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FOREWORD

The Shippingport Atomic Power Station located in Shippingport, Pennsylvania was 
the f i r s t  large-scale, cen tra l-s ta tion  nuclear power plant in the United States 
and the f i r s t  plant of such size in the world operated solely to produce e lec­
t r i c  power. This program was started in 1953 to confirm the practical applica­
tion of nuclear power for large-scale e le c t r ic  power generation. I t  has 
provided much of the technology being used for design and operation of the 
commercial, cen tra l-s ta tion  nuclear power plants now in use.

Subsequent to development and successful operation of the Pressurized Water 
Reactor in the Atomic Energy Commission (now Department of Energy, DOE) owned 
reactor plant at the Shippingport Atomic Power Station, the Atomic Energy Com­
mission in 1965 undertook a research and development program to design and build 
a Light Water Breeder Reactor core for operation in the Shippingport Station.

The objective of the Light Water Breeder Reactor (LWBR) program has been to  
develop a technology that would s ig n if ic a n t ly  improve the u t i l iz a t io n  of the 
nation's nuclear fuel resources employing the well-established water reactor 
technology. To achieve th is  objective, work has been directed toward analysis, 
design, component tes ts , and fabrication  of a water-cooled, thorium oxide- 
uranium oxide fuel cycle breeder reactor for in s ta l la t io n  and operation at the 
Shippingport Station. The LWBR core started operation in the Shippingport Sta­
tion in the Fall of 1977 and w il l  f in ish  routine power operation on October 1, 
1982. After End-of-Life core tes ting , the core w i l l  be removed and the spent 
fuel shipped to the Naval Reactors Expended Core F a c i l i ty  for detailed exam­
ination to ver ify  core performance including an evaluation of breeding 
characteris tics .

In 1976, with fabrication  of the Shippingport LWBR core nearing completion, the 
Energy Research and Development Administration, now DOE, established the 
Advanced Water Breeder Applications (AWBA) program to develop and disseminate 
technical information which would assist U. S. industry in evaluating the LWBR 
concept for commercial-scale applications. The AWBA program, which is 
concluding in September, 1982, has explored some of the problems that would be 
faced by industry in adopting technology confirmed in the LWBR program. 
Information already developed includes concepts for commercial-scale prebreeder 
cores which would produce uranium-233 for l ig h t  water breeder cores while 
producing e le c t r ic  power, improvements for breeder cores based on the technology 
developed to fabricate  and operate the Shippingport LWBR core, and other 
information and technology to aid in evaluating commercial-scale application of 
the LWBR concept.

All three development programs (Pressurized Water Reactor, Light Water Breeder 
Reactor, and Advanced Water Breeder Applications) have been conducted under the 
technical d irection of the Office of the Deputy Assistant Secretary for Naval 
Reactors of DOE.

Technical information developed under the Shippingport, LWBR, and AWBA programs 
has been and w il l  continue to be published in technical memoranda, one of which 
is th is  present report.
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ABSTRACT

A Finite Element Procedure for Calculating the 
Three-Dimensional Inelastic Bowing of Fuel Rods

An incremental finite element procedure is developed for calculating 
the in-pile lateral bowing of nuclear fuel rods. The fuel rod is modeled 
as a viscoelastic beam whose material properties are derived as perturbations 
of the results of an axisymmetric stress analysis of the fuel rod. The 
effects which are taken into account in calculating the rod's lateral 
bowing include: (a) lateral, axial, and rotational motions and forces
at the rod supports, (b) transverse gradients of temperature, fast-neutron 
flux, and fissioning rate, and (c) cladding circumferential wall thickness 
variation. The procedure developed in this report could be used to form 
the basis for a computer program to calculate the time-dependent bowing as 
a function of the fuel rod's operational and environmental history.
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A Finite Element Procedure for Calculating the 
Three-Dimensional Inelastic Bowing of Fuel Rods

(AWBA Development Program)

S. E. Martin

I. Introduction

In most commercial nuclear power reactors, cylindrical or annular fuel 
pellets are stacked within long closed-ended metal tubes, called the cladding, 
which isolate the fuel from the coolant. Such a fuel-cladding assemblage 
constitutes a fuel rod. Within the reactor core, a fuel rod is held in 
position at intervals along its length by supports, usually referred to as 
grids. During normal reactor operation, various factors can cause the fuel 
rod to bend, or bow, laterally. This bowing can be induced by transverse 
temperature gradients in the fuel rod, transverse fast-neutron flux gradients, 
axial loads on the fuel rod, cladding wall thickness circumferential 
variations, and grid support motion.

A method for calculating the time-dependent two-dimensional inelastic 
bowing of fuel rods was developed in [1] and implemented in the ROBOT 
computer program [2]. The analysis was two-dimensional in the sense that 
it was assumed that the rod configuration and displacements were restricted 
to a single plane. In the method developed in [1], the rod lateral 
deflection in each span is approximated by a polynomial and the deflection 
is solved for using the Galerkin method [3]. To perform a rod bowing analysis, 
the analyst first runs the CYGRO computer program [4] to calculate the 
axisymmetric stresses, temperatures, and material states within the fuel rod 
as a function of time. This information is then used by the ROBOT computer 
program to calculate the time-dependent fuel rod bowing.

The axial forces in an axially restrained fuel rod are related to 
the lateral deflections of the rod because bowing tends to shorten the 
chord length of the rod. Although the assumption that the bowing is two- 
dimensional may sometimes be a good approximation, in general the bowing

* Throughout this report, numbers in brackets denote items in the list of 
References. Numbers in parenthesis denote the equations included in the 
text.
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is three-dimensional in nature; that is, the rod is deformed into a space 
curve which cannot be contained in a single plane. In this case the axial 
shortening of the rod with bowing depends on both components of the lateral 
deflection and a single-plane analysis of this type of problem does not 
accurately model the axial-lateral interaction.

In this report the analysis developed in [1] is extended so that 
three-dimensional bowing can be analyzed. Both components of the rod’s 
lateral deflection are calculated simultaneously and therefore the 
interaction between the axial displacements and the lateral displacements 
is more accurately modeled. The analysis developed here forms the basis 
for a computer program to calculate fuel rod bowing. In order to simplify 
the analysis and significantly reduce the computer run time, the variational 
method used in [1] is replaced here with a finite element formulation. The 
computer run time should be reduced because the structure stiffness matrix which 
is obtained is synimetric, positive-definite, and narrowly banded. This 
means that the structural stiffness equations can be rapidly solved using 
a Cholesky equation-solver [s]. In addition to the above modifications, the 
analysis is extended so that the bowing of fuel rods containing duplex fuel 
can be analyzed. With duplex fuel, the fuel pellet is generally made of two
materials --- an annular or cylindrical pellet consisting of one material
surrounded by an annular pellet made of another material. This type of fuel 
is currently under development for use in water breeder reactors.

The rod Incremental finite element equations are formulated in Section II,
When solved, these equations determine the time-dependent lateral and axial 
deformation of the fuel rod in terms of the support motions and the transverse 
fast-neutron flux and temperature gradients. These gradients, and the support 
locations and motions, would be user-supplied input to a computer program based 
on this method.

To formulate the incremental finite element equations, it is necessary 
to know the incremental moment-curvature and axial force-strain relations of 
the fuel rod. These relations can be derived from a knowledge of the fuel rod 
material properties, the axisymmetric temperature distribution, and the 
axisjmnnetric state of stress and deformation in the fuel rod. This information 
is obtained from a data file written by the CYGRO computer program and is generated 
prior to performing the rod bowing analysis. The calculation of the fuel rod 
moment-curvature and axial force-strain relations from this data is described in
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Section III. The moment-curvature relations also contain terms which represent 
moment-free curvatures which can be induced in the fuel rod by a ntnnber of 
different mechanisms. In Section IV, all such mechanisms which are currently 
known are discussed and expressions for the corresponding induced curvatures 
are given.

In general, the initial free shape of a fuel rod is not straight and it is 
necessary to fit the initial shape of the rod to a set measured deflection data.
A procedure for obtaining a modified least-squares fit to the data using the 
finite element shape functions is given in Section V. The advantage of the new 
method is that there are very few restrictions placed on either the number or 
the locations of the data points.

Notation

In what follows, both matrix and matrix shorthand, or direct, notation will 
be used. For example, a will denote that the quantity a is a vector, or one­
dimensional matrix, and a will denote that a is a matrix of more than one dimension.
T ~  -1a will denote the transpose of the matrix a and a will denote its inverse. A

bending moment is designated if it tends to cause bending in the x-z plane and 
ydesignated M if it tends to cause bending in the y-z plane.

II. The Finite Element Equations

In this section the method of virtual work is used to derive the incremental 
finite element equations. This method is equivalent to the Galerkin method used in 
[l] and is somewhat more intuitive. To apply the method of virutal work, expressions 
for the rod's external and internal work rates must first be derived from the rod's 
equilibrium differential equations. After this is done in Section A, the incremental 
finite element stiffness equations are formulated in Section B and the element 
assembly procedure is described in Section C. Section D discusses the imposition 
of boundary conditions and Section E outlines the procedure for back-calculating 
the stresses and strains in the element.

