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A New Approach to Regression in

Certain Time/Space Series Problems

Thomas W. Sager®

Abstract. This paper introduces a new method for estimating a dose-
response relationship from spafiallylaveraged time series of air pollution
and health data. Because time is perceived as a nufsance parameter to be
eliminated, least-squares regression and traditional time series method-
oloéy (e.g., spectral analysis, Box-Jenkins methods) are rejected in
favor of a nonparametric estimation procedure based on observing health
effects in times of nearly equal pollution. The method requires estima-
ting the rétio of two density functions and avoids problems of aégregation,
linearity, and normality. Refinements are suggestéd in section 3. In
spite of the formal tests described in section 5, the procedure seems most
useful, at present, as a data analytic and data display device rather than

as an inferential tool. \
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1. Introduction. Clinical work and epidemiology-aré the two major
tools for assessing the impact of air pollution on human health. Although
complementary in charagcter, neither has provided entirely satisfactory

answers to the questions that scientists and regulatory agencies have

- asked. Laboratory work offers the possibility of control over relevant

variables but the sample sizes are small and, because laboratory condi-
tions do not resemble those in our cities, extrapolation is'a problem.
Epidemiolo%y has,enormoué sample sizes and real-life conditions but lacks
control over exposure levels, and measurement of both dose and response
is ladén with error.

In this paper we focus on epidemiology. Inadequacies in the data
base, the sheer complexity of interactions among relevant variables, and
other essentially nomnmethodological issues all contribute to the problgm
of inferring the dose-response relationship between pollution and health.
But at least part of the difficulﬁy must be laid on the‘doorstep of
methodology: +traditional statistical models for regression inadequately
cope with the‘time/space series character of pollution and health vari-
ables.

To see how this difficulty arises, consider the nature of thé data.
Pollution data are a sample of a pollutant concentration function
locate the sampling point in space [the third

f(x t) , where

1% X %5

spa;ial dimension is omitted here, as there has been little vertical
profiling of pollution at this time] end t fixes the time of the sample.
To permit some flexibility, we may allow f +to measure the maximum concen-

tration at (xl,xz) over some time period ending at t., or perhaps an
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accumulated exposure until t--rather than just an instantaneous measure.
The coordinatization is arbitrary. Typically, the exposures f are
measured at a few.fixed air monitoring stations in the area of interest
and may be formally represented as a maﬁrlx {(fij’ Wiis Bins tij) 3

i=1, .., m3 j=1, ..., ni} where fij is the measured pollutant con-

centration (taken to be univariate--possibly an index--in this paper)

at station i located at (uil, uiQ) at time tij . Unlike pollution

readings, health effects may occur throughout the affected region.
t

" Health data often arise as a sample from a health effects density. func- .

tion h(x t) and may be represented as a vector {(xil, X5 ti) :

1°%2?
i=1, ..., n} which locate unitary occurrences of health effects in .
space and time. Reconstruction of f(',',') from the data requires
spatial and temporal interpolation and smoothing between sampling points
and times,whereas h(e,*,*) must be estimated from the data by means -
of a histogram or other density estimation technique.

Pollution and health data are thus qualitatively different kinds
of information, and they do not occur naturally paired in either space
or time. Thus, without considerable spatial and temporal aggregation,
a classical régression of health-effects on air pollution makes no sense.
But much information may be lost through é coarse aggregation. A little
reflection suggests that time and space, as- parameters, are inherently
uninteresting. What is desired is the relationship between_pollution
and health independent of (or invariant to) their locations in time and

space. But the information contained in the data about this relation-

ship is diffused over time and space and its recovery requires finesse.



In a previous paper [9], the spatial aspects of this problem were addressed.
In_the current paper we focus on temporal aspects. The method propqsed
largely avoids aggregation problems, least-squares, linearity, and nor-
mality. It is nonparametric in nature and appears to generalize to similar

problems in which time and/or space are nuisance parameters.

5. The method. To be specific, let f£(t) = fAvf(xl,x2,t) dxl dx,,
and h(t) = Iy h(xl,xz,t) dx, dx, represent the marginal pollution and
health‘effects‘distributions over time, where 'A is ﬁhe geographic region
of interest. [Dividing f(t) and h(t) by the ares of A yields the
average pollutant concentration and health intensity in A at time +t ,
but in the ratios which follow,this constant of proportionality has no
effect because of scale-invariance.] Now if the pollﬁfant does impact
health, then the times of highest pollﬁtioﬁ should be related, caeteris

paribus, to the times of greatest concentrations of health cases, the .

lag depending on a number of factors. Define

Flz) = ey, g(4) <2 £(t) av/f; £(t) dat . V,hliﬁﬁ

HAgz) = f{t; £(t) < z) h(t+A) dt/fI h(t) dt

-3

—

N

~—
|

= f{t;'f(t)_g 2} 1 dt/fI 1 4t

whére I is the time period under study. The heart of the method involves
estimating and comparing these and derivative functions. Note that each is
a distribution funéfion in the statistical sense with common value O at
the minimum pollution value and common value 1¥ at the maximum pollution

concentration. A simultaneous graph of the three functions economically

*HA approximately so; exactly, if A=0.

