

UPGRADING OF COAL LIQUIDS

INTERIM REPORT

HYDROTREATING AND FLUID CATALYTIC CRACKING OF SRC-II PROCESS DERIVED GAS OILS

FREDRICK J. RIEDL AND ARMAND J. deROSSET

UOP INC.
CORPORATE RESEARCH CENTER
TEN UOP PLAZA
DES PLAINES, IL 60016

DATE PUBLISHED - JULY, 1980

PREPARED FOR THE UNITED STATES
DEPARTMENT OF ENERGY

UNDER CONTRACT No. EF-77-C-01-2566

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

mj

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	1
1. INTRODUCTION	1
2. EQUIPMENT	2
2.1. Hydrotreating	2
2.2. Fluid Catalytic Cracking	2
3. CHARGE STOCKS	3
3.1. Gas Oil Hydrotreating	3
3.2. Fluid Catalytic Cracking	3
4. RESULTS AND DISCUSSION	4
4.1. Gas Oil Hydrotreating	4
4.1.1. Selection of Hydrotreating Catalyst	4
4.1.2. Hydrotreating Process Variable Studies	4
4.1.3. Preparation of Hydrotreated Gas Oils	6
4.2. Naphtha Characterization	7
4.3. Fluid Catalytic Cracking of SRC-II Process Derived Gas Oils .	8
4.3.1. Topped SRC-II Gas Oil 3777-36	8
4.3.2. Topped Rerun SRC-II Gas Oil, 3777-38	9
4.3.3. Topped Mildly Hydrotreated Gas Oil 3777-34	10
4.3.4. Topped Severely Hydrotreated Gas Oil 3777-41	10
4.3.5. Discussion	11
4.4. Combined FCC and HF Alkylation	12
4.4.1. HF Alkylation Feed	12
4.4.2. HF Alkylate Properties	12
4.4.3. HF Alkylation Estimated Yields	13

LIST OF TABLES

	<u>Page</u>
Table 1. Inspections of Raw SRC-II Gas Oil	15
Table 2. High Resolution Mass Spectral Characterization of SRC-II Gas Oil Drum No. 1 3777-6	16
Table 3. Fractionation of SRC-II Gas Oil 3777-7	23
Table 4. Inspections of 400°F [†] Topped Gas Oil from SRC-II Gas Oil 3777-7	24
Table 5. Rerunning of SRC-II Gas Oil 3777-6; Fractionation of Rerun SRC-II Gas Oil 3777-19	25
Table 6. Inspections of 94.8% OH Rerun SRC-II Gas Oil 3777-6	26
Table 7. Inspections of 400°F [†] Topped Gas Oil from 3777-19	27
Table 8. Inspections of 400°F [†] Topped Gas Oil from 3777-21	28
Table 9. Inspections of 400°F [†] Topped Gas Oil from 3777-28	29
Table 10. Hydrotreating Raw SRC-II Gas Oil 3777-6; Plant 505, Run 880 . .	30
Table 11. Hydrotreating Raw SRC-II Gas Oil 3777-6; Plant 505, Run 881 . .	31
Table 12. Hydrotreating Raw SRC-II Gas Oil 3777-6; Plant 505, Run 882 . .	32
Table 13. Hydrotreating Raw SRC-II Gas Oil 3777-7; Plant 505, Run 883 . .	33
Table 14. Hydrotreating SRC-II Gas Oil 3777-6; Plant 505, Run 880	34
Table 15. Hydrotreating SRC-II Gas Oil 3777-6; Plant 505, Run 881	35
Table 16. Hydrotreating SRC-II Gas Oil 3777-6; Plant 505, Run 881	36
Table 17. Hydrotreating SRC-II Gas Oil 3777-6; Plant 505, Run 882	37
Table 18. Hydrotreating SRC-II Gas Oil 3777-6; Plant 505, Run 882	38
Table 19. Hydrotreating SRC-II Gas Oil 3777-7; Plant 505, Run 883	39
Table 20. Hydrotreating Raw SRC-II Gas Oil 3777-6; Preparative Run No. 1; Plant 638, Run 37	40
Table 21. Hydrotreating SRC-II Gas Oil 3777-6; Overall Product Distribution; Plant 638, Run 37	41
Table 22. Hydrotreating SRC-II Gas Oil 3777-6; Distribution of Hydrogen Consumption; Plant 638, Run 37	42

LIST OF TABLES (Cont'd.)

	<u>Page</u>
Table 23. Inspections of Mildly Hydrotreated SRC-II Gas Oil 3777-6 . . .	43
Table 24. Fractionation of Mildly Hydrotreated SRC-II Gas Oil 3777-21; Fractionation of Severely Hydrotreated SRC-II Gas Oil 3777-28	44
Table 25. Hydrotreating Raw SRC-II Gas Oil 3777-7; Preparative Run No. 2; Plant 638, Run 38	45
Table 26. Hydrotreating SRC-II Gas Oil 3777-7; Overall Product Distribution; Plant 638, Run 38	46
Table 27. Hydrotreating SRC-II Gas Oil 3777-7; Distribution of Hydrogen Consumption; Plant 638, Run 38	47
Table 28. Inspections of Severely Hydrotreated SRC-II Gas Oil 3777-7 . .	48
Table 29. Inspections of IBP-400°F Naphtha from Topping SRC-II Gas Oil 3777-7	49
Table 30. Inspections of IBP-400°F Naphtha from Topping Rerun Gas Oil 3777-19	50
Table 31. Inspections of IBP-400°F Naphtha Cut from Topping 3777-21 . .	51
Table 32. Inspections of IBP-400°F Naphtha Topping from 3777-28	52
Table 33. Fluid Catalytic Cracking of the 400°F ⁺ Topped As Received Gas Oil 3777-36; Plant 593, Run 292	53
Table 34. Fluid Catalytic Cracking of the 400°F ⁺ Topped As Received Gas Oil 3777-36; Plant 593, Run 292	55
Table 35. Fluid Catalytic Cracking of 400°F ⁺ Bottoms Gas Oil 3777-38; Plant 593, Run 299	57
Table 36. Fluid Catalytic Cracking of 400°F ⁺ Bottoms Gas Oil 3777-38; Plant 593, Run 299	59
Table 37. Fluid Catalytic Cracking of the 400°F ⁺ Topped Mildly Hydrotreated Gas Oil 3777-34; Plant 593, Run 294	61
Table 38. Fluid Catalytic Cracking of the 400°F ⁺ Topped Mildly Hydrotreated Gas Oil 3777-34; Plant 593, Run 294	63
Table 39. Fluid Catalytic Cracking of the 400°F ⁺ Topped Severely Hydrotreated Gas Oil 3777-41; Plant 593, Run 301	65
Table 40. Fluid Catalytic Cracking of the 400°F ⁺ Topped Severely Hydrotreated Gas Oil 3777-41; Plant 593, Run 301	67
Table 41. Composition of HF Alkylation Feed	69

LIST OF TABLES (Cont'd.)

	<u>Page</u>
Table 42. Properties of the Petroleum Feedstock	70
Table 43. FCC Operating Conditions and Conversion; SRC-II Gas Oil . . .	71
Table 44. C ₄ = Isomer Distribution from FCC Operation	72
Table 45. Estimated Overall C ₆ + Alkylate Properties	73
Table 46. HF Alkylation Estimated Yield; Operation A	74
Table 47. HF Alkylation Estimated Yield; Operation B	75
Table 48. HF Alkylation Estimated Yield	76

LIST OF FIGURES

	<u>Page</u>
Figure 1. Gas Oil Hydrotreating Plant	77
Figure 2. Small Scale Fluid Catalytic Cracker	78
Figure 3. Feedstock Derivation	79
Figure 4. Hydrogen Content of Hydrogenated SRC-II Gas Oil vs. Temperature, °C, at Base Pressure	80
Figure 5. Hydrogen Content of Hydrogenated SRC-II Gas Oil vs. Temperature, °C, at 500 psi Above Base Pressure	81
Figure 6. Effect of Feedstock Hydrogen Content on Response to Fluid Catalytic Cracking	82

ABSTRACT

The objective of this work was to evaluate the applicability of commercial UOP hydrotreating and fluid catalytic cracking (FCC) processes to gas oils derived from the SRC-II process. All FCC feedstocks used in these studies were the 400°F⁺ fractions from the raw and hydrotreated products.

Four different FCC feedstocks, ranging in hydrogen content from 8.66 to 10.59 wt-% were prepared by topping the raw SRC-II gas oil and hydrotreated SRC-II products to remove 400°F⁻ material. Rerunning the raw SRC-II feed to remove 5.2 wt-% of the bottoms removed most of the heptane insolubles and Conradson carbon precursor. The UOP DCB catalyst was used for hydrotreating the raw SRC-II stock.

Results of fluid catalytic cracking showed that feed hydrogen content is a dominant factor in conversion and yield structure. As the feed hydrogen content increased, both conversion and gasoline yield increased, and carbon deposition decreased. In the range of conditions investigated, gasoline Research octane numbers of 97.5 to 106.7 were obtained. The yields of 650°F minus distillates generated were as high as 93 vol-%.

The yield and quality of alkylate from C₃/C₄ products were estimated to be comparable to those obtained from processing a petroleum derived vacuum gas oil provided the degree of hydrotreatment is sufficient.

It is concluded that SRC-II gas oil, or other coal derived distillate of similar quality, can be processed into high quality gasoline by use of current hydrotreating and FCC technology.

1. INTRODUCTION

The objective of this program was to determine the applicability of commercial UOP conversion processes to coal derived distillate liquids generated by three DOE sponsored processes: H-Coal, Exxon Donor Solvent (EDS) and SRC-II.

Four tasks are identified under this program. Each of these tasks originally comprised coal liquids from the H-Coal and the EDS processes. Task 1 involves two stage continuous hydrocracking of coal distillate liquids boiling in the gas oil range. Task 2 entails processing of these distillates through continuous hydrotreating and fluid catalytic cracking units. Task 3 covers processing of coal derived naphthas through continuous hydrotreating-reforming bench scale units. Task 4 includes all data correlation. SRC-II distillates were subsequently added as feedstocks to be studied under Tasks 2 and 3 only.

Hydrotreating and fluid catalytic cracking of the H-Coal and EDS process derived distillate liquids were covered in Interim Reports FE-2566-20 and FE-2566-30. This report covers work under Task 2 on hydrotreating and fluid catalytic cracking of SRC-II process gas oils. Investigation was carried out on four distinct feedstocks. One was the original SRC-II gas oil. The second was a rerun SRC-II liquid product. The last two were hydrotreated SRC-II gas oils.

For reporting purposes, the experimental conditions employed in this work are expressed in terms of base conditions:

Temperature	T-T(base), °C
Pressure	P-P(base), psi
Space Velocity	LHSV/LHSV(base)
Catalyst Oil Weight Ratio	<u>Catalyst/Oil</u> Catalyst/Oil(base)

The base conditions for hydrotreating represent conditions employed commercially for hydrotreating a typical Arabian vacuum gas oil. Similarly, the base conditions for fluid catalytic cracking refer to those conditions used commercially for a typical Arabian gas oil.

2. EQUIPMENT

2.1. Hydrotreating

Hydrotreating of SRC-II gas oil was carried out in continuous research scale units (UOP Research Plants 638 and 505). A simplified flow diagram of a typical hydrotreating plant is shown in Figure 1. Hydrogen and gas oil feed are passed concurrently downflow over a fixed bed of UOP DCB first stage hydrocracking catalyst. The catalyst is a composite of Group VI and Group VIII metals on a high surface area refractory support. Plant 505 was used for hydrotreating process variable studies, while Plant 638 was used in preparative runs to provide hydrogenated feedstocks for the research scale catalytic cracker.

2.2. Fluid Catalytic Cracking

Fluid catalytic cracking of SRC-II derived gas oils was conducted in UOP Research Plant 593, a once-through Quick Quench (all riser) unit, using equilibrium zeolitic catalyst withdrawn from commercial FCC units. Figure 2 is a flow diagram of this plant. It comprises a riser reactor, a catalyst regenerator-hopper system, a catalyst stripper-separator system, and a fractionator. The preheated fresh feed enters the unit at the mixing "Y" where it is mixed with the hot regenerated catalyst which flows down from the regenerator-hopper system through the catalyst transfer line. The catalyst and the vaporized feed travel rapidly through the riser reactor. The cracked oil vapors and the spent catalyst enter the stripper-separator system where the adsorbed hydrocarbons are stripped from the catalyst surface, and the oil vapors are separated from the catalyst. The stripped spent catalyst is charged to a catalyst receiver, and samples are taken to determine carbon content. The hydrocarbon vapors from the separator are sent to the fractionator for separation into gas, gasoline, and cycle oil. The spent catalyst is manually reloaded into the regenerator-hopper system, and is batch regenerated prior to the start of the next test.

In these studies, two sets of conditions were employed:

	<u>Operation A</u>	<u>Operation B</u>
T-T(base), °C	3	33
P-P(base), psi	-10	-10
<u>Catalyst/Oil</u>	1	1.4
Catalyst/Oil(base)		

3. CHARGE STOCKS

3.1. Gas Oil Hydrotreating

Three 55-gallon drums of SRC-II gas oil were received from Pittsburgh and Midway Coal Refining Company, DuPont, Washington, on March 23, 1979. The combined contents were 150 gallons. This was assigned for work under Task 2. Inspections of two drums of this material, identified as 3777-6 and 3777-7, are listed in Table 1. They show high values of steam jet gum, oxygen and nitrogen. The distillation indicated a boiling range from about 350 to 800°F.

