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A. Introduction

1.) Dispersion Punction Distortion (DFD) affects accelerator operation
and thus deserves attention, somehow as Closed Orbit Distortion (COD)
does. Consequently, DFD correction schemes under computer control have
been successfully developed and adopted in many rings such as PEP.]')_”

It was realized during the author's study on the problem, however,
that the existing DFD correction schemes ignore those terms that arise
from bending magnets and their edges, Being of first order of correcting
strength, the terms are significant in small rings, though really not
important in big machines. This rem;mls of what has been noticed in the
chromaticity calculation. A companson between ‘this note and the existing
schemes shows a difference .in DFD sensitivity matrix. that is significant
for sub-GeV machines and appeats not negl:.glble even for SPEAR

_Many storage nngs at energy around o 7-3 Gev are bemg ptoposed,
constructed or operated everywhere as synchrotzon radiation gene:ator.s
Vert:.cal DFD correction should be an important part oE their operation,
because ve:tlcal DFD enlargee beam he:.ght and hence :educes ll.ght source
brightness. Tm.s :.s the purpose. the author had :ln mi.nd when beglnmng to
study the problem. In addit:lon, a co::ect DFD analysis along with con -
analys1s can hopefull.y help spot magnet mlsalxgnments anﬂ remove them.
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2.) The similarity of DFD correction to the chromaticity calculation
also lies in that, for poth of them, one has to start with the second
order particle motion equations though what he looks for is only a first
order dependence of a parameter on particle momentum. A previous note,
Ref.5), presents the complete expressions of the first and second order
particle motion equations, in either continuous field or "hard edges”,
and thereby a sound ground for this note to start from. The second topic
of Ref,5) is the chromagicity calculation, resulting in some formulae and
conclusions. A comparision of them with those obtaind in this note seems
worthwhile, for the similarity mentioned above will he made clear.

3.) The first step in this note is to introduce the first order equa~
tions of COD and DFD by handling the first and second order particle
motion equations. Then a general analytical solution to the equations is
derived. After a discussion on COD correction to see if its schemes have
to be modified in some cases, DFD correction is treated and new expres-
sions of its sensitivity matrix presented. The last part will discuss the
difference of the new expressions with the existing ones.

4.) Major assumptions taken throughout this note are:

a) Single particle (zero current) model, So any interaction between
‘particles or between a particle and its environment is ignored.

b) No eleétric field in the part of orbit being studied, no particle
energy change ‘and no time dependence of magnetic field,

c) The ideal ‘orbit lies in the median (symmetric) plane of magnetic
field, ‘86" the’ natural orthogonal coordinate system x~y-z (curvilinear
eyetem), vith y—axls fixed vertxcally, can be referred tn and the ideal
ve:tical disperslon 1§'ééio anywhe:e. 7
L ay. Magnetlc Eield 1s plecewiaely constant in all the magnets and is
“described by hatd edge app:ox;mation at their edges.

Ce) Patticle parameters x,'x'; Y, ¥ and § are small quant1t1es.

- £) COrrecting magnet;c field is much smaller than normal bending
p'ifield, 80 the’ field deviat1on, 9, is also regarded as a small quantity
and its influence on beta function as well as the coupling between two

.
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B. The First Order Equations of COD and DFD

1.} Symbol convention throughout this note is as follows:

For the coordinate system adopted, z is the azimuthal coordinate and

' is 4/dz ; x and x' are the horizontal displacement and slope, y and y'

the vertical displacement and slope, respectively. p is particle momentum
and Py the nominal momentum, so momentum deviation S = (p—po)/po which
is also the energy deviation for highly relativistic electrons.

u is used to denote x or vy u, { S ] the closed orbit of the particles
with momenium deviation S u, = uc(O) the central closeg orbit, namely,
the cop ; ) the ideal horizontal dispersion function ; ), the DFD on u
Plane ; W either u, or iu . d,, and J are the Twiss functions
and )’“ the tune on u plane.

A few subscripts are used to denote special positions, among which "i"
denotes the midpoint of the i—-th corrector, "j" the j-th monitor, "m® the
midpoint of the m-th magnet, "e" a magnet edge, "b" the point just before
the edge and "a" the point just after the edge. For a magnet, define some
numerical subscripts as : at the entrance, e=1l, b=0, a=1; while
at the exit, e= 2, b=2, a= 3., The

u'

definitions of subscripts 0, 1, m, 2 entrance magnet exit
and 3 are illustrated in Fig.l . Note (e=l) { e=2 )
that "e" always denotes the edge point 0 1 m 2 3
inside the magnet. 2
Let 8 and s, be two such sub- ola
seripts. The ppase advance between s, _
and 5, , Y, (s3/8)) , is defined by edge midpoint edge
Yslsy/sp = S 1/ pyt2)) de
S1 , Fig.,l Definitions of sub-
and M (s,/s,) 18 the u .plane transfer scripts 0, 1, m, 2 and 3
matrix £rom 8,.to s, ., ) . ‘
- The. magnetic components -are piecevuse constants such as.
Y"f°”y_g*' -x/(foq oo
i ¥By K 1 2By ;\, (B-1)

: | (Bp.‘ %) "
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If not specially explained, the other components are all ignored. In Eq.
(B-1), (Bf lo = Po /e 1is particle rigidity, J the curvature radius of
ideal orbit ; ¢ 1/)0 ) is the dipole component, which is not zero in and
only in bending magnets ; K the quadrupole component which is not zero in
quadrupoles and in combined function
bending magnets, where K=~ n/f‘2
with n the magnetic field index ; ),
the sextupole component which is not
zero in and only in sextupoles ; 9,
the field deviation which is not zero
in and only in misaligned magnets or
the currencly applied correctors. As
stated before, |gu| << (1/p).