A. The Energy Equation

In this analysis, the fuel rod is modeled as a viscoelastic beam which is 
supported at discrete points along its length. Figure 1 shows the forces and 
moments which act on a differential element of the beam. The z direction is taken 
to be along the beam and the x and y directions are transverse to the beam.
Figure 1 also indicates the directions which are taken as positive for the various 
forces and moments. By summing the appropriate forces and moments to zero, we obtain
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(s'")' + Xq = 0 , (2.1)

(S^)^ + q^ = 0 , (2.2)

+ - Tu' = 0 , (2.3)

(M^)^ + - Tv' = 0 , (2.4)

T' + zq = 0 , (2.5)

X V  X V zwhere M and M are the moments acting within the beam, q , q and q
are the distributed forces acting on the beam, u and v are the x- and y-

X ydisplacements respectively, T is the axial force, S and S are the x- 
and y-direction shear forces respectively, and a prime denotes differentiation 
with respect to z. From Equations (2.1)-(2.5), the differential equations 
of equilibrium can be written in the form

Tu"" + q^ - - q^u" = 0 (2.6)

T v '"  + -  (M ^ ) "  -  q V  = 0

T' + q^ = 0 (2.8)

To obtain the energy rate equation, multiply (2.6) by u, (2,7) by 
• •
V, (2.8) by w, and add to obtain

Tu" u + q^u - (M^)"" u - q^u" u + Tv "  v +

q^v - (M^)" V - V + T' w + q^w = 0 (2.9)

where w is the z-direction displacement and where a superposed dot denotes 
differentiation with respect to time. After some manipulation. Equation 
(2,9) can be written in the form
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d X* X*.. V* • X* V* 2*[S u + M u + S V + M V + Tw] + [ q u + q v + q w ]

= + Te] (2.10)

where s is the axial strain in the rod and is given by

e = w- + 1  (uO^ + 1  (v")̂ - (2.11)

Equation (2.11) shows that the axial strain in the rod depends upon both 
the axial and the lateral displacements. If the z-displacements are zero, 
the lateral displacements can still induce an axial strain in the rod.
Thus, Equation (2.11) represents a nonlinear coupling between the axial 
and lateral displacements.

We now consider a finite segment of length £ and integrate 
Equation (2.10) over this segment to obtain

X* X* V* V* •[S u + M u^ + S-̂ v + M'̂ v" + Tw]

+ [q u + q V + q w] dz

= [M^u"" + M^v"" + T*e] dz . (2.12)o

The left-hand side of Equation (2.12) represents the work rate of the 
external forces acting on the rod segment. The first term in brackets 
represents the work rate by forces and moments applied at the ends of the 
rod segment and the second term represents the work rate of the distributed
external forces. The right-hand side of Equation (2.12) is the internal 
work rate 
given by

■kwork rate. If we define the stress and strain to be the vectors a and e

* Note that the quantities referred to here as "stress" and "strain" are not 
stresses and strains in the usual terminology of solid mechanics. These 
terms are used because the quantities defined here play the same role in 
the finite element scheme developed here as the usual definitions of stress 
and strain play in a finite element model of a solid continuum.
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u'"
_o =

T
, and ^  = v^" (2.13)

the internal work rate can be written

rSi _ rn

w.xnt = JO
• i je a dz (2.14)

The external work rate can also be expressed more compactly in
matrix form as

Wext
•T= P F + dz J o --- (2.15)

where

U =

r Xu j q
V . h  = q^

zw qw

(2.16)

and where P̂ and ^  are vectors of generalized displacement and force having 
components defined by

= u at left end.

^2 = u' II >
"3 = V ff >
P
4

=s V t? 9
"5 — w It >

"6 = u at right end
P_ =s u" It
/

P_ V II
8

= v* II
w II

10

(2.17)
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Ft = F^ at left end ,

"2
f l

^3 == F^ I I

= I I

"5
^6

= f"
XF at

I f

right end.

"7
^8

=: F^

f t

I f

"9
= If

^10 = F^ If
•

(2.18)

The positive directions for the applied external forces and moments are shown 
■kin Figure 2 .

Using the expressions (2.14) and (2.15) for the internal and 
external work rates, the energy rate equation. Equation (2.12), can be 
written

•X ri?, *X r j? *XP F + / U b dz = / £  0 dz (2.19)

This equation expresses the balance between the internal and external 
energy rates for quasi-static processes.

B. The Element Stiffness Equation

In this section the expressions for the internal and external 
work rates derived above are used in conjunction with the assumed 
displacement shape functions to derive the element stiffness equation, 
is assumed that the rod is divided into a set of contiguous segments 
which are the finite elements. The two endpoints of each finite element 
are its nodes. The set of shapes which the rod segment can actually assume

It

* To obtain (2.15) from (2.12) it is necessary to keep in mind that internal 
forces and moments acting on the left end of the rod segment have a 
positive sense which is opposite to the positive sense assumed for the 
external forces and moments.
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can be regarded as an infinite-dimensional function space (a Hilbert 
space). In the finite element method, this infinite-dimensional space is 
approximated by a finite-dimensional space. That is, it is assumed that 
the shape of the finite element can be written as a linear combination of 
a finite set of basis functions called shape functions. In particular, 
it is assumed here that the shape of the finite element can be approximated 
by

u 0 0 0 ^3 =4 0 0 0

V = 0 0 ®2 0 0 0 0

w =2 s s «8 ^9 ^10

or
U = S P

where U and P are defined by (2,16) and (2.17), and where

l-3(z/!̂ )̂  +

Hiz/l) - 2(z/Ji)̂  + (z/£)^] 

3(z/Ji)̂  - 2(z/^)^

10

(2.20)

n  - (z/£)^ + (z/A)^]
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where -t is the element length and z is a local coordinate which assumes 
a value of zero at the left node and a value of -t at the right node.
The functions through and through are called the shape 
functions and the matrix ̂  is called the shape matrix. The functions 

through are the Hermitian poljmomials and are commonly used in 
beam-type problems [6].

In most problems of practical interest, the axial strain in 
the fuel rod will be nearly uniform over lengths which are modeled by a 
single finite element. Therefore, the axial shape functions Ĝ  ̂through 
Gĵq will be defined so as to make the axial strain uniform within the 
element. To derive the forms of these functions, we assume that the axial 
strain s given by Equation (2.11) is uniform (i.e. does not vary with z) 
and solve for w^ to obtain

w'(z) = s - •|- C(u')^ + (v')^]

To solve for the axial displacement w(z), we integrate this equation with 
respect to z to obtain

w (z) = e z - J L(u^)^ + (v*)^] dz + k (2.21)

where k is the integration constant. Using the shape functions for the 
lateral displacements, u^ and v^ can be written

10 10 
u' = E s; P , v' = 2 s' P. (2.22)

i=l  ̂ i=l ^

where S.. represents the shape function in the jth row and ith column
/ /of the shape matrix. Substituting these expressions for u and v into 

Equation (2.21) gives

10 10
w(z) = e z - 2 2 A.. P. P. + k  (2.23)

i=l j=l ^ J
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where the matrix is given by

^ij ^ 1 ^ ^^li ^Ij ^2i ’ (2.24)

The w displacements at the ends of the element are the axial nodal displacements 
P^ and that is

w(0) = P^ and w(-t) = P^^ .

Substituting z = 0 and z = t into Equation (2.23)jWe get the two equations

P3 - k
10 10

P,„ = e i - S S A..(I) P. P. + k 
1-1 J=1 ^ J

where the fact that A..(0) = 0 has been used. From these two equations we^ J
can solve for the strain e and the integration constant k to obtain

k = P^ (2.25)

10 10
s = (l/l) LPin - P. + 2 ^ A..(1) P. P.] . (2.26)

^ i=l i=l  ̂J

Substituting these back into (2.23), we get

10 10
w(z) = (1/1) [P.. - P_ + E E A..(^) P. P.] z

XJ X J

10 10
- E E  A..(z) P. P. + P_ . (2.27)

i=l j=i 3̂ X J 5
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This equation can be written in the foinn

10
w(z) = S G. P.

i=l  ̂ ^
(2.28)

where the functions are the axial shape functions and are given by

10 10
G.(z) = (z/^) S A.,(^) P. - E A..(z) P. if i 5 or 10

j=l J j=l J

G^(z) = [1 - { z i m  , G^q(z) = izH) .

Use of these axial shape functions ensures that the axial strain within
the element will be uniform regardless of the lateral deflections.

Using Equation (2.20) and Equation (2.26), the strain vector 
defined by (2.13) is given by

e = B P (2.29)

where B is the strain matrix, given by

S*' 0 0 0 s - 0 0
JB = 0 0 s - s'' 0 0 0 s - 0 (2.30)

/ l "2 "3 •̂4 "S "6 "7 ^8 "9 *̂ 10

where

10
J. = 
1

(I/'t) 2] 
i=l ^ij ^i j # 5 or 10 (2.31)

- (I/'t) • (2.32)
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The strain rate vector is given by 

_£ = B P

where B is the strain rate matrix, given by

(2.33)

*’ s' " 1̂ s''2̂ 0 0 0 =3" 0 0 0

B =.<-w 0 0 s"'2̂ 0 0 0 ®3 s''4̂ 0 (2.34)

2Ji 2-̂ 2 “ 3 "5 2^6 2̂ 7 2̂ 8 2̂ 9 '̂ 10

Substituting (2.20) and (2,33) into the energy equation. Equation 
(2.19), gives

•J' rJ «T T r'i • I TP F + / [PS b] dz = / [P B a] dz , J Q —  ~ —  ■' n —  ~ —
!.T„T

which can be written

[F + S^b dz - /q a dz] = 0 (2.35)

By the principle of virtual work, P can be varied independently of the term 
in brackets in (2.35). This implies that the term in brackets must equal 
zero. Therefore, we have

b dz (2.36)

This equation relates the nodal forces on the element to the stresses which 
exist inside the element.

