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A New Approach to Regression in

Certain Time/Space Series Problems

'·                                                        Thomas W. Sager *

Abstract.  This paper introduces a new method for estimating a dose-

response relationship from spatially averaged time series of air pollution

and health data.  Because time is perceived as a nuisance parameter to be

eliminated, least-squares regression and traditional time series method-         ..

ology (e.g., spectral analysis, Bgx-Jenkins methods) are rejected in

favor of a nonparametric estimation procedure based on observing health

effects in times of nearly equal pollution.  The method requires estima-

ting the ratio of two density functions and avoids problems of aggregation,

linearity, and normality.  Refinements are suggested in section 3. In

spite of the formal tests described in section 5, the procedure seems most

useful, at present, as a data analytic and data display device rather than

as an inferential tool.
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1.  Introduction.  Clinical work and epidemiology are the two major

tools for assessing the impact of air pollution on human health.  Although

complementary in character, neither has provided entirely satisfactory

answers to the questions that scientists and regulatory agencies have

asked. Laboratory work offers the possibility of control over relevant

variables but the sample sizes are small and, because laboratory condi-

tions do not resemble those in our cities, extrapolation is a problem.

Epidemiology has enormous sample sizes and real-life conditions but lacks

control over exposure levels, and measurement of both dose and response

is laden with error.

In this paper we focus on epidemiology. Inadequacies in the data                   

base, the sheer complexity of interactions among relevant variables, and

other essentially nonmethodological issues all contribute to the problem

of inferring the dose-response relationship between pollution and health.

But at least part of the diff4culty must be laid on the doorstep of

methodology:  traditional statistical models for regression inadequately

cope with the time/space series character of pollution and health vari-

ables.

To see how this difficulty arises, consider the nature of the data.

Pollution data are a sample of a pollutant concentration function

f(xl'x2't) , where  x1'x2  locate the sampling point in space [the third

spatial dimension is omitted here, as there has been little vertical

profiling of pollution at this time] and i  fixes the time of the sample.

To permit some flexibility, we may allow  f  to measure the maximum concen-

tration at  (xl 'x2 )  over some time period ending at  t., or perhaps an
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accumulated exposure until  t--rather than just an instantaneous measure.

The coordinatization is arbitrary.  Typically, the exposures  f  are

measured at a few fixed air monitoring stations in the area of interest

and may be formally represented as a matrix {(f t) ;ij, uil' ui2'  ij

i=1, ..., m; j=1, ..., ni}  where  f.   is. the measured pollutant con-
1j

centration (taken  to be univariate--possibly an index--in this paper)

at station  i  located at  (uil' ui2)  at time  t   .  Unlike pollutionij

readings, health effects may occur throughout the affected region.

Health data often arise as a.sample from a health effects density. func-

tion  h(xl,x2't)  and may be represented as a vector  {(xil' xi2' ti) ;
i=1, ..., n}  which locate unitary occurrences of health effects in

:      space and time.  Reconstruction of  f(•,•,•)  from the data requires

6     spatial and temporal interpolation and smoothing between sampling points

andtimes, whereas  h(•,•,•)  must be estimated from the data bymeans ·

of a histogram or other density estimation technique.

Pollution and health data are thus qualitatively different kinds

of information, and they do not occur naturally paired in either space

or time.  Thus, without considerable spatial and temporal aggregation,

a classical regression of health-effects on air pollution makes no sense.

But much information may be lost through a coarse aggregation.  A little

reflection suggests that time and space, as parameters, are inherently

uninteresting.  What is desired is the relationship between pollution

and health independent   of (or invariant to) their locations   in  time  and

space. But the information contained in the data about this relation-

ship is diffused over time and space and its recovery requires finesse.
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In  a previous paper  [9], the spatial aspects  of this problem were addressed.

In the current paper we focus on temporal aspects.  The method proposed

largely avoids aggregation problems, least-squares, linearity, and nor-

mality.  It is nonparametric in nature and appears to generalize to similar

problems in which time and/or space are nuisance parameters.

2.  The method.  To be specific, let  f(t) = fA .f(xl'x2't) dxl dx2
and h(t) = fA h(xl'x2't) dx1 dx2  represent the marginal pollution and

health effects distributions over time, where  A  is the geographic region

of interest.  [Dividing  f(t)  and  h(t)  by the area of  A  yields the

average pollutant concentration and health intensity in  A  at time  t ,

but in the ratios which follow, this constant of proportionality has no -:     =..