A magnet edge is characterized by

the inclining angle Oe and the edge Fig.2 8ign conventions
face curvature radius Lo with the sign of Ge, r_and f are all
conventions shown in Fig,2 , positive as shown above.

2.) The up-to-second-order differential equations, for particle motion
within a magnet other than a solenoid or a rotated guadrupole, can be
found in many papers, Ref.5) as an example, as

. 1 2 > 2K o1,
x =-(K+fl)x+f +gx+-fgxx-gxs-(—z—+7+-f—3)x

‘ sz 2 2 1 .2

+ 2 fx-2 (;\.+ etx2-Lgz,
/. [ 2p " Tzp
yi' =

2K
Ky!-gyi-fg x-4q 6'+(;\.+7-) xy

i'F‘k_Sy + 7;- Xy o+ (8-2)

Eq. (B-2) differs from the well-known up-to-second-order motion equations

- ,in two aspects. gu ;s a‘nonzero first order small quantity gince one’ is
cons:.dering the distortion ard correction caused by 9,1 { L/p)' is zero

due to the piecewisely constant field assumption. The field changes take

place at hard edges only and are treated seperately.
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A description of the up-to-second-order hard edge effects in terms of
parameter increments is presented in Ref.5) as

1 2,2 2
ezfxb te— zfyb(l+t,+“"

1 2
Ya’Yb‘Ae}T"be LR PP

xa=xb+A

x'a=x'b-xexb-%(R’e*')':t'e))xbz*‘%(w +h)§':'é)yb2

+ R &xp - ef bx'b(l+tez)+Ae:;—yby'bte2+... ;
Y= ¥yt Ko ¥p*t ( A+ A xp v - K 8y

Ae-}xby-b(L )+A7x p ¥l 1 # €2 + L. (B-3)

where the symbols are defined by

Ae may be: Al - 1 (at an entrance) or A2 = 1 (at an exit) ;

tg=tanf, (e=1lor2)

edge guadrupole component Ke = - -}17 te H

edge sextupole cpmponent A,é'=. - 2K t, - 1/¢( f r, cos? Be' ) (B-4)
and six special sextupole components

a"""'?itl ; : W"’f#t; ;

l?i"-}zﬁ o SR Myg:'#tz(l*tz’ ;

MY, - 7,—,, gel+2e?) 5 7"5;'32 =~ # £, s

Here f and K are those inside the magnet in question. The different

expressions for %“’ and A,“) suggest that edge sextupole effects vary

both with ttansvetse planes (x of 'y) and with edges (entrance or: exlt}_.
_5_ -
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3.) u_(§) 1s the periodic solution of Egs.(B-2) and (B-3). Since COD is

nothing but u, = uc(o), the first order eguation of COD is readily found
as

c = 9y (B-6)

=0 ; a' - uf = - fie Yb (B-7)

Fx’x"#’ Fy=—K : Exe=-fye=xe=-%ta"9e (B-8)
COD is, in the sense “to first order", the periodic solution of Eqs. (B-6)
and (B-7), with Eq. (B-6) for the behavior of COD within any magnet and
Eqg. (B~7) for that at magnet edges. Note that, because of the first order
terms in the edge effect increments of x' and y', uc' is discontinuous at
an inclined edge and so are Fu' and y' . This requires a clear distinc-
tion between the functions with subscript "a" and those with "b" for such
*derivative functions®.

4.) Before deriving the equations of DFD, one must make clear what DFD
is. Let the definition of DFD be introduced as

~r

T m (x (&) -x 0 178r-9

fy = am 0« VoS - vt 1/ 8 (B-9)

. In other words,

208 = x, + §up o)+ 820 ceeea s

) sy e § Nt §T ) (B-10)

. And 9 is -the per.odic function which satisfies
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Combining Eqs, (B~2), (B-3), (B-8) through (B-11), and dropping the
second order terms finally, one comes to the DFD eguations without much
difficulty:

ﬁu"+Fu ﬁu=(_;-v-l)gu+ouuc+nuuc' (8-12)
Fd

!)ua - yub Pue Yce 7

_'):Ia - Dtrab == Tye yub * Eue Uge * Fye “ée (B=13)

where the functions Qu' Ru' etc. are given by

2K
Qx=x+7i-(k 7—+f39 oy=-x+(?u+7—)9;
R = ny:% UN (B-14)

_— — 1 2
ue = sgu'Ae)T De ta” ¢

Qo = 58, 0K - Chg+ A2 D, - L+ ey

o

1 -—
ne - Ae7 qe( 1+ squ'tez’ _ (B=15)

The symbol sg is defined as : 5g, = 1 s_gy = = 1. The special sextupole
components are revised as L‘z"s given by | o ’

) 2 .3 . a1 (2
7":u le H _31_{'-'--/7_5: Wu) Wm‘_

Note that 1'_ and ul, are evaluated inside the magnet, so their sub-
scripts are "e" (1 o: 2 ) “instéad of "b". To exptess the “functions by

(B—.I.G)

.msme magnet values w111 help Eormula uniformity and slmplificatmn.
Egs. (B-7) and - (B-j..l.) ‘are .useful when the replacements of u! Lp (DY u o)

and of 9 b (by 9' ) -are needed, that is, at the entrance.