Our goal here is to relate the nodal forces to the nodal 
displacements The usual procedure for accomplishing this is to first 
relate the stress in Equation (2.36) to the strain using the material 
stress-strain relation, and then relate the strain to the nodal displacements 
using Equation (2,29), However, as is shown in Section III, the 
constitutive equation (stress-strain relation) is incremental and of the form
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A c t= D A  e + E  (2.37)

where a A indicates increment and D and E are matrices which do not depend 
upon either A £ or A _e. To use Equation (2.37) in (2.36) we must also put
(2.36) in incremental form. To do this, expand (2.36) in a Taylor series
and retain only first-order terms to obtain

 ̂  ̂ a
F + Aj = / B a dz + / b’̂ Aa dz + / Ab'̂  a dz~o — o —o o -o ~ o ~ —o

- I  S b dz - / Ab dzo ~ ~o o ̂ —

which, after re-arranging becomes

 ̂ rr,  ̂ H
~o ^  ~ Ab dz + C (2.38)

where

f' T ,* T
£ ■ A  ?„ 2„ 5 - Ic • (2.39)

A zero subscript Indicates that the quantity is evaluated at the start 
of the increment. The £  vector can be interpreted as a force correction 
term which corrects for any force imbalance at the beginning of a time step. 

The second integral on the right-hand side of (2.38) can be
written

a
/ Ab '̂ o dz = a? (2.40)o - —o ~o ~

where

I
K = (2/-L) A I' T dz (2.41)~cr ~  VO o

where T^ is the axial force, and where A is defined by (2.24). The matrix 
K is called the geometric, or initial stress, matrix.
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We now assume that the incremental constitutive equation
*of the material is known in the form

= D A_e + E . (2.42)

When (2.42) is substituted into the first integral on the right-hand side 
of (2.38), that term becomes

I I  £
/ Aa dz = / s’’ 0 Ae dz + / E dz . (2.43)' o - o — o - o ~ — o « o — '

From Equation (2.33) we obtain

Ae = B AP . (2.44)
—  —

When (2.44) is substituted into (2,43) we obtain

I I  i
/ b'̂ Aa dz = {/ b"̂ D B dz) AP + / b "̂ E dz (2.45)• ^ o ~ o —  o~o.,..o —  ''0..0 —

or

 ̂ T -  ̂ T/ B Aa dz = K AP + / B E  dz (2.46)■ ' 0 - 0 —  ^ —  ■'o n o ­

where

r" TK = J B D B dz . (2.47)„ O «0 * ~0 /

The matrix K is called the initial displacement matrix or large displacement 
matrix [ 6].

When (2.46) and (2,40) are substituted into (2,38), we obtain

AF = (K + K ) AP + / B E dz— « «a — •' o „o —
£

- / S Ab dz + C (2,48)•' o „ — —

* The calculation of D and E will be described in Section III.
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or

AF = K AP + H (2.49)

This set of ten equations represents the element Incremental stiffness 
equations. The matrix K is the incremental stiffness matrix and the
vector II is the nodal force increment which would occur even if there
were no increment in the nodal displacements.

The integrals appearing in Equation (2.48) and the integrals which 
define K, and ^ are all easily evaluated using Gaussian
quadrature. The stiffness matrix K and force vector H are calculated
for each element starting with the first element. Because the stiffness
matrix is symmetric, not all components need to be calculated.

C. The Global Stiffness Equations - The Assembly Procedure

It will be shown in this section that the global, or structure,
stiffness equations can be written in the form

(2.50)

where K_ is the symmetric global stiffness matrix, AP is the nodal parameter 
increment vector for the entire structure, is an initial force increment 
term, and AF is the net external force increment on the nodes. As each—<7
element stiffness matrix and force vector are generated, they are used to 
construct the global stiffness matrix and global force vector.

Within each element, the nodal parameters are numbered from 1 to 
10. The element parameters are also numbered according to a global numbering 
system. In the global numbering system, the parameters of the first element 
correspond to global parameters 1 through 10. The 10 parameters of the 
second element correspond to global parameters 6 through 15, etc.

Suppose now that the stiffness matrix and the force vector for the 
first element have been determined. The stiffness equations for that element 
will be of the form
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( ] [ Ap ] + [ ] = [ A f  ̂ ] (2.51)

where is a 10x10 matrix and the components of A^, and AF̂  ̂are 
numbered from 1 to 10 corresponding to the local numbering system. We 
can now express the above set- of equations using the global numbering 
system to get

I

I
I

AP10
AP11

AP

- hJ
I 
I
I.

5N-

10
(2.52)

Equation (2.52) says exactly the same thing as Equation (2.51); the only 
difference is that the parameters have now been assigned their global 
numbers, which for the first element, are identical to the local numbers.

Now consider element number 2. The element stiffness equations 
will again be of the form

[ ] [ AP ] -b [ ] = [ Ap2 ] (2.53)

but now, the parameters which are labeled 1 through 10 locally will be 
labeled 6 through 15 in the global system. Therefore, in the global 
system. Equation (2.53) becomes
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I

— —1 r~
« 0 0

%1

+

~ z jT Af 261

t ' h
1
1
1
1 0 0

(2.54)

Equations similar to (2,52) and (2.54) could be written for all of the elements. 
The objective is to solve for the net external force acting on the nodes.
The forces given by equations such as (2.52) and (2.54) are the forces 
exerted on the element i at its nodes; thus, the forces can also be 
interpreted as the negatives of the forces exerted on the nodes by the 
elements. If the node is to be in equilibrium, the external forces acting 
on the node must be equal to the sum of the negatives of all other forces 
acting on the node. Therefore the global stiffness equations are obtained by 
simply adding together all of the element stiffness equations written in global 
form. For a structure with five elements, this will produce a matrix 
stiffness equation in the form:

0

0
h

-5_

I
t
AP
AP

10
11

or

10

30'

AF̂
I
I

AF10

AF30̂

(2.55)
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Thus, in setting up the and matrices there will be an overlap of
five parameters between elements. The K matrix will be sjnnmetric andG
have a half-bandwidth of 10. This matrix can be stored in a compressed 
form; the exact form will depend upon the equation solver used.

D. Boundary Conditions

Equation (2.55) is a relation between the nodal force increments
and the nodal displacement increments. To specify a particular type of
support or loading on the structure, some of the displacement increments
may be specified, some of the force increments may be specified, or a
relation between some of the force increments and displacement increments
may be specified. Figure 3 shows a representation of the various types of
boundary conditions which can be used to model the rod supports. For simplicity

•konly the x-z plane is shown. At support number 1 force-type boundary 
conditions are assumed for all degrees of freedom, while at support number 2 
displacement boundary conditions are applied. At support number 3, 
flexible boundary conditions are applied to all degrees of freedom and a 
support axial displacement is also assumed. At support number 4 a frictional 
boundary condition is applied in the axial direction, a displacement boundary 
condition is applied in the x-direction, and a rotational force (i.e. a 
moment) boundary condition is applied in the x-z plane.

We now consider how Equation (2.55) can be modified so as to 
enforce the various boundary condition types.

(a) Specified Force Boundary Condition

This is the easiest type to enforce. The force increment 
is merely substituted into the appropriate row of the AF matrix. All 
other components of Al^ are initially zero.

* "Force" and "displacement" are used in a generalized sense here. They 
may refer to a moment and an angle for some of the degrees of freedom.
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(b) Specified Displacement Boundary Conditions

In this case, one of the equations of (2,55) is replaced by
an equation which simply states that the appropriate displacement increment
equals the specified value. If the ith displacement increment is specified,
a simple way to do this is to multiply (K ) by a very large number, sayG  H
L. Next set (H ). to zero and set (AF_). to L x (specified displacement G r G i
increment). Numerically, this has the effect of setting up an equation
of the form

L X = L X (Specified AP^)

or

AP^ = (Specified AP^)

since the other terns in the equation will be numerically negligible.

(c) Flexible Boundary Conditions

With this type of boundary condition there will be a relation
of the form

AF^ = AP^ + (AF^)^ (2.56)

where may depend upon P^ and F^ is the force increment exerted ^  the
flexible element. This equation can be regarded as an element stiffness
equation of a flexible element joined only to the variable i. Therefore
it can simply be added to the global stiffness equations. To do this,
add C. to (K ).. and add (AF.) to (H )..1  ̂ G 11 " i^o "-G 1

(d) Frictional Boundary Conditions

A frictional boundary condition can be either a displacement 
or a force boundary condition, depending on the magnitude of the particular 
nodal force. If the force is less than the slippage force, the boundary 
condition specifies that the displacement increment is zero. If the force 
exceeds the frictional force, the calculation is re-done and the nodal force
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is set equal to the slippage force. The frictional force must always 
oppose the motion of the rod. If the displacement increment of the rod is 
ever in the same direction as the frictional force, the boundary condition 
is changed to again set the displacement increment to zero and the calculation 
is re-done. Several iterations may be required before the right combination
of boundary conditions is found. To reduce the number of computations
involved in this iterative loop, the frictional boundary condition should be
inserted last. Before inserting the frictional boundary conditions, the
matrices K„, and A|y have been modified by insertion of all other boundary 
conditions. Denote these modified matrices by K̂ , and AF^. These 
matrices can be saved so that new frictional boundary conditions can be 
easily tried if a guess turns out to be wrong. In addition, these matrices 
can be used to evaluate the noda] forces at nodes which are assumed not to 
slip. This procedure is discussed more fully in the next section. For 
simplicity, it is assumed that frictional boundary conditions apply 
only to axial displacements,

E. Calculation of the Nodal Displacement, Stress, and Strain Increments 

The nodal displacement increments can be obtained by solving the
equation

K* AP = (AF* - (2.57)

where a * denotes that the quantities have been modified by insertion of 
all boundary conditions. Equation (2.57) can be solved for using a library 
subroutine for solving equations with a banded, symmetric, positive-definite 
coefficient matrix.

