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A. Introduction 

1.) Dispersion Function Dis tor t ion (DFD) af fects accelerator operation 
and thus deserves at tent ion , somehow as Closed Orbit Distort ion (COD) 
does. Consequently, DFD correct ion schemes under computer control have 
been success fu l ly developed and adopted in many rings such as PEP. ' ' 

I t was realized during the author's study on the problem, however, 
that the ex i s t ing DFD correction schemes ignore those terms that arise 
from bending magnets and their edges. Being of f i r s t order of correcting 
s trength, the terms are s i g n i f i c a n t in small r ings , though real ly not 
important i n big machines. This reminds of what has been noticed in the 
chramaticity ca lcu lat ion . A comparison between t h i s note and the ex i s t ing 
schemes shows a difference in.DFD s e n s i t i v i t y matrix.that i s s ign i f i cant 
for sub-GeV machines and appears not negl ig ible even for SPEAR. 

Many storage rings at energy around 0.7 - 3 GeV" are being proposed, 
constructed or operated everywhere as synchrotron radiat ion generators. 
Vertical.DFD correction should be an important part of their operation, 
because v e r t i c a l DFD enlarges beam height and hence reduces l ight source 
brightness . This i s , the . purpose the author had.in mind when beginning to 
study the problem. In addit ion, a correct DFD analys i s along with COD 
analys is , can hopefully help spot, magnet misalignments and remove them. 
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2.) The s imi lar i ty of DPD correction to the chromaticity calculat ion 
a l s o l i e s in that, foe both of them, one has to s t a r t with the second 
order p a r t i c l e motion equations though what he looks for i s only a f i r s t 
order dependence of a parameter on par t i c l e momentum. A previous note, 
R e f . 5 ) , presents the complete expressions of the f i r s t and second order 
p a r t i c l e motion equations, in e i ther continuous f i e l d or "hard edges", 
and thereby a sound ground for th i s note to s t a r t from. The second topic 
of Ref.5) i s the chromaticity ca lcu lat ion , resu l t ing in some formulae and 
conc lus ions . A comparision of them with those obtaind in this note seems 
worthwhile, for the s i m i l a r i t y mentioned above w i l l be made c lear . 

3 . ) The f i r s t s tep in t h i s note i s to introduce the f i r s t order equa­
t ions of COD and DPD by handling the f i r s t and second order par t i c l e 
motion equations. Then a general analytical so lut ion to the equations i s 
derived. After a discuss ion on COD correction to see i f i t s schemes have 
to be modified In some c a s e s , DFD correction i s treated and new expres­
s ions of i t s s e n s i t i v i t y matrix presented. The l a s t part wi l l discuss the 
d i f ference of the new expressions with the e x i s t i n g ones. 

4 . ) Major assumptions taken throughout this note ares 
a) Single par t i c l e (zero current) model. So any interact ion between 

p a r t i c l e s or between a p a r t i c l e and i t s environment i s ignored. 
b) No e l e c t r i c f i e l d in the part of orb i t being studied, no p a r t i c l e 

energy change and no time dependence of magnetic f i e l d . 
c ) The ideal orb i t l i e s i n the median (symmetric) plane of magnetic 

f i e l d , so ' the natural orthogonal coordinate system x-y-z (curvilinear 
system), with y-axis f ixed v e r t i c a l l y , can be referred to and the ideal 
v e r t i c a l dispersion i s zero anywhere. 
[' d) Magnetic f i e ld i s piecewisely constant in a l l the magnets and i s 

described by hard edge approximation at their edges. 
e ) Par t i c l e parameters x, x ' , y, y' and S are small quant i t i es . 
f ) Correcting magnetic f i e l d i s much smaller than normal bending 

:~. f i e l d , so t h e ' f i e l d dev ia t ion , g , i s a l so regarded as a small quantity 
^.-^-.and i t s influence on beta function as well as the coupling between two 

ISIiltlr i s negiected- . . ."•'• 



B. The F i r s t Order Equations of COD and DFD 

1\ the ideal horizontal dispersion function ; H the DFD on u 

e i ther u„ or 
V the tune on u plane 

9u • fu and ¥ are the Twiss functions 

i.) Symbol convention throughout this note is as follows: 
For the coordinate system adopted, z is the azimuthal coordinate and 

' is d/dz ; x and x' are the horizontal displacement and slope, y and y' 
the vertical displacement and slope, respectively, p is particle momentum 
and p the nominal momentum, so momentum deviation $ = (p-Pe)/p_ which 
is also the energy deviation for highly relativistic electrons. 

u is used to denote x or y ; u c( S" ) the closed orbit of the particles 
with momentum deviation $ ; u = u (0) the central closed orbit, namely, 
the COD 
plane ; 
and 

A few subscripts are used to denote special positions, among which "1" 
denotes the midpoint of the i-th corrector, "j" the j-th monitor, "m" the 
midpoint of the m-th magnet, "e" a magnet edge, "b" the point just before 
the edge and "a" the point juBt after the edge. For a magnet, define some 
numerical subscripts as s at the entrance, e = 1, b = 0 , a = l ; while 
at the exit, e = 2, b = 2, a = 3. The 
definitions of subscripts 0, 1, m, 2 
and 3 are illustrated in Fig.l . Note 
that "e" alwayB denotes the edge point 
inside the magnet. 

Let s. and s, be two such sub­
scripts. The phase advance between s. 

entrance magnet e x i t 
( e=l ) < e=2 ) 

0 1 m 2 3 

and s. V»i*¥*i) is defined by edge midpoint edge 

( 1/|9u(z)) Az 
Si * 

and M ( S . / B . ) i s the u plane transfer 
matrix from s . , t o B , , 

The, magnetic components are piecewise constants, such as 

F i g . l Def in i t ions of sub­
scr ip t s o, 1, m, 2 and 3 

B y A CB/>o- J 

o8y, 
CSp0

{ 3 * ' 

B x / ( B j » ) ( g« 

_L (£%.,- A, 
IBJO^T**' 

. - 3 -
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If not specially explained, the other components are all ignored. In Eq. 
(B-l) , (BP ) Q = p Q /e is particle rigidity, f the curvature radius oE 
idea?, orbit } ( 1/P ) is the dipole component, which is not zero in and 
only in bending magnets ; K the quadrupole component which is not zero in 
quadrupoles and in combined function 
bending magnets, where K = - "// 
with n the magnetic field index ; % 
the sextupole component which is not 
zero in and only in sextupoles ; g 
the field deviation which is not zero 
in and only in misaligned magnets or 
the currently applied correctors. As 
stated before , |g u|« ( l/J> ) . 