3



displéys an enormous amount of information. For example if the pollutant
is oxidant (in ppm) and the health effect is asthma, then the hypothetical
values F(.08) = .60 , H0(208) = .40 , 7(.08) = .90 tell us, respectively,
that 60% of total oxidant exposure occurred at times ofﬁléss than .08 ppm
concentrations, that those same times acéounted for only L0% of asthma
cases, although they covered 90% of the time period of the study. If it

is supposed that air pollution and health are unassociated and health
effects are otherwise randomly distributed over time‘[see 3a below for
relaxation of this assumption] then with T(.08) = .90 one would have

thén may

expected HO(.OB) ~ .90 . The difference between T and HO

measure the hgalth’impéct‘of pollution. But A need not be set equal
to zero. Choosing a nonzero A allows the examination of lagged health
effects in a simple manner.

But T, H,, and F are cumulative functions of dose level. In the
dose-response problea, one wants to predict the response to a specific
dose (whether the dose be measured instantaneously, as a maximum, or as
a total). This sﬁggests that a better way to measure the response to
dose z = .08 is to collect times when =z is approximately .08 and
examine health responses peculiar to those (perhaps lagged) times.
Therefore, given z and € > 0 , the ratio

[H,(z2+e) - HA(Z)]/[T(z+e) - T(z)] = HA(Z)/T'(Z) seems & good measure of

Al
the response to dose 2z . Suppose pollution does adversely impact health.

Then one expects that if two time interveals of equal duration suffer

the second intervel (dose z,.)

constant but different exposures 2z < 5

1" %20
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"will experience more. health effects. Thus one anticipates that HA(Z)/T'(Z)

will be monotonically nondecreasing in 2z 1if pollution is harmful.
Figures 2 and 3 illustrate the method for the hypothetical series. of
figure 1.

3. Three refinements.

8. More than one explanatory variable. In the absence of air
pollution, health effécts are in fact not randomly distributed over time.
The adverse conditions brought about by weather result ip increased
occurrence of hgalth problems. But weather is also a major factor in
pollution levels. Weather and other confounding effects render suspect
the simple analysis proposed above. If. we coﬁld remove these effects
from the health distribution, we could analyze the remainder for an
impact of pollutién in the same spirit that the classicisf examines
residuals for partial correlations. The varisable "tempe;ature" will be
used here to illustrate the process. Let el{t) = fA c(xl,xg,t)‘dt denote

the marginal distribution of temperature over time, and define

clz) = f{t; £(t) < z} cl(t) dt//; c(t) at

Then any impact of pollution on healtﬁ beyond the impact qf temperature
should show up in HA(z) - C(z) . It is tempting to think of this quantity
as a cumulative residual. Then the ratio [HA(Z) - ¢'(z)/7'(z) _seems

a good measure of the '"pure" effect of pollution, after adjusting for
temperature. Again, one may expect this quantity to increase monotonically
in 2z . To handle more than one cqnfounding variable, a linear combination

of their distributions Z?=l p; C; could be subtracted from' H, .



b. Population adjustment. It has been tacitly assumed in the
foregoing discussion that the population of the affected area A remains
stable over time. If this is not the case, then h(t) must be adjusted

to reflect the number of health effects as a proportion of the population.

‘To achieve this, simply replace the integrand 1 by p(t) in the defi-

nition of T(z) , where p(t) = fA p(xl,xg,t) dt is the population of
A at time t . Note that if p(t) = constant, then T(z) is exactly

as before. [If one is studying health effects among & subpopulation of

"susceptibles," then p(t) may be taken as referring to this group, the

actuasl numbers of which may be unknown. However, if the group is thought

L

to constitute a simple nonvarying proportion of the total population, —

then HA

p{t).] 1In all but the longest studies, population will probably remain

may be calculated using the total population of the area for . - i

fairly stable. o ;

¢c. Spatial variation. A potentially serious defect in the : BN

time-analysis presented above is the spatial levelling of f(xl,xe,t) R

t) by integrating out x, and x, to get f£(t) and h(t)

1 2

This was proposed in order to keep the analysis relatively simple. However,

and h(xl’XQ’
its effect may be to hide the impact of pollution, particularly if some.
regions of A show much more variability of pollution with time than others.
An analogpus problemAin reverse arises with time averaging of f(xl,x2,t)
and h(xl,xg,t)‘ to study spatial variation of these series as was pro-
posed in [9].

One way around this difficulty, which may be feasible in certain

cases, is to refrain from averaging f(xl,xg,t) and h(xl,xe,t)



F(z)

Then one could define

(xl,xe,t)dxldxedt

} f(xl,x2,t)dxldx2dt/foI f

f{(xl,xz,t); f(xl,xz,t) <z

’

= f{(xl,xg,t); f(xl,x2,t) < z} h(x

l,xg,t+A)dxldx2dt/fAXI h(xl,xe,t)dxqugdt

(xl,xz,t)dxldxgdt

il

(xl,x2,t)dxldx2dt/f

f{(xl,xg,t); f(xl,xe,t)‘ﬁ_z} p axT P

Here the "time-population" adjustméntl TP(;) is essential, for although
population may be stable over time, its denéity varies greatly over spgée.