< similarly ‘to COD, DFD is the penodlc solution of Eqs ; (B=12) and
{B-13) . Eqgs. (B-12) and (B-14) ‘describe DFD within any magnet while its
behavior at magnet edges is represented by Egs.(B-13) and (B-15). -
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5.} PFrom the equations above, several conclusions can be drawn such as:

a) A change of the field in any corrector ( Ag, ) will cause both COD
and DFD to change all around the ring due to their periodicity.

b) A COD change in any magnet where K, A and/or ( l{f ) are not zero
or at any edge where Ke' he and/or { 1/P ) are not zero will cause DFD
change as effectively as Ag, in the corrector does,

¢) In the sense "to first order", the contribution from one corrector
to COD change anywhere and thus to DFD change anywhere is propor tional to
-the g, change of that corrector.

d) On either COD or DFD, no first order coupling effect between the
two transverse planes exists, 1,e, any change in 9y and hence in % does
not affect Yo Or 9 and neither in the other way, though nonzero 1dea1
horizontal dlspe:slon 9 has an important role in the equation of 9
This is true for magnets other than solenoids or rotated quadrupoles.

" 6.) For completeness, the equations describing COD and DFD in solenoids
or rotated guadrupoles, along with a few comments, are also presented
here. But no further attention will be paid to them. The particile motion
equations in these cases can also be found in Ref.5) .

1 3Bx 2. aBy

a? For ro?ateq quaﬂ:upoles. Let hy = EEEL( P ) (Bf)o(Ei;-) . The
particle motxon equations are
x“—hn(l-S)y:" y''ahy(L=-8)x (B-17)

‘ zeatment simila: to that in the prevxous subsections E1nds the COD and
‘DPD equatlons, respectively, as

Dy v"t-' 9 ".‘hn(y"‘ + _’)x . (B-18)

. b) For solenoids. Let 95 = B, /(Bj’) . Then, for the particle motion
inside ‘the solenaid, one has :

R TS RN :

‘x“—qs(.l.-b-)}’ ' y"=-qg_(1-$)x' (8-19)
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and, for that at its edges,

1
¥a = % a=®p 7l % (1-81y, 3
- 1] - ] ‘ s

Yo= ¥p ¥ Ya=Yptg8,9 (1-0)x {B-20)
Therefore, the equations of COD and DFD are obtained as
X'' = 95 Yo' 7 Vo'' == 9g %' i

- s = x! -4 . ’ ro, 1 .,
Ya=Yep? Xca™ Xop~ 7he 9 Yopi Yea™ Yobt 7 4e % ¥cb
yxll P gs ( Yc' - 9y|) yy-- = - gs (9' _-xc' * 9x‘)

~ 1 ~r .

yua' 0ub : 9xa 9xb+'EAe 95 ( ¥op - Dyb) i

vy ~r { ) ~
9;a = D;b t o Ae gs‘( Db - Xp t 9xb ) ‘ (B-21)

c) The following comments, resulting from a zeview of Egs. (5-18) and
(B-21), are valid For both solenoids and rotated quadrupoles :

Nonzero ideal horizontal’ dispersion 9 at thei: locations makes them

significant sources of vertical DFD.

They nge rise to coupling between % and y planes., An xc and ox cor-
rection Wity influence Yc and®’ 9 if there are soleno:lds and/or totated
quadrupoles in the ring, and vice versa,

However; 1f the magnetic field in solenolds is much smalle: than that
1n bending magnets ( |gs| 4< ( lcr ) ) and the gradient 1n totated quaa-

1 jnadripoles { [hg) << |x|),

t&ey do not affect Ei:st order C : chemes, 11 thoigh
they may be partly :esponsible fot why the cotrection is needed

These points ‘are’ 1mpo:tant not ohly because solenoids and/or rotated

quadrifoles' may be installed ‘it a ring, bit''alao because: magnet:errors
prodice solenoid and/cr rotated guadrupole effects in:normal magnets. .

-,




C. The General Analytical Solution to COD or DFD Equation

l.) WNow the question is how to find the periodic solution to eguations
W'' +F W= H(z) (C-1}
Wy - W, =T, ; W -Wy = - E W +J (c-2)

which are a general expression of Egs. (B~6), {B-7), (B-12) and (B-13). H(z2)

is a z-dependent functiom that is zero outside magnets, while T; and 3;

functions evalvated at edge e.

2.) It is unnecessary to say that the first order transverse motion
equatlons of a particle without energy deviation are

u'' +F ous=0 (C~3)

N ‘:'. ' v ug -~ w, =0 ; W o-uwy=-f u

a (C-4)

Define the piecewise cosine-like and sine-like solutions of Eg.(C-3)
aémgu(zlﬂahd §u(z),;esPectively.;Since,Fﬁ isvaipiecgwige constant, one
can give, within a magnet,

L AE F > 0
1£F =0 (C-5)

AL F =0

, . 1f F >0
Af Fu 0 (C-6)

,unctlons c .and s -provide. the convenience that -the expressionl involved
' will not: depend on. the sign of F, , and have many other valuable proper-

. ties. A detalled descrxptlon for them..can be. -found .in.the appendix of

: Ref.6). The following is a brief llst of those properties to be made use

“of’ in the next subsection :

~10-
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c ' (2) = - B, S, (2) ; s,'(z) = C (z)

Cal-2) =C (2) 8,(-2) = -8, (2) 3

c,%(z) +F, 8 %(z) =1 C{o) =1 s (0) =0 ;
u u u u u

Cu(z1 + zz) cu(zl) Cu(zz) - Fu Su(zl) Su(zz) 3

Su(z1 + zz)

Su(zl) Cu(zz) + cu(zl) Su(zz)