effect because of scale-invariance.]  Now if the pollutant does impact

health, then the times of highest pollution should be related, caeteris ·.,         i.5, 1

paribus, to the times of greatest concentrations of health cases, the

lag depending on a number of factors.  Define                                            

F(z) = f , f(t) dt/f I f(t) dt{t; f(t) s zk

HA(z) = f{t; f(t) s z  h(t+8) dt/fI h(t) dt

T(z) = f . 1 dt/f  1 dt
{t; f(t) f zk       I

where  I  is the time period under study.  The heart of the me
thod involves

estimating and comparing these and derivative functiohs.  Note that each i
s

a distribution function in the statistical sense with common
value 0  at

the minimum pollution value and common value  1* at the maximu
m pollution

concentration.  A simultaneous graph of the three functions econ
omically

*H    approximately so; exactly,   if     8   =   0    .
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displays an enormous amount of information.  For example if the pollutant

is oxidant (in ppm) and the health effect is asthma, then the hypothetical

values  F(.08) = .60 , Ho(:08) = .40 , T(.08) = .90  tell us, respectively,

that    60% of total oxidant expo sure occurred at times    of   less    than     . 08    ppm

concentrations, that those same times accounted for only 40% of asthma

cases, although they covered 90% of the time period of the study.  If it

is supposed that air pollution and health are unassociated and health

effects are otherwise randomly distributed over time [see 3a below for

relaxation of this assumption] then with  T(.08) = .90  one would have

expected  H (.08) - .90 .  The difference between  T  and  HQ  then may

measure the health impact of pollution.  But  A  need not be set equal

to zefo.  Choosing a nonzero  &  allows the examination of lagged health

effects in a simple manner.

But T, H , and F are
cumulative functions of dosb level.  In the .

dose-response problem, one wants to predict the response to a specific

dose (whether the dose be measured instantaneously, as a maximum, or as

a total). This suggests that a better way to measure the response to

dose  z = .08  is to collect times when  z  is approximately .08 and

examine health responses  peculiar to those (perhaps lagged) times.

Therefore, given  z  and  € >0, the ratio

[H8(z+E) - H8(z)]/[T(z+E) - T(z)1 x HI(z)/T'(z) seems a good measure of

the response to dose  z .  Suppose pollution does adversely impact health.

Then one expects that if two time intervals of equal duration suffer

constant but different exposures  zl < z2 ' the second interval (dose  z2)

4
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will experience more health effects.  Thus one anticipates that Hj(z)/T'(z)

will be monotonically nondecreasing  in    z if pollution is harmful.

Figures 2 and 3 illustrate the method for the hypothetical series. of

figure 1.

3.  Three refinements.

a.  More than one explanatory variable. In the absence of air

pollution, health effects are in fact not randomly distributed over time.

The adverse conditions brought about by weather result in increased

occurrence of health problems. But weather is also a major factor in

pollution levels.  Weather and other confounding effects render suspect

the simple analysis proposed above.     If. we could remove these effects

from the health distribution, we could analyze the remainder for an

'·'    impact of pollution in the same spirit that the classicist examines

residuals for partial correlations. The variable "temperature"  will  be

used here to illustrate the process.  Let  c (t) = fA c (xl'x2't) .dt  denote

the marginal distribution of temperature over time, and define

C(z) = f{t; f(t) < zl
c(t) dt/fI c(t) dt .

Then any impact of pollution on health beyond the impact of temperature

should show up in  HA(z) - C(z) .  It is tempting to think of this quantity

as a cumulative residual.  Then the ratio  [H (z) - c'(z)]/T'(z) seems

a good measure   of  the "pure" effect of pollution, after adjusting  for

temperature.  Again, one may expect this quantity to increase monotonically

in  z . To handle more than one confounding variable, a linear combination

of their distributions   I =1 Pi Ci could be subtracted from '  H   .

6
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b.  Population adju tment. It has been tacitly assumed in the

foregoing discussion that the population of the affected· area A remains

stable over time.  If this is not the case, then  h(t)  must be adjusted

to reflect the number of health effects as a proportion of the population.

·To achieve this, simply replace the integrand  1  by  p(t)  in the defi-

nition of  T(z) , where  p(t) = fA P(xl'x2't) dt  is the population of

A  at time  t .  Note that if  p(t) = constant, then  T(z)  is exactly

as before. [If one is studying health effects among a subpopulation of

"susceptibles," then  p(t)  may be taken as referring to this group, the

actual numbers of which may be unknown.  However, if the group is thought

to constitute a simple·nonvarying proportion of the total population,                ·1

then  HA  may be calculated using the total population of the area for        ,·

p(t).]  In all but the longest studies, population will probably'remain

fairly stable.

c.  Spatial variation. A potentially serious defect in the

time-analysis presented above is the spatial levelling of f(xl'x2't)             .4
and  h(xl'xp,t)  by integrating out  xl  and  x2  to get  f(t)  and  h(t) ,

This was proposed in order to keep the analysis relatively simple.  However,

its effect may be to hide the impact of pollution, particularly if some,

regions of A  show much more variability of pollution with time than others.

An analogous problem in reverse arises with time averaging of  f(xl'x2't)

and    h (xl' x2't)    to study spatial variation of these series  as  was  pro-

posed in [9].

One way around this difficulty, which may be feasible in certain

cases, is to refrain from averaging  f(xl'x2't)  and  h(xl'x2't)

7
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Then one could define

F(z) = f<(Xl'X2't); f(Xl'X2't) S z  f(xl,x2,t)dxldx2dt/fAxI f(xl,x2,t)dxldx2dt

HA(z) = f{(x
h(x ,x2't+8)dxldx2dt/f h(xl'x2't)dxldx2dt1,x2't); f(xl'x2't) < z} 1 AxI

TP(z) = f<(xl'x2't); f(xl'x2't).1 z} P(xl,x2,t)dxldx2dt/fAxI p(xl,x2,t)dxldx2dt

Here the "time-population" adjustment    TP( z) is essential, for although

population may be stable over time, its density varies greatly over space.

