituting (4.10) and (4.11) into the curvature equation (4.5) and

multiplying by the time increment At gives

X1
Ak = - Gz Q Ug gx At . (4.12)

Similarly,
vyi _
A - - G At Y 4013
K , Og 8y ( )

As a first-order approximation the generalized stress used in (4.12) and

(4.13) will be the axisymmetric generalized stress calculated by CYGRO.
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D. Cladding Eccentricity-Induced Curvatures (Cladding Rings)

If the cladding eccentricity is non—zero, it can be shown that the

eccentricity-induced stress perturbations at points P ., P ., P and P
x1’ "x2° "yl y2
are approximately given by:
Point PXl
®x ex
¢ = 0, S0, = - (=)o , 8o = - () a
r 8 t 9 nom z t 2] hom (4.14)
Point PX2
*x %y
6o, = 0, &g = () g » 60, = &) o, (4.15)
nom nom
Point P 1
°y °y
Gcr = 0, Gde = - (t ) Tq , 6oz = - GE-) o, (4.16)
nom nom
Poi P
oint 2
Sy °y.
§o_ = 0, &0, = (t ) 09! » 80, = &) o, (4.17)
nom nom

where 60r, dce and 602 are the stress perturbations, e and ey are the

x and y components of the eccentricity, are the CYGRO-

o ' and ©
6 {nom z {nom
calculated axisymmetric circumferential and axial stresses, and t is the
nominal cladding wall thickness in the absence of eccentricity. The
stress perturbations given above cause perturbations in both the axial elastic
strain and the axial creep strailn rate.

The elastic strain increments due to the perturbational stress

P and P will be

at P 1» Pyor Pyp y2
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7=
le e
Ae = Ae - 5 (4.18)
zZ t
nom
P 2 e
Ae *4 = e =) (4.19)
4 t
nom
Pyl e
Ae = Ae (- —59 (4.20)
b4 t
nom
P 2 ex
re 75 = pe = (4.21)
Z t
nom
where
Ae = (Ao -V Ao, )/E (4.22)
nom Zl nom nom
where v is Poissonbk ratio, E is Young's modulus, and Ac and Aoe
are the changes in the CYGRO-calculated axisymmetric stregggs. nom
Substituting (4.18) - (4.21) into (4.5) and (4.6) gives
xi ex
Ax = =2 Aei Gy (4.23)
nom
yi ©
AT = =2 Ae’ (—t%) (4.24)
nom

for the elastic component of the eccentricity curvature. In the above

equations, d is the average ring diameter.

If 80, is the stress perturbation, the z-direction creep strain
i

rate will be ; é
¢ (0.+60) = & (5.) + % ) § 0, .
z i i z i K=1,0,z 3 Uk k
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During a time step At the creep strain increment due to the perturbational

stress will be

- [Tk )
Ae = z At
z k=r,0,z ( Vk
where
3 €
v, (8 o ) ‘

Using the stress perturbations given by (4.14) - (4.17), the perturbational

creep strain increments at points P ., P _, P and P _ will be given by
x1* "x2° 'yl y2
(4.18) = (4.21) but with Ae' now given by
nom
At At
A€ = &V' Ozi + T GO' (4.25)
nom k nom 8 nom
Substituting these strain increments into (4.5) and (4.6) gives
x1 ex
ATt = -2 Ael = (4.26)
td
nom
. ex
ac”t ~2 AEI o) (4.27)
td
nom
In summary, the cladding eccentricity induces an elastic and creep
curvature increment in the ring. The elastic curvature increment is
given by (4.23) and (4.24) with Ae given by (4.22). The creep curvature
increment is given by (4.26) and (4?9?) with Ae given by (4.25).
nom

E. Thermal Expansion Curvature (Fuel and Cladding Rings)

In CYGRO the temperature distribution in the rod is assumed to be axisym-
metric and the material properties and thermal expansion strains in each CYGRO
ring are calculated using the average temperature for the ring. Transverse
gradients in the non-axisymmetric component of the fission rate, the coolant

temperature, or the cladding-coolant interface conductivity can cause the
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temperature distribution to be non-axisymmetric, thereby inducing temperature=
related curvatures in the rod, To calculate the temperature distribution, it is
assumed that the non-axisymmetric component of the temperature is a perturbation
of the symmetric temperature distribution calculated in CYGRO, Ring thermal
conductivities associated with the axisymmetric temperature distribution
are used to calculate the perturbational temperature distribution. The
details of the calculation of the perturbational temperature distribution
are given in Reference [l1] for the case in which only x-direction gradients
of the fission rate, coolant temperature, and clad-coolant thermal
conductivity are present. Because of the linearity of the governing
equations, the perturbational temperature distribution for the case in
which the above gradients have both x and y components can be obtained by
superposition. The procedure given in Reference [1] is applied twice,
first using the x components of the gradients and then applied using the
y components of the gradients. The two calculated temperature distributions
are then superimposed to obtain the total perturbational temperature
distribution,