Eq. (C~3) and thereby Egs.(C-5) #4d (C-6) are valid within a magnet, that
is, in the region between points "1" and "2". Let Lm be the effective
length of the m-th magnet. In terms of transfer matrix theory, the solu-

tion of Eq.(C-3) for the m—-th magnet is represented by

C, (L) S (L)
M, (2/1) = urm uom Ce-n
- Fu su(Lm) Cu(Lm)

while Eq. (C-4) is represented wy

1 0
M, (a/b) = . 1 (C-8)

ue
3.) Then, with the ald of 6 function theory, a solution of Eq. (C-l) can
be expressed by funct10n5 C and s as

y/

Wylz) = S s,z =B B(D) &F ) (c-9)
Z| h

with W' (z) = Cu(z - %) H(E) 8% ; ;ﬁﬁ'('zl)‘ = hﬂ'j(zl)“é 0.
Z1 - ‘7 = o

Thérefore, with arbitrary initial conditions, theé solution to Eq.(C-1) is
Wiz) = W - ‘ - ;
(z) L Cylz = zy) + W', S (2 - 2) + Wy(2)
It follows that fanction W whiéh obeys Eq. (C~1) between points "1° and

"2% can be described by a matrix equatlon
._11...
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) W, W (z.)
? = M (2/1) f ) + E. 2 , (C-10)
"y W Wy’ (29)

And Eq.(C-2) is equivalent to

Wb i
Hu(a/b) +
b

A complete description of the behavior of W function from "0" to "3",
or through the m-th magnet, is then given by

|

(C-11)

i
£ X
-
w
"

-1
m'm

W W T W (z.) T.

' ? Yemoraf @ Vel 2lemga| 7% Ve /| ) 12
1 1]

Wy "o 2 W' (2 Ty

It is advisable to concentrate the effects on W function from H{2), Te
Lo and ?e to the midpoint "m", as if W suddenly "jumped" at "m" with AW
T and AW'  as the increments of W and W', respectively, but it satisfied
o Eqs. (C-3) and (C-4) anywhere else. Then the behavior of W locked like

S Wy W, 2V
T e P Mot , M (3/m) ) (1)

-_since N . o . I z . :
| .
s W (22) ) —'C“(Lm/z)' Su'(Lm/Z)' AW SZS (Z - 2 ) H(Z) 4% .
' (zz) ¥, So(L/2) - Cu(L/2y | S”c (Z -z B(® af [}’

one finds by matn.x multiplcauon

{C=14)

et tenTasnn




4.) Then it is well known how to express the periodic function W that
satisfies Bgs. {C-3) and (C-4) along the ring, but has a finite number of
jumps. Suppose the "jump points" are designated by "p". The values of W
and W' at pcint "s" are found by solving the equation

W W AW
( s )= M, (5/5) ( ';‘ ) + Z, M,(s/p) ? ) {C-15)
W W 7 aw'y

where Hu(s/s) is the transfer matrix for one turn from s to 5. Let I be
the unit matrix. Since

i 8

(1= ms/snt= TERTD,

( I sinwp + ( dus {sus)cos‘n’v
\~ Yus ~odlys

one finds

W M M AW
( s )= Z, (0,8 - 12 ) ( b ) (c-16)
W P ¥ My2 aw,

where M, = ( sin ¢u(s/p) + dup cos ¢u(5/p) v/ (eup .
M,, = cos ¢u(S/P) i
Mgy = (sin@e/ - dyg cos Pq('s_(é) v s (c-17)
and | By (2/8) =,/ F“P he /1 2 8inTY ) - : (C-18)
Puts/p) = WY, = Yyterm | L (c-19)

the expression of MZ.L will not be used in this note. Estalglighing the
relation between ‘fuﬂcéi&ﬁ"j&rﬁpa‘ at "p" and ‘functién values at "s", Eq..’
(C-.LG) is useful ifi both detérming u, and ‘u .’ anywhe:e caused by given’ 9,
and finding 9u which 1s in turn generated bytgu, u, and u '_ atounﬂ l:he
ring. : :
In pn.ncl.ple, the problem-of COD and DFD correction is almost solved-
by Eqs.(C-14) and (C-16), since all the functions required are g_xven .in_,
Section B. ' : v ‘
' -13-
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D, About COD Correction

1.) FPor the COD equation, —I—e =J,=0 and H(z) = g, which is constant
in the applied corrector and is zero anywhere else. 50 the expression of
the COD sensitivity matrix is easy to give. Since

Za Zz
S s (z -z az =0 ; Scu(i— z) dz = 2 5,(Ly/2)
2| Z1

. one can simply give the COD jump in the i-th corrector as

I4
Aug =0 aug; = By (D-1)

where eul ¢ usually referred to as "correcting strength” or "kick", is

2 9,5 sin({i‘u Li/z)/lFu H if F,> 0

' . ‘eui = 2 9.3 u(L /2y = 9,3 L; if Fu =0 (D-2)
i : 2 9, sinh ([°F Ly/2/[F s 46 =<0

- with L; the effective length of the corrector, i the field deviation

r given by Eq.(B-l), F“ the focnsing strength given by Eq. (B~8) in which K
. - and f are those in the corrector. Eq.(D-2) has taken any possible types
of correctors into consideration.

" Suppose N correctors are applied. Inserting Eq.(D-1) into Eq.(C-16),
one obtains the coD change at the j-th monitor due to the correction as

A N . - B L o
Uiy = Zi' e, .3 Gy o (D-3}
3 R '

“with cuu.n) By(Ld) coscﬁ u/n" " - (D-4)

u"(i,‘j') is’just the (i.',j)—th element of the u plane COD sensitivity-
"matrid, -To ‘the sccuracy of first order, the changes in uyy caused by any
given' g ‘changés can be found by the sensitivity matrix very readily.