The analysis is carried out by comparing  H8  to  TP  and examining

H /TP  .  It is evident that the space-time regions  {(xl'x2't); f(xl'x2't) S z}

may not be simple.  Their estimation could be achieved by preparing a time-

sequential series of pollution maps of the region.  On the other hand, esti-

mation of  H   need be no more difficult than outlined under section 4, in

which·we list the space-time coordinates of each health event and estimate

I.

corresponding pollution intensities  flxl'x2't-8) .

4.   Estimation. In general, the functions . F, H8, T  and their deri-
vatives will not be known and must be estimated. Since we identified

H /T'  as the fundamental dose-response relationship in section 2, density

estimation is required.

There are many procedures in the literature for estimating densitias

(e.g., kernel method [8], orthogonal series [4]; a somewhat dated review

-, ,
paper is [11]). For example, the kernel estimate  H8(z)  may be constructed

by the following procedure:

(a)  list the times  tl'..., tn  of each health effect                    

8
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(b)  estimate  f(ti-8) , the geographically-averaged pollution

index at times  t.-8
1

(c)  from the estimates  zi -  f(ti-A)  of  f(ti-A), constru
ct

the estimate  fli(z) = (nh)-1 I =1 K <(z-2.)/hl where  h
1     )

is a number depending on  n  and  K  is a kernel function

(For more on   h   and   K ,  see  [8].)

Here we shall not address the problem of estimating  f(t), which may

be  obtained by cross-sectional, ·geographical averaging (or totalling)

of estimates of  f(xl'x2't).  Methods now in use for estimating
 the latter

at any giveh point in time include purely statistical interpolation betwee
n

monitoring stations (e.g., Kriging [7] or gravity weighting [2
]) and physi-

cal modelling (e.g., diffusion [10]).

If  &  is not specified but is to be. estimated from the data, w
e

suggest choosing  8 to maximize  -I .1 log HI (f(ti-4)} Given

t l, . . . ,t n  ' the likelihood is   H =l *Hi   f (ti-A 
· Since   HI   is not

modelled parametrically, we replace it by our nonparametric e
stimate to

obtain the above estimated likelihood function. The maximizing     &     is  then

an (estimated) maximum likelihood estimate.

T'  may perhaps be estimated mor* simply than  H   since  T
(z)  is

just the proportion of time that the concentration  f(t)
  spends below

the level' z .  For, considerable empirical work (e.g., [3], [51) 
suggests

that the temporal distribution of pollutant concentrati
ons may be lognormal.

If so, then  T'(z) is just a lognormal density with pa
rameters which can be

easily estimated in the usual way from the data.

9
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The regression ratio  H /T'  may then be estimated by   /*' .

If it is expected that this ratio may be nondecreasing (if pollution

really matters), we may attempt to recover the trend by smoothing the

irregularities through calculating the isotonic regression of  H /T'

(see [1]).

5.  Tests.  A test for the effect of air pollution on health is a

test   for the monotonicity  of     Hi/T' . Unfortunately,   none   of the tests

for trend that have been developed in the literature is adaptable to

the present circumstances.  However, a test for the health impact against

a broader class of alternatives may be performed by testing  H :H8 = T

against  H. :H  0 T  (or  H8 <T, which favors monotonicity).  Such a

·            test will have less power than the desired test but the'theory for test-

ing equality of two distribution functions may be applied.  Of course,

with a large. collection of data. (as may be expected in this problem)

results will tend to be significant, if only because of inevitable

differences between model and reality. The significance level should

therefore be interpreted as a relative measure of the degree of con-

cordance.

If  8  is estimated as suggested in section 4, then the above signi-

ficance tests can no longer be strictly applied.  Instead, a likelihood

ratio procedure may be employed.  Letting the times of health cases be

tl' ..., t with associated (estimated) pollution values  zl = f(tl)'n

..., Zn = -f (tn)' we calculate A (@l, ···, 211) = supb I[ -1   (zi)/T'(Zi)         i

and reject  H   for large values of  A,.  If the  t.'s are distributed1

0

10
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"
independently,  zi x zi = f(ti), and both  H   and T' are estimated

consistently, then  A m sup  lIn   H' (z )/T'(z )  andA  i=l  &   i

-2 log A = -2 log min {X,1}  is approximately chi-square in distribution

(section 7.13 of [6]).

6.  Discussion.  The method presented in this paper is. largely

data-analyt ic in nature. The unwieldy multidimensional time-space series

in which pollution and health data are embedded is economically reduced

to an informative graph of cumulatives and their derivatives. These

graphs are potentially much more faithful to the original data than are

the forced aggregations of least-squares regression.    For  the time being,

inference with our method is limited to the nonoptimal tests of section 5.

Further advances in statistical theory may·be expected to provide (near)

optimal.tests, confidence intervals, and other desirable statistical              ...

properties. ./
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