If the problem involves frictional boundary conditions, the 
assumptions used to formulate the boundary conditions must be checked at 
this time. If the slippage force has been applied to any of the nodes, 
the axial displacement increment must be opposite the direction of the 
applied loads; otherwise, the assumptions must be changed and the calculation 
re-done. Next, the axial nodal forces are calculated from the equation

A  A

A£, = A? +-G -G - -G
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where and are the matrices which were saved before insertion of the 
frictional boundary conditions. If the axial forces are such that nodes 
which were assumed not to slip must have slipped, the calculation must be 
re-done. This process is repeated until the correct boundary conditions 
are obtained.

After the nodal displacement increments have been calculated, 
the stress and strain increments at the element Gauss points can be 
calculated. The strain increments are given by

Ae = B AP (2.58)

After the strain increments have been calculated, the stress increments 
are easily calculated using the constitutive equation (2.42).

The procedure described above represents a single time-step 
iteration. It has been found that a significant improvement in the time 
integration accuracy can b e achieved by using two iterations per time 
step. With this method, the first iteration is performed as described 
above and the average values during the time step of the nodal displacements 
are approximately calculated. The stiffness equations for the rod are 
re-calculated using these average values and the time step is then re-taken. 
This procedure is similar to the second-order Runge-Kutta method used in 
the solution of ordinary differential equations. Because the rod constitutive 
equations are not re-evaluated for the second iteration, the computer run 
time will not be significantly increased by using two iterations rather 
than one.

III. The Constitutive Equation of the Fuel Rod
The purpose of this section is to formulate the fuel rod constitutive 

equation in the form

Act = D A£ + E . (3.1)

The constitutive equation for fuel rods containing either single-zone or 
duplex fuel is modeled using a method which is essentially the same as 
the method originally formulated in Reference ClJ. The fuel-cladding 
interaction model has been slightly modified and has been extended to 
account for fuel-fuel interaction in duplex fuels.
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The formulate Equation (3.1), the assumption is made that the effects 
of bending do not significantly change the incremental stress-strain 
relations associated with the axisymmetric deformations of the rod. Experience 
has shown that this is a valid asstimption because the stress variations
due to bending are usually small compared to the axisymmetric stresses.
This assumption makes it possible to assign incremental stress-strain 
relations using an axisymmetric fuel element analysis program such as 
CYGRO [4j. Material properties and material constitutive relations used 
in the bowing analysis are identical to those used in CYGRO.

A. The Ring Constitutive Equations

The CYGRO computer program calculates the cylindrically symmetric 
stresses and deformations in a fuel rod by dividing the rod cross-section 
into a set of finite elements in the form of concentric rings as shown in 
Figure 4. The stress within each ring is assumed to be constant. To 
formulate the constitutive equation (3.1), it is assumed that the stresses 
due to bending and support constraints can be regarded as a perturbation 
of the CYGRO-calculated axisymmetric stress state.

In terms of the perturbational stress in the z direction, S ,
• t ^the total strain rate in the z direction, e^, can be approximated by

z z

• •
where e is the creep strain rate, e is the elastic strain rate, and cz  ̂ ez ’
e. is the induced strain rate. The induced strain rate is the strain iz •
rate which would occur even if S and S were zero and accounts for effectsz z
such as thermal expansion, flux-induced stress-free growth, and the CYGRO- 
calculated axial strain rate. The first partial derivative in (3.2) is 
the zz component of the creep compliance matrix and is calculated from the 
creep constitutive equations. The second partial derivative in (3.2) is 
just the zz component of the elastic compliance matrix. These quantities are 
calculated in CYGRO and written into a data file.

If it is assumed that plane cross-sections of the rod remain plane during 
bending, the total axial strain rate in one of the CYGRO rings can be written
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= e + i<̂ r cos 9 + r sin 6 (3.3)z

where K and k  are the curvatures of the fuel rod in the x-z and y-z X y
planes respectively, e is a uniform axial strain, and r and 9 are polar 
coordinates in the plane of the cross section with r=0 at the center of 
the rod and 9=0 along the x-axis. This arrangement is shown in Figure 5. 
Combining Equations (3.2) and (3.3), we obtain

S S
—  + r cos 0 + r sin 0 + (e - e. ) (3.4)

where the notation

d s , d e1 _  /  c z x i  _  f e z v

\  ^  \  i s  ^Z

has been used. Note that the constants V, and E are obtained from thek k
CYGRO data file. The k subscript denotes that the quantity is for the 
kth CYGRO ring. We now make the assumption that the induced strain rate 
can be written in the form

•   , • XX * • • A /o c\r cos ® sin 9 (3.5)

where is the uniform axial strain rate calculated by CYGRO and where 
and are the induced curvatures for ring k. This is equivalent 

to the assumption that if only induced axial strains were present, plane 
cross sections of the rod would remain plane. The induced curvatures are 
the moment-free curvatures caused by non-axisymmetric environmental and 
structural factors such as transverse temperature gradients, transverse 
fast-neutron flux gradients, and cladding wall thickness eccentricity.
The calculation of these curvatures is discussed in Section IV.
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Substitution of Equation (3.5) into (3.4) gives

H 5. = (k _ k ) r cos 0 + (k - ) r sin 0 + (e - e ) . (3.6)V, K  k kk k

Integrating (3.6) over the ring cross-section gives

(3.7)

where A, is the ring cross-sectional area given by k

\  ’̂̂ kO “ '̂ kl̂

and where is the axial force on the ring, given by

T = /̂  S dA . k \  z

Multiplying (3.6) by r cos 0 and integrating gives

where 1^̂ is the moment of inertia of the ring cross-sectional area about 
the y axis, given by

q  - W 4 ) ( r ^^-r^^) (3.9)

and is the x-component of the moment acting on ring k, given by

= /. r S cos 0 dA .Tc ^A^ z
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Similarly, multiplying (3.6) by r sin 0 and integrating gives

mT ¥K k ‘Y 'Vi
+ IT ■ »-io)k k

ywhere M is the moment acting in the y-z plane, given by
K .

nf = r S sin 0 dA ,k JA^ z ’

and where is again given by (3.9), Equations (3.7), (3.8), and (3.10)
are differential equations which characterize the behavior of a single
ring. Because the rod deflections and slopes are assumed to be small,

X ythe curvatures k and k can be approximated by

X d uK =
dz^

2y d VK = --

(3.11)

dz^

To obtain the incremental equations, Equations (3.7), (3.8), and 
(3.10) are multiplied by a time increment At to obtain

AmJ = Ak^ + bj (3.12)

A l ^ = a y A / + b y  (3.13)

AT, = af Ae + b.2 (3.14)
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where

X

®ik W

4 = \\

-  \ ( \  “  

-  s '  \ ' V  “

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Once the curvature and axial strain increments are obtained using the 
finite element procedure, the moment and axial force increments can be 
back calculated using Equations (3.12), (3.13), and (3.14). The beginning* 
of-time-step values of the axial force and moments used in Equations 
(3.18), (3.19), and (3.20) are obtained by keeping track of the sum of 
the increments of these quantities.

B. The Fuel and Cladding Ckjnstitutive Equations

The total moment or axial force acting in either the cladding or 
one of the fuel zones is equal to the sum of the moments or axial forces 
in the rings contained in the cladding or fuel zone. Thus, the fuel zone 
or cladding constitutive equations can be obtained by summing the ring 
constitutive equations to obtain

"^fl - +

fi - +

AMy.f X ■ 4kJi +

1 , = 1,2 (3.21)

and
AT = a " Ae + b"c C c c

AM^ = A^ A XAk + B^c c c c

AMyc = Ayc A<yc + Byc

(3.22)
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where the fl, f2 and c subscripts denote "fuel zone 1", "fuel zone 2", 
and "cladding" respectively. It will be assumed that fuel zone 1 is the inner 
fuel zone and fuel zone 2 is the outer fuel zone. If the fuel is single­
zone, then only fuel zone 2 is present. In the above equations the A's 
and B's are given by

and

fi

fi

A‘

Z
fi

fi

fi

fi = I
fi

fi fi

'fi fi

''k

) i = 1.2

= A'y = L’
c

= Z

where the notation and ^ indicates that the summation is over the 
rings in either fuel zone i or the cladding. If a fuel ring is cracked on a 
plane perpendicular to the z-direction, the constant is set to a very 
small number for that ring. This has the effect of making the ring very weak, 
thereby making the axial forces and moments in the ring go to zero.