A magnet edge is characterized by 
the inclining angle 0 
face curvature radius r 
conventions shown in Fig.2 

and the edge 
with the sign 

Fig .2 
of de, 
p o s i t i v e as shown above. 

Sign conventions 
r g and 9 are a l l 

2.) The up-to-second-order d i f f e r e n t i a l equations, for part ic le motion 
within a magnet other than a solenoid or a rotated quadrupole, can be 
found in many papers, Ref.5) as an example, as 

i S z 
= -( K+-p) x + — + g x + j g , x * - 9 X 

S . * 2 K * . 

•£.r.-*-i.».f„»^-'-ir'. 
2 f , 2K 

= K y + g y + — g y x - g y a + ( A + -7-) xy 

-Kd"y + -r x'y' + !..:. (B-2) 

Eq.(B-2) d i f f er s from the well-known up-to-second-order motion equations 
in two aspects: g u i s a nonzero f i r s t order small quantity since one i s 
considering the d i s tort ion and correction caused by g ; { l / P )* i s zero 
due to the piecewisely constant f i e l d assumption. The f i e l d changes take 
place a t hard edges only and are treated seperately . 

-4 -



A descr ipt ion of the up-to-second-order hard edge e f f e c t s in terms of 
parameter increments i s presented in Ref.5) as 

x a = *b + A e JJ x b

2 t e

2 - A e ^ y b

2 ( 1 + t e

2 ) + . . . ; 

y a = y b - ^ e ^ b ^ fc

e

2 + ••• j 

a * b e "b z e xe ' *b z v / v e T , v x y e ' Y b 

+ Ke^*b " * e j xb *V i + fce2' + A e J *b V'b V " + ••• ' 

y'a = y'b t R e » b + ' ^ + H e > *b y b " K e K 

" A e J xb *V 1 " fce2) + A e J x ' b * b l X + ^ + "• ( B " 3 > 

where the symbols are defined by 

fc may be: A. = - 1 (at an entrance) or A- = 1 (at an ex i t ) ; 

t e = tan 0 e ( e = 1 or 2 ) ; 
1 edge quadrupede component K = - -r- t ; 

edge sextupole component \ s = - 2 K fc

c " l / ( P r

e c ° s Be ) (B-4) 

and s i x spec ia l sextupole components 

Hd> _ _ i _ t - X(° = — t 3 • 

Hi^-^'i ' *ŷ 7£V i + fc

2

2> » 
Mgl = jl tl< X + 2 fcl2> f >4y2 " ~ 7 i fc23 <B" 5> 

Here P and K are those inside, the magnet in quest ion. The dif ferent 
expressions for Wl and A^IL suggest that edge sextupole e f f ec t s vary 
both with transverse planes (x or y) and with edges (entrance or e x i t ) , 
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3.) u c ( d ) i s the p e r i o d i c so lu t ion of Eqs.(B-2) and (B-3). Since COD i s 
no th ing but u c = u c ( 0 ) , t h e f i r s t order equat ion of COD is r e a d i l y found 

u c a ~ u c b = ° '• u c a " u c b = " E u e u c b < B " 7 ) 

where the focusing s t r e n g t h s are given by 

' _ 1 P x - K + Jz •' Fy " " K ' fxe = " fye = Ke = ~J t a n ^e <B"8> 

COD is, in the sense "to first order", the periodic solution of Eqs.{B-6) 
and (B-7)f with Eg. (B-6) for the behavior of COD within any magnet and 
Eg.(B-7) for that at magnet edges. Note that, because of the first order 
terms in the edge effect increments of x' and y', u ' is discontinuous at 
an inclined edge and so are fl • and J\'. This requires a clear distinc­
tion between the functions with subscript "a" and those with "b" for such 
"derivative functions". 

4.) Before deriving the equations of DPD, one must make clear what DFD 
is. Let the definition of DFD be introduced as 

| ) x » lim ( ( x c(f) - xc(0) ) / S ) - 9 t 

n = lim ( ( y (if; - y_(0) )/ $ ) (B-9) 

In other words, 

*<,(£> = xb + Si p + J^ ) + $2>l ) ; 

••&&H-S) • y c + ' % 9 y + £ 2 - c • ) (B-io) 

And fl i s the p e r i o d i c funct ion which s a t i s f i e s 

J S ' + ' i J - J ' 9 a - ! ) b = 0 ' 5 ' a " 9 'b = - f x e 9 b t - 1 " 



Combining Eqs,(B-2), (B-3) , (B-8) through ( B - i l ) , and dropping the 
second order terms f ina l l y , one comes to the DFD equations without much 
d i f f i c u l t y : 

5 u " + F u 9u " < J 9 " *• » 9 U

 + Q u u c + \ uc' < B" 1 2> 

9ua " 9ub " T u e u c e ' 

?ua - 9ub " " f u e ?ub + ^ue u c e + F

U e u c e <B" 1 3> 

where the functions Q , R , e t c . are given by 

R x - R y " 7 T ( B - 1 4 ' 

/ 
and P . „ = s g u - A e - r IJ- t 

K+ *£> 9 e-A e^- 5'e( i+ t e

2 
Q ue " ^ u " 1 K

e " « ^ - + * « ? 1 1 . ~ A„^- r)'«,( 1 + 0 » 

The symbol sg" is defined as : sg = 1 ; lg = - 1. The special sextupole 
components are revised as V M * S » given by 

V S - ^ f V . » ^ 1 = 7 ^ '» »3; ; MK.. . ': (B-is, 
Note that fl' and u ' are evaluated inside the magnet, so their sub-J e c e . . . . • _ 
scr ip t s are "e n ( 1 or 2 j instead of "b". To express the functions by 
inside magnet values wi l l help formula uniformity and s impl i f icat ion. 
Eqs^(B-7) arid - (B-li) are useful when the replacements of u ' h (by u' 1 
and of II'. (by B' j are needed, that i s , at the entrance. 