Table 2 provides a high resolution mass spectral characterization of the SRC-II gas oil, Drum 1, 3777-6. A report from DOE indicated possible contamination of the SRC-II gas oil with Dowtherm.

The low voltage mass spectrum of this sample was examined in detail. The relative concentrations of compounds at M/C 170.0732 (diphenyl oxide) and M/C 154.0782 (biphenyl) were in the ratio of 64:36. This composition corresponds to that of Dowtherm. The maximum amount of contamination was computed to be approximately 3% of the total sample.

This SRC-II gas oil was used as received to prepare two hydrogenated gas oils for FCC feedstocks.

3.2. Fluid Catalytic Cracking

Fluid catalytic cracking studies were carried out on four different feedstocks: 400°F+ topped gas oil (3777-36); rerun and topped gas oil (3777-38); and two hydrotreated and topped gas oils (3777-34, 3777-41).

Approximately 9 gallons of the raw SRC-II gas oil 3777-7 was fractionated to top off 12.7 wt-% of 400°F- naphtha (3777-35). About 8 gallons (87.3 wt-%) of 400°F+ bottoms (3777-36) was recovered for fluid catalytic cracking studies. Distillation information is given in Table 3. Inspections of the 400°F+ topped gas oil 3777-36 are given in Table 4. Quality of this material is poorer than the original feed, showing higher concentrations of nitrogen, oxygen, heptane insolubles, Conradson carbon, and lower hydrogen.

A 10-gallon sample of raw SRC-II gas 3777-6 was rerun to recover 94.8 wt-% of an IBP-748°F material designated as 3777-19. This material in turn was topped to recover an 81.4 wt-% net yield (based on raw gas oil) of 400°F+ bottoms as feedstock 3777-38. Distillation data are shown in Table 5. Inspections of the rerun product 3777-19 are given in Table 6. The quality of this product is improved as compared to the original feed. Heptane insolubles, Conradson carbon, and steam jet gum were reduced and hydrogen content increased. Inspections of the 400°F+ topped gas oil 3777-38 (derived from the rerun stock 3777-19) are given in Table 7. Removal of the naphtha portion has not appreciably changed the quality of the gas oil when compared to its parent 3777-19. The quality of the 400°F+ rerun and topped gas oil 3777-38 is still better than that of the original feed, 3777-6.

Two gas oils of increased hydrogen content were prepared by hydrotreating and topping the raw SRC-II gas oils 3777-6 and 3777-7. The first, designated as 400°F⁺ topped gas oil 3777-34, was the naphtha free fraction of the mildly hydrotreated SRC-II gas oil 3777-6. The second, designated as 400°F⁺ topped gas oil 3777-41, was the naphtha free fraction of the severely hydrogenated SRC-II gas oil 3777-7. Inspections of these two hydrotreated and topped feedstocks are listed in Tables 8 and 9. Figure 3 shows the steps involved in their preparation as well as those for the gas oils 3777-36 and 3777-38.

4. RESULTS AND DISCUSSION

4.1. Gas Oil Hydrotreating

The primary objective in the hydrotreating of coal derived gas oil is to improve the cracking characteristics of the gas oil by reducing nitrogenous poisons and coke precursors, and to provide points of catalytic attack on condensed ring structures by partial saturation of aromatic rings.

4.1.1. Selection of Hydrotreating Catalyst

The UOP-DCB catalyst, a first stage hydrocracking catalyst, was used to upgrade the SRC-II gas oil. Catalysts of this type are sensitive to heptane insolubles, which amount to ~0.2 wt-% in these charge stocks. It was decided to dispense with rerunning the SRC-II gas oils. Small decreases in catalytic activity noted below can be attributed to this omission.

4.1.2. Hydrotreating Process Variable Studies

A series of four runs were made on Plant 505, Runs 880-883, to determine the process conditions necessary to prepare two feedstocks of increased hydrogen content to be used for FCC studies. The results provided relationships between product hydrogen content and temperature, pressure, and space velocity. The selection of conditions was as follows: base pressure and 500 psi above base; three space velocities, 0.4, 0.8 and 1.2 x base; and four temperatures, 9, 34, 49 and 59°C below base.

Plant 505, Run 880

This run, made at base pressure and at 59°C below base temperature, covered three space velocities in the order of 0.4, 0.8 and 1.2 x base LHSV. A run summary is shown in Table 10. Product samples throughout the run were submitted for carbon and hydrogen analyses to establish when lined out operation had been attained for a given set of conditions and to check for catalyst stability in the run. The catalyst stability check was made by returning to the original starting conditions. Average product hydrogen contents for each of the space velocity tests are tabulated below:

T-T(base) °C = -59

<u>LHSV/LHSV base</u>	<u>Wt-% H (Ave.)</u>
0.4	10.82
0.8	10.13
1.2	9.62
0.4	10.26

The product hydrogen content after 331 hours of operation (10.26 wt-%) indicated a slight catalyst deactivation when compared to the initial average of 10.82 wt-%.

Plant 505, Run 881

This run was made at base pressure, at 0.4, 0.8 and 1.2 x base LHSV, and at two temperature levels, 34°C and 8°C below base. Run summary is given in Table 11. The average hydrogen contents for each of the space velocity tests are tabulated below.

<u>LHSV/LHSV(base)</u>	<u>T-T(base) °C</u>	
	-34	-9
	<u>Wt-% H (Ave.)</u>	
0.4	11.59	11.74
0.8	10.67	10.99
1.2	10.25	10.52
0.4	11.26	11.61

A check on catalyst stability for this run is shown as follows:

LHSV/LHSV(base) = 0.4

<u>T-T(base) °C</u>	<u>Hrs. on Stream</u>	<u>Wt-% H (Ave.)</u>
-34	116-156	11.59
-35	212-242	11.26
-9	292-312	11.74
-8	388-408	11.61

At each temperature level only a slight decrease in hydrogen content was noted.

Plant 505, Run 882

The run was a duplicate of Run 881 except that it was done at 500 psi above base pressure and temperatures of 49°C and 35°C below base temperature. The run summary for this operation is shown in Table 12. The average hydrogen contents for each of the space velocity tests are tabulated below:

<u>LHSV/LHSV(base)</u>	<u>T-T(base) °C</u>	
	-49	-35
	<u>Wt-% H (Ave.)</u>	
0.4	10.88	11.33
0.8	10.60	10.76
1.2	9.89	10.24
0.4	10.87	11.18

The check on stability is also tabulated below:

$$\text{LHSV/LHSV(base)} = 0.4$$

<u>T-T(base) °C</u>	<u>Hrs. on Stream</u>	<u>Wt-% H (Ave.)</u>
-49	24-54	10.88
-49	130-150	10.87
-35	160-210	11.33
-35	316-346	11.18

The decrease in hydrogen content is within experimental error.

Plant 505, Run 883

This run was made at 500 psi above base pressure. The space velocity sequence was run in reverse. Catalyst stability was checked at $0.8 \times$ base space velocity instead of 0.4. A test at $0.6 \times$ base space velocity was inadvertently made, and the data were not processed. The run summary is shown in Table 13. The average hydrogen contents for each of the space velocity tests are tabulated below:

$$\text{T-T(base) °C} = -9$$

<u>LHSV/LHSV(base)</u>	<u>Wt-% H (Ave.)</u>
0.8	11.64
1.2	11.02
0.8	11.64
0.4	11.92
0.8	11.46

Again, the decrease in hydrogen content is within experimental error, and indicates no catalyst activity decline over the 331 hours of operation.

Product Distributions

Selected products in each run throughout the variable study were analyzed in order to obtain product distributions at each test condition. These data are presented in Tables 14 through 19.

The hydrogen contents of the liquid products were abstracted from the above tables and used to derive the curves shown in Figures 4 and 5. The curves indicate the hydrogen content of the gas oil product as a function of temperature, for each space velocity, at base pressure and 500 psi above base pressure. The curves are roughly linear over the temperature range covered.

4.1.3. Preparation of Hydrotreated Gas Oils

Two preparative hydrotreating runs were carried out on Plant 638 for the purpose of preparing two feedstocks for FCC studies. Figure 3 is a summary of the basic steps involved, and yield data obtained, in the preparation of these two feedstocks. In this figure, the yield data and hydrogen additions are expressed as weight percent of raw SRC-II gas oils 3777-6 and 3777-7. This

figure also shows the preparation and yield data for the two FCC feedstocks prepared by fractionation of the raw SRC-II gas oils.

Plant 638, Run 37

This operation ran for a period of 192 hours, 8 days, to produce about 11 gallons of hydrotreated FCC feed containing 10.38 wt-% hydrogen. The run was made at base pressure, $0.8 \times$ base space velocity, starting at 55°C below base temperature. The temperature was adjusted some 13°C upward to 42°C below base temperature to bring the product up to the desired hydrogen content. The operation and analyses are logged in Table 20.

Table 21 summarizes an overall material balance made for Run 37. Better than 99.4 wt-% of stripper bottoms product was recovered. Losses to C₄ and lighter gases amounted to less than 0.1 wt-% under these mild conditions. Hydrogen consumption amounted to 1230 SCFB. This stripper bottoms product was designated as 3777-21. The hydrogen distribution (Table 22) shows better than 84 wt-% of the hydrogen used to increase the product hydrogen content. Approximately 2 wt-% was consumed in forming light gases, and about 14 wt-% was consumed in desulfurization, denitrification and deoxygenation.

Inspections of the blended liquid product are shown in Table 23. This product was fractionated to recover approximately 8.4 gallons of a 400°F⁺ topped gas oil designated as 3777-34. Details of the fractionation are given in Table 24. Final yield of FCC feedstock was 78.1 wt-%.

Plant 638, Run 38

This second hydrotreating preparative run was of 292 hours duration. It produced approximately 12.5 gallons of hydrotreated FCC feed, containing 11.18 wt-% hydrogen. This run was started at 500 psi above base pressure, $0.4 \times$ base space velocity and 36°C below base temperature. After 52 hours of operation, the operating temperature was increased to 28°C below base; and again after 122 hours it was increased to 21°C below base to meet the desired hydrogen specifications. The run summary is given in Table 25.

An overall product distribution made for this run is shown in Table 26. Again, approximately 99.4 wt-% of stripper bottoms was recovered, with only 0.21 wt-% of the feed lost to C₄ and lighter gases. The hydrogen consumption at the more severe conditions amounted to 1790 SCFB. The stripper bottoms product was designated as 3777-28. Table 27 gives the distribution of hydrogen consumption for the run. Approximately 82 wt-% of the hydrogen used remained in the feed. The liquid products were blended and analyzed. The inspections for this severely hydrotreated product blend 3777-28 are shown in Table 28.

The product blend 3777-28 was fractionated to recover approximately 8.4 gallons of 400°F⁺ topped gas oil designated as 3777-41. Details of this fractionation are shown in Table 24. Final yield of FCC feedstock was 69.4 wt-%.

4.2. Naphtha Characterization

Tables 29 through 32 list the inspections of the IBP-400°F naphtha fractions derived from topping the raw SRC-II gas oil, 3777-7, and the rerun gas oil, 3777-19; and from topping the two hydrogenated products 3777-21 and 3777-28.

The first two naphthas have octane numbers over 100 RON, but will require relatively severe hydrotreatment to remove phenols and heterocyclics. Octane number will drop but can be restored readily by mild reforming to regenerate aromatics. The latter pair of naphthas may also require additional hydrotreatment. Removal of phenols and heterocyclics was incomplete when these naphthas were co-processed with 400°F⁺ material.

4.3. Fluid Catalytic Cracking of SRC-II Process Derived Gas Oils

Fluid catalytic cracking of the SRC-II process derived gas oils was carried out in Plant 593, described in Paragraph 2.2.

In the current program multiple tests were made at each set of conditions to obtain up to 4 independent sets of experimental data at each condition and to provide sufficient liquid product for fractionation and analysis of the fractions. Octane numbers were obtained in most tests where liquid product was sufficient.

FCC studies were carried out on four 400°F⁺ feedstocks. One was topped SRC-II gas oil, 3777-36. The second was the topped rerun SRC-II gas oil, 3777-38. The third was the 400°F⁺ topped mildly hydrotreated gas oil, 3777-34. The final charge stock was the topped severely hydrotreated gas oil 3777-41. The hydrogen contents of these feedstocks were 8.66, 8.89, 9.98 and 10.59 wt-%, respectively (Tables 4, 7, 8 and 9).

All tests were conducted at 10 psi below base pressure. The results are presented in terms of increasing hydrogen content of the feed.

4.3.1. Topped SRC-II Gas Oil 3777-36

Only one acceptable test was obtained at the lower temperature and only two tests were obtained at the higher temperature, due to operational and mechanical difficulties. The results of these tests are summarized in Tables 33 and 34, which lists cracking conditions, product distributions and product inspections.

Some results of these tests are shown below:

Experiment No.	292/3	292/7,9
T-T(base) °C (ave.)	5	32
<u>Cat/Oil</u> Cat/Oil(base) (ave.)	1.07	1.66
Conversion, Vol-%	44.8 ^a	50.6 ^a
C ₅ ⁺ Gasoline, Vol-%	23.9 ^a	25.7 ^a
Cycle Oil, Vol-%	56.6 ^a	51.3 ^a
Carbon, Wt-%	11.6	14.4

^aAdjusted

Carbon production tends to be on the high side for the rather moderate conversion and low C₅⁺ gasoline yield. This pattern is to be expected in view of the low hydrogen and high aromatics and nitrogen content of this feed (Table 4).