C. Fuel-Cladding Interaction Model

The bending interaction of the fuel and cladding is assumed to take 
place through a coupling element which is assumed to have an elastic 
bending stiffness G given bySi

=  [■1-n. f2
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and a bending viscosity given by

W = 6a a

where n and 3 are constants and where, again, cracked rings are ignored in the
summations. The constants T| and P are supplied as input to the bowinga a
analysis program. The constitutive equations for the interaction element will be

W G aa a

a , a *y
W G '̂aa a

and the incremental forms of these equations will be

AM^ = Ak^ + (3 .2 3)a a a a ^

AM^ = A^ Ak^ + (3 .2 4')a a a a

where

A^ = A^ = Ga a a

= - (G M^/W ) At a a a a

B^ = - (G M^/W ) At a a a a
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A similar type of interaction element is used to account 
for the bending interaction of the two fuel zones. The bending stiffness 
and viscosity for this element is defined by

and (3.25)

b

Again, and are user-supplied constants. The incremental constitutive 
equations for the fuel-fuel interaction element will be

where

K  - (3.26)

(3.27)

■

- > (3.28)

J

If there is only one fuel zone, the constitutive equation for the fuel-fuel 
interaction element will not be calculated.

The form of the rod constitutive equation (3.1) will depend upon 
the interaction state of the fuel zones and the cladding. For fuel rods with 
duplex fuel, there are four possibilities given by:

(1) no fuel-fuel or fuel-cladding interaction,
(2) fuel-cladding interaction only,
(3) fuel-fuel interaction only, and
(4) fuel-fuel and fuel-cladding interaction.

For single-zone fuel, it is assumed that only states (1) and (2) 
are possible. The constitutive equations corresponding to these four 
states are given below.
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(1) No fuel-fuel or fuel-clad Interaction

The constitutive equations of the fuel rod will be

AM^ = Ak ^ +c c

AM^ = Ak^ + B^c c

AT = Ae +c (.! J

(3.29)

The axial strain and curvature increments in fuel zone 2 will be

Ak

Ak

f2
y
f2

,.x .
(Bf2/A^2)

-  (8^2^42^ (3.30)

Ae£2 (Bf2/Af2)

If the rod has duplex fuel, the strain increments in zone 1 will be

A XAKfi = - <4i/4i>
N

, yAK.fl = - (B^i/A^i) ) (3.31)

Aefi = - (Sfi/4i> • J

(2) Fuel-cladding interaction only
In this case, the rod constitutive equation will be

AM^ =

AM-'

aJ„ A^
C .X , .X 

^£2 + ^
A?,

[Â  + —  c ,y ^ ,y
£2 a

b"" ^  a"". X . .„x . ^£2 ^ a ^£2,Ak •£ [B + --------------- ]c . .X JA^o + A £2 a

^£2 "̂a

AT = [A^2 + 4 ’ f®£2 ®c’

(3.32)
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The strain increments in fuel zone 2 will be
. X

A<f2 = [

Ak'f2

Ae
f2

a
J .A + A^„a f 2

XA k -

A^ + A?, a f2

Ae

] Ak  ̂- [

b" - b"i2 a
A X X

^a ^f2
B^ - B>̂ f 2 a

+ iZj a f 2

(3.33)

and the curvature increments in the fuel-cladding interaction element will be

« X , XA k = A k Akf2 (3.34)
Ak^ = Ak^ - Ak^„ a f 2

If the fuel is dual zone, the strain increments in zone 1 will again be 
given by Equations (3.31).

(3) Fuel-fuel interaction only (Duplex fuel only)

The fuel rod constitutive equation will be

AM^ = aX , X  XA A k + Bc c 'S

AM^ = A^ Ak^ + B^ c c )

AT = A^ Ae + B^ c c J

increments in fuel zone 2 will be given by

A ^Ak 2̂ = - B^/A^

Ak^AKf2 = -B^/A^ >

A£f2 " ^®f2 ®fl^^^"^f2 ^fl^

(3.35)

(3.36)
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where
,x , fl ^  
^f2

^fi \

= +f2
4 l  <

a!, + A^fl

a. A ^. ®fl \  ^  Afl
®f2 ■ 'T ^ X----Afi +

■\

(3.37)

and

.y = »f2 +
^ «>' + B? a!'f̂l % b "fl

'fl

The strain increments in fuel zone 1 will be

A k fl
4 i  ^b

b ~ °fl
A ^  J .  A ^^fl \

A k fl =  [- y y-’ ‘^ 2  + 1
b fl,
Ai, +

(3.38)

"^fl = ^"f2 •

The curvature increments in the fuel-fuel interaction element will be

(3.39)
A k : AkL  - Ak ^f2 fl
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Fuel-fuel and fuel-cladding interaction (Duplex fuel only)

The fuel rod constitutive equations will be

r,̂ aX , „x .X
= [a"" + ---   ̂ ] Ak"" + [b"" + ^

' A ^ A *

+ - J ~ ]  Ak^ + [B̂  + (3.40)
^ 4  4  + 4

AT = [Af^ + A 2̂ + 4 ^  ®f2 + 4^

X V X V Vwhere A^, A-2 j ^ 2  ®2 2 defined by Equations (3.37). The
strain increment in fuel zone 2 will be given by

B^ - B^
A,ĉ  = [---2 ] + [-3̂--- 2

A + A A + Aa 2 a 2
A>̂ B^ - B^a ,  a . T  , r  a 2-

H z  ' +-t-f--- 1̂ (3.41)A^ + a; A^ + A^a 2 a 2

ACf2 = Ac

The strain increments in fuel zone 1 and the curvature increments in the 
fuel-fuel interaction element are given by Equations (3.38) and (3,39). The 
curvature increments in the fuel-cladding interaction element are given by 
Equation (3.34).



-34- WAPD-TM-1498

The fuel rod constitutive equations given above for the four 
possible interaction states are used whenever the interaction state is 
unchanged during the time step. If the interaction state changes during 
a time step, the elastic interaction between the fueJ zones or cladding 
induces a jump in their curvatures at the beginning of the time step.
In the constitutive equations for the fuel zones, the cladding, and the 
interaction elements, this curvature jump is accounted for by: (1) changing 
the initial curvature used in the constitutive equation, and (2) adding 
a jump term to the constitutive e<iuatlon to correct tlie curvature increment.
In addition, if interaction is established during a time step, the initial 
curvatures of the appropriate interaction element must be set. If there 
is a jump 6 in the initial curvature of a fuel zone, cladding, or interaction 
element, the incremental constitutive equation becomes

AM = A - (k  ̂+ (5)J + B (3.42)

The above equation can be re-written as 

AM = A A k + (B - A5)

A A k + B . (3.43)new

The above equation shows how the B term is modified when the jump in the 
initial curvature is known.

The curvature jumps are assumed to take place elastically and 
therefore the equations used to calculate the jumps will make use of 
the instantaneous elastic bending moduli of the fuel zones, the cladding, 
and the interaction elements. These elastic moduli are defined by

”c - f \  \  0 -^4)

Of2 - \  (3.45)

"fl ■ \  (3.46)
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D = G a a = [r i V i  °f2a

= [I - n,l “tl

(3.47)

(3.48)

The equations will also make use of the parameters and
called the contact efficiencies, which represent the ratio of the 

observed curvature jumps to the curvature jumps which would be obtained 
if there were perfect interaction (i.e. elastic behavior and equal curvatures 
after interaction). Like T|̂ , ^  and these constants are determined
experimentally and are provided as input to the bowing analysis computer 
program.

Because there are four possible interaction states in a fuel rod 
with duplex fuel, there will be twelve ways in which the state can change.
In fuel rods containing single-zone fuel, only two of the twelve state 
changes are possible. The curvature jumps to be used for the twelve 
possible state changes will now be given. For convenience, a superscript 
C will denote either x- or y-direction terms. The interaction state 
changes can be visualized with the aid of the diagram shown below.

fuel-fuel

12
no

interaction

fuel-cladding

fuel-fuel
+

fuel-cladding
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In what follows, expressions for the jtmp terms are given without 
derivation. These expressions can be derived by considering the displace­
ment changes which occur in a set of inter-connected "springs" (representing 
the fuel zones, cladding, and interaction elements) when the connectivity 
of the system is suddenly changed. Such a system of inter-connected 
flexural springs can be visualized using an analogous set of linear springs 
(or elastic elements) connected as shown in Figure 8. In this diagram, 
force is analogous to moment and displacement is analogous to curvature.

(1) No interaction fuel-cladding interaction
This type of state change can occur in fuel rods with either 

single-zone or dual-zone fuel. In tliis case

- r °f2 , , C f; ,
[d, :  +'3 1 ^"c -  ^f2 >i2 c o o

D
f2 '<a + D  ̂ ~ '̂ f2 ^f 2 c o o

and
«fi= «

(2) Fuel-cladding interaction -• no interaction

(3.49)

y

This type can also occur in fuel rods with either single-zone or 
dual-zone fuel.