S imi lar ly to COD, DED i s the periodic solution of Eq's; (B-121 and 
(B-13) . Eqs. (B-12) and (B-14) describe DFD within' any magnet while i t s 
behavior at magnet edges i s represented by Eqs. (B-13) and (B-15). 

-7 



5.) From the equations above, several conclusions can be drawn such as: 
a) A change of the field in any corrector ( Ag ) will cause both COD 

and DFD to change all around the ring due to their periodicity. 
b) A COD change in any magnet where K, ^ and/or ( l/P ) are not zero 

or at any edge where K , \ and/or ( 1/p ) are not zero will cause DFD 
change as effectively as &g in the corrector does. 

c) In the sense "to first order", the contribution from one corrector 
to COD change anywhere and thus to DFD change anywhere is proportional to 
the g change of that corrector. 

d) On either COD or DFD, no first order coupling effect between the 
two transverse planes exists, i.e. any change in g and hence in x does 
not affect y or fl and neither in the other way, though nonzero ideal 
horizontal dispersion J has an important role in the equation of 0 . 
This is true for magnets other than solenoids or rotated quadrupoles. 

6.) For completeness, the equations describing COD and DFD in solenoids 
or rotated quadrupoles, along with a few comments, are also presented 
here. But no further attention will be paid to them. The particle motion 
equations in these cases can also be found in Ref .5) . 

1 BBx 1 3By 
a) For rotated quadrupoles. Let h_ - —— ( — ) = - —— <—p) . The 

. , , V&TM • * iofJ 0 ay 
p a r t i c l e motion equations are ' ' 

x " = b^ ( i - £") y ; y " = h R ( l - £ ) x (B-17) 

A treatment similar to that in the previous subsections finds the COD and 
DFD equations, respectively, as 

%" .- - "R < *c " 5y » •• %": = "R « 9 " x c + 9x ' « B" 1 8» 

b) For solenoids, let gs,.F B ^ / ( B P ) 0 . Then, for the particle motion 
inside the solenoid, one has 

X s' = g s ( i - J ) y' t y'' = - g s < l - S ) x' (B-19) 
-8-



and, for that at its edges, 

V ' • 9s .V r y ' 

u c a " u c b » x ' = x c a *'cb~ 7 A e * s yCb 

* a = x b ! x ' a = x'b _ T A e gS ( X " ̂  » Yb » 

y a

= v b f y ' a = y ' b + T A e g s ( i - 5 " ) x b ( w o 

Therefore, the equations of COD and DFD are obtained as 

" % V } 

*ca= ycb + 7 A e *S x c b } 

9x" - - %. ( y c ' - V ' ! V " • '" %' < 9' - V + 9x'> ' 

?ua " 9ub ' ?xa " 9xb + T ^ e % ( yCb ' 9yb } ' 

?,'. = 9yb + 7 Ae gs <; 3b - "db + DA > tB"2 i> 

c) The following comments, resu l t ing from a review of Eqs.(B-iS) and 
(B-21), are v a l i d for both solenoids and rotated quadrupoles : 

Nonzero idea l horizontal dispersion 0 at their locat ions makes them 
s ign i f i cant sources of ver t i ca l DFD. 

They give r i s e to coupling between x and y planes. An x c and A cor­
rection w i l l influence y^and : f);. i f there are solenoids and/or rotated 

c /y 
quadrupoles in the ring, and vice .versa. 

However; if the magnetic field in solenoids is much smaller than that 
in bending magnets ( IScI << < i/P> ) ) and the gradient in rotated quad­
rupoles much smaller than: that in normal quadrupoles ( .Ihgi .<< | K | )r 
they do not affect first order COD and DFD.correction schemesi; although 
they may be partly responsible for why the correction is needed. 

These points are important not' only because solenoids and/or rotated 
quadrupoles may be installed in a ring, but1 also because magnet errors 
produce solenoid and/or "rotated quadrupole effects in normal magnets. • 



C. The General Analytical Solut ion to COD or DFD Equation 

1.) Now the question i s how to find the per iodic solution to equations 

W » + F u W = H(z) (C-l) 

"„ - Wh = T\ ; W - W* = - f W. + j " (C-2) 
a b e a n ue b e ' ' 

which are a general expression of Eqs. (B-6), (B-7) , (B-12) and (B-13). H(z) 
i s a z-dependent function that i s zero outside magnets, while 1 and J 
functions evaluated at edge e. 

2 . ) I t i s unnecessary to say that the f i r s t order transverse motion 
equations of a par t i c l e without energy deviation are 

u " + F^ u = 0 (C-3) 

u a - u. = 0 ; u' _ - u". = - fi u. (C-4) 
a b a D ue b 

Define the piecewise cos ine - l ike and s i n e - l i k e solutions of Eq. (C-3) 
9^.(8), and S u (z ) xespect i 

can g i v e , within a magnet, 
as ,9^.(3), and S u (z ) xe spec t ive ly . Since F u i s a piecewise constant, one 

n>9 • 1 
cos (JF^- z) , .. .. i f F u > 0 

C,,(Z) = S ( -F„) n Z 2 n / ( 2 n ) ! = \ 1 , i f F u = 0 (C-5) 
c o s h (

/ P \ i z > r i£ F u < 0 

S u { z ) = i 2 1 t - F u ) n z Z n + 1 / ( 2 n + l ) ! = < z . i f F u = 0 (C-6) 