Throughout this work, the operation of the plant fractionator was not completely satisfactory. This fractionator has been designed to handle 65-85% feed conversions, and gasoline product contents from 35-65 vol-%. It also requires close attention in operation to set the proper gasoline cut point. In addition, the nature of the feed itself differs, making operational changes difficult at times. As a result, the gasoline cut point was not correct and the gasoline fractions were contaminated with cycle oil. To correct for this discrepancy, the observed yields and gravities were adjusted, based on a 380°F temperature at the 90 vol-% point of the Engler distillation.

The numbers shown in the above tabulation are averages of the multiple tests run at each temperature condition.

4.3.2. Topped Rerun SRC-II Gas Oil, 3777-38

This gas oil was prepared by rerunning the raw SRC-II gas oil to take 94.8 vol-% overhead, and then removing the naphtha. The object was to improve the cracking characteristics of the feed by removal of coke precursor material. Both the Conradson carbon and heptane insolubles were markedly reduced. The rerunning did result in a slightly higher hydrogen content gas oil.

Fluid catalytic cracking of gas oil 3777-38 was also conducted at two sets of conditions. The results are summarized in Tables 35 and 36. Each of the tables shows the cracking conditions, product distributions, inspections of the gasoline products, and properties of the gas oils. Table 35 also includes the Research and Motor octane numbers (RON and MON) of the leaded and unleaded gasolines.

Four tests were made at each test condition, and it was necessary to adjust the gasoline, cycle oil yields and their corresponding API and specific gravities due to gasoline fraction contamination with gas oil.

Some results of the tests are shown below:

Experiment No.	299/1,2,4	299/5-8
T-T(base)°C (ave.)	3	28
<u>Cat/Oil</u> (ave.)	1.01	1.42
Cat/Oil(base)		
Conversion, Vol-%	45.3 ^a	51.6 ^a
C ₅ ⁺ Gasoline, Vol-%	25.1 ^a	28.1 ^a
Cycle Oil, Vol-%	54.7 ^a	48.4 ^a
Carbon, Wt-%	12.2	13.9

^aAdjusted

Conversions for this stock are only slightly higher than that obtained on the raw topped gas oil 3777-36. This reflects the small increased hydrogen content of this gas oil. Yields of gasoline are also slightly higher, while carbon production is essentially the same as that obtained with the gas oil 3777-36.

4.3.3 Topped Mildly Hydrotreated Gas Oil 3777-34

Gas oil 3777-34 was prepared by mild hydrotreatment of the SRC-II gas oil followed by removal of naphtha. The hydrogen content was raised from 8.66 to 9.98 wt-%. The nitrogen content was reduced from 10,200 to 6,000 ppm, approximately 40% in this hydrotreating step. Essentially all of the Conradson carbon and heptane insolubles were removed. The aromatic concentration was high but the condensed ring structures were partially hydrogenated.

The data obtained at the two sets of operating conditions are shown in Tables 37 and 38. The conversion and yield data are abstracted from these tables and shown below.

Experiment No.	294/2,3,10	294/5,6,8
T-T(base) °C (Ave.)	2	28
<u>Cat/Oil</u> <u>Cat/Oil(base)</u> (Ave.)	1.08	1.49
Conversion, Vol-%	49.2	57.3
C_5 + Gasoline, Vol-%	35.3	40.1
Cycle Oil, Vol-%	50.8	42.7
Carbon, Wt-%	7.3	7.3

At the near base condition, this hydrotreated feed showed a lower than anticipated response in conversion. Gasoline yields increased approximately 10-15 vol-% and the carbon make dropped approximately 40% when compared to the untreated stocks.

4.3.4 Topped Severely Hydrotreated Gas Oil 3777-41

The hydrotreated gas oil 3777-41 was prepared by severe hydrotreatment of the SRC-II gas oil, followed by removal of naphtha. The 400°F+ topped hydrotreated fraction represents 69.4 wt-% of the original SRC-II gas oil. This feedstock contained 10.59 wt-% hydrogen. Essentially all of the sulfur has been removed, approximately 80% of the nitrogen and over 50% of the oxygen has been taken out. The aromatic content was still high, 74%. Three tests were conducted at near base conditions and two at the more severe conditions. The data are presented in Tables 39 and 40.

Experiment No.	301/1-3	301/4,6
T-T(base) °C (Ave.)	3	30
<u>Cat/Oil</u> <u>Cat/Oil(base)</u> (Ave.)	1.09	1.50
Conversion, Vol-%	61.9 ^a	63.7 ^a
C_5 + Gasoline, Vol-%	46.9 ^a	43.6 ^a
Cycle Oil, Vol-%	38.1 ^a	36.3 ^a
Carbon, Wt-%	3.9	5.4

^aAdjusted

A fairly high conversion and gasoline yield, and reduced carbon were obtained at near base conditions. At the more severe conditions the conversion went up slightly, but the gasoline yield went down indicating an increase in secondary cracking of the gasoline. Carbon deposition increased with the increase in secondary cracking. Compared to other hydrotreated distillates (EDS, H-Coal), these hydrotreated SRC-II distillates gave lower carbon yields at comparable hydrogen contents.

4.3.5. Discussion

It was expected that low conversions and high carbon production would result from fluid catalytic cracking of the topped and rerun as received gas oils 3777-36 and 3777-38. The hydrogen contents of these feeds were below 9 wt-%, their nitrogen contents were 10,200 and 9,950 ppm, with aromatic concentrations of 93 vol-%. The Conradson carbon and heptane insoluble contents were not as high as the Exxon Donor solvents and slightly higher than the H-Coal feeds.

Basic nitrogen compounds act as transient poisons to the catalytic acid sites on FCC catalysts. Polynuclear aromatic molecules are known coke formers. They offer few points of catalytic attack to break carbon-carbon bonds and open rings. The heptane insolubles, oxygenates and gum are coke precursors.

Hydrotreatment is necessary to take care of these feedstock deficiencies. The more hydrogen the stock contains, the higher will be the conversion and lower the carbon production. The conversions and yields of the four gas oil stocks are compared below, at the near base condition.

Feed Hydrogen Content, Wt-%	8.66	8.89	9.98	10.59
Conversion, Vol-%	44.8	45.3	49.2	61.9
C ₅ + Gasoline, Vol-%	23.9	25.1	35.3	46.9
C ₄ -, Wt-%	5.3	5.0	8.4	13.5
Carbon, Wt-%	11.6	12.2	7.3	3.9
RON Clear	-	106.7	101.8	97.5

These data are shown in Figure 6 and compared with data plotted from a West Coast refinery feed, hydrotreated to various levels of hydrogen.

Feed Hydrogen Content, Wt-%	11.78	12.46	12.50	13.47
Conversion, Vol-%	67.8	74.6	78.9	87.2
C ₅ + Gasoline, Vol-%	50.9	59.0	61.8	71.0
C ₄ -, Wt-%	15.2	16.5	18.9	21.2
Carbon, Wt-%	7.4	5.7	5.5	4.8

These correlations for the coal and petroleum gas oils do not overlap, but they are reasonably consistent in their general trends.

The Research octane numbers of the coal oil products at base conditions range from 106.7 down to 97.5 for the highest hydrogen content feed. This general trend observed for coal derived gas oils follows the identical trend found for petroleum derived gas oils.

Based on the above data, it is concluded that with proper hydrotreatment, the SRC-II gas oil can be processed via fluid catalytic cracking into a high octane and high quality gasoline.

4.4. Combined FCC and HF Alkylation

The C₃/C₄ stream produced in FCC operations can be used as feedstock to a UOP HF Alkylation unit to make high octane motor fuel. This process combines light olefins (primarily mixtures of propylene and butylenes) with isobutane, producing branched chain paraffins. Estimates of alkylation yield are based on analyses of the C₃/C₄ stream such as contained in Tables 33-40, plus more detailed breakdown of the C₄ olefin portion.

4.4.1. HF Alkylation Feed

A breakdown of the C₃/C₄ FCC product yield from each coal liquid is presented in Table 41. For one of the coal liquids, Topped Severely Hydro-treated Gas Oil, 3777-41, data is presented for two FCC operations at approximately the same conversion, but different operating conditions (Operations A and B). These yields represent what the HF Alkylation unit feed would be in a combined FCC/Alkylation complex using the respective coal liquid feeds. For comparison purposes, a C₃/C₄ yield from a typical petroleum derived FCC operation is also shown. The petroleum feedstock chosen is a 50/50 mixture of Es Sider and Forties vacuum gas oils. Pertinent properties of the petroleum charge are given in Table 42. The processing conditions and conversions for all the FCC operations are shown in Table 43. Since the severely hydro-treated coal liquid would yield the highest C₃/C₄ quantity from a given amount of FCC feed, and since even this case is of questionable viability for a FCC/Alkylation complex, the subsequent discussion will be limited to this severely hydrotreated operation.

4.4.2. HF Alkylate Properties

In estimating alkylate properties, it is important to consider the distribution of the C₄ olefin isomers and the C₃/C₄ olefin ratio. Table 44 shows that for all practical purposes, the C₄ olefin isomer distribution is the same for the coal derived and petroleum feedstocks, thus C₄ composition is not a factor when comparing petroleum derived and coal derived alkylate quality. However, as is evident from the Table 41 C₃/C₄ yield summary, the propylene quantity exceeds that of the butylene in the coal liquid cases, whereas the reverse is true with petroleum derived feed. Since C₄ olefins produce a higher quality alkylate, higher octane numbers are expected for the petroleum case. Table 45, a summary of C₆+ alkylate properties, confirms this assumption. To produce an alkylate product of equivalent quality from coal liquids, it would be necessary to increase the isobutane/olefin feed ratio beyond that used in the petroleum case.

4.4.3. HF Alkylation Estimated Yields

Alkylation yields have been estimated on both severely hydrotreated cases and on the petroleum case. Results of these estimates are given in Tables 46-48. For comparison purposes, the data have been reported on a nominal 10,000 BPSD charge. The petroleum case, as seen in Table 47, requires less isobutane make-up than the coal derived material. In a commercial operation, the isobutane deficiency would have to be made up via n-butane isomerization or external purchase. The difference is due to the greater inherent quantity of i-C₄ in the petroleum stock. Also, in the petroleum case there is less propane than in the coal cases. Propane gets a free ride through the alkylation unit and has no effect on alkylate quality or quantity.

Overall, the quantity of C₆+ alkylate produced in the coal liquid and petroleum cases is similar if one begins with an equivalent amount of C₃/C₄ feed. Starting with a constant feed to the FCC unit, one would see very different results depending upon the quality of the feed, i.e., hydrogen content of the feed. As shown previously in Table 42, FCC conversion varies from a low of 44.8 vol-% to a high of 62.2 vol-% as compared to the petroleum case of 82.2 vol-%. In the case of the coal liquids these correspond to feed hydrogen contents of 8.66 wt-% and 10.59 wt-%, respectively. Also as seen in Table 41 the quantity of C₃/C₄ material increases from 3.03 wt-% to 12.39 wt-% for the above stated cases. Therefore, depending upon the hydrogen content of the FCC feed, which is a function of the "pre-hydrotreatment" process, it is possible to obtain a widely varying quantity of C₃/C₄ material for alkylation. In addition, FCC feed initial boiling point would be a factor to take into consideration; and this would also affect the C₃/C₄ product yield. Selecting the optimum operating conditions of the FCC unit and the prehydrotreater would require a detailed economic study which is beyond the scope of this evaluation.

In summary it is concluded that for a given quantity of C₃/C₄ FCC product originating from either a 400°F+ severely hydrotreated SRC-II gas oil or a petroleum derived vacuum gas oil, the quantity and quality of C₆+ alkylate will be comparable. The petroleum derived C₆+ alkylate exhibits slightly better quality due to a higher C₄/C₃ ratio. This can, however, be overcome in the coal liquid case by increasing the isobutane/olefin ratio. The basic question of the viability of using an FCC/HF Alkylation complex on a given coal liquid feed will depend on selection of the appropriate feed pretreatment level and feed boiling range (which significantly affect alkylate yield).

Errata:

Report FE-2566-32

Table 5 - Heading should be 94.8%

Table 9 - Chloride, ppm 59

Figure 1 - Blocks to right of word "Rerun" top block 94.8% OH
bottom block 5.2% Botts.

Report FE-2566-36

Tables 15 and 16 - Headings should read:

Fluid Catalytic Cracking of Topped Rerun SRC-II Gas Oil 3777-38
Plant 593, Run 299

Table 1

<u>Inspections of Raw SRC-II Gas Oil^a</u>		
Sample Number	3777-6	3777-7
Drum Number	1	2
°API @ 60°F	9.7	10.1
Sp. Gr. @ 60°F	1.0021	0.9993
Distillation, ASTM D 1160		
IBP, °F	386	335
5%	407	395
10%	417	410
20%	430	425
30%	445	444
40%	465	458
50%	486	472
60%	508	492
70%	535	512
80%	570	571
90%	645	656
95%	711	705
EP	799	810
% Over	99.0	99.0
% Bottoms	1.0	1.0
Hydrogen, Wt-%	8.68	8.72
Carbon, Wt-%	85.83	86.13
Sulfur, Wt-ppm	3300	3815
Nitrogen, Wt-ppm	8100	9040
Oxygen, Wt-ppm	17900	17300
Heptane Insoluble, Wt-%	0.17	0.22
FIA, Vol-%		
Color Band ^b		
A	90.1	54.5
P&N	9.9	9.4
Conradson Carbon, Wt-%	0.38	0.37
Steam Jet Gum mg/100 ml	842	854

^aDerived from Powhaton No. 5 Mine Coal; contains up to 3% Dowtherm (diphenyl/diphenyl oxide) contaminant.