-14-
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‘eample is: the error is ) percent when k = = .0.24,. that 'is,

2.) At any point "s®, the COD change caused by the correction is

(-]
]

Z; B (i,s) eui cos ¢L(s/i) H

i
: .

uls = 7, Bullss) By € sinP(s/) - dyy cos B (s/in/ (3“5 (D-5)
i

As mentioned before, U.g and ués in magnets will give rise to PFD change.

3.) Egs.(D-3) and (D-4) are widely adopted for a long time. The only
thing new about COD correction is in Eq.{D-2) and is discussed here,
The existing schemes calculate eui byl)'4)

Oui = 9ui Ty (D-6)

And Eq. (D~2) can be written as a poder series in Li as

_ . 1 2 ! 2. 4°
eui = Yy Li (1 -'EZ Fu Li + 1920 Fu Li Foeee ) (D=7)

" Let k = ]F l L 2 , where F is the u plane focusing strength in that
corrector, evaluated by Eq. (B 8). How Eq (D-G) differs from Eq. (D-2) is
measured by k . )

Up to first order, no mathemut1cal apprommatuan is made in the process

" where Eg.(D-2) results :rqm. In this sense, ‘Eq. (D-2) is supposed the pre-

cise formula for oui in any case, Eg. (D-6) ahLapgtoximate expression to
first order of Ly, and k the criterion to judge how much the error is. By
the way, k is also the criterion for thln«lens approximation in transfer
matrlx multiplication. RS : S .
‘Obv1ously, Eqs (D—Z) and (D-6) mean the same for a "dedlcated correc-
tor®, “that is 1nsta11ed 1n a. dr1ft sectlon ‘with k = 0 - . ‘But, if the cor-
rector has .a: :elatlvely long 1ength and is simultaneously functioning-as

a bending magnet or a quadrupole, i. e. the correct1ng field is produced

may be a few percent. Usually the difference is very slight. A numerical
|&}-is around
12 for .a 0.5 m long quadrupole—co:tector, or the bend1ng angle around

30° degrees for a non-gradlent benﬂ—correcto:. o
s -15-1

tis
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E. New Expressions of DFD Sensitivity Matrix Elements

1.) As for COD correction, sensitivity matrix method is widely adopted
for DFD correction, Whan N correctors are on, the DFD change at the j-th
monitor due to the correction is expected to be

o

" ?)’uj= Zi'Du(i’j) B (E-1)

where Du(i,j) is the (i,j)-th element of the u plane DFD sensitivity
matrix. The question is how to evaluate Du(i,j) by known parameters.

2.) First, one can give the DFD jumps in each magnet by a rewritten form
of Eq.(C-14) as

w 2 Lm Lo — —
; Anum = - Szf (zZ- Z )H (Z)dz + C (—) (I + Iu.l.) - Su(—_z") (Juz- Ju_l_) H
f A'I)':‘m = S::é (z- z )H () dz + Fusu(l—:r_)(_uz‘ 'I'ul) + cu(%) (Fu2+ Ful) (E-2)
_ where nu=(;§—q-1)gu+ Qu“c+‘}'9' u’ (E-3)
- - andeQ given by‘Eq.(B-.lA) ; and
= By e = 59, A f tr"ezr ‘De Yee , (E-4)
Ty “él Ty udy
- Q‘u2 Ugp t | Ry2 c2 fu2 w2 Y2 o c . (ETS)

Eqs' (a-a) and (B-15) into Eq.(E-5), one will find a uniform
as . .

+ Mge) Tom Bt (14 e 2 p'e)

=7

Buted) Yo ul, : | S (E=6)
- = — . E-17
hye“"]l'te S (E-7)




Remember that the edge sextupole effects appeared asymmetric in Egs.
(B-3) and (B-5), where the parameters :.v were evaluated at asymmetric
points. Now it turns out f£rom Eq. (E-6) that the edge effects on DFD are
perfectly symmetric. "Symmetric" here means nsmn. if all the functions
( g and :n.u and characteristics ( mm and u involved in m magnet are
mirror symmetric about its midpoint, the no:nnpvcnpo:m to Dcsa Erom the
two edges, or more generally, from the two halves are exactly doubled and
their contributions to bdfsemznwumw< cancel out each other. This comes
from the fact that the two edges are of exactly the same importance in
their effects on DFD and is true for both x and y planes,

Eq. (E-2) tells that m.m can be regarded as m H_ dz at the edge, and
that a bending magnet edgsz behaves like a acmmnsmonlmmxnsdou.m combined
magnet, with Nm and ?m.nrm main quadrupole and sextupole components
respectively. The effect varies with transverse planes (x or y) as seen
from the explicit difference in- u,:..m and mc ; but it does not vary with
edges (entrance or exit). It is interesting that a study on the linear
chromaticity annsHmnwo:mv. though the mechanism is different, draws the
same conclusion and gives a few similar formulae, For example, the *plane
dependent sextupole components” ?:m are gqiven by exactly the same. for-
mulae as Eq. (E-7).

In Eq.(E-6), .n:m terms ~ mm: m\ .a e Yge 2nd - A w wm mm do
not depend on Qm or r, , so their roles are determined by the bending
magnet only, regardless of what the edges are like. They are "normal edge
ternms”,. representing the effect of- a normal edge (sector magnet edge), or
rather, a:part of the effect of the bending magnet in question.