'̂ f2

'fl = 0

(3.50)

y
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(3) No interaction fuel-fuel Interaction

_ r fl
f2 " ^

1

r ^f2 
^fl = ^  f-

6  ̂ = 0

1 <̂ £2 - “n  ’

b + D 2̂] (<f2 - 4 l  )

,'̂ b °fl °f2 ,.5 .A ^
{1 - Yu [7- 7;;— r-7— tJ> )'f2 fl o o

/ (3.(3.51)

y

(4) Fuel-fuel interaction -> no interaction

'fl

2̂«£2 ■ - <»£l''>£2>'f2 

6  ̂ = 0

(3.52)

y

(5) Fuel-fuel interaction -* fuel-fuel and fuel-cladding interaction

'f2

fl

. °2 c I
~ + D  ̂ " ^f22 c o o

D ̂ ----) ( C _ C )
a "D„ + D  ̂ '-'̂c '̂ f2 ’2 c o o

K  r( h ) 6 ’'■D., + f2il b

f2 ~ fl

n D„ + D r r
r  t  r ^ 2

- ’'a <r,̂  (B̂  ■£ D_̂ )> “ £2̂ >

/ (3.(3.53)

y
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where is the fuel stiffness, given by

2 f2

(6) Fuel-fuel and fuel-cladding interaction -• fuel-fuel interaction 
only

For this case we have

(3.54)

where was defined in case (5).
Next,

5?
fl

r---- -̂--1
*̂b ^ "fl

6̂f2

b 6^̂ -  6^̂ f2 fl  ̂ (3.55) 9

 ̂ =  c - <"2/"c) f2 y
(7) Fuel-cladding interaction -* fuel-fuel and fuel-cladding interaction 

For this case, we have

f2 \  + dJ '̂̂ f2 ''fl ^fl 6 o o

D,
^1 \  + dJ ^^f2 " '̂ fl ^fl 6 o o

= [

bo

D + D ' f2 c a

6^. 6  ̂
c f2

=  (1 - ^ f \ )o

(3,56)

.y
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where D, is given by o
D D

D •a c

Fuel-fuel and fuel-cladding interaction 
interaction only fuel-cladding

In this case.

^fl t i

'f2 - -
(3.57)

'D + D " f2 c a

 ̂ “ °C c
4  'f2

where D, was defined in the above case.0
(9) No interaction -♦ fuel-fuel and fuel-cladding interaction

This case and the remaining cases can be obtained by 
combining previous cases. In each of tlie remaining cases, tlie fuel-fuel 
interaction and fuel-cladding interaction both change during the time step 
and the order in which these two changes are assumed to occur may influence 
the final result. In the case considered here (i.e. both fuel-cladding 
and fuel-fuel interaction established) It will be assumed that the fuel-fuel 
interaction is established first. First apply case (3) to obtain the 
updated values for the initial curvatures of fuel zones 1 and 2 and the 
initial curvature of the fuel-fuel interaction element. Next, apply case (5) 
to again update the fuel zone curvatures, update the cladding and fuel-fuel 
interaction element curvatures, and set the initial value of the fuel-cladding 
Interaction element.
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(10) Fuel-fuel and fuel-cladding interaction -* no interaction

In this case it will be assumed tliat the fuel-cladding interaction is 
broken first and then the fuel-fuel interaction is broken. First apply 
case (6) and then apply case (4).

(11) Fuel-fuel interaction only -* fuel-cladding interaction only

It will somewhat arbitrarily be assumed that fuel-cladding 
interaction is established and then fuel-fuel interaction is broken.
First apply case (5) and then apply case (8).

(12) Fuel-cladding interaction only -♦ fuel-fuel interaction only
Finally, assume fuel-cladding interaction is broken first and 

then fuel-fuel interaction is established. Apply case (2) and then apply 
case (3).

D. Post-Time-Step Processing

After the increments in the cladding curvatures and axial strain 
have been calculated from the finite element solution procedure it is 
necessary to back-ciilculate the curvature and axial strain increments in 
the fuel and the curvature increments in the interaction elements. In
addition, the stress increments in the fuel and cladding rings and in 
the interaction elements must also be calculated.

The fuel zone and interaction element strain increments are given by 
Equations (3.30), (3.31), (3.33), (3.34), (3.36), (3,38), (3.39) and (3.41).
Once the fuel and cladding strain increments have been calculated, the stresses 
in the individual rings can be calculated. The moment and axial force increments 
in the rings are given by Equations (3.12), (3.13), and (3.14). The moment
increments in the interaction elements are given by Equations (3.23), (3.24),
(3.26) and (3.27) if there is interaction, otherwise, these moments are set to 
zero. If the fuel is slngle-zone, the curvatures and axial strain in 
fuel zone 1 and the curvatures of the fuel-fuel interaction element are not 
calculated.
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E. Summary

In summary, a fuel rod incremental constitutive equation of the
form

—.w (- --V
a m "" 0 0 ^1
AM^ = 0 0 22

+ ^2
AT _ L o  0 D33^ Ae

has been derived. The particular values of the D's and E’s used depends 
upon the state of contact interaction between the fuel zones and the cladding.

(1) No fuel-fuel or fuel-cladding contact -• Use (3,29).
(2) Fuel-cladding interaction only -♦ Use (3.32).
(3) Fuel-fuel interaction only Use (3.35).
(4) Fuel-fuel and fuel-cladding contact -• Use (3.40).

If the interaction state changes during a time step, modify the constitutive 
equation using (3.43). The value of 6 to use in (3.43) depends upon how 
the interaction state changed. Values for 6 for the twelve ways that the 
state can change were given by Equations (3.49) - (3.57).

IV. The Induced Curvatures

In the formulation of the ring constitutive equations in Section 111 it 
was mathematically convenient to use the concept of "induced" curvatures.
An induced curvature is defined to be a curvature which would occur in a 
ring if there were no bending moments acting within the ring. In other words, 
it is the moment-free curvature (or curvature rate) at an axial location of 
a CYGRO ring. A number of different mechanisms have been identified which 
can cause a moment-free curvature of a fuel rod and these are discussed in 
this section. All of the curvature contributions discussed here are included 
in one-dimensional form in the current version of the ROBOT program [2] .
This section serves to document the current methods for calculating these 
induced curvature contributions and to extend the methods so that curvatures 
in the x-z and y-z planes can be calculated simultaneously. All of the 
material behavior models used in the calculation of these curvatures are identical 
to the corresponding models used in the CYGRO program. Constants appearing in 
these models have values which are the same as determined for use in CYGRO.
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Figure 6 shows two cross-sections of a CYGRO ring element. As shovm,
points P P P , and P „ are located on the average ring radius and on xl x2 yl y2
the X and y coordinate lines. Differences in the axial strains at these 
points will cause the ring to bend in the x-z and y-z planes. If it is 
assumed that plane cross-sections remain plane during bending, the curvature 
increments induced in the ring are given by

- (a/ ’'! - «.i)z z

. ( A . V - A > ) / dz z

p p P pxl x2 1 2where Ae , Ae , Ae and Ae are the axial strain increments atz z z z
points ^x2’ % 1  ^y2 average ring diameter
( = outer radius + inner radius), and where second-order strain terms have 
been neglected. The strain increments in Equations (4.1) and (4.2) are 
each a sum of strain increment contributions from various mechanisms such 
as stress-free growth and thermal expansion. From Equations (4.1) and (4.2), 
the total induced curvature increments can be written as

AK^^ = I Ak^^ (4.3)aa
Ak7^ = Z AK^^ (4.4)aa

where Ak^^ and Ak^^ are the curvature increments from the ^th mechanism a a
and are given by

P Pxi , xl x2. ,

Ak^^ = (Ae - Ae ^^)/d (4.6)
a, za za

P P P Pxl x2 yl J y2  ̂ ^where Ae , Ae , Ae , and Ae are the strain increments associated 
za Za Za za

with the ath mechanism. The various types of induced curvatures will 
now be discussed.

A. Fuel Swelling Curvature (Fuel Rings)

The z—direction strain due to fuel swelling is given by
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""z 1̂  ̂ T) [C^ f + (l-p)^C3 (f,(l-p))] (4.7)

where

R = z-direction strain director z
C^, C^, = constants

P = hydrostatic pressure 

T = temperature 

S = tabular function of P and T 

f = depletion 

p = porosity

= tabular function of (f/(l-p)).

If there is a fission rate gradient across the fuel rod, the depletions at
the points P P P , and P „ will be different and therefore the xl x2 yl yz
z-direction strains due to swelling will be different at these points.
The depletions at the four points can be calculated from the nominal fission 
rate and the fission rate gradient. These depletions are then used in 
Equation (4.7) to calculate the z-direction strains. Performing this 
calculation for the beginning and end of the time step and taking the 
difference in the calculated strains gives the strain increment for each 
of the four points. These strain increments are then used in (4.3) and
(4.4) to obtain the curvature increment.

B. Fuel Densification Curvature (Fuel Rings)

The fuel densification z-direction strain rate is given by

where R is the z-direction strain director and s, is the volimietric z h
strain rate associated with the hth pore class and is given by



e.

WAPD-TM-1498

-44-

2
[y [4.5 TT N (l-Sĵ ) + P (eĵ ) + S In (4.8)T]

where

= voltmie fraction of pore class h

T] = effective viscosity obtained from the steady-state
creep equations

N = number density of the pores in class h

y = surface tension

S = constants

The function P (ê )̂ is given by

where

a , <y = stresses r 6 z
V = solid volvime fraction associated with the pore, sol

The effective shear viscosity r\ depends upon the fission rate. If there
is a transverse gradient of the fission rate, n and e, will be differenth
at the points ^x2’ ̂yl ^y2* densification strain rates
at these points will be different, thereby inducing a curvature rate in 
the ring.