^bHighly polar compounds

Table 2

High Resolution Mass Spectral Characterization of
 SRC-II Gas Oil Drum No. 1 3777-6

Sample Analysis Summary

<u>Compound Type C_nH_{2n-z}</u>	<u>Wt-%</u>	<u>Avg. C No.</u>	<u>Avg. MW</u>	<u>Avg. z No.</u>
Saturated Hydrocarbons (P+N)	8.4	15.5	216	0.7
Aromatic Hydrocarbons	53.8	14.3	186	14.1
Aromatic Nitrogens	7.0	11.7	167	10.8
Aromatic Oxygens	27.6	10.4	153	8.9
Aromatic Sulfurs	1.2	13.7	209	14.6
Aromatic Dioxogenates	1.7	13.1	203	13.5
Aromatic Trioxogenates	0.3	12.5	212	10.8

Elemental Analysis by MS

	<u>Wt-%</u>
Atomic Carbon	87.72
Atomic Hydrogen	8.29
Atomic Nitrogen	0.59
Atomic Oxygen	3.22
Atomic Sulfur	0.18
	<u>100.00</u>

Table 2 (Cont'd.)

High Resolution Mass Spectral Characterization of
SRC-II Gas Oil Drum No. 1 3777-6

Hydrocarbon Types Analysis

(C _n H _{2n-z})		<u>Wt-%</u>	<u>Avg. MW</u>
<u>z No.</u>	<u>Compound Types</u>		
$z=2$	Paraffins	3.6	226
$z=0$	1 Ring Naphthenes	1.3	224
$z=2$	2 Ring Naphthenes	1.8	208
$z=4$	3 Ring Naphthenes	1.3	206
$z=6$	4 Ring Naphthenes	0.4	190
		<u>8.4</u>	<u>216</u>
 <u>Aromatic Hydrocarbons</u>			
<u>z No.</u>	<u>Compound Types, C_nH_{2n-z}</u>		
$z=6$	Benzenes	0.9	158
$z=8$	Indans/Tetralins	10.3	165
$z=10$	Dinaphthene Benzenes	2.7	185
$z=12$	Naphthalenes	12.1	159
$z=14$	Acenaphthenes/Biphenyls	7.5	185
$z=16$	Fluorenes	4.4	205
$z=18$	Phenanthrenes	6.7	197
$z=20$	Aceanthrenes	2.6	227
$z=22$	Pyrenes	4.7	223
$z=24$	Chrysenes	0.9	246
$z=26$	Benzofluoranthenes	0.3	276
$z=28$	Benzopyrenes	0.6	280
$z=30$	Dibenzanthracenes	<0.1	292
$z=32$	Benzoperylenes	T	
$z=34$	Dibenzopyrenes	T	
$z=36$	Coronenes	T	
		<u>53.8</u>	<u>186</u>
 <u>Aromatic Oxygens</u>			
<u>z No.</u>	<u>Compound Types, C_nH_{2n-z}O</u>		
$z=60$	Phenols	14.4	131
$z=80$	Naphthenophenols	5.7	154
$z=100$	Benzofurans	0.6	183
$z=120$	Naphthols	<0.1	180
$z=140$	Naphthenonaphthols	3.2	180
$z=160$	Dibenzofurans	2.6	202
$z=180$	Hydroxyanthracenes	0.3	230
$z=200$	Hydroxynaphthoanthracenes	0.2	233
$z=220$	Hydroxypyrenes	0.5	232
$z=240$	Hydroxychrysenes	T	
		<u>27.6</u>	<u>153</u>

Suggested compound types

Multiheteroaromatics normalized out of the results

T ≤ 0.05%

Table 2 (Cont'd.)

High Resolution Mass Spectral Characterization of
SRC-II Gas Oil Drum No. 1 3777-6

Aromatic Dioxygenates		Wt-% ^a	Avg. MW
<u>z No.</u>	<u>Compound Types, C_nH_{2n-z}O₂^a</u>		
$z=6^02$	Hydroxyphenols	0.3 ^b	120
$z=14^02$	Hydroxynaphthenonaphthols	0.7 ^b	218
$z=16^02$	Hydroxydibenzofurans	0.5 ^b	215
$z=18^02$	Dihydroxyanthracenes	<0.1 ^b	247
$z=20^02$	Dihydroxynaphthenonanthracenes	<0.1 ^b	278
		<u>1.7^b</u>	<u>203</u>
Aromatic Trioxgenates		Wt-% ^a	Avg. MW
<u>z No.</u>	<u>Compound Types, C_nH_{2n-z}O₃^a</u>		
$z=6^03$	Dihydroxyphenols	<0.1	204
$z=12^03$	Dihydroxynaphthol	0.2	211
$z=14^03$	Dihydroxynaphthenonaphthols	<u>T</u>	<u>212</u>
		<u>0.3</u>	
Aromatic Nitrogens		Wt-% ^a	Avg. MW
<u>z No.</u>	<u>Compound Types, C_nH_{2n-z}N^a</u>		
$z=5^N$	Pyridines	1.5	130
$z=7^N$	Naphthenopyridines	1.1	153
$z=9^N$	Indoles	0.6	152
$z=11^N$	Quinolines	1.3	156
$z=13^N$	Naphthenoquinolines	0.6	198
$z=15^N$	Carbazoles	0.6	191
$z=17^N$	Acridines	0.6	202
$z=19^N$	Naphthenobenzoquinolines	<0.1	222
$z=21^N$	Benzocarbazoles	0.5	228
$z=23^N$	Benzactidines	<0.1	254
$z=25^N$	Naphthenobenzacridines	<u>T</u>	
$z=27^N$	Dibenzocarbazoles	<u>T</u>	<u>167</u>
		<u>7.0</u>	
Aromatic Sulfurs		Wt-% ^a	Avg. MW
<u>z No.</u>	<u>Compound Types, C_nH_{2n-z}S^a</u>		
$z=6^S$	Benzenethiols	<u>T</u>	
$z=8^S$	Dihydrothionaphthalenes	0.2	199
$z=10^S$	Benzothiophenes	<0.1	172
$z=12^S$	Naphthenobenzothiophenes	<u>T</u>	
$z=14^S$	Indenothiophenes	<u>T</u>	
$z=16^S$	Dibenzothiophenes	0.6	205
$z=18^S$	Acenaphthenothiophenes	<0.1	239
$z=20^S$	Fluorenothiophenes	<u>T</u>	
$z=22^S$	Tribenzothiophenes	<0.1	250
$z=24^S$	Acephenanthrylenethiophenes	<u>T</u>	
$z=26^S$	Pyrenothiophenes	<u>T</u>	<u>209</u>
		<u>1.2</u>	

^aSuggested compound types^bEstimates due to lack of sensitivity data

T ≤ 0.05%

Table 2 (Cont'd.)

High Resolution Mass Spectral Characterization of
SRC-II Gas Oil Drum No. 1 3777-6

Carbon Number Distribution of Aromatic Hydrocarbons on a 100% Basis

C No.	Z No.	6	8	10	12	14	16	18	20	22	24	26	28	30
8		0.03	0.02											
9		0.12	0.21											
10		0.31	2.12	0.09	2.59									
11		0.42	4.16	0.07	6.72									
12		0.28	4.27	0.47	5.10	2.35								
13		0.28	3.60	1.41	3.45	2.73	0.92							
14		0.23	3.19	1.55	2.61	3.46	1.85	5.00						
15		0.09	1.11	0.75	1.08	2.32	1.03	3.10	0.21					
16		0.05	0.37	0.30	0.40	1.50	1.46	1.74	0.84	3.43				
17			0.30	0.24	0.75	1.27	1.20	1.31	2.14					
18		0.10	0.09	0.10	0.47	0.78	0.87	1.25	1.03	0.54				
19			0.12	0.26	0.52	0.47	0.75	0.92	0.61					
20				0.28	0.21	0.30	0.49	0.37	0.10	0.23				
21						0.12	0.42	0.21	0.14	0.16				
22						0.09	0.10	0.07	0.30	0.24				
23							0.19		0.02	0.16	0.10			
24										0.14				
25										0.05				
26										0.03				
		1.81	19.15	5.03	22.41	13.84	8.11	12.59	4.87	8.72	1.80	0.56	1.01	0.10

$\Sigma = 100$

Numbers are shown to two decimal places for normalization purposes only.

Table 2 (Cont'd.)

High Resolution Mass Spectral Characterization of
SRC-II Gas Oil Drum No. 1 3777-6

Carbon Number Distribution of Aromatic Sulfurs on a 100% Basis

C No.	z No.	6S	8S	10S	12S	14S	16S	18S	20S	22S	24S	26S	
8		2.34											
9		0.78	1.56	0.78									
10		0.78	3.13	1.56									
11			6.25	3.13									
12			2.34	0.78	0.78		14.06						
13				0.78	0.78			15.63					
14					2.34			9.38					
15						0.78	0.78	4.69	2.34	0.78			
16							0.78	5.47	2.34	0.78	3.13		
17								0.78	1.56	0.78	2.34		
18									0.78		0.78		1.56
19											0.78	1.56	
		3.90	14.07	7.03	3.90	1.56	50.02	7.03	2.34	7.03	1.56	1.56	$\Sigma = 100$

Numbers are shown for two decimal places for normalization purposes only.

Table 2 (Cont'd.)

High Resolution Mass Characterization of
SRC-II Gas Oil Drum No. 1 3777-6

Carbon Number Distribution for Aromatic Nitrogenates on a 100% Basis

C No.	z No.	5N	7N	9N	11N	13N	15N	17N	19N	21N	23N	25N	27N
7		5.11											
8		7.14	0.89										
9		4.34	3.18	1.65	3.83								
10		3.44	6.25	2.55	5.23								
11		1.78	3.31	1.91	4.09								
12		0.51	1.66	0.64	3.96	0.64	3.69						
13		0.13	1.15	0.51	1.02	2.55	1.66	1.40					
14			0.38		0.76	1.91	0.25	3.06	0.13				
15			0.25			0.89	0.76	1.91	0.64	0.64			
16				0.64	0.76	2.29	0.64	0.25	1.66				
17					0.13	0.38	0.51	0.38	3.31	0.13			
18					0.38			0.38	0.38	0.13			
19										0.25			
20								0.38	0.25	0.13	0.51		
21											0.25		
		22.45	17.09	7.27	19.52	7.27	9.05	7.53	1.79	6.38	0.76	0.13	0.76

$\Sigma = 100$

Carbon Number Distribution for Aromatic Oxygenates on a 100% Basis

C No.	z No.	60	80	100	120	140	160	180	200	220	240
6		1.43									
7		9.25									
8		15.94	0.13								
9		13.17	4.75	0.16							
10		7.30	7.88	0.22	0.16						
11		3.89	4.37	0.19	0.10						
12		1.18	2.36	0.35		7.94	1.37				
13		0.26	0.96	0.48	0.03	0.83	2.14				
14			0.35	0.48	0.03	0.99	1.98				
15			0.03	0.26	0.06	1.24	1.43	0.10			
16				0.10		0.29	1.15	0.54	0.19	0.51	
17					0.06	0.03	0.96	0.29	0.29	0.57	
18						0.10	0.22	0.03	0.16	0.13	
19							0.22	0.10		0.19	
20									0.10		
		52.42	20.82	2.23	0.45	11.42	9.47	1.05	0.64	1.40	0.10

$\Sigma = 100$

Numbers are shown to two decimal places for normalization purposes only.

Table 2 (Cont'd.)

High Resolution Mass Characterization of
SRC-II Gas Oil Drum No. 1 3777-6

Carbon Number Distribution for Aromatic Dioxygenates and Trioxigenates
on a 100% Basis

C No.	z No.	<u>6⁰²</u>	<u>14⁰²</u>	<u>16⁰²</u>	<u>18⁰²</u>	<u>20⁰²</u>
6		5.54				
7		13.11				
12			3.84			
13			9.38	7.68		
14			13.67	5.54		
15			10.85	8.14		
16			3.95	2.71	2.71	
17			4.29		4.97	
19						3.62
		18.64	45.99	24.07	7.68	3.62

$\Sigma = 100$

C No.	z No.	<u>6⁰³</u>	<u>12⁰³</u>	<u>14⁰³</u>
11		17.65		
12			28.76	
13		7.19	32.03	
14				14.38
		24.84	60.78	14.38

$\Sigma = 100$

Numbers are shown to two decimal places for normalization purposes only.