Since "e" denotes the inner side of mmmmm. the normal edge terms can

be wwpausmnmm mmm-< by- w:nmmnmﬂwam Eq..(E~2) by: wmnwm Ducwmm m into

;_ms:r = EE +._.M_H\=E Bl (E=8)
where H, = A.T\.ﬂ..u..,,_.p ) gy ¥UR A+ M.Lw.q 2K ) x, 2
- - . . v d -
I_u..u\.h Awglh.v Q<v+a - K +?°+ a 1 I'g 1 %ﬂ g. H<n.v H
4 : (E-9)
Hi, = \ ( m.m: q a, + u nll:n. -




i
i
i
y

and let

l:rEue = l:,ue * Ae HIu(ze)
= B Ry = ( Mg+ M) ) v - A

Then one gets a new equation which is equivalent to Eg.(B-2):

a/ T2 - -
Al)um - Sz: c (z— z,) Hm(z) - 8, iz- 2 n) 8z,(2)) a2
R 3 cuu,m/z)( 1u2 + Iul ) - su(Lm/2)( JHuZ ~Jguy ) d
~, 22 _.‘ - - - _
AD‘!"‘ = Sz,( cu'(z‘_ zm) BJu(z) + Py su(z- zm) HI“(z)) dz

o+

l)+F su.lz)(r -E‘

Cu L/ { Typ + ut?

this way :

1 2 .
e-f' "¢ D eVce * 9e“c':e”

(E-10)

(E-11)

"3.) . ‘In principle, an-accurate evaluation of Du(i,j) can be worked out in
Let §,; be unit and the kicks in other correctors be zero .

Then Eq.(D-5) gives the closed orbit ( ug and u,') at any points, the DFD

Jumps ( Aaum and AOum ) in every magnet are found by the equations in

last subsection, 'and Eq. (C-16) yields the DFD value at the j=th moni tor

(- 9“,‘“), which: equals to-D (1,]) in this case.

r '~Because oi the- mvolvemem-_ of -integrals in Bq.(E-1l), Bgq.(D-5) has to

“‘be: 4Sed-many’ times td get ‘a very accurate result. This is not difficult
fo: a cotnputeg- pmgram,- but may be unnecessa:lly time-consuming.

In practice, it is: only a. qux.te rouqh accuracy. to which DFD measure-

T can be’ done and-‘'on’ which the DFD correction is based. Although no
’_lf;mathemaucal approximation is made in this note so far, what one needs
‘ ‘f‘:for this problem is a 'good approximate method.

- .A- choice to:-be’ cons:Ldered‘ is "Simpson's integral calc_ulat:lon method. It
means a quadratic approximation of the integrand functions and evaluates

them. at ionly three points, "L, "m" and "2” for each magnet in

~18-

this case.
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Sincs Simpson's method calculates an integral by

Z2 ¢
Sf(z)dzs—(f +4f +f)I-
9 6

one can evaluate

-— — _—

- 1
Jaue = THue 6 Bya(Ze) Iy Tye = Tye * EHIu(ze)' Ln (E-12)

at each edge, then replsace Eq. (E-1l) by

~ 2 =k -—
Agum 3 Iu(z )L + C (L /2) (I + Iu.l.) S (Lm/2)( HuZ Hul) H

~ . 2 * —*

AOl;m = ‘-S'HJu(zm)'Lm * cu(Lm/Z’ ( hu2 Hu,l) * FuSu(Lm/Z) (I ].) (B-13)
and go through the Du(i,j) evaluation procedure. So Eq. {D-5) is used only
thrice for each magnet.

4. The method to be recommended in thiz note is: to expand D“(i,j) as
well as all the functions invelved into power series in Lm and express.
them approximately by function values at the midpoint "m" and Lm of every
magnet. Por exam_ple, one has

2

'!4 ST 2
C (]:. f2)s | - = 8 uLln f... H s (Lm/Z)——L (1~ 24 ut'm + ...)

22 N 1
SC(z— am) n(z)dzﬂn(z)- +—(H"(z)-l? H(z))L3+...1
21 . . . .

UL G mEAT = n (a0 o
Sza (3~ z,) H(HAZ 12 B (Eg) by o | (E-14)

Usually, :I.l: 1.s lufﬂcient for. practical use to keep only the te:ms of
first powe: in L, S0:.as" to- save. computer t::une and p:eserve a satisfactory
accuracy, that is not worse than the DFD measu:ement accuracy, Note that .
( Lm/f ) and ( J_|L ) a:e usually much less than-unit. But some extreme
conditions are except:.onal, such as a 90 degree benﬂing magnet. Under
those conditions, the quantitative results of the ,.Eollowing formulae are
not sufficiently convincing and a be,ttér anprox‘iniation ie needed,

.._7[9_’




Suppose the approximation "to first power in Lm" is good enough. It
will be referred to as "first power approximation™ later. Note that the
power of edge angle Be is also counted as power of Ly v since Be is
always no greater than Lm/f . Then the eguations are simplified as

Jﬂue ﬁu'( Ke - }’e * A'ue) De 1 i

ce
-— . ' . 1
Tue #0 7 Mge 0 7 Mye =Tt (E=15)
f’ = (z, 1 L +l(T - J4.,) L+ :
Dum.,_" Hpy(2g) Iy F3 Hul Hu2 m- - T
7 T -
Aum = Byol%e? 'n * Sguy * THua * -o- (E-16)

with the functions at "e" calculated by

1 . _ 1
Dm+EAeDmLm+"' P Uge = Uem * 5 A, cmLm+"'
All the functions have to be evaluated at only one point, "m", for each
magnet, And define a new symbol-

ﬁ:é =1/(rz, cos? ee ) oL (E-17)

A ‘magnet: edge :is now characterized by t, (tan §, ) and T, instead of f,
»»»,and Iy, - Because T/ is a zeroth power (in L ) term of the edge
sextupole component, the difference in 'L‘ at the edges of a magnet
i influences DFD as a first power term and should be taken into account,

‘Introduce a few abbrev‘iations

(“‘2‘9.1.”“ + t

-t

2"

'"F?f’”’ fym(’l:lf’l:z)nu" ;
-2K9m):, +Am
'(1_%9 ) Byt Pn (B 600 < Ry (E-18)
_20_
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and A“l=sg-—(9m zym(Tl-Tz))Lm ;

1
Au2=7( D/ F““‘ } Ly (E-19)
Note that , since Amé(K-ng)Lm+ pal (Ke—},epe),lxmis

the main effect term for a magnet, e=1,2
Eq. (E-16) then becomes

~ - [4
ADum = Ay Yem * Ay, Pu.'n Bep

alym = (f_i’ Dn = 1) Byp + By Uy — Ay, U (E-20)
where Oum is not zero in and only in applied correctors, and is given by
Eq.(D-2) or (D-6), between which there is no meaningful defference under
the first power approximation.