Once the perturbational temperatures at points le’ sz, Pyl and
P o are calculated, the z~direction thermal expansion strain is given by

y

T
e, = [y Kk, dt (4.28)
ref

where kz is the z~direction coefficient of thermal expansion and T is the
sum of the axisymmetric temperature and the perturbational temperature.
The change in the thermal expansion strain will be

T+AT

pe = [, k, dr (4.29)

where AT is the total temperature change during the time step. Evaluating
(4.29) for points P P and P

x1?’ PxZ’ vl y2
(4.6) gives the thermal expansion curvature increments.

and substituting into (4.5) and
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F. Flux—Induced Stress~Free Growth Curvature (Cladding Rings)

In the constitutive equation for Zircaloy, the stress-free
growth is a contribution to the total strain rate which depends on
temperature and fast-neutron flux but is independent of the stress.
Thus, this term represents a strain rate which can occur when the material
is unstressed., Because the stress—free growth rate depends upon the
temperature and the fast-neutron flux, transverse gradients of these
quantities will cause the stress—free strain rates at points le, sz Pyl
and Py2 to be different. Thus, curvature components associated with
stress—free growth can be induced in the cladding rings.

The z-direction strain rate associated with the stress-free

growth is given by

(4.30)

where év is an isotropic strain rate component, RZ is the z-direction
strain director, and éz is the shape change component of the growth. The
isotropic strain rate component is given by

1/2 _

€y = {SV [5~$f$;-exp Cf!)] - ev} [CV i DV exp Gﬁfz)] (4.31)

where Sv’ ¢o, Qv’ CV and DV are constants, ¢ is fast-neutron flux, and T
is absolute temperature, The shape change component is the sum of a
transient term and a steady-state term, i.e,

€, € + £g (4.32)

[

where

] % (4.33)
t' F

Me
]

1 Ct ¢
[Sl {1 - exp (-QQ [T- 12])};5“_"_“5';— €

z
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~51=
€ = S, {1~ exp (-Q [-l—-r])} (C_ +H) ¢ (4.34)
s '3 t,Q T 2 z ¢
o for fo ¢ dt < y*
H = (4.35)
Az ¢ R
(E—'- H) 3~ otherwise .
z z
*
where SQ, QZ’ Tos Ct’ Fz, AZ, Bz’ and ¥ are constants,
The strain increments at points le, sz, Pyl’ and Py2 are

calculated by numerically integrating Equations (4.30) - (4.35) from

tl to tl + At at each point using the fast-neutron flux and temperature
appropriate for each point, The temperature which is used is the sum

of the axisymmetric temperature and the perturbational temperature. To
integrate the above equations it is necessary to keep track of the values
of H and Ev at le, Px2’ Pyl and Py2'
calculated are then used in (4.5) and (4.6) to calculate the stress—free

The strain increments which are

growth curvature increments.

G. Fast-Neutron Flux Gradient Curvature (Cladding Rings)

The creep rate of Zircaloy depends upon the fast—-neutron flux,
If there is a transverse gradient of the fast-neutron flux, one side of a
cladding ring will creep faster than the other and a curvature contribution
will be induced in the ring.

At point PX the creep rate will be

1
le 3 & 3 ¢
e, =Ile - (——¢) G Tavl G, (4.36)
nom
where & is the creep rate which would exist if there were no fast~-

nom
neutron flux gradient, ¢ is fast-neutron flux, rav is the average ring

radius, and Gz is the z-direction strain director. Similarly, the creep

rate at P will be
X2
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~52a
Px2 . 3 &, .9 ¢
e, = e + (m) ('5—X‘) rav] G, . (4.37)

The strain increments at le and sz are obtained by multiplying (4.36)

and (4,37) by the time increment At., From (4.5), the curvature increment
will be

xi

Akt - -(—g——(%) (i;—ﬁ‘}’-() G At . (4.38)

Similarly, for the y direction,

yi 9 €. .0
At = '(“a'"f?) (3—39 G, ot . (4.39)