"3* ( s i n h < ) p u

z >/ ,Pu" • i £ F u< ° 
Functions C and S provide the convenience that the expressions involved 
wil lv hb.trdepend'on-:the sign- of•• FJJ ,, arid have many other valuable proper­
t i e s . A detai led descr ipt ion for them can be found in the appendix of 
Ref.6) . The following i s a brief l i s t of those properties to be made use 
of in the next subsection : 

- 1 0 -
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C U ' ( Z ) = - F u S u ( Z ) , S u ' ( z > = C u ( s ) | 

C u ( - z ) = C u ( z ) ; s

u ( ~ z > = " s

u < z ) • 

C u

2 ( z ) + P u S u

2 ( z ) = 1 ; C u ( 0 ) = 1 J S u ( 0 ) = 0 3 

V zl + z2> " C u ( B l » Cu<z2> " F u W V z 2 > ; 

S u ( Z i + zz) = B u ( « 1 ) C u ( z 2 ) + C U ( B X ) S u ( z 2 ) 

Eq. (C-3) and thereby Eqs . (C-5 ) s--iA (C-6) are v a l i d w i t h i n a magnet, t h a t 
i s , i n the r e g i o n between p o i n t s " 1 " and "2" . Let t, be the e f f e c t i v e 
l e n g t h of t h e m-th magnet. I n terms of t r a n s f e r matr ix t h e o r y , the s o l u ­
t i o n o f Eq. (C-3) for the m-th magnet i s represented by 

V F uW 
M u ( 2 / 1 ) = 1 " '" S u l L m ) ) (C-7) 

» - - - " . ) C u ( L m ) / 

w h i l e Eq. (C-4) i s represented oy 

M ( a / b ) = | ] (C-8) 

V " £ « l I 
3 . ) Then, w i t h the a id of ^ - f u n c t i o n t h e o r y ( a s o l u t i o n of Eq. (C-l) can-
be e x p r e s s e d . b y f u n c t i o n s C u and S^ a s 

(% _ . 

W H(z) = \ S u ( z - z) H(z) dz (C-9) 

w i t h Wg" (z) = \ C-(z - z) H(z) dz ; Vl^iz^ = Wg1 ( z ^ = o . 

T h e r e f o r e , w i t h a r b i t r a r y i n i t i a l c o n d i t i o n s , the : s o l u t i o n t o E q . ( C - i ) i s 

w(z) = w x c u ( Z _ Z ] L ) + r : s u ( z - z x ) + w H ( Z ) 

It follows that function W which obeys Eq. (C-l) between points "1" and 
"2° can be described by a matrix equation 

. -11-,.. 



[w2J V 2 / 1 ) [ w j + [«H'(*2)) (C-10) 
V V <V J 

And Eq. (C-2) i s equ iva l en t to 

W-^W'-U) (C-l l) 

A complete d e s c r i p t i o n of the behavior of W function from "0" to " 3 " , 
or through the ra-th magnet, ia then given by 

| ° U P 2 j+ H (3/2>f ^ ( * 2 ' \ + M (3/l)[ l 1 ) (C-J * \= Mu{3/0)[ " 1+1 J^ |+ M„(3/2)f " ' J + H u(3/l)| J" ) (C-121 

I t i s adv i sab le to concent ra te the e f f e c t s on W funct ion from H(z l , I 
and J" to the midpoint "m", as i f w suddenly "jumped" a t "m" with AWm 

and AW* as the increments of W and W , r e spec t i ve ly , but i t s a t i s f i e d 
Eqs.(C-3) and (C-4) anywhere e l s e . Then the behavior of W looked l i k e 

£)• v - (y * w, (- (C-13) 

Since 

/ W H ( 2 z ) V = / - Cud.m/2) S u<Lm/n V Y . 5AU(Z - Zm) H(5) d? \ 

\V<Z2>/ \*u su<V 2> c u ' V 2 ' / A g V * " V »m « / 
one f inds by ma t r ix raultiplcation 

A w « =_" ) z ? u ^ - • V * ( 5V ^ + . c u ( V 2 » ! I a . + "'3i. * 

- s u ( V 2 ) iTr* f u 2 T2 - ^ ) s 

A W ' jn " L C u ( 5 ~ V H<5> d * + F u s u< l , / 2 > < *2 " x i '> 
« J S | . -7.- - .L-.:- . . - - • ' ; T . O 

+ C U « L n / 2 ) ( T 2 + • f a 2 i 2 : > : T I > 
-12-
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4.) Then it is well known how to express the periodic function W that 
satisfies Eqs. (C-3) and (C-4) along the ring, but has a finite number of 
jumps. Suppose the "jump points" are designated by "p". The values of W 
and w" at point " s n are found by solving the equation 

(:•> "«<•'"(:•> * v » ( 2 . ) (C-15) 

where M ( s / s ) i s the transfer matrix for one turn from s to s . Let I be 
the uni t matrix. Since 

( i - M U ( S / S ) ) - 1 = , a i n ( i sinirp u + ( <* u s / M c o s i r j > u ) 2 smiry, , 
1 US < * u g i ' u " \ - y u a -oti 

(C-16) 

one finds 

( w * ) - Z 1 B U , P , 8 ) ( " " " M ( * S \ 

where M1J_ = ( s in^> u (s /p) .+ o ( u p cos ^ { s / p ) ) / fl ; 

M 1 2 = cos ^ u ( s / p ) s 

M 2 2 = ( s i n ^ H ( s / p ) - d u s c o s ^ u ( s / p ) ')/ / 3 ^ s (C-17) 

and B u ( p , s ) " V f u p ^ u s / ( 2 s i m r j > u > (C-18) 

0 a ( s / p ) = irj) u - Jf„{s/p) (C-19) 

the expression of M„, will not be used in this note. Establishing the 
relation between '£urictlbn:Lj.umpB' at "p" and 'function values at "s", Eq. 
(C-16) is useful in both determing u_ and-U ' anywhere caused by given g.. zv c c U 
and finding B which is in turn generated by*g u, u c and u|_ around the 
ring. 