" ‘Inserting Eqs,(D~5) and (E-20) into Eq.(C-16) and comparing the result
with Eq.(E-1), one arrives at the expressions for Du(i,j), whijch recods

D,ii,3) 2 B (i,4) -(;)—, 91 - 1) cos @ (3/1)

Zsm.'ll’)’u. é Tuijm , T A ’ o (E-zl)

where D /j’ is evaluated .at the midpdint of the, i-th corrector, B (i,9)
and ¢ (j/i) given by Egs.(C-18) and (c-.|.9), and the. sum added up for all
the magnets with T uijm as

Totim = ¢ fPon Au + 2 dum oL~ d.um up ) o8 @ (/1) cost)S {i/m)
+ Ay dum uz’ st ¢ i/m - ¢u(m/1) )
o+ Bggesin. ‘P (m/i) sin ¢ (J/m) o .i ' | (E-22)

Al)l the parameters in Eq.(E-22) are only related to the m-th magnet mid-
point except  for the phase differences-that are also related. to the i-th
corrector or .the j=th monitor..

-21-




6.) A question one may concern is how to find the function values at a
magnet midpoint, as most programs caleulate them at the magnet edges. An
easy way is, obviously, dividing each magnet intc two halves so that the
midpoint becomes an "edge". Some programs give function average values in
every magnet, The averages can be used in place of the midpoint values,
making a difference which is of higher than first power in Ly and is
hence of no more importance than the approximation adopted.

- Of course, the midpoint values of any function can be expressed by the
edge values., A few useful formulae are presented in Ref.6). Since any
first power approximation is allowable, the formulae can be simplified to

.
( F"1+ Fﬂ2+E‘ dy, = By ) By s

o
-]
=)
I
N"" N'-
)
e
[
<
|3

i~
—

iyl d s Y

Let aubscnpt "g" denote the origin point of 2z coordinate, Most pro-
grams calculate 9’(e/o) for every magnet edge. Then one can give

9, /o) = = ( ’ﬁu]. sin ¥ (1/0) + 'Fuz sin ¥ (2/0) L s o
',Pu—lcos yu(llo) +Jrcosy (2/0)

":'he midpomt phase advanece, where n is an integer- wl'uch is se chosen
" :that 9‘ (/o) <~ )V. (n/6) < ¥ (2/0) . And, as well known,

-.4‘¢u;(s/p) - { Yilp/o) = Y ts/o) + TV, if zg > 7,
y(/O)- )Vu(S/o)-‘n'v e A zg <z

= Dy, (E-23)

.
i

(E-24)

(E-25)

with coB. ¢ (m/1) = co8 WY, , but sin ‘P (n/i) = 0 . This
: H’_is equ:.valent to . taking averages of ue and uc' near the midpoint, where
| i_.s d__iscontmuous.

-'“‘Ah*-ana“l‘yt'iear"exp'ze's‘sioﬁ for DFD-Senaitivity matrix elements is thus
wo:l:ed out: ‘and - presentéd by Eqs. (E-18) through- (E-22) . Please remember

that it is .obtained under the first power approximation.
192~
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F. Differences with the Existing Expressions

L.) The results in last section differ obviously from the exiating DFD
sensitivity matrix expressions which are widely accepted.

As a contrast, the COD sensitivity matrix is the same, though a new
formula to calculate the kicks { eui ), Egq.{D-2}, is introduced and dis-
cussed in section D. The difference with the existing formula is usually
very slight, unless the task of correction is fulfilled by high strength
guadrupoles or by bending magnets with large bending angles, say greater
than 30, degrees.

2,) The existing expressions of D (i,3) is1)4)

D, (i,3) = B, (i,3) ( - cos @ (3/1)

2 sin T Z‘ Fum A, cos ¢u (m/i) cos ¢u (3i/my ) (F=-1) {
1 w m A

where A, = - AY = ( K - K?nl) L. . ' (F=-2)

If one lets all the { 1/)0 ) or t, terms be zero, that is, ignores the
effects of bending magnet and magnet edges, Eq.(E-21) becomes the same as
Eg.(F-1) . So the difference between these two expressions is essentially
negligible for biq machines, where ‘Fﬂ is, say, greater than 20 m.’
3.) But, a modification of Eq.(F-1) Seems necessary if one wants it to
be appropriate:to. machmes of any . size.with- correctors -of -any. type.; ,AS a
result from the complete up—to—second-order partlcle mot:lon equations and !
the f:.rst: power ‘in element 1ength approxl.matl.on, Eq (E—ZL) is recommended
to be used 1n DFD correction schqnes. A discussion on the differences
between qu (F-.l.) and (E-Z.l) w111 show how much _the erior of:Eq. (F-.l), if
used for small rings, may be.