V. Calculation of the Initial Free Shape of the Fuel Rod Neutral Axis

Initlally, the neutral axis of bending of the fuel rod will be the
centroidal axis of the cladding. The location of the centroidal axis is
determined by the lateral deflection of the cladding center and by the x
and y values of the cladding eccentricity. The values of the cladding
center deflection and eccentricity are usually known at discrete points
along the length of the fuel rod. The problem is to find a set of initial
nodal displacements which yleld an initial shape which best fits the
initial centroidal shape data. In what follows, a method for obtaining a
least-squares curve fit to the data using the finite element shape functions
is developed. The procedure is somewhat complicated by the fact that the
deflection and eccentricity data are not generally known at the same set
of axial locations,

In the finite element description of the rod shape, the shape is
determined by the values of the nodal deflections P. 1In particular,

within each element the lateral deflection is given by
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where Si and Si are the first two rows of the shape matrix of the ith
element., There is no need to include the axial deflections. Next,

suppose that there is a set of data points Xij and Y which represent

1j
the x~ and y-deflection, respectively, of the jth data point within the
ith element. Then, for the ith element, the sum of the squares of the

differences between the data and the assumed shape will be

_ _ iJ 2 _ ij 2
P AT T

. AJy el .
wherc [Su ] and [SV | are the x- and y-direction shape functions of the
ith c¢lement cvaluated at the axial location corresponding to the jth

data point. Summing over all clements (and therefore over all data points),

we obtain

O A LA S R CR N A
J

We NOW want to miminize &z. To do this we set the partial derivative of

ng with respect to Pk to zero to obtain

P JRS § T ij _edd ij
z>i. >J i3~ BT P IS Ty + Yy = IS TP TT IS7] gy

(

Se

1)
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where [+ ](k) denotes the kth component of the matrix [+¢]. Next, the matrix
products [GiJ] [P ] and [Sv)] [P ] can be written in component form as

and [SiJ](Q) [V, ](Q), where a summation over the index 2 is

1J

mellcd USLng this, equation (5,1) can be written in the form

ror(f[st st 1y " ’
PLE T 15, Dy + 15710y 18,7190 171y

- 5 ij ij
I g K I8 g Yy
which can be written
{ = 5.2
PR gy gy Bley? = 7 1Py (
where
- . ij 1j ij i3
—- - gii 1j
Flag = 2876 X5+ 151 Vi) (5.4)

Note that the equation

X.] [P,] = [T
[K,] [p,] = [T]
looks very similar to an element stiffiness cquation. Tn lact, the summation
over all of the elements indicated in Equation (5.2) is exactly the same as
the finite element assembly procedure. This assembly procedure will produce

a matrix equation of the form

P =T (5.5)

x|
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which is then solved to obtain P. The matrix'g will have the same properties
as the global stiffness matrix; i.e. it will be banded, symmetric, and
positive definite., This means that beyond the point where the element
stiffness and force matrices are calculated, the finite element solution
procedure can be re-used to calculate the initial nodal deflectiomns.
Therefore, to calculate the initial displacements, Equation (5.3) is used

to calculate the element stiffness matrix and Equation (5.4) is used to
calculate the element force vector. The subroutines which calculate

these quantities would be called in place of the usual stiffness and force

subroutines.

There is, however, a difficulty which can arise with the above
procedure. The nodal displacements at a particular node only influence
the shape of the curve in the elements joined to that node, This means
that if there are no data points in those elements connected to
the node, the nodal displacements are not uniquely determined and the X
matrix will be singular. Thus, for the above procedure to work there must
always be a sufficient number of data points in each element.

To get around this difficulty, it is assumed that the rod has
a small amount of stiffness in bending and that instead of minimizingﬁf,

we will minimize the functional?*; given by
M4t E

where Eiis the elastic strain energy due to bending. The idea here is to
make the bending stiffness very small so that E; is very small compared to‘é;.
Ifag.dominates, then the set of nodal parameters which minimize?#vdll be
essentially the same as the set of parameters which minimize,gu In
addition, when there are not enough data points in a region to uniquely
define a minimum fordg,, a unique minimum for?* will exist because the nodal
values will be such that they minimize the local strain energy. Thus, in

regions where there is insufficient data, the curve will be uniquely defined
and smooth.
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To minimize ;+-, we have

oM _ a4 | B

3P 3P, . - O ¢ (5.6)
1 1 1

From the least~squares analysis above we have

2.4 _

3P,
i

KP - (5.7)

et

where K and:E are the same as in (5.5). Next, we assume that the beam has

a fictitious elastic constitutive equation of the form

Ao = c¢ 1 Ae (5.8)

where 1 is the identity matrix and c is a adjustable stiffness constant
which can be used to make Efsmall relative toAg». It can be shown that

for a linearly elastic beam

.g_l% = 131:_ (5.9)
where ﬁ is the global stiffness matrix obtained using the virtual work or
Galerkin formulation of the finite element method. This means that the
matrix g in (5.9) can be obtained using the finite element formulation
developed in Section II with (5.8) as the constitutive equation and with

the initial nodal displacements set to zero to eliminate the nonlinearities.