In principle, the problem-of COD and DFD correction is almost solved 
by Eqs. (C-14) and (C-16), since all the functions required are given .in 
section B. 

-.13-



D. About COD Correction 

1.) For the COD equation, I e = j " e = 0 and H(z) = g u which i s constant 
in the applied corrector and i s zero anywhere e l s e . So the expression of 
the COD s e n s i t i v i t y matrix i s easy to g ive . Since 

\ S U ( Z - zn) dz = 0 f \ C u (z - Z J dz = 2 S u (L m /2) 

one can simply give the COD jump in i-.he i - t h corrector as 

A n c i " ° • A" c'i - dui (D-D 

where fl . , usually referred to as "correcting strength" or "kick", i s 

f 2 g u . s i n ( / F ; V * ) / / ^ , i f P u > 0 
5ui " 2 *ui B u ( t 1 / 2 ) = J g u i L& i f F u = 0 <D-2) 

( 2 gUi " ^ ^ V ^ ' ^ p u •' i E F u < ° 
with L. the effective length of the corrector, g . the field deviation 
given by Eq. CB-1), F the focusing strength given by Eq. (B-8) in which K 
and P are those in the corrector. Eq.(D-2) has taken any possible types 
of correctors into consideration. 

Suppose N correctors are applied. Inserting Eq. (D-l) into Eq. (C-16), 
one obtains the COD change at the j-th monitor due to the correction as 

H 

V | " ^ Ca^'^ ûi ( D" 3 ) 

with Cu<i,j) = Bu(i,j) cos^u(j/i) (D-4) 

B u ( i , j ) and ^ u < j / i ) are given by Eqs. (C-18) and (C-19) respect ive ly . 
Note that Pui a n d . J i ^ l j / i ) are evaluated at the .midpoint of the i - t h 
correc tor . 

C u ( i » j ) i s jus t the ( i , j ) - t h element of the u plane COD s e n s i t i v i t y 
matrix. To the accuracy of f i r s t order, the changes in u e - caused by any 
g iven g , changes can be found by the s e n s i t i v i t y matrix very readi ly . 
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2.) At any point "s", the COD change caused by the correction is 
H 

ucs = £ Bu ( i' s> 6ui c o s SW1' ' 
1 

u c s - L B u ( i ' s ) Bui ( B i n f t ^ B / i ) - (* u s c o s ^ f s / i ) ) / ^ (D-5) 

As mentioned before, u and u' in magnets w i l l g ive r i se to DFD change. 

3.) Eqs. (D-3) and (D-4) are widely adopted for a long time. The only 
thing new about COD correction i s in Eq.(D-2) and i s discussed here. 

The ex i s t ing schemes ca lcu la te (j • by '" ' 

0 u i = g u i Lj, ( D - 6 ) 

And Eq. (D-2) can be written as a power series in L. as 

8 . = q . L. ( i -F L-2 + F 2 L-4 + ... ) (D-7) 
"ui aui i • * 24- u x 1920 u l ' y u '' 

Let k = IF I L. , where F i s the u plane focusing strength in that 
corrector , evaluated by Eq. (B-8) . How Eq. (D-6) d i f f e r s f rom Eq. (D-2) i s 
measured by k . 

Dp to f i r s t order, no mathematical approximation i s made in the process 
where Eq. (D-2) resul ts from. In this sense, Eq. (D-2) i s supposed the pre­
c i s e formula for 6 : in any case , Eq.(D-6) an approximate expression to 
f i r s t order of L , , and k the cr i ter ion to judge how much the error i s . By 
the way, k i s a l so the cr i t er ion for thin-lens approximation in transfer 
matrix mult ip l icat ion. 

-Obviously, Eqs. (D-2) and (D-6) mean the same for a "dedicated correc­
tor* , that i s ins ta l l ed in a drift"section''with k = 0 . B u t , i f the cor­
rector has, a r e l a t i v e l y long length and i s simultaneously functioning as 
a bending magnet or a quadrupole, i . e . the correct ing f i e l d i s produced 
by magnet. trim;-coils, the •re lat ive ^difference between Eqs. (D-6) and (D-2) 
may be a few percent. Usually the difference i s very s l i g h t . A numerical 

-'example i s : the error i s 1 percent whenJc = 0.24,•'• that is,y.|K| :- i s around 
1 m~2 E o r a o _ 5 m i o n g quadrupole-corrector, or the bending angle around 
30 degrees for a non-gradient bend-corrector. ^ ' .•;:-,.• 
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E . New E x p r e s s i o n s of DFD S e n s i t i v i t y Matrix E l e m e n t s 

1 . ) As f o r COD c o r r e c t i o n , s e n s i t i v i t y matr ix method i s wide ly adopted 
for DFD c o r r e c t i o n . Whan N c o r r e c t o r s are o n , t h e DFD change a t the j - t h 
moni tor due t o the c o r r e c t i o n i s expec ted to be 

-v N 

i 

where D ( i , j > i s the ( i , j ) - t h e l ement of the u p l a n e DFD s e n s i t i v i t y 
m a t r i x . The q u e s t i o n i s how t o e v a l u a t e D u ( i , j ) by known parameters . 

2 . ) F i r s t , one can g i v e t h e DFD jumps in each magnet by a r e w r i t t e n form 
o f Eq. (C-14) as 

A».',„ - \ C „ ( z - Z n , ) H „ ( z ) d ? + F U S U ( ^ > ) ( T u 2 - T u i ) + C u ( ^ 5 ) ( J u 2 + J u l ) (E-2) 

where H ( J = < - t) - 1 ) g u + Q u u c + - t)< u c ' (E-3) 

w i t h Q and Q g i v e n by E q , ( B - 1 4 ) ; and x y 

I = P U = sq" *A - f t " fl U CE-4) u c e - s V A e J fce 9 e U c e 

J u l = Q u l u c L + R u l u c l '• • 

T U 2 " °u2 u c 2 + *u2 U C 2 + f u 2 F u 2 u c 2 < E " 5 > 

I n s e r t i n g Eqs . (B-8 ) and (B-15) i n t o Eq. (E-5) , o n e w i l l -find a uniform 
e x p r e s s i o n of J a s . 