Table 3

Fractionation of SRC-II Gas Oil 3777-7

<u>Cut Number</u>	<u>Boiling Range, °F</u>	<u>Volume, ml</u>	<u>Volume, %</u>	<u>Weight, g</u>	<u>Wt-%</u>
1 ^a	IBP-400°	4727	13.7	4395	12.7
Botts ^b	400°+	29808	86.3	30324	87.3
		34535	100.0	34719	100.0

^aDesignated as IBP-400°F Naphtha 3777-35

^bDesignated as 400°F+ Topped Gas Oil 3777-36

Table 4

Inspections of 400°F+ Topped Gas Oil from SRC-II Gas Oil 3777-7

Sample Number	3777-36
*API @ 60°F	7.6
Sp. Gr. @ 60°F	1.0173
Distillation, ASTM D 1160	
IBP, °F	400
5%	440
10%	450
20%	460
30%	471
40%	487
50%	501
60%	520
70%	550
80%	606
90%	688
95%	739
EP	820
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	8.66
Carbon, Wt-%	86.72
Sulfur, wt-ppm	3200
Nitrogen, Wt-ppm	10200
Oxygen, Wt-ppm	27200
Heptane Insoluble, Wt-%	0.48
Molecular Weight kg/kmol	173
Pour Point °F	-30
FIA, Vol-%	
Color Band	-
A	93.3
P&N	6.7
Conradson Carbon, Wt-%	0.54
Steam Jet Gum, mg/100 ml	
Viscosity @ 100°F	
SUS	47.9
cSt	6.738

Table 5

Rerunning of SRC-II Gas Oil 3777-6

<u>Cut Number</u>	<u>Boiling Range, °F</u>	<u>Weight, g</u>	<u>Wt-%</u>
1	IBP-748°	34804	94.8
Botts	748°+	1919	5.2
		36723	100.0

Designated as Rerun SRC-II Gas Oil 3777-19

Fractionation of Rerun SRC-II Gas Oil 3777-19

<u>Cut Number</u>	<u>Boiling Range, °F</u>	<u>Volume, ml</u>	<u>Volume, %</u>	<u>Weight, g</u>	<u>Wt-%</u>
1	IBP-400°	4435	14.6	4129	13.6
Botts	400°+	26025	85.4	26137	86.4
		30460	100.0	30266	100.0

Designated as IBP-400°F Naphtha 3777-37

Designated as 400°F+ Topped Gas Oil 3777-38

Table 6

Inspections of 94.8% OH Rerun SRC-II Gas Oil 3777-6

Sample Number	3777-19
*API @ 60°F	10.6
Sp. Gr. @ 60°F	0.9958
Distillation, ASTM D 1160	
IBP, °F	364
5%	391
10%	408
20%	<u>428</u>
30%	<u>444</u>
40%	460
50%	<u>472</u>
60%	489
70%	508
80%	<u>539</u>
90%	609
95%	670
EP	724
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	9.01
Carbon, Wt-%	86.43
Sulfur, Wt-ppm	2750
Nitrogen, Wt-ppm	8570
Oxygen, Wt-ppm	19400
Heptane Insoluble, Wt-%	0.04
FLA, Vol-%	
Color Band ^a	34.0
A	56.3
P&N	9.7
Conradson Carbon, Wt-%	0.10
Steam Jet Gum, mg/100 ml	51.8

^aHighly polar compounds

Table 7

Inspections of 400°F+ Topped Gas Oil from 3777-19

Sample Number	3777-38
*API @ 60°F	8.7
Sp. Gr. @ 60°F	1.0093
Distillation, ASTM D 1160	
IBP, °F	421
5%	450
10%	452
<u>20%</u>	<u>458</u>
30%	464
40%	478
<u>50%</u>	<u>491</u>
60%	508
70%	529
<u>80%</u>	<u>569</u>
90%	633
95%	672
EP	738
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	8.89
Carbon, Wt-%	86.83
Sulfur, Wt-ppm	2900
Nitrogen, Wt-ppm	9950
Oxygen, Wt-ppm	22800
Heptane Insoluble, Wt-%	0.03
Pour Point, °F	-30
FLA, Vol-%	
Color Band ^a	31.5
A	61.0
P&N	7.5
Conradson Carbon, Wt-%	0.11
Viscosity @ 100°F	
SUS	43.6
cSt	5.388
Molecular Weight, kg/kmol	173

^aHighly polar compounds

Table 8

Inspections of 400°F+ Topped Gas Oil from 3777-21

Sample Number	3777-34
*API @ 60°F	3.6
Sp. Gr. @ 60°F	0.9752
Distillation, ASTM D 1160	
IBP, °F	418
5%	428
10%	436
20%	450
30%	462
40%	472
50%	487
60%	504
70%	539
80%	582
90%	641
95%	691
EP	790
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	9.98
Carbon, Wt-%	86.84
Sulfur, Wt-ppm	106
Nitrogen, Wt-ppm	6000
Oxygen, Wt-ppm	9800
Heptane Insoluble, Wt-%	0.01
Pour Point, °F	-50
FIA, Vol-%	
Color Band ^a	19.4
A	69.9
P&N	10.7
Conradson Carbon, Wt-%	0.01
Viscosity @ 100°F	
SUS	41.2
cSt	4.628
Molecular Weight, kg/kmol	192

^aHighly polar compounds

Table 9

Inspections of 400°F+ Topped Gas Oil from 3777-28

Sample Number	3777-41
*API @ 60°F	17.7
Sp. Gr. @ 60°F	0.9484
Distillation, ASTM D 1160	
IBP, °F	408
5%	440
10%	448
20%	<u>455</u>
30%	463
40%	478
50%	<u>490</u>
60%	510
70%	536
80%	<u>570</u>
90%	625
95%	668
EP	748
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	10.59
Carbon, Wt-%	84.86
Sulfur, Wt-ppm	109
Nitrogen, Wt-ppm	1730
Oxygen, Wt-ppm	8300
Heptane Insoluble, Wt-%	0.01
Pour Point, °F	-45
FIA, Vol-%	
Color Band ^a	-
A	73.9
P&N	26.1
Conradson Carbon, Wt-%	0.02
Viscosity @ 100°F	
SUS	37.4
cSt	3.446
Molecular Weight, kg/kmol	193

^aHighly polar compounds

Table 10

Hydrotreating Raw SRC-II Gas Oil 3777-6

Plant 505, Run 880

<u>Period No.</u>	<u>Hours On Stream</u>	<u>P-P(base) psig</u>	<u>LHSV</u> <u>LHSV(base)</u>	<u>T-T(base) °C</u>	<u>Product Analysis, Wt-%</u>	
					<u>H</u>	<u>C</u>
2	24-38	0	0.45	-59	10.90	87.59
5	58-68	10	0.44	-59	10.75	87.38
8	89-99	0	0.45	-59	10.84	82.52
10	109-119	0	0.39	-59	11.06	86.45
11	119-129	0	0.37	-61	10.81	86.68
12	129-139	0	0.41	-59	10.54	86.69
14	147-155	0	0.90	-59	10.06	86.38
18	179-187	10	0.79	-59	10.14	86.14
23	219-227	0	0.77	-59	10.19	86.55
24	227-235	-10	0.71	-59	10.14	86.05
29	261-267	0	1.23	-59	9.76	86.36
30	267-273	0	1.30	-59	9.50	85.24
31	273-279	0	1.31	-58	9.52	85.05
32	279-285	-10	1.17	-59	9.69	86.38
37	321-331	15	0.40	-60	10.26	85.70

Table 11Hydrotreating Raw SRC-II Gas Oil 3777-6Plant 505, Run 881

Period No	Hours on Stream	P-P(base), psi	LHSV/ LHSV(base)	T-T(base), °C	Product Analysis, Wt-%	
					H	C
3	46-56	0	0.41	-50	11.02	87.81
6	76-86	0	0.39	-45	11.14	86.93
8	96-106	0	0.41	-44	11.07	86.51
9	106-116	0	0.38	-44	11.06	86.94
11	126-136	-5	0.39	-35	11.32	87.19
12	136-146	-10	0.39	-34	11.57	87.44
13	146-156	-10	0.39	-34	11.87	86.54
16	172-180	5	0.81	-34	10.61	87.34
17	180-188	0	0.80	-34	10.73	86.26
20	200-206	5	1.22	-35	10.21	85.84
21	206-212	0	1.18	-35	10.30	85.80
23	222-232	0	0.41	-34	11.34	87.34
24	232-242	10	0.40	-36	11.18	86.69
27	262-272	0	0.40	-10	12.15	86.37
28	272-282	0	0.39	-8	11.80	86.36
29	282-292	0	0.41	-9	12.33	86.61
30	292-302	10	0.41	-9	11.73	86.38
31	302-312	-5	0.39	-9	11.75	86.91
34	328-336	0	0.83	-9	11.03	86.75
35	336-344	25	0.82	-8	10.94	86.91
38	356-362	10	1.22	-9	10.54	87.58
39	362-368	15	1.18	-8	10.49	86.85
41	378-388	0	0.48	-16	11.48	88.13
42	388-398	15	0.45	-7	11.60	87.45
43	398-408	10	0.39	-9	11.61	87.24

Table 12
Hydrotreating Raw SRC-II Gas Oil 3777-6
Plant 505, Run 882

Period No.	Hrs. on Stream	P-P(base), psi	LHSV/ LHSV(base)	T-T(base), °C	Product Analysis, wt-%	
					H	C
2	24-34	500	0.40	-49	10.54	85.55
3	34-44	500	0.40	-49	11.14	87.38
4	44-54	510	0.41	-49	10.95	87.74
7	70-78	520	0.79	-50	10.48	87.24
8	78-86	500	0.81	-50	10.72	87.42
11	98-104	480	1.18	-47	10.05	86.92
12	104-110	500	1.19	-48	9.72	85.88
14	120-130	500	0.40	-49	10.80	87.65
15	130-140	520	0.40	-49	10.79	87.32
16	140-150	520	0.39	-49	11.01	88.16
18	160-170	500	0.39	-35	11.21	86.60
19	170-180	540	0.40	-34	11.89	88.11
20	180-190	500	0.41	-33	11.42	87.39
21	190-200	530	0.38	-36	12.04	87.90
22	200-210	520	0.40	-35	11.37	87.07
25	226-234	505	0.80	-32	10.76	86.67
26	234-242	500	0.80	-35	10.75	86.51
29	254-260	540	1.18	-35	10.26	86.43
30	260-266	510	1.20	-34	10.22	86.37
33	286-296	510	0.45	-35	11.15	87.26
35	306-316	510	0.39	-35	11.23	86.98
36	316-326	530	0.40	-36	11.28	87.15
38	336-346	520	0.40	-35	11.07	86.88

Table 13

Hydrotreating Raw SRC-II Gas Oil 3777-7
Plant 505, Run 883

Period No.	Hrs. on Stream	P-P(base), psi	LHSV/ LHSV(base)	T-T(base), °C	Product Analysis, wt-%	
					H	C
4	36-44	530	0.84	-9	11.64	87.50
7	55-61	515	1.22	-10	11.02	87.48
8	61-67	550	1.20	-8	11.01	87.35
14	103-111	500	0.81	-7	11.67	86.97
15	111-119	540	0.80	-8	11.60	87.52
20	151-159	500	0.67	-10	11.61	86.68
22	167-175	480	0.57	-9	11.70	86.43
24	183-191	510	0.60	-8	11.66	87.14
25	191-199	480	0.62	-9	11.59	87.52
29	229-239	530	0.40	-9	12.00	87.25
32	259-269	520	0.39	-11	12.07	86.75
35	289-299	500	0.44	-11	11.70	86.87
38	315-323	490	0.79	-10	11.58	87.30
39	323-331	550	0.81	-9	11.33	86.22

Table 14

Hydrotreating SRC-II Gas Oil 3777-6
Plant 505, Run 880

<u>Period No.</u>	<u>Feed</u>	<u>2-12</u>	<u>14-24</u>	<u>29-32</u>			
Hours on Stream		24-139	147-235	261-285			
Operating Conditions							
P-P (base), psi		0	0	0			
T-T (base), °C		-59	-59	-59			
LHSV/LHSV (base)		0.45	0.90	1.23			
Liquid Product Properties							
°API @ 60°F	9.7	20.6	17.0	14.6			
Sp. Gr. @ 60°F	1.0021	0.9303	0.9529	0.9685			
Elemental Analysis							
Hydrogen, Wt-%	8.68	10.88	10.16	9.75			
Carbon, Wt-%	85.83	86.10	85.51	86.45			
Sulfur, Wt-ppm	3300	240	490	470			
Nitrogen, Wt-ppm	8100	2700	5100	6800			
Oxygen, Wt-ppm	17900	14100	15100	13530			
FIA, Vol-%							
Color Band ^a		11.6	19.3	23.9			
A	90.1	56.8	60.4	61.4			
O	-	-	-	-			
P&N	9.9	31.6	20.3	14.7			
Product Distribution, % of Feed		<u>Wt-%</u>	<u>Vol-%</u>	<u>Wt-%</u>	<u>Vol-%</u>		
C ₁ -C ₄ Fraction		0.13	0.10	0.11			
C ₅ -C ₆ Fraction (in Plant Gas)		0.98	1.51	0.86	1.32	0.30	0.45
C ₅ ⁺ Fraction		99.70	107.40	99.50	104.53	99.55	103.00
H ₂ O		0.75		0.62		0.83	
NH ₃		0.67		0.36		0.16	
H ₂ S		0.33		0.30		0.31	
Total		102.56	108.91	101.74	105.85	101.26	103.45
H ₂ Consumption, Wt-% of Feed		2.56		1.74		1.26	