Substituting (5.7) and (5.9) into (5.6) gives

(5.10)

K + K]P = F

This equation can be set up by assembling finite elements whose stiffness

equations are of the form
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where.g. and_lii are given by Equations (5.3) and (5.4) and where éi
is the element stiffness matrix obtained when the beam has the elastic
constitutive equation (5.8). Thus, the computer routines used for the
structural calculations can still be used to calculate the initial free
shape of the rod. It is only necessary to modify the routine that
calculates the element stiffness equation.

The purpose of the above procedure is to calculate the initial
shape of the rod's centroid. However, the centroidal deflection is not
measured directly, but rather, it is the centerline deflection and the
eccentricity which are known. 1If the centerline deflection and the
eccentricity measurement were always taken at corresponding axial locations,
the centroidal deflection at those locations could be calculated and the
curve-fitting procedure described above could be used directly. Unfortunately,
the locations at which the centerline deflection and eccentricity measurements
are taken do not always correspond and additional interpolations are required.
One method for calculating the initial centroidal free-shape for such data
is to perform the least-squares curve fit twice. The first time through,
a least~squares curve fit is obtained for the centerline deflection. This
curve is now used to approximate the centerline deflection at points where
the eccentricity is known. The centroidal deflection can then be calculated

at these points using the formulae:

2
Lx(ro - 1)

b4 T(2rO - T)

2
e (r0 - 1)

y = d, - -
y r(2r0 T)

where x and y are the coordinates of the centroidal axis, dX and dy are

the coordinates of the centerline, e, and ey are the x- and y-components

of the eccentricity as shown in Figure 7, r is the clad outer radius,

and T is the nominal cladding thickness. Now, a least-squares curve fit can
be obtained using this centroidal deflection data. The least-squares
curve-fitting procedure described previously is simply repeated using the

new data. The nodal displacements which are calculated will be the initial
values of the nodal displacements and subsequent displacement increments

will be added to these values.
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VI, Summary

A numerical procedure for calculating the in-pile bowing of nuclear
fuel rods has been formulated. The fuel rod is modeled as a viscoelastic
beam whose deflections are solved for using an incremental finite element
method. A computer program based on this procedure would work its way
through the rod's history by taking small sequential time steps. For each
time step, there are two main calculational parts. These are:

(1) the formulation of the rod's constitutive equations (i.e.

the moment~-curvature and axial force-strain relations), and

(2) the calculation of the rod's deflection increments using

the finite element method.

The procedure for calculating the constitutive equations of the fuel
rod is somewhat complex. First, for a given rod geometry and operational
history, the CYGRO computer program is used to obtain a data file which
contains histories of material properties and axisymmetric stresses and
strains in the fuel rod, This data file is used to calculate some of the
terms in the constitutive equations., Additional terms in these equations
correspond to moment-free curvatures induced by transverse gradients of
temperature and fast-neutron flux and by cladding circumferential wall
thickness variations. These induced curvatures are calculated using material
property models borrowed from the CYGRO program. The constitutive equations
for each of the fuel zones and the cladding are then calculated using the
CYGRO data file and the induced curvatures. An interaction model is used
to combine these equations to form the constitutive equations which
characterize the behavior of the fuel rod as a whole, The interaction
model contains parameters called efficiencies which represent the degree
of coupling between the fuel zones and between the fuel and the cladding.
The values of some of these parameters can be approximgtely determined

using out~of-pile deflection experiments,
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Once the constitutive equations for the fuel rod have been determined
for a time step, the incremental finite element equations can be formulated.
The finite element formulation is nonlinear because of the coupling between
the axial extension and the lateral deflection, The rod supports are
modeled by specifying either force, displacement, flexible, or friction-
type boundary conditions. The proposed finite element formulation results
in a structure stiffness matrix which is symmetric and narrowly banded

and can therefore be rapidly solved using a Cholesky=-type equation solver.
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FIGURE |, FORCES AND MOMENTS ACTING ON
A DIFFERENTIAL BEAM ELEMENT
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FIGURE 5. CARTESIAN AND CYLINDRICAL COORDINATES
FOR A CYGRO RING
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FIGURE 6. CYGRO RING CURVATURES



=67= WAPD~TM~1498

T =NOMINAL CLAD
THICKNESS
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