The procedure for calculating the curvature increment is as follows.
The fission rates a t P , , P „ , P ,  and P „ are calculated from the nominalxl x2’ yl y2
fission rate and the fission rate gradient. The effective shear viscosity
q is calculated for each of the four points and then Equation (4.8) is
integrated over the time step to obtain the updated value of and
Summing the Ae, ’s at points P , , P „ , P ,  and P . gives the total densi:''ication h xl x2 yl y2
strain increment at each of these points. The strain increments are then 
used to obtain the curvature increments using (4.5) and (4.6).
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C. Fission Rate Gradient Curvature (Fuel Rings)

In the fuel the creep strain rate’s dependence upon the fission 
rate is given by

e = G [ £ + Q f a ]  (4.9)z z o g

where is the z-direction strain director, is the generalized strain
rate which would occur if the fission rate were zero, Q is a constant,
£ is the fission rate, and a is the generalized stress. The transverse

g
fission rate gradient causes the creep strain rates at points P , P ,XX
P and P , to be different and thereby induces a curvature rate in thex3 x4
ring.

From (4.9), the axial strain rate at P , will bexl

e, = G [e + Q a (f - g r )] (4.10)1 z o g o ®x av'

where f is the nominal centerline fission rate, g is the x-coraponento x
of the fission rate gradient, and r^^ is the average radius of the ring. 
Similarly, the axial strain rate at P^^ given by

Substituting (4.10) and (4.11) into the curvature equation (4,5) and 
multiplying by the time increment At gives

XXAk = - G Q CT g At . (4.12)z g X

Similarly,

= - G Q a g At . (4.13)z g y

As a first-order approximation the generalized stress used in (4.12) and 
(4.13) will be the axisymmetric generalized stress calculated by CYGRO.
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D. Cladding Eccentricity-Induced Curvatures (Cladding Rings)

If the cladding eccentricity is non-zero, it can be shown that the 
:ity-induced stress 

are approximately given by:
eccentricity-induced stress perturbations at points P^^’ ^x2’ ^yl ^y2

Point Pxl

&a = 0,r t 6a = - (— ) az t z (4.14)' nom

Point Px2

6a = 0, 6âr 6 (— ) Oj 6a
'nom

(■^) a^
nom (4.15)

Point P
II

6a = 0, 6âr i
= - r-i'(-) 6a

nom - “zi' nom
(4.16)

Point PZ2

6a^ = 0, 60g = (-̂ ) 6a
nom ' nom

(4.17)

where 6a , 6a„ and 6a are the stress perturbations, e and e are the r’ 0 z X y
and a are the CYGRO-nom z nomX and y components of the eccentricity,

calculated axisymmetric circumferential and axial stresses, and t is the
nominal cladding wall thickness in the absence of eccentricity. The
stress perturbations given above cause perturbations in both the axial elastic
strain and the axial creep strain rate.

The elastic strain increments due to the perturbational stress
at P ,, P „, P 1 and P „ will be xl’ x2’ yl y2
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Ae xl = Ae
nom

(4.18)

Ae x2 = Ae
nom

(^) (4.19)

Ae yl _= Ae
nom

(-■^) (4.20)

Ae y2 _= Ae
nom

(^) (4.21)

where

Ae = (Aa
nom

- u AOq 1 )/E
nom 'nom

(4.22)

where u is Poissonfe ratio, E is Young's modulus, and Ao I and Ao,z j ^
are the changes in the CYGRO-calculated axisymmetric stresses. 
Substituting (4.18) - (4.21) into (4.5) and (4.6) gives

nom

AkX X = -2 Ae
nom

(— ) ''td̂ (4.23)

Aky i = -2 Ae
nom

(4.24)

for the elastic component of the eccentricity curvature. In the above 
equations, d is the average ring diameter.

If 6ct̂ Is the stress perturbation, the z-direction creep strain
rate will be 8 e

e (a + 6 a.) = e (a ) + Z  ̂ •
 ̂  ̂  ̂  ̂  ̂ k=r,9,z  ̂\  ^
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Durlng a time step At the creep strain increment due to the perturbational 
stress will be

.6a .

Ae = Z ( - ^ )  At
^ k=r,e,z ^ \

where

,  3 e

\  ^  *

Using the stress perturbations given by (4.14) - (4.17), the perturbational 
creep strain increments at points P^^» P 2» ^y2 given by
(4.18) - (4.21) but with Ae

Ae

now given by
nom

(iL) ^ /At 1
= VvTrenom .Vnom S

(4.25)
nom

Substituting these strain increments into (4.5) and (4.6) gives

Ak^^ = -2 Ae

= -2 As

(^) (4.26)
nom

e
(■^) (4.27)

nom

In summary, the cladding eccentricity induces an elastic and creep 
curvature increment in the ring. The elastic curvature increment is
given by (4.23) and (4.24) with Ae given by (4.22). The creep curvature
increment is given by (4.26) and (4^27) with Ae| given by (4.25).

'nom
E. Thermal Expansion Curvature (Fuel and Cladding Rings)

In CYGRO the temperature distribution in the rod is assumed to be axisym­
metric and the material properties and thermal expansion strains in each CYGRO 
ring are calculated using the average temperature for the ring. Transverse 
gradients in the non-axisymmetric component of the fission rate, the coolant 
temperature, or the cladding-coolant interface conductivity can cause the
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temperature distribution to be non-axisymmetric, thereby inducing temperature- 
related curvatures in the rod. To calculate the temperature distribution, it is 
assumed that the non-axisymmetric component of the temperature is a perturbation 
of the symmetric temperature distribution calculated in CYGRO, Ring thermal 
conductivities associated with the axisymmetric temperature distribution 
are used to calculate the perturbational temperature distribution. The 
details of the calculation of the perturbational temperature distribution 
are given in Reference [1] for the case in which only x-direction gradients 
of the fission rate, coolant temperature, and clad-coolant thermal 
conductivity are present. Because of the linearity of the governing 
equations, the perturbational temperature distribution for the case in 
which the above gradients have both x and y components can be obtained by 
superposition. The procedure given in Reference [1] is applied twice, 
first using the x components of the gradients and then applied using the 
y components of the gradients. The two calculated temperature distributions 
are then superimposed to obtain the total perturbational temperature 
distribution.

Once the perturbational temperatures at points P P P andXX y-L
Py2 calculated, the z-direction thermal expansion strain is given by

T

ref

where is the z-direction coefficient of thermal expansion and T is the 
sum of the axis5mimetric temperature and the perturbational temperature.
The change in the thermal expansion strain will be

T+AT
Ae = L  k dT (4.29)z i z

where AT is the total temperature change during the time step. Evaluating 
(4.29) for points ^̂ 2̂’ ^yl ^y2 substituting into (4.5) and
(4.6) gives the thermal expansion curvature increments.
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F. Flux-Induced Stress-Free Growth Curvature (Cladding Rings)

In the constitutive equation for Zircaloy, the stress-free 
growth is a contribution to the total strain rate which depends on 
temperature and fast-neutron flux but is independent of the stress.
Thus, this term represents a strain rate which can occur when the material 
is unstressed. Because the stress-free growth rate depends upon the 
temperature and the fast-neutron flux, transverse gradients of these 
quantities will cause the stress-free strain rates at points P̂ j.’ ^x2 ^yl 
and P^2 to be different. Thus, curvature components associated with 
stress-free growth can be induced in the cladding rings.

The z-direction strain rate associated with the stress-free 
growth is given by

5 = E + R E (4.30)z V z y,

where is an isotropic strain rate component, R^ is the z-direction 
strain director, and is the shape change component of the growth. The 
isotropic strain rate component is given by

d, Q -Q
[7^ 7 - exp (^)] - [Ĉ  <). + exp (-^) ] (4.31)

where S , d) , Q , C and D are constants, 6 is fast-neutron flux, and T V o V V V ^
is absolute temperature. The shape change component is the sum of a 
transient term and a steady-state term, i.e.

e ~ e + e (4.32)I t ŝ

where

e
o z
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a  - exp (-Qĵ  [i- T^])} (C^ + H) <P (4.34)

for / (f) dt < T*o ' o
H = < (4.35)

A
- H) otherwise .■D Bz z

where S , Q , t . , C ^ , F , A , B ,  and T are constants.X, X, X, t Z z z
The strain increments at points P P P and P _ arexl x2’ yl’ y2

calculated by numerically integrating Equations (4.30) - (4.35) from
t^ to t^ + At at each point using the fast-neutron flux and temperature
appropriate for each point. The temperature which is used is the sum
of the axisymmetric temperature and the perturbational temperature. To
integrate the above equations it is necessary to keep track of the values
of H and e at P P P , and P The strain increments which are

V  xl’ x2’ yl y2
calculated are then used in (4.5) and (4.6) to calculate the stress-free
growth curvature increments.

G. Fast-Neutron Flux Gradient Curvature (Cladding Rings)

The creep rate of Zircaloy depends upon the fast-neutron flux.
If there is a transverse gradient of the fast-neutron flux, one side of a 
cladding ring will creep faster than the other and a curvature contribution 
will be induced in the ring.