^aHighly polar compounds

Table 15

Hydrotreating SRC-II Gas Oil 3777-6

Plant 505, Run 881

<u>Period No.</u>	<u>Feed</u>	<u>11-13</u>	<u>16-17</u>	<u>20-21</u>	
Hours on Stream		126-156	172-188	200-212	
Operating Conditions					
P-P(base), psi		-10	5	5	
T-T(base), °C		-34	-34	-35	
LHSV/LHSV (base)		0.39	0.81	1.20	
Liquid Product Properties					
°API @ 60°F	9.7	24.3	19.7	16.8	
Sp. Gr. @ 60°F	1.0021	0.9082	0.9358	0.9541	
Elemental Analysis					
Hydrogen, Wt-%	8.68	11.29	10.66	10.23	
Carbon, Wt-%	85.83	87.58	87.38	86.44	
Sulfur, Wt-ppm	3300	130	310	390	
Nitrogen, Wt-ppm	8100	600	3100	5970	
Oxygen, Wt-ppm	17900	4070	10580	12680	
FIA, Vol-%					
Color Band ^a		3.3	12.4	20.2	
A	90.1	52.5	59.3	59.9	
O	-	-	-	-	
P&N	9.9	44.2	28.3	19.9	
Product Distribution, % of Feed		Wt-%	Vol-%	Wt-%	Vol-%
C ₁ -C ₄ Fraction		0.24	0.19	0.13	
C ₅ -C ₆ Fraction (in Plant Gas)		1.42	2.18	0.84	1.29
C ₅₊ Fraction		98.21	108.36	99.20	106.23
H ₂ O		1.95	1.17		0.91
NH ₃		0.90	0.61		0.26
H ₂ S		0.33	0.32		0.31
Total		103.05	110.54	102.33	107.52
H ₂ Consumption, Wt-% of Feed		3.05		2.33	
				2.46	

^aHighly polar compounds

Table 16

Hydrotreating SRC-II Gas Oil 3777-6

Plant 505, Run 881

<u>Period No.</u>	<u>Feed</u>	<u>27-31</u>	<u>34-35</u>	<u>38-39</u>
Hours on Stream		262-312	328-344	356-368
Operating Conditions				
P-P(base), psi		0	10	10
T-T(base), °C		-9	-9	-9
LHSV/LHSV (base)		0.40	0.83	1.20
Liquid Product Properties				
°API @ 60°F	9.7	26.7	23.3	20.4
Sp. Gr. @ 60°F	1.0021	0.8944	0.9141	0.9315
Elemental Analysis				
Hydrogen, Wt-%	8.68	12.00	11.12	10.77
Carbon, Wt-%	85.83	87.89	88.33	87.35
Sulfur, Wt-ppm	3300	50	110	210
Nitrogen, Wt-ppm	8100	230	650	1770
Oxygen, Wt-ppm	17900	2236	6564	13956
FIA, Vol-%				
Color Band ^a				
A	90.1	42.6	57.1	65.2
O	-	-	-	-
P&N	9.9	57.4	37.7	24.2
Product Distribution, % of Feed		Wt-% Vol-%	Wt-% Vol-%	Wt-% Vol-%
C ₁ -C ₄ Fraction		0.73	0.38	0.31
C ₅ -C ₆ Fraction (in Plant Gas)		2.23 3.42	1.00 1.53	0.74 1.13
C ₅ + Fraction		100.09 111.24	98.47 107.95	98.41 105.87
H ₂ O		0.68	1.63	1.91
NH ₃		0.70	0.90	0.77
H ₂ S		0.35	0.34	0.33
Total		104.78 114.66	102.72 109.48	102.47 107.00
H ₂ Consumption, Wt-% of Feed		4.78	2.72	2.47

^aHighly polar compounds

Table 17

Hydrotreating SRC-II Gas Oil 3777-6

Plant 505, Run 882

<u>Period No.</u>	<u>Feed</u>	<u>2-4</u>	<u>7-8</u>	<u>11-12</u>			
Hours on Stream		24-54	70-86	98-110			
Operating Conditions							
P-P(base), psi		505	510	490			
T-T(base), °C		-49	-50	-47			
LHSV/LHSV (base)		0.40	0.80	1.18			
Liquid Product Properties							
*API @ 60°F	9.7	20.2	16.9	14.8			
Sp. Gr. @ 60°F	1.0021	0.9328	0.9535	0.9672			
Elemental Analysis							
Hydrogen, Wt-%	8.68	10.76	10.18	9.84			
Carbon, Wt-%	85.83	86.41	86.03	86.37			
Sulfur, Wt-ppm	3300	61	51	120			
Nitrogen, Wt-ppm	8100	2870	1990	6700			
Oxygen, Wt-ppm	17900	9540	15630	15300			
FIA, Vol-%							
Color Band ^a		13.2	20.2	26.4			
A	90.1	55.7	57.1	57.6			
O	-	-	-	-			
P&N	9.9	31.1	22.7	16.0			
Product Distribution, % of Feed		Wt-%	Vol-%	Wt-%	Vol-%		
C ₁ -C ₄ Fraction	-	0.11	0.13	0.07			
C ₅ -C ₆ Fraction (in Plant Gas)		1.40	2.14	0.73	1.12	0.46	0.71
C ₅ + Fraction		98.61	105.94	99.28	104.34	99.70	103.29
H ₂ O		1.29	0.56	0.59			
NH ₃		0.64	0.74	0.17			
H ₂ S		0.34	0.35	0.34			
Total		102.39	108.08	101.79	105.46	101.33	104.00
H ₂ Consumption, Wt-% of Feed		2.39		1.79		1.33	

^aHighly polar compounds

Table 18

Hydrotreating SRC-II Gas Oil 3777-6

Plant 505, Run 882

<u>Period No.</u>	<u>Feed</u>	<u>20-22</u>	<u>25-26</u>	<u>29-30</u>
Hours on Stream		180-210	226-242	254-256
Operating Conditions				
P-P(base), psi		520	505	525
T-T(base), °C		-35	-34	-35
LHSV/LHSV(base)		0.40	0.80	1.19
Liquid Product Properties				
°API @ 60°F	9.7	25.3	21.0	17.9
Sp. Gr. @ 60°F	1.0021	0.9024	0.9279	0.9471
Elemental Analysis				
Hydrogen, Wt-%	8.68	11.55	10.77	10.07
Carbon, Wt-%	85.83	87.25	86.49	86.17
Sulfur, Wt-ppm	3300	51	36	44
Nitrogen, Wt-ppm	8100	510	2390	4140
Oxygen, Wt-ppm	17900	3990	9700	13510
FIA, Vol-%				
Color Band ^a		4.3	11.7	17.3
A	90.1	47.6	56.2	57.7
O	-	-	-	-
P&N	9.9	48.1	32.1	25.0
Product Distribution, % of Feed		Wt-% Vol-%	Wt-% Vol-%	Wt-% Vol-%
C ₁ -C ₄ Fraction		0.20	0.19	0.17
C ₅ -C ₆ Fraction (in Plant Gas)		1.69 2.59	1.01 1.55	0.35 0.53
C ₅ + Fraction		98.14 108.98	98.96 106.87	99.48 105.26
H ₂ O		1.95	1.28	0.84
NH ₃		0.92	0.69	0.45
H ₂ S		0.34	0.35	0.35
Total		103.24 111.57	102.48 108.42	101.64 105.79
H ₂ Consumption, Wt-% of Feed		3.24	2.48	1.64

^aHighly polar compounds

Table 19

Hydrotreating SRC-II Gas Oil 3777-7

Plant 505, Run 883

<u>Period No.</u>	<u>Feed</u>	<u>7-8</u>	<u>14-15</u>	<u>28-34</u>			
Hours on Stream		55-67	103-119	229-289			
Operating Conditions							
P-P(base), psi		535	520	520			
T-T(base), °C		-9	-8	-10			
LHSV/LHSV(base)		1.21	0.80	0.40			
Liquid Product Properties							
*API @ 60°F	10.1	24.2	26.1	28.5			
Sp. Gr. @ 60°F	0.9993	0.9088	0.8978	0.8894			
Elemental Analysis							
Hydrogen, Wt-%	8.72	10.96	11.50	12.43			
Carbon, Wt-%	86.13	87.28	87.91	87.48			
Sulfur, Wt-ppm	3815	300	130	110			
Nitrogen, Wt-ppm	9040	1170	470	170			
Oxygen, Wt-ppm	17300	7700	3680	770			
FIA, Vol-%							
Color Band ^a	36.1	5.5	2.6	-			
A	54.5	53.3	47.7	34.6			
O	-	-	-	-			
P&N	9.4	41.2	49.7	65.4			
Product Distribution, % of Feed		Wt-% Vol-%	Wt-% Vol-%	Wt-% Vol-%			
C ₁ -C ₄ Fraction		0.31	0.38	0.43			
C ₅ -C ₆ Fraction (in Plant Gas)	0.91	1.39	1.45	2.22	1.82	2.79	
C ₅ + Fraction	98.93	108.78	98.36	109.48	98.61	111.42	
H ₂ O		1.21	1.62	1.97			
NH ₃		0.87	1.03	1.07			
H ₂ S		0.37	0.39	0.39			
Total		102.60	110.17	103.23	111.70	104.30	114.21
H ₂ Consumption, Wt-% of Feed		2.60	3.23	4.30			

^aHighly polar compounds

Table 20

Hydrotreating Raw SRC-II Gas Oil 3777-6
Preparative Run No. 1
Plant 638, Run 37

P-P(base) = 0 LHSV/LHSV(base) = 0.8

<u>Period No.</u>	<u>Hrs. on Stream</u>	<u>T-T(base), °C</u>	<u>Product Analysis,wt-%</u>	
			<u>H</u>	<u>C</u>
1	30	-54	10.00	85.89
3	42-52	-55	10.05	85.74
5	62-72	-55	10.06	86.25
7	82-92	-42	10.34	86.07
10	112-122	-45	10.12	86.19
17	182-192	-41	10.27	86.33

Table 21

Hydrotreating SRC-II Gas Oil 3777-6

Overall Product Distribution

Plant 638, Run 37

<u>Product Distribution</u>	<u>Wt-%</u>
C ₁	0.01
C ₂	0.03
C ₃	0.02
C ₄	0.03
C ₅ and C ₆ (in Plant Gas)	0.33
Stripper Bottoms ^a	99.47
H ₂ O	1.42
H ₂ S	0.32
NH ₃	<u>0.32</u>
Total	101.95
H₂ Consumption, Wt-% of Feed	1.95
H₂ Consumption, SCFB	1230

^aDesignated as Hydrotreated SRC-II Gas Oil 3777-21

Table 22

Hydrotreating SRC-II Gas Oil 3777-6

Distribution of Hydrogen Consumption

Plant 638, Run 37

	<u>Wt-%</u>
C ₁ -C ₄	0.59
C ₅ -C ₆ (in Plant Gas)	1.47
Stripper Bottoms ^a	84.15
H ₂ O	9.36
H ₂ S	1.12
NH ₃	<u>3.31</u>
Total	100.00
Total Hydrogen Consumption, SCFB	1230

^aDesignated as Hydrotreated SRC-II Gas Oil 3777-21

Table 23

Inspections of Mildly Hydrotreated SRC-II Gas Oil 3777-6

Sample Number	3777-21
*API @ 60°F	17.0
Sp. Gr. @ 60°F	0.9529
Distillation, ASTM D 1160	
IBP, °F	280
5%	350
10%	374
20%	401
30%	422
40%	440
50%	460
60%	481
70%	505
80%	540
90%	611
95%	687
EP	779
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	10.38
Carbon, Wt-%	86.91
Sulfur, Wt-ppm	129
Nitrogen, Wt-ppm	5510
Oxygen, Wt-ppm	10800
Heptane Insoluble, Wt-%	0.01
Pour Point, °F	below -60
FIA, Vol-%	
Color Band ^a	19.7
A	59.1
P&N	21.2
Conradson Carbon, Wt-%	0.04
Viscosity @ 100°F	
SUS	36.4
cSt	3.137
Molecular Weight, kg/kmol	193

^aHighly polar compounds

Table 24

Fractionation of Mildly Hydrotreated SRC-II Gas Oil 3777-21

<u>Cut Number</u>	<u>Boiling Range, °F</u>	<u>Volume, ml</u>	<u>Volume, %</u>	<u>Weight, g</u>	<u>Weight, %</u>
1 ^a	IBP-400°	9699	23.5	8440	21.5
Botts ^b	400°F ⁺	31607	76.5	30779	78.5
		41306	100.0	39219	100.0

^aDesignated as IBP-400°F Naphtha 3777-33

^bDesignated as 400°F⁺ Topped Gas Oil 3777-34

Fractionation of Severely Hydrotreated SRC-II Gas Oil 3777-28

<u>Cut Number</u>	<u>Boiling Range, °F</u>	<u>Volume, ml</u>	<u>Volume, %</u>	<u>Weight, g</u>	<u>Weight, %</u>
1 ^a	IBP-400°	15487	32.8	12998	30.2
Botts ^b	400°F ⁺	31665	67.2	29971	69.8
		47152	100.0	42969	100.0

^aDesignated as IBP-400°F Naphtha 3777-40

^bDesignated as 400°F⁺ Topped Gas Oil 3777-41

Table 25

Hydrotreating Raw SRC-II Gas Oil 3777-7
Preparative Run No. 2
Plant 638, Run 38

P-P(base) = 500 LHSV/LHSV(base) = 0.40

Period No.	Hrs. on Stream	T-T(base), °C	Product Analysis, wt-%	
			H	C
1	22-32	-36	10.97	86.10
3	42-52	-36	10.98	86.22
5	62-72	-28	11.33	86.57
8	92-102	-29	11.35	87.20
10	112-122	-29	11.11	86.58
17	182-192	-21	11.31	86.48
20	212-222	-21	11.43	87.08
22	232-242	-18	11.77	86.92
24	252-262	-17	11.48	86.60
27	282-292	-22	11.17	86.22