J u e s g u . ( K e - ( , > . . + ^ u e ) r j & - A e j ( l + t e

2 ) l ) ' e ) u c e 

- A e j ( 1 + W u ' t e 2 , ye u ' c e (E-6) 

with %xe = j z ^ 3 •• • • • ^ " • j i \ ( E _ 7 ) 
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and l e t 

~Hue " r u e + *e H I u ( z e > 

10) 

*> - 8 „ ! »" V H J u ( z " d z 

= Sgu-(< Ke -< V * W V u c e " &e J fce2< J) 'e u ce + 9 e u c e » <E" 

Then one g e t s a new equation which i s equivalent to Eq.(E-2): 

A%m - \[ Cu<z~ V Hlu« 

+ C

U < V 2 > l r u 2 + r u l ' - S u < V 2 > < THu2 " ^Hul ' J 

A^um = k ] C u ( S " V HJu<*> + P u V * " V HIu<*>> d * 

• • : + C u < V 2 > < 7Hu2 + J H u l 1 + F u W 2 > < T u ? . " T u l > <B"U> 

3. ) "In pr inc ip le , an accurate evaluation of D ( i , j ) can be worked out in 
t h i s way : Let J , be unit and the kicks in other correctors be zero . 
Then Eq. (D-5) gives the c losed orb i t ( u and u ' ) a t any points , the DFD 
jumps ( AH,™ and Aj/ura ) i n every magnet are found by the equations in 
l a s t subsect ion, and Eq.(C-16) y i e lds the DFD value at the j - t h monitor 
( 3_J"")V which-equals to D ( i j j ) in this c a s e . 

Becauseof" the involvement of integrals in Eq. (E-11), Eq. (D-5) has to 
be used•many times to get a very accurate r e s u l t . This i s not d i f f i c u l t 
for a computer program, but may be unnecessarily time-consuming. 

In pract ice;- i tr isr .only-a/quite-rough' accuracy to which DFD measure­
ment can be done and on which the DFD correction i s based. Although no 
mathematical approximation i s made in this note so far , what one needs 
for t h i s problem i s a good approximate method. 

A choice to be considered i s Simpson's integral calculat ion method. I t 
means a quadratic approximation of the integrand functions and evaluates 
them a t ibnly three' p o i n t s , "L", "m" and "2" for each-magnet in th i s c a s e . 
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Since Simpson's method c a l c u l a t e s an in t eg ra l by 

v\ ft* k 

6 

one can e v a l u a t e 

V f ( Z ) d z i i - ( f i + 4 f m + f2 ) I . m 

J Hue " J H u e + i H Ju« 2 e»- Lm » C = ^ e + J H l u < V ' Lm l E " i 2 » 

a t each edge, then replace Eq. (E - l l ) by 

4 u m * J H I u < V L m + C u < V 2 > <Tu*2 + r u ! ' " s u < V 2 > ^Hua " rH*l> • 

*5™ * f H J u ( V L m + W 2 > ^ " E O X ' + F u V V 2 > <ru*2~*l> f B " i 3 > 

and go through the D (i,j) evaluation procedure. So Eq. (D-5) is used only 
thrice for each magnet. 

4.) The method to be recommended in this note is: to expand D <i,j) as 
well as all the functions involved into power series in !•_ and express, 
them approximately by function values at the midpoint "m" and L of every 
magnet. For example, one has 

i 
.) 

A « 3 - V H(Z)dz - H(zm)- L m + ± ( H " (zra) - P u H(z m)) L m
3 + ... , 

'St| . . . . . . . .... 

L V*" V H £1) d* = II H' (V- Lm? + * • • < E " 1 4 ) 

Usua l ly , i t I s s u f f i c i e n t for. p r a c t i c a l use to keep only the terms of 
f i r s t power i n L so as to save computer time and p rese rve a s a t i s f a c t o r y 
accuracy, t h a t i s not worse than the DFD measurement accuracy. Note t h a t 
( lt-/f ) ;and ( J | p

u j t m ' -* e e u s u a l l y much l e s s than u n i t . But some extreme 
condi t ions a re except iona l , such as a 90 degree bending magnet. Under 
those c o n d i t i o n s , the q u a n t i t a t i v e r e s u l t s of the.fol lowing-formulae are 
not s u f f i c i e n t l y convincing and a b e t t e r approximation i s needed. 
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Suppose the approximation "to f i r s t power in L " i s good enough. I t 
w i l l be referred to as " f i r s t power approximation" l a t e r . Note that the 
power of edge angle Q i s a l s o counted as power of L_ , s ince fl i s 
always no greater than L-/P • Then the equations are simplified as 

^ u e = S V < K e " ' ^ e + \ e > % > u c e ' 

~ue = ° ' ^ x e = ° ' * y e - j l fce < E " i 5 > 

*%m. " W ' Lm * 7 I T H u l " THu2 > Lm + • • • ' 

* 9 « - H Ju ( z »>* Lm + T H u l + 5"H«2 + — ( B - 1 6 > 

with the functions at "e" calculated by 

5 e = % + T*e1!)'m:'m+ — ' u c e = u cm + 7 * e « C ' B *>m + • • • 

All the functions have to be evaluated at only one point, "m", for each 
magnet. And define a new symbol 

T e = 1 /( r
e
 c o s 3 6 e > , E " 1 7 ) 

A magnet edge Is how characterized by t (tan $e ) and 1^ instead of ^ e 

and r . Because %Jf is a zeroth power (in L m ) term of the edge 
sextupole component, the difference in TTe at the edges of a magnet 
influences DFD as a first power term and should be taken into account, 