At point P^^ the creep rate will be

nom ^
* re = [e z

where e nom is the creep rate which would exist if there were no fast-
neutron flux gradient, (|) is fast-neutron flux, r^^ is the average ring
radius, and G is the z-direction strain director. Similarly, the creep z
rate at P . will be x2
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px2 .3 e. .9 d>. ^
+ ’̂av̂  • (^-37)nom

•  f *e = [ Ez

The strain increments at and P^^ ^te obtained by multiplying (4.36) 
and (4,37) by the time increment At, From (4,5), the curvature increment 
will be

A a 9 e  ̂ a 9 iJ)a At , (4,38)

Similarly, for the y direction,

A yi /9 Ea a9 d). ^

• ('>•35)

V. Calculation of the Initial Free Shape of the Fuel Rod Neutral Axis

Initially, the neutral axis of bending of the fuel rod will be the 
centroidal axis of the cladding. The location of the centroidal axis is 
determined by the lateral deflection of the cladding center and by the x 
and y values of the cladding eccentricity. The values of the cladding 
center deflection and eccentricity are usually known at discrete points 
along the length of the fuel rod. The problem is to find a set of initial 
nodal displacements which yield an initial shape which best fits the 
initial centroidal shape data. In what follows, a method for obtaining a 
least-squares curve fit to the data using the finite element shape functions 
is developed. The procedure is somewhat complicated by the fact that the 
deflection and eccentricity data are not generally known at the same set 
of axial locations.

In the finite element description of the rod shape, the shape is 
determined by the values of the nodal deflections P. In particular, 
within each element the lateral deflection is given by
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u u
r " i  1I

1I1
V

V ^

where and are the first two rows of the shape matrix of the ith u V
element. There is no need to include the axial deflections. Next, 
suppose that there is a set of data points and which represent
the X- and y-deflection, respectively, of the jth data point within the 
ith element. Then, for the ith element, the sum of the squares of the 
differences between the data and the assumed shape will be

wliere I ] and are the. x- and y-direction sliape functions of the
ith element evaluated at Ll>e axJal location corresponding to the jth 
data point. Summing over all elements (and therefore over all data points), 
we obtain

{[X - [P.]]^ + [Y. . - [Sijij ij

We now want to miminizc- To do this we set the partial derivative of
with respect to to zero to obtain

2 >, >: ( i x y  -  [s ‘ -'l i r i l  + [ y ^  -  [ s j h  i p p i  -  o (5. 1)
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where [‘I/.n, denotes the kth component of the matrix [•], Next, the matrix 
products ^̂ î  written in component form as
fŜ ]̂ , [P. and fŜ -̂ 1, , r'l-l/o',* where a summation over the index £ is

u (x, )  l ( ^ 3 o )  V  \^') i V 3 c ^
implied. Using this, equation (5.1) can be written in the form

1 J

= 1 {[s -̂1 ,,, X.. + [s ■']/, N Y..} ̂j U ' (k) IJ ' V J(k) i j

which can be written

 ̂ = J (5.2

where

■hUkxo ■ ‘ is;U(„ -k [<h(„) (5.3)
t"l(k) - 5 Xy + [S«l,„ V..) (5.4)

Note that the equation

[K.] [P̂ ] = [F]

looks very similar to an element stiffness equation. In fact, Lite summation 
over all of the elements indicated in Equation (5,2) is exactly the same as 
the finite element assembly procedure. Tiiis assembly jirocedure will produce 
a matrix equation of the form

K P (5.5)
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which is then solved to obtain The matrix K will have the same properties 
as the global stiffness matrix; i.e. it will be banded, symmetric, and 
positive definite. This means that beyond the point where the element 
stiffness and force matrices are calculated, the finite element solution 
procedure can be re-used to calculate the initial nodal deflections. 
Therefore, to calculate the initial displacements. Equation (5.3) is used 
to calculate the element stiffness matrix and Equation (5.4) is used to 
calculate the element force vector. The subroutines which calculate 
these quantities would be called in place of the usual stiffness and force 
subroutines.

There is, however, a difficulty which can arise with the above 
procedure. The nodal displacements at a particular node only influence 
the shape of the curve in the elements joined to that node. This means 
that if there are no data points in those elements connected to 
the node, the nodal displacements are not uniquely determined and the K 
matrix will be singular. Thus, for the above procedure to work there must 
always be a sufficient number of data points in each element.

To get around this difficulty, it is assumed that the rod has
0a small amount of stiffness in bending and that instead of minimizing.;;, 

we will minimize the functional^, given by

where ^ i s  the elastic strain energy due to bending. The idea here is to
make the bending stiffness very small so that g, is very small compared t o ^  .

dominates, then the set of nodal parameters which minimize^ will be
essentially the same as the set of parameters which minimize In
addition, when there are not enough data points in a region to uniquely
define a minimum f o r ^ ,  a unique minimum for^ will exist because the nodal
values will be such that they minimize the local strain energy. Thus, in
regions where there is insufficient data, the curve will be uniquely defined 
and smooth.
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To minimize , we have

I 9 £» _

3P. 3P.I l l3P. 3P. 3P.  ̂ ’ (5.6)

From the least-squares analysis above we have

3i-
3P.1

= K P - F (5.7)

where K and ̂  are the same as in (5.5). Next, we assume that the beam has 
a fictitious elastic constitutive equation of the form

A£ = c 1 A_e (5.8)

where 1 is the identity matrix and c is a adjustable stiffness constant 
which can be used to make S- small relative to ̂ . It can be shown that 
for a linearly elastic beam

1 ^  = K P  (5.9)
i

where K is the global stiffness matrix obtained using the virtual work or 
Galerkin formulation of the finite element method. This means that the 
matrix K in (5.9) can be obtained using the finite element formulation 
developed in Section II with (5.8) as the constitutive equation and with 
the initial nodal displacements set to zero to eliminate the nonlinearities. 
Substituting (5.7) and (5.9) into (5.6) gives

[K + K] P = ^  . (5.10)

This equation can be set up by assembling finite elements whose stiffness 
equations are of the form

[K. + K.] P. = F. ~i ~x — 1 — X
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where K. and F. are given by Equations (5.3) and (5.4) and where K-1 1 ~i
is the element stiffness matrix obtained when the beam has the elastic 
constitutive equation (5.8). Thus, the computer routines used for the 
structural calculations can still be used to calculate the initial free 
shape of the rod. It is only necessary to modify the routine that 
calculates the element stiffness equation.

The purpose of the above procedure is to calculate the initial 
shape of the rod*s centroid. However, the centroidal deflection is not 
measured directly, but rather, it is the centerline deflection and the 
eccentricity which are known. If the centerline deflection and the 
eccentricity measurement were always taken at corresponding axial locations, 
the centroidal deflection at those locations could be calculated and the 
curve-fitting procedure described above could be used directly. Unfortunately, 
the locations at which the centerline deflection and eccentricity measurements 
are taken do not always correspond and additional interpolations are required. 
One method for calculating the initial centroidal free-shape for such data 
is to perform the least-squares curve fit twice. The first time through, 
a least-squares curve fit is obtained for the centerline deflection. This 
curve is now used to approximate the centerline deflection at points where 
the eccentricity is known. The centroidal deflection can then be calculated 
at these points using the formulae:

e (r - t)2 
, X oX = d -
X ' ' ^ ( 2 r ^  -  I )  

e (r - T)^
dy T ( 2 r  - t ) o

where x and y are the coordinates of the centroidal axis, d and d areX y
the coordinates of the centerline, e^ and e^ are the x- and y-components 
of the eccentricity as shown in Figure 7, r̂  is the clad outer radius, 
and T is the nominal cladding thickness. Now, a least-squares curve fit can 
be obtained using this centroidal deflection data. The least-squares 
curve-fitting procedure described previously is simply repeated using the 
new data. The nodal displacements which are calculated will be the initial 
values of the nodal displacements and subsequent displacement increments 
will be added to these values.
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VI. Summary
A numerical procedure for calculating the in-pile bowing of nuclear 

fuel rods has been formulated. The fuel rod is modeled as a viscoelastic 
beam whose deflections are solved for using an incremental finite element 
method. A computer program based on this procedure would work its way 
through the rod's history by taking small sequential time steps. For each 
time step, there are two main calculational parts. These are:

(1) the formulation of the rod's constitutive equations (i.e. 
the moment-curvature and axial force-strain relations), and

(2) the calculation of the rod's deflection increments using 
the finite element method.

The procedure for calculating the constitutive equations of the fuel 
rod is somewhat complex. First, for a given rod geometry and operational 
history, the CYGRO computer program is used to obtain a data file which 
contains histories of material properties and axisymmetric stresses and 
strains in the fuel rod. This data file is used to calculate some of the 
terms in the constitutive equations. Additional terms in these equations 
correspond to moment-free curvatures induced by transverse gradients of 
temperature and fast-neutron flux and by cladding circumferential wall 
thickness variations. These induced curvatures are calculated using material 
property models borrowed from the CYGRO program. The constitutive equations 
for each of the fuel zones and the cladding are then calculated using the 
CYGRO data file and the induced curvatures. An interaction model is used 
to combine these equations to form the constitutive equations which 
characterize the behavior of the fuel rod as a whole. The interaction 
model contains parameters called efficiencies which represent the degree 
of coupling between the fuel zones and between the fuel and the cladding.
The values of some of these parameters can be approximately determined 
using out-of-pile deflection experiments.
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Once the constitutive equations for the fuel rod have been determined 
for a time step, the incremental finite element equations can be formulated. 
The finite element formulation is nonlinear because of the coupling between 
the axial extension and the lateral deflection. The rod supports are 
modeled by specifying either force, displacement, flexible, or friction- 
type boundary conditions. The proposed finite element formulation results 
in a structure stiffness matrix which is symmetric and narrowly banded 
and can therefore be rapidly solved using a Cholesky-type equation solver.
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FIGURE 5. CARTESIAN AND CYLINDRICAL COORDINATES
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