Table 26

Hydrotreating SRC-II Gas Oil 3777-7

Overall Product Distribution

Plant 638, Run 38

<u>Product Distribution</u>	<u>Wt-%</u>
C ₁	0.04
C ₂	0.07
C ₃	0.06
C ₄	0.04
C ₅ and C ₆ (in Plant Gas)	0.26
Stripper Bottoms ^a	99.40
H ₂ O	1.70
H ₂ S	0.39
NH ₃	<u>0.89</u>
Total	102.85
H ₂ Consumption, Wt-% of Feed	2.85
H ₂ Consumption, SCFB	1790

^aDesignated as Hydrotreated SRC-II Gas Oil 3777-28

Table 27

Hydrotreating SRC-II Gas Oil 3777-7

Distribution of Hydrogen Consumption

Plant 638, Run 38

	<u>Wt-%</u>
C ₁ -C ₄	1.44
C ₅ -C ₆ (in Plant Gas)	1.04
Stripper Bottoms ^a	82.86
H ₂ O	7.68
H ₂ S	3.00
NH ₃	<u>3.98</u>
Total	100.00
Total Hydrogen Consumption, SCFB	1790

^aDesignated as Hydrotreated SRC-II Gas Oil 3777-28

Table 28

Inspections of Severely Hydrotreated SRC-II Gas Oil 3777-7

Sample Number	3777-28
*API @ 60°F	23.4
Sp. Gr. @ 60°F	0.9135
Distillation, ASTM D 1160	
IBP, °F	234
5%	302
10%	331
20%	<u>372</u>
30%	400
40%	424
50%	<u>446</u>
60%	465
70%	490
80%	<u>521</u>
90%	575
95%	628
EP	724
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	11.18
Carbon, Wt-%	87.17
Sulfur, Wt-ppm	98
Nitrogen, Wt-ppm	1900
Oxygen, Wt-ppm	6700
Heptane Insoluble, Wt-%	<0.01
Pour Point, °F	below -60
FIA, Vol-%	
Color Band ^a	6.3
A	50.8
P&N	42.9
Conradson Carbon, Wt-%	<0.01
Viscosity @ 100°F	
SUS	33.1
cSt	2.144
Molecular Weight, kg/kmol	215

^aHighly polar compounds

Table 29

Inspections of IBP-400°F Naphtha from Topping SRC-II Gas Oil 3777-7

Sample Number	3777-35
*API @ 60°F	20.8
Sp. Gr. @ 60°F	0.9291
Distillation, ASTM D 1160	
IBP, °F	206
5%	319
10%	331
20%	<u>338</u>
30%	343
40%	344
50%	<u>351</u>
60%	354
70%	358
80%	<u>363</u>
90%	374
95%	382
EP	397
% Over	98.5
% Bottoms	1.5
Hydrogen, Wt-%	9.80
Carbon, Wt-%	83.05
Sulfur, Wt-ppm	1600
Nitrogen, Wt-ppm	4090
Oxygen, Wt-ppm	14100
RON, Clear	105.4
FIA, Vol-%	
Color Band ^a	29.7
A	42.1
P&N	28.2
Steam Jet Gum, mg/100 ml	9.6
Bromine Number	34.2

^aHighly polar compounds

Table 30

Inspections of IBP-400°F Naphtha from Topping Rerun Gas Oil 3777-19

Sample Number	3777-37
°API @ 60°F	20.5
Sp. Gr. @ 60°F	0.9309
Distillation, ASTM D 86	
IBP, °F	244
5%	330
10%	332
<u>20%</u>	<u>336</u>
<u>30%</u>	<u>339</u>
40%	347
<u>50%</u>	<u>353</u>
60%	357
70%	361
<u>80%</u>	<u>362</u>
90%	372
95%	382
EP	402
% Over	98.5
% Bottoms	1.5
Hydrogen, Wt-%	9.89
Carbon, Wt-%	82.65
Sulfur, Wt-ppm	1650
Nitrogen, Wt-ppm	4350
Oxygen, Wt-ppm	35800
RON, Clear	104.0
FIA, Vol-%	
Color Band ^a	
A	30.7
A	42.2
P&N	27.1
Steam Jet Gum, mg/100 ml	31.3

^aHighly polar compounds

Table 31

Inspections of IBP-400°F Naphtha Cut from Topping 3777-21

Sample Number	3777-33
*API @ 60°F	30.4
Sp. Gr. @ 60°F	0.8740
Distillation, ASTM D 86 ^a	
IBP, °F	174
5%	179
10%	183
20%	300
30%	312
40%	326
50%	336
60%	341
70%	348
80%	361
90%	377
95%	402
EP	495
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	11.60
Carbon, Wt-%	85.32
Sulfur, Wt-ppm	115
Nitrogen, Wt-ppm	4110
Oxygen, Wt-ppm	4700
Chloride, ppm	59
RON, Clear	91.7
FIA, Vol-%	
A	33.5
O	6.4
P&N	60.1
Steam Jet Gum, mg/100 ml	8.1
Bromine Number	22.4

^a Excessive foaming noted during distillation. Temperatures may be slightly off.

Table 32

Inspections of IBP-400°F Naphtha Topping from 3777-28

Sample Number	3777-40
°API @ 60°F	37.2
Sp. Gr. @ 60°F	0.8388
Distillation, ASTM D 86 ^a	
IBP, °F	227
5%	250
10%	263
20%	281
30%	296
40%	311
50%	325
60%	336
70%	345
80%	356
90%	368
95%	376
EP	421
% Over	99.0
% Bottoms	1.0
Hydrogen, Wt-%	12.47
Carbon, Wt-%	85.30
Sulfur, Wt-ppm	66
Nitrogen, Wt-ppm	2030
Oxygen, Wt-ppm	6700
RON, Clear	75.1
FIA, Vol-%	
A	22.3
P&N	77.7
Steam Jet Gum, mg/100 ml	5.0

^a Dry point observed at 388°F

Table 33

Fluid Catalytic Cracking of the 400°F+ Topped As Received Gas Oil 3777-36
Plant 593, Run 292

Test No.	3
Operating Conditions	
P-P(base), psi	-10
T-T(base), °C	5
$\frac{[\text{Cat.}]/\text{Oil}}{[\text{Cat.}]/\text{Oil(base)}}}$	1.07
Conversion, Vol-%	44.8 ^a
Product Distribution, Wt-%	
C ₃ -	4.0
C ₄	1.3
C ₅	} 23.9 ^a
C ₆ -EP Gasoline	
Cycle Oil	56.6 ^a
Carbon	11.6
Wt. Recovery	97.4
Products, Vol-%	
C ₅ -EP Gasoline	26.1 ^a
Cycle Oil	55.2 ^a
Inspections of C₅-EP Gasoline	
°API @ 60°F	20.5 ^a
Sp. Gr. @ 60°F	0.9309
Distillation, ASTM D-86	
IBP, °F	154
5%	189
10	268
50	391
90	419
95	430
EP	450

^aAdjusted numbers

Table 33 (Cont'd.)

Test No.	3
Properties of Cycle Oil	
°API @ 60°F	4.9 ^a
Sp. Gr. @ 60°F	1.0375
Distillation, UOP No. 1	
IBP, °F	476
5%	484
10	490
15	494
% Over at 650°F	84.0
°API of 650°F ⁻ @ 60°F	7.4
Sp. Gr. of 650°F ⁻ @ 60°F	1.0187
°API of 650°F ⁺ @ 60°F	-7.8
Sp. Gr. of 650°F ⁺ @ 60°F	1.1439
C ₃ -, Mole %	
H ₂	51.6
C ₁	18.8
C ₂ (Total)	14.4
C ₃ Olefins	12.6
C ₃	2.5
Total	100.0
C ₄ , Vol-%	
C ₄ Olefins	75.5
i-C ₄	16.5
n-C ₄	8.0
Total	100.0
C ₅ , Vol-%	
C ₅ Olefins	81.4
i-C ₅	18.6
n-C ₅	0.0
Total	100.0

^aAdjusted numbers

Table 34

Fluid Catalytic Cracking of the 400°F+ Topped As Received Gas Oil 3777-36
Plant 593, Run 292

Test No.	7	9
Operating Conditions		
P-P(base), psi	-10	-12
T-T(base), °C	33	30
[Cat./Oil [Cat./Oil(base)]	1.51	1.81
Conversion, Vol-%	52.7	48.5
Product Distribution, Wt-%		
C ₃ -	7.9	0.2
C ₄	1.9	0.3
C ₅	24.3 ^a	27.1 ^a
C ₆ -EP Gasoline	49.0 ^a	53.5 ^a
Cycle Oil	14.3	14.4
Carbon	97.3	95.4
Wt. Recovery		
Products, Vol-%		
C ₅ -EP Gasoline	26.7 ^a	30.0 ^a
Cycle Oil	47.3 ^a	51.5 ^a
Inspections of C ₅ -EP Gasoline		
°API @ 60°F	21.5 ^a	22.4 ^a
Sp. Gr. @ 60°F	0.9248	0.9194
Distillation, ASTM D-86		
IBP, °F	159	159
5%	194	191
10	259	241
50	384	380
90	424	418
95	439	430
EP	472	466
RON, Clear		
RON, 3 ml TEL/Gallon		

^aAdjusted numbers

Table 34 (Cont'd.)

Test No.	7	9
Properties of Cycle Oil		
°API @ 60°F	2.8 ^a	2.5 ^a
Sp. Gr. @ 60°F	1.0539 ^a	1.0563 ^a
Distillation, UOP No. 1		
IBP, °F	476	473
5%	486	482
10	495	489
15	498	494
% Over at 650°F	80.0	82.0
°API of 650°F- @ 60°F	6.4	6.4
Sp. Gr. of 650°F- @ 60°F	1.0261	1.0261
°API of 650°F+ @ 60°F	-8.4	-7.9
Sp. Gr. of 650°F+ @ 60°F	1.1495	1.1448
C ₃ -, Mole %		
H ₂	32.9	20.5
C ₁	27.5	17.9
C ₂ (Total)	20.1	17.9
C ₃ Olefins	15.2	35.9
C ₃	4.3	7.7
Total	100.0	100.0
C ₄ , Vol-%		
C ₄ Olefins	69.5	91.3
i-C ₄	22.8	4.5
n-C ₄	7.7	4.3
Total	100.0	100.0
C ₅ , Vol-%		
C ₅ Olefins	77.3	82.0
i-C ₅	19.9	10.6
n-C ₅	2.8	7.4
Total	100.0	100.0

^aAdjusted numbers

Table 35

Fluid Catalytic Cracking of 400°F+ Bottoms Gas Oil 3777-38

Plant 593, Run 299

Test No.	1	2	3	4
Operating Conditions				
P-P (base), psig	-9	-10	-10	-10
T-T (base), °C	5	-2	2	5
$\left[\frac{\text{Cat.}/\text{Oil}}{\text{Cat.}/\text{Oil} \text{ (base)}} \right]$	1.03	0.98	0.97	1.06
Conversion, Vol-%	43.0 ^a	46.8 ^a	46.5	46.1 ^a
Product Distribution, Wt-%				
C ₃ -	3.5	2.4	2.8	7.2
C ₄	1.3	0.4	0.9	1.4
C ₅	23.4 ^a	24.9 ^a	31.9	24.4 ^a
C ₆ -EP Gasoline	57.7 ^a	53.3 ^a	54.9	55.2 ^a
Cycle Oil				
Carbon	12.5	12.5	11.0	11.5
Wt. Recovery	98.4	94.0	102.2	99.7
Products, Vol-%				
C ₅ -EP Gasoline	24.6 ^a	24.8 ^a	35.1	25.8 ^a
Cycle Oil	57.0 ^a	53.2 ^a	53.5	53.9 ^a
Inspections of C₅-EP Gasoline				
°API @ 60°F	15.9 ^a	7.9 ^a	19.9	16.7 ^a
Sp. Gr. @ 60°F	0.9600	1.0151	0.9346	0.9548
Distillation, ASTM D 86				
IBP, °F	145	168	b	140
5%	178	194		181
10	263	342		228
50	386	417		380
90	415	473		409
95	428	494		418
EP	463	518		452
RON, Clear	←———— 106.7 —————→			
RON, 3 ml TEL/Gallon	←———— 108.7 —————→			
MON, Clear	←———— 94.7 —————→			
MON, 3 ml TEL/Gallon	←———— 96.9 —————→			

^aAdjusted numbers^bSample lost due to excessive foaming

Table 35 (Cont'd.)