5.) Introduce a few abbreviations 

A m = < * - - - * J ) t f - > - V - - < 7 i - 2 K 9m > ( fcl+ fc2 »• 

• + j ;9a«;< -*i + ^2 > -ij V* < t i - 1 2 > s 
A x = 

-TS-<« i - T D n 1 L m + 9m I fci+ fc2 >] 
J J - 2 0 -

A y = -=5 <( 1 - - S - 1 } ™ 1 L m + y i l c l , c 2 " * Am ( E ' L 8 ) 



and ui = s*uJ{r)'**T% ( T i " T 2 » Lm 
A u 2 = - T ( 9 » ' fun.) *. <E" i9> 

) r A m i s Note that , s ince AB A ( K - ftJB ) 1^ + Zi ( Kg - %e tj 
the main e f f e c t term for a magnet. " ' 
Eq. (E-16) then becomes 

AJjum * A u l ucm + A u 2 f urn u cm J 

*JM 4 ( J D • " t » ^um + A u % " A u l ucm < E - 2 0 > 

where fl i s not zero in and only in applied correctors , and i s given by 
Gq. (D-2) or ( 0 - 6 ) , between which there i s no meaningful deff erence under 
the f i r s t power approximation. 

Insert ing Eqs, (D-5) and (E-20) into Eq. (C-16) and comparing the resu l t 
with E q . ( E - l ) , one arrives at the expressions for D ( i , j ) , whjch reads 

D u ( i , j ) = B u ( i , j ) ( ( — 9 i - 1 ) c o s £ u ( j / i ) 

where 9i// is evaluated at the midpoint of the,i-th corrector, B (i,j) 
and ^ (j/i) given by Eqs. (C-18) and (C-i9), and the sum added up for all 
the magnets with '„£.»„, a s 

Tuijm = < ^um Au + 2 ^um Aul " d u m Au2 > « * ftW'i) cos aSu< j/m) 

• - • • ' + ( A u l " C * u m
A

u 2 . ) s i l > ( ^ d < i / n » - ^ u " " / 1 ' • • ) • • ' 

; r + ^.-.Bin-.^tB/l) ̂ ln.j^ij/i) (E-22) 

All the parameters in Eq. (B-22) are only related to the m-th magnet mid­
point except for the.phase di f ferences that are a l s o related to the i - t h 
corrector or the j--th monitor j-. 
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6.) A question one may concern is how to find the function values at a 
magnet midpoint, as most programs calculate them at the magnet edges. An 
easy way is, obviously, dividing each magnet into two halves so that the 
midpoint becomes an "edge". Some programs give function average values in 
every magnet. The averages can be used in place of the midpoint values, 
making a difference which is of higher than first power in L and is 
hence of no more importance than the approximation adopted. 

Of course, the midpoint values of any function can be expressed by the 
edge values. A few useful formulae are presented in Ref.6). Since any 
first power approximation is allowable, the formulae can be simplified to 

fum = i ( fui + fni + T ( d « 2 - dul > Lm > ' 

• • • • - ' . 5 « *• T-< 9 i " + 9 a > '• J ' - A < 5 a - J i , / L m < E " 2 3 > 

Let subscript "o" denote the or ig in point of z coordinate. Most pro­
grams c a l c u l a t e y (e/o) for every magnet edge. Then one can give 

• y „ « / o i = tan « ^ - c o s n , l / o , + Jp^ c o s y ^ Z / o , > + " * V™ 

as the midpoint phase advance, where n i s an integer which i s so chosen 
that j/ 'ytl /o) < ^ ( m / o ) <. f^{2/o) . And, as well known, 

*„<• /« = { ^ ( P / 0 » " ^ ( S / 0 ' + *»* ' " ' "- » "P ( E _ 2 5 ) 
T u I ^ ( P / O ) - ^ ( s / o j - ^ . i f z s < Z p < E 2 5 ) 

where "a" and "p" are any points > but s ^ p . 
A combined function,corrector is also counted as a magnet in calculat­

ing Z. T u i , with cos ̂ (m/i) = cos TtJ)u , but sin ̂ u(m/i) = 0 . This 
is equivalent to taking averages of a_ and u ' near the midpoint, where 
u ' is discontinuous. 
c 
'An ana ly t i ca l expression for DFD s e n s i t i v i t y matrix elements i s thus 

worked out and presented by Eqs. (E-18) through (E-22) . Please remember 
t h a t - i t i s obtained under the f i r s t power approximation. 
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F. Differences with the Existing Expressions 

1.) The results in last section differ obviously from the existing DPD 
sensitivity matrix expressions which are widely accepted. 

As a contrast, the COD sensitivity matrix is the same, though a new 
formula to calculate the kicks ( fl . ) , Eq.(D-21, is introduced and dis­
cussed in section D. The difference with the existing formula is usually 
very slight, unless the task of correction is fulfilled by high strength 
quadrupoles or by bending magnets with large bending angles, say greater 
than 30 degrees. 

2.) The existing expressions of D (i,j) is ' ' 

D u(i,j) - B u[i,j) ( - cos0 u { j / i ) 

where A x = - A y = ( K - ^ , L m . ( F-2) 

If one lets all the ( 1/P ) or t e terms be zero, that is, ignores the 
effects of bending magnet and magnet edges, Eq.(E-21) becomes the same as 
Eq.(F-l). So the difference between these two expressions is essentially 
negligible for big machines, where p is, say, greater than 20 m. 

3.) But, a modification of Eq. (F-l) seems necessary if one wants it to 
be appropriate to machines of any size.with correctors of any type.;As a 
result from the complete up-to-secona-order particle motion equations and 
the first power in element length approximation, Eq.(E-21) is recommended 
to be used in DFD correction schemes. A discussion on the differences 
between Eqs. (F-i) and (E-21) .will .show how much _the error of:Eq.(F-i), if 
used for small rings,- may be. 