Thé analysis is carried out by comparing HA to TP andmexamining |
HA/T?' . It is evident that the space-time regions ‘{(xl,iz,t); f(xl,x2,t) i_z}
may not be simple. Their‘estimation could be achieved by preparing a fime-
sequential series of pollution méps of the region. On the other hand, esti;
mation of HA need be no more difficult than outlined under section ﬁ,.in
which -we list the space—tiﬁe coordinates of eaéh health event and estimate
corresponding pollﬁtion intensities ?(xl,xz,t—A) .

h; Estimation. In general, the functions  F, HA’ T and their deri-

vatives will not be known and must be estimated. Since we identified
HA/T' as the fundsmental dose-responéé relationéhip'in section 2, density
estimation is requiréd. |

. There are many procedures in the literature for estimating densities

(e.g., kernel method [8], orthogonal series [L]; a somewhat dated review

a

.paper is [11]). For example, the kernel estimate HA(Z) may be constructed

by the following procedure:

(a) 1ist the times t;,..., t  of each health effect




(b) estimate f(ti—A) , the geographically-averaged pollution
index at times ti-A
(¢) from the estimates Qi = ?(ti—A) of f(ti—A); construct
the estimate ﬁg(z) = (nn)7t Z?;l K ((zfai)/h) where h
isAa number depending on n and K is a kernel function
(For more on h and K , see [8].)
Here we shall not address the problem of estimating’ £(t), which may
be obtained by cross-sectional, ‘geographical averaging (or totalling)
of estimates of f(xl,xz,t).A Methods no& iﬁ use for éstimating the latter
at any giveﬁ point in time include purely statistical interpolation between
monitoring stations (e.g., Kriging [7] or gravity weighfing [2]) and physi-
cal modelling (e.g., diffusion [10]). .
If A is not{specified but is to beiestimated from the data, we
suggest choosing A to haximiZe l-2?= log a! (%(t.-A)) . Given
. n ~i=1 A i
£y +wes By 5 the likelinood is H?=l Hy (f(ti—A)}. . Since H, is not
modelled parametrically, we replace it by our nonparametric estimate to
obtain the above estimated likelihood function. The maximizing A is then
an (estimated) maximum likelihood estimate.
T' may perhaps be estimated moré simply than Hy since 'T(z) is
just the proportion of time that the concentration f£(t) spends below
the level 2z . For, considerable empirical work (e.g., [3), [5]) suggests
that the temporal distribution of pollutant concentrations may be lognormal.
If so, then T'(z) is just a lognofmal depsity with parameters which can be

easily estimated in the usual way from the data.
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The regression ratio H&/T' may then be estimated by ﬁ&/@' .

If it is expecteﬁ that this ratioc may be nondecreasing (if pollution

really matters), weAmay attempt to recover the trend by smoothing the
irregulaiities through calcﬁla@ing the isotonic regression of HA/T'

(see [1]).

5. Tests. A test for the effect of air ppllution on health is a
test for the moﬁotqnicity of H&/T' . Unfortunately, none of the tests
for trend that have been developed in the literature is adaptable to
the present circumstances. However, a test for the health impact against
a broader class of alﬁernatives may be performed by‘festing HC:HA =T
against leHA'# T (or Hy < T, which favors monotonicity). Such a
test will have lesé power than the desired test but the theory for test-
ing-equality.of twd distribution functions may be applied. Of course,
with a large. collection of data. (as may be expected in this problem)
results will tena‘to be significant,'if only £ecause of inevitable
differenées.between model and reality. ' The significance.level should
thefefore be interpreted as é relative measure of the degree of con-
cordance.

If A is estimated as suggested in section 4, then the above signi-
ficance tests can ﬁb longer be strictly applied. Instead, a likelihood
ratio procedure may be employed. Letting the times of health cases be
fl, ..;, t  with associa£ed (estimated) pollution values Ql = f(ti),

n
) _A . A ~ _ n o X} ~ Ay N :
cees BT £(t ), we calculate A (Zl’ cens zn) = sup, M., Hy (gi)/j (zi)

and reject H for large values of Ay. If the ti's are distributed

0

10



independently, gi ~ z, = f(ti), and both HA and T' are estimated
. ~ n [] , 1 '
consistently, then A sup, Hi=l HA (zi)/T (zi) and
-2 log A = -2 log min {A,1} 1is approximately chi-square in distribution
(section T7.13 of [6]).

6. Discussion. The method presented in this paper is. largely

data-analytic in nature. The unwieldy multidimensional time-space series
in which pollution and health data are embedded is ecohomically reduced
to an informative graph of cumulsatives and their derivatives. These
graphs are potentiallyAmuch more fgithful to the original data than are
the forced aggregations of least-squares regreésion. For the time being,
inference with our method is limited to the.nonoptimal tests of section 5.
Further advances in statistical theory may be expected to provide (near)
optimalAtests, confidence intervals, and other desirable statistical

properties.
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