Dne of the major d1fferences is in the coeff1c1ent of the first term,.
if a trim c¢oil of a bending.magnet

is used -as a corrector.,’ elthe; hori-

zontally or ve:tlcally. The . d:fference term - 91/] iis: qm.te s:gniflcant

for 'small’ nngs, where . f :may be a:ound 2 m:.and-a: typ:cal value of p is

L.SUmy T T . e et i eooao e 8w memiocoas sz ntEaoogemoeemd
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What may be more important is mentioned before: Eqg.(F-1) takes into
account only the effects of quadrupoles and sextupoles, for which the
terms in Eq,(E-21) are the same. It is then no surprising that magnet
edges come into the expressions, since they are well known to affect
particle motion with guadrupole and/or sextupole components, It is seen
that Ke and }vé of an edge act just like K Lm and A Lm of guadrupoles ox
sextupoleg, respectively. And, in their own way, bending magnets bring

“about their effects, which are reasonably proportional to L/ -

How much a magnet element affects DFD can be estimated by comparing
the terms produced by elements of various types, with the cosine/sine
function factors (phase difference factors) dropped for the moment:

The effect of a quadrupole is proportional to K pum Lm'; and by almost
the same ratio, that of a sextupole proportional to 3,8 % L. 7 that
of a bending magnet p - sorticnal to Fum L, /jz inA, ,and 9' L, /p
inA 4 , and Dm L, /( ffdum ) inA,, : and that of a magnet edge pro-
portional to ( Pum /f )" tan 6e~ or pum 9m'/(f r,) . USually Ay and Aya
are less influential than A, (&, or AY), because {Sum is greater than 9m
or 9'mf for most (but not all) magnets in a ring.

It is clear that the exclusion of bending magnets and magnet edges

from consideration is not safé in small rings, where I'm/f or Dm/ or
{aum/f is ‘ot very gmall, R

VEE «:--r‘-—.-~~,,_g-~ .
4 a spec.:al ‘case ‘in which all ‘the bending magnets are rectangular,
~i.e. of parallel sides and of straight edge face, is met more frequently
3 -and hence" g1ven more attention.

“Slnce(]./r~)-0 gnd tan9-=[. /(2)’) here,onehas

=L - - (F-3)
ecause’ A 1s"'t|st.ia11‘y' the most influential term, the conclusion in this
case 15, the st order effect of bending magnets almost vanishes on x
' _'plane but remains: act:.ve on Yy plane. ‘This agrees with the fact that a
magnet of thxs type .Functions roughly 1ike. a.drift on-x plane but has a
.focu51ng effect on y plane; as A.W. Chaoc once’ expected in a discussion.
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5.) To conclude the discussion, two numerical examples are presented as
follows, '

a) Some typical values of the parameters in SPEAR ( E = 1.5 ~~ 4 GeV )
are:

In the quadrupoles,

Lg=0.5m, |[&j=o0.18~o0.65m°, f=37~2n,

so ‘Kl{aum I'm ranges from 0.78 to 6.8 .

In the bending magnets,

1
1]

L Lp=2.37m, J2 12.8 m, - FY“' 11.8m , me: 7.6 m,

+ 0.28 ,

fp=19m, p'm = dym =+ 1-96 +  dyp =t 117,
so 2 Pym Lo /f = 0.34,
and the terms such as 2 d and o\1 A may be up to 0.2
-~ - Tum ul. um a2 y_p Pl

Ttu.s means that the effect of a bendmg magnet is :oughly oE the same
order of . magnitude as thar. of one of thé less influential cruadzupoles. It
follows thal-. the 1gnorance of a large number of bending magnets seems
quesuonable.

b) As an example Eor sub—GeV n.ngs, the des:.gn values oE a possible
configu:auon of the Befe1 800 Hev storage nng al:e- '
~In. (-_he quad:upo s,

J

L,=0.38 , |K|=1.50~23.07 m2 FY'“ =4.2~11.4m ,
fun = 1.5 ~17.8m,
so. lKleniI‘m = 2.4 ~ 7.8 , and |K|‘3m.n]:.m = 1.0 ~ 9.5,
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In the be-ndirlxg magnets,

Lg=1.16m,  p =2.22'm, Pym = 0.93 or 15.3 m ,

P"“‘= 2.6 or 2.8 m , 9m= 1.3 or 0.08 m , D'p=0o0rio0.26,
dyn

= 0or + 0.39, dms Qor + 1.12,

2 as
so 2 Fym L, /] may be as hlgh as 7.2, and A, may be 0.73 .

The effect on 3; of one pending magnet is fairly close to that of the
most influential guadrupole. Note that, in this example, v function
reaches its maximum in bending magnets, This is not very unusual in small

e machines, becausé the y plane edge focusing effect is relatively strong.
- One can conclude that the bending magnet effects must be considered if
the Lm/f value is comparable with unit. In the Hefei 800 MeV ring, it is
0.524 = W/ 6 . It is even larger in some other rings, for example, the
i ' . Brookhaven NSLS VUV ring, where it is 7/ 4.

6.) It was reported that the DFD correction schemes based on Egs. (E-1)
. ,and (F-.l) work qui.te uell in some multi-GeV rings, though sometimes not
___‘ve:y satisfac}:or:lly, i e. many iteratious bemg requ:.red, if DFD rms
'valne :.s :elat:.vely great There seemed o’ ‘be quggesnons of absence of
nknown first order f.actorsz, but it s nm: time yet to make a definite
'_conclusion. For smaller :ings things might be worse, if the theoretical
‘smila::l.ty of the DFD problem to the ch:amaticlty calculat:.on, as seen
above, is believable . e
‘ . Dhe :esults of l:his note ate \:o be mplementEd ‘into a p:oqram. The

: " aathor hopes it would as a complete first order appreximation, g:we a
better perfozmance. ERCE
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