One of the major differences is in the coefficient of the first -term,, 
if a trim coil of a bending ..magnet.-is used as a corrector, either hori­
zontally or vertically. The difference -term •"9j//. -is. quite significant ,-
for small''rings, where:. P: ;may be around 2 m: .and a typical value of ;rQ...is 
1.5 "m. -•• ' •'• • --•- :-:• ---;•-- -••'- -• --': • .'- V: .--".-• : -.; -• -,;-:U ;:.-;, p;~.~.1 
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What may be more important i s mentioned before: Eq.(F-l) takes into 
account only the e f f e c t s of guadrupoles and sextupoles , for which the 
terms in Eq.(E-21) are the same. I t i s then no surprising that magnet 
edges come into the express ions , s ince they are w e l l known to af fect 
p a r t i c l e motion with quadrupole and/or sextupole components. I t i s seen 
that K and % of an edge act jus t l ike K L and % L of guadrupoles or 
sextupoles , respect ive ly . And, in their own way, bending magnets bring 
'about the ir e f f e c t s , which are reasonably proportional to Ti^P • 

How much a magnet element a f fec t s DFD can be estimated by comparing 
the terms produced by elements of various types, with the cos ine /s ine 
function factors (phase di f ference factors) dropped for the moment: 

The e f f e c t of a quadrupole i s proportional to K fl L ; and by almost 
the same r a t i o , that of a sextupole proportional to hfinm 5 m

 L

m ' t h a t 

of a bending magnet p - yortional to ^am t^ /J in A u , and j ' m L f f l /J 
in A ^ , and 9 m *• / ( f / 3 u m ) i n A

U 2 ! a n d t h a t o f a m a 9 n e t edge pro­
port ional to ( pam // \ tan 6 e or / 3 u m 9 m V ( / r e ) . Usually ftui and A u 2 

are l e s s inf luent ia l than A (A x or A ) , because / 3 u ] n i s greater than W 
or 9 ,

r a / , for most (but not a l l ) magnets in a r i n g . 
I t i s c lear that the exc lus ion of bending magnets and magnet edges 

from consideration i s not safe in small r ings , where L m /p or })m/P or 
@un/f ** ™ o t v i e r y small . 

4 . ) A spec ia l case in which a l l the bending magnets are rectangular, 
i . e . of para l le l s ides and of straight edge face , i s met more frequently 
and hence given more a t t e n t i o n . 

S ince ( 1/ r e ) = 0 and tan 0 e = L m / ( 2 P ) here, one has 

m ' 

A„ =" ( - K + % B _ ) L_ + -§7t . m - 4 " K •),» ^ ' « p - 3 » 
y * / m m p2 m a J m m 

Because A i s usually the most inf luent ia l term,' the conclusion in t h i s 
case i s , the f i r s t order e f f e c t of bending magnets almost vanishes on x 
plane but remains act ive on y plane. This agrees with the fact that a 
magnet of th i s type functions roughly-like a d r i f t on x plane but has a 
focusing e f f e c t on y plane, as A.W.Chao once expected in a discuss ion; 
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5.) To conclude the discussion, two numerical examples are presented as 
fol lows. 

a) Some typica l values of the parameters in SPEAR ( E = 1.5 "•' 4 GeV ) 
are: 

In the quadrupoles, 

L m = 0.5 m , |K| - 0.18 ~ 0.65 nf 2 , fl = 3.7 « 21 m , 

so | K | /3 L ranges from 0.78 to 6.8 . 
In the bending magnets, 

. I.m = 2.37 m , y» = 12.8 m , | 3 y m = 11.8 m , B^ = 7.6 m , 

9 m = i - 9 n l ' 5 ' " B - ± - 0 . 2 8 , c » y m = ± 1 . 9 6 , d U - ± 1.17 , 

s o 2 (3 y m L n, / / 2 = °- 3 4 ' 
and the terms such as 2 d„m A . and o^ u m A u_ may be up to 0.2 . 

This means that the .e f fec t of a bending magnet i s roughly of the same 
order of magnitude as that of one of the l e s s in f luent ia l auadrupoles. i t 
follows, that the ...ignorance of a large number of bending magnets seems 
questionable. 

b) As an example-for sub-GeV r ings , the design values of a poss ible 
eoi4igvcation''~bf. itbeHtfei^800\M^_s.^rage ring aire: 

In the;quadrupoieS; 

t m = 0.3 m , |K| = 1.51 ~ 3,07 m"2 , R = 4.2 «v- 11.4 m , 

Pxm = 1-5 - 1 T . 8 m , 

3 0 | K l f y m L r a " 2 .4 ~ 7 . B , and | K | p x m L m 
- 1 .0 ry, 9 . 5 

- 2 5 -



In the bending magnets, 

Lm-= 1 .16 m , / " 2.22 m 

fxm - 2.6 or 2.8 m , 5 . ^ 

°»ym ss 0 or + 0 . 39 , °*xm s 

2 ( 3 y m L m / / 2 may be as h 

p J 0 . 9 3 or 15 .3 m 

1.3 or 0.08 m , IV = 0 or + 0.26 , 

0 or ± 1.12 , 

Lgh as 7.2 , and A 2 may be 0.73 . 

The effect on Q„ of one bending magnet is fairly close to that of the 
most influential quadrupole. Note that, in this example, /3 function 
reaches its maximum in bending magnets. This is not very unusual in small 
machines, because the y plane edge focusing effect is relatively strong. 

One can conclude that the bending magnet effects must be considered if 
the I>m//' value is comparable with unit. In the Hefei 800 HeV ring, it is 
0.524 = V / 6 . It is even larger in some other rings, for example, the 
Broofchaven NSLS V W ring, where it is tf / 4 . 

6.) It was reported that the DPD correction schemes based on Bqs. (B-l) 
and (F-l) work quite well in sane multi-GeV rings, though sometimes not 
very satisfactorily, i.e^ many ̂ iterations being required, if DPD cms 
value is relatively great. There seemed to' be suggestions of absence of 
unknown first order factors2, but it is hot time yet: to make a definite 
conclusion.' For smaller rings things might be worse, if the theoretical 
similarity of the DFDproblem to the chromaticity calculation, as seen 
above, is believable. :'_ 

The results of ttiis note are to be implemented into a,program. The 
author hopes it would, as a complete first order approximation, give a 
better performance."' • ' 
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