Test No.	1	2	3	4
Properties of Cycle Oil				
°API @ 60°F	7.1 ^a	8.4 ^a	7.2	5.4 ^a
Sp. Gr. @ 60°F	1.0212 ^a	1.0109 ^a	1.0202	1.0334 ^a
Distillation, UOP No. 1				
IBP, °F	469	462	468	472
5%	478	474	478	480
10	482	482	484	485
15	486	496	489	490
% Over at 650°F	88.0	85.0	87.0	86.0
°API of 650°F ⁻ @ 60°F	7.6	6.9	7.2	6.6
Sp. Gr. of 650°F ⁻ @ 60°F	1.0173	1.0224	1.0202	1.0246
°API of 650°F ⁺ @ 60°F	-6.0	-7.0	-7.1	-8.0
Sp. Gr. of 650°F ⁺ @ 60°F	1.1275	1.1365	1.1375	1.1457
C ₃ -, Mole %				
H ₂	49.8	49.7	37.1	37.3
C ₁	17.7	20.3	26.1	27.5
C ₂ (Total)	14.6	15.0	20.0	19.2
C ₃ Olefins	14.6	12.2	13.5	12.5
C ₃	3.2	2.9	3.2	3.5
Total	100.0	100.0	100.0	100.0
C ₄ , Vol-%				
C ₄ Olefins	68.5	79.6	79.4	78.6
<i>i</i> -C ₄	24.6	13.0	11.3	14.3
<i>n</i> -C ₄	6.9	7.4	9.3	7.2
Total	100.0	100.0	100.0	100.0
C ₅ , Vol-%				
C ₅ Olefins	86.9	91.4	83.3	91.3
<i>i</i> -C ₅	7.1	0.0	6.6	4.4
<i>n</i> -C ₅	5.9	8.6	10.0	4.3
Total	100.0	100.0	100.0	100.0

^aAdjusted numbers

Table 36

Fluid Catalytic Cracking of 400°F+ Bottoms Gas Oil 3777-38
Plant 593, Run 299

Test No.	5	6	7	8
Operating Conditions				
P-P (base), psig	-10	-10.5	-10	-10.5
T-T (base), °C	26	26	30	31
$\left[\frac{\text{Cat.}/\text{Oil}}{\text{Cat.}/\text{Oil} \text{ (base)}} \right]$	1.41	1.39	1.44	1.42
Conversion, Vol-%	48.1 ^a	56.1 ^a	50.7 ^a	51.6 ^a
Product Distribution, Wt-%				
C ₃ -	4.5	4.1	5.9	5.0
C ₄	1.1	1.2	1.3	1.2
C ₅	26.8 ^a	32.6 ^a	23.8 ^a	23.6 ^a
C ₆ -EP Gasoline	53.1 ^a	43.7 ^a	50.5 ^a	49.6 ^a
Cycle Oil	13.1	15.6	13.0	14.0
Carbon	98.6	97.2	94.4	93.4
Wt. Recovery				
Products, Vol-%				
C ₅ -EP Gasoline	28.7 ^a	32.8 ^a	25.5 ^a	25.3 ^a
Cycle Oil	51.9 ^a	43.9 ^a	49.3 ^a	48.4 ^a
Inspections of C ₅ -EP Gasoline				
°API @ 60°F	18.5 ^a	9.3 ^a	18.8 ^a	19.0 ^a
Sp. Gr. @ 60°F	0.9433 ^a	1.0050 ^a	0.9415 ^a	0.9402 ^a
Distillation, ASTM D 86				
IBP, °F	128	145	137	130
5%	168	184	166	172
10	209	245	239	232
50	372	410	370	368
90	411	465	417	415
95	424	478	425	426
EP	455	486	465	468

^aAdjusted numbers

Table 36 (Cont'd.)

Test No.	5	6	7	8
Properties of Cycle Oil				
°API @ 60°F	5.5 ^a	9.4 ^a	5.4 ^a	5.3 ^a
Sp. Gr. @ 60°F	1.0324 ^a	1.0043 ^a	1.0335 ^a	1.0341 ^a
Distillation, UOP No. 1				
IBP, °F	470	472	470	476
5%	480	486	480	486
10	486	493	486	490
15	490	500	491	496
% Over at 650°F	85.0	82.0	86.0	84.0
°API of 650°F ⁻ @ 60°F	6.6	5.7	6.4	6.1
Sp. Gr. of 650°F ⁻ @ 60°F	1.0246	1.0313	1.0261	1.0283
°API of 650°F ⁺ @ 60°F	-8.2	-8.1	-8.7	-8.3
Sp. Gr. of 650°F ⁺ @ 60°F	1.1476	1.1467	1.1523	1.1485
C ₃ -, Mole %				
H ₂	33.0	54.9	35.0	33.3
C ₁	29.7	18.0	27.9	29.6
C ₂ (Total)	20.5	13.6	18.8	19.6
C ₃ Olefins	13.8	10.9	14.2	14.0
C ₃	3.0	2.6	4.2	3.5
Total	100.0	100.0	100.0	100.0
C ₄ , Vol-%				
C ₄ Olefins	80.6	81.8	78.8	75.7
i-C ₄	11.3	12.0	12.9	14.8
n-C ₄	8.1	6.1	8.2	9.5
Total	100.0	100.0	100.0	100.0
C ₅ , Vol-%				
C ₅ Olefins	83.5	87.1	86.2	88.1
i-C ₅	10.9	6.5	9.3	6.4
n-C ₅	5.4	6.4	4.6	5.5
Total	100.0	100.0	100.0	100.0

^aAdjusted numbers

Table 37

Fluid Catalytic Cracking of the 400°F+ Topped Mildly Hydrotreated Gas Oil 3777-34
Plant 593, Run 294

Test No.	2	3	10
Operating Conditions			
P-P(base), psi	-11	-10	-10
T-T(base), °C	3	1	2
$\frac{\text{Cat.}/\text{Oil}}{\text{Cat.}/\text{Oil(base)}}$	1.04	1.04	1.16
Conversion, Vol-%	51.3	48.1	48.2
Product Distribution, Wt-%			
C ₃ -	4.4	6.7	3.9
C ₄	3.1	4.4	2.8
C ₅	2.0	2.2	1.6
C ₆ -EP Gasoline	29.8	27.7	29.4
Cycle Oil	50.3	53.3	52.9
Carbon	6.8	6.6	8.6
Wt. Recovery	96.5	100.9	99.1
Products, Vol-%			
C ₅ -EP Gasoline	36.4	34.2	35.4
Cycle Oil	48.7	51.9	51.8
Inspections of C₅-EP Gasoline			
°API @ 60°F	33.4	32.8	33.8
Sp. Gr. @ 60°F	0.8581	0.8612	0.8560
Distillation, ASTM D-86			
IBP, °F	124	130	129
5%	148	158	158
10	168	186	184
50	300	316	316
90	384	386	390
95	393	395	400
EP	432	440	437
RON, Clear	\longleftrightarrow 101.8 \longrightarrow		
RON, 3 ml TEL/Gallon	\longleftrightarrow 104.0 \longrightarrow		

Table 37 (Cont'd.)

Test No.	2	3	10
Properties of Cycle Oil			
°API @ 60°F	8.9	9.9	10.7
Sp. Gr. @ 60°F	1.0078	1.0007	0.9951
Distillation, UOP No. 1			
IBP, °F	452	438	444
5%	459	455	458
10	464	460	466
15	470	466	470
% Over at 650°F	91.0	91.0	93.0
°API of 650°F @ 60°F	10.4	11.7	11.8
Sp. Gr. of 650°F @ 60°F	0.9972	0.9881	0.9874
°API of 650°F+ @ 60°F	-6.1	-4.7	-4.1
Sp. Gr. of 650°F+ @ 60°F	1.1284	1.1159	1.1107
C₃-, Mole %			
H ₂	31.3	33.0	32.6
C ₁	14.2	16.2	10.1
C ₂ (Total)	17.1	18.0	15.4
C ₃ Olefins	30.0	27.2	34.6
C ₃	7.4	5.5	7.3
Total	100.0	100.0	100.0
C₄, Vol-%			
C ₄ Olefins	54.4	59.1	58.1
i-C ₄	33.6	31.7	31.5
n-C ₄	12.1	9.2	10.4
Total	100.0	100.0	100.0
C₅, Vol-%			
C ₅ Olefins	50.9	57.5	48.4
i-C ₅	44.4	39.8	47.8
n-C ₅	4.7	2.6	3.8
Total	100.0	100.0	100.0

Table 38

Fluid Catalytic Cracking of the 400°F+ Topped Mildly Hydrotreated Gas Oil 3777-34
Plant 593, Run 294

Test No.	5	6	8
Operating Conditions			
P-P(base), psi	-10	-12	-9
T-T(base), °C	32	23	30
[Cat./Oil] [Cat./Oil(base)]	1.54	1.45	1.49
Conversion, Vol-%	57.1	56.3	58.5
Product Distribution, Wt-%			
C ₃ -	7.1	6.0	7.0
C ₄	3.8	3.8	4.5
C ₅	2.8	2.6	2.7
C ₆ -EP Gasoline	33.2	30.9	31.6
Cycle Oil	45.1	45.5	43.5
Carbon	6.1	8.4	7.3
Wt. Recovery	98.0	97.2	96.7
Products, Vol-%			
C ₅ -EP Gasoline	41.7	38.7	39.8
Cycle Oil	42.9	43.7	41.5
Inspections of C₅-EP Gasoline			
°API @ 60°F	36.8	35.7	35.9
Sp. Gr. @ 60°F	0.8408	0.8463	0.8453
Distillation, ASTM D-86			
IBP, °F	112	116	118
5%	146	148	150
10	169	170	173
50	287	286	284
90	381	382	377
95	398	396	394
EP	436	428	430
RON, Clear	← 101.9 →		
RON, 3 ml TEL/Gallon	← 103.9 →		

Table 38 (Cont'd.)

Test No.	5	6	8
Properties of Cycle Oil			
°API @ 60°F	6.7	7.9	6.8
Sp. Gr. @ 60°F	1.0239	1.0151	1.0231
Distillation, UOP No. 1			
IBP, °F	432	442	452
5%	458	456	464
10	464	467	470
15	472	468	476
% Over at 650°F	90.0	91.0	89.0
°API of 650°F- @ 60°F	8.7	9.7	8.7
Sp. Gr. of 650°F- @ 60°F	1.0093	1.0021	1.0093
°API of 650°F+ @ 60°F	-7.7	-6.8	-7.0
Sp. Gr. of 650°F+ @ 60°F	1.1430	1.1347	1.1365
C₃-, Mole %			
H ₂	22.8	24.2	24.6
C ₁	19.4	18.0	16.3
C ₂ (Total)	20.6	19.9	18.7
C ₃ Olefins	28.3	29.3	30.9
C ₃	8.9	8.5	9.4
Total	100.0	100.0	100.0
C₄, Vol-%			
C ₄ Olefins	46.9	48.3	46.9
i-C ₄	39.6	38.5	38.5
n-C ₄	13.5	13.2	14.7
Total	100.0	100.0	100.0
C₅, Vol-%			
C ₅ Olefins	37.8	40.9	39.0
i-C ₅	57.0	54.0	56.0
n-C ₅	5.2	5.2	5.0
Total	100.0	100.0	100.0

Table 39

Fluid Catalytic Cracking of the 400°F⁺
Topped Severely Hydrotreated Gas Oil 3777-41

Plant 593, Run 301

Test No.	1	2	3
Operating Conditions			
P-P(base), psi	11	10	11.5
T-T(base), °C	6	6	-4
$\left[\frac{\text{Cat.}/\text{Oil}}{\text{Cat.}/\text{Oil(base)}} \right]$	1.31	0.98	0.97
Conversion, Vol-%	61.1 ^a	63.0 ^a	61.5 ^a
Product Distribution, Wt-%			
C ₃ -	12.3	6.1	5.6
C ₄	6.7	5.0	4.9
C ₅	39.0	40.8	40.5 ^a
C ₆ -EP Gasoline	41.5 ^a	39.8 ^a	41.4 ^a
Cycle Oil	4.5	2.9	4.3
Carbon			
Wt. Recovery	104.0	94.6	96.7
Products, Vol-%			
C ₅ -EP Gasoline	45.9 ^a	47.7 ^a	47.2 ^a
Cycle Oil	38.9 ^a	37.0 ^a	38.5 ^a
Inspections of C₅-EP Gasoline			
°API @ 60°F	43.8 ^a	43.0 ^a	42.3 ^a
Sp. Gr. @ 60°F	0.8072 ^a	0.8109 ^a	0.8142 ^a
Distillation, ASTM D 86			
IBP, °F	108	114	110
5%	135	143	145
10%	152	161	163
50%	256	286	292
90%	413	440	440
95%	441	466	458
EP	491	488	483
RON, Clear	97.5		
RON, 3 ml TEL/Gallon	103.2		
MON, Clear	83.9		
MON, 3 ml TEL/Gallon	89.6		
FIA, Vol-%			
A	54.4	55.8	56.7
O	5.8	4.8	5.1
P&N	39.8	39.4	38.2

^aAdjusted numbers

Table 39 (Cont'd.)

Test No.	1	2	3
Properties of Cycle Oil			
°API @ 60°F	8.4 ^a	7.2 ^a	7.3 ^a
Sp. Gr. @ 60°F	1.0118 ^a	1.0203 ^a	1.0198 ^a
Distillation, UOP No. 1			
IBP, °F	412	440	432
5%	439	456	448
10%	448	464	458
15%	454	470	466
% Over at 650°F	90.0	90.0	90.0
°API of 650°F- @ 60°F	10.3	9.7	10.3
Sp. Gr. of 650°F- @ 60°F	0.9979	0.10021	0.9979
°API of 650°F+ @ 60°F	-4.7	-4.4	-5.8
Sp. Gr. of 650°F+ @ 60°F	1.1159	1.1133	1.1257
C₃-, Mole %			
H ₂	26.1	29.9	35.9
C ₁	18.7	12.4	13.2
C ₂ (Total)	21.4	16.1	14.1
C ₃ Olefins	25.3	30.3	27.7
C ₃	8.5	11.3	9.0
Total	100.0	100.0	100.0
C₄, Vol-%			
C ₄ Olefins	49.8	40.6	44.8
i-C ₄	36.9	44.3	41.0
n-C ₄	13.2	15.1	14.2
Total	100.0	100.0	100.0
C₅, Vol-%			
C ₅ Olefins	28.8	24.3	30.8
i-C ₅	65.6	69.8	62.8
n-C ₅	5.6	5.9	6.4
Total	100.0	100.0	100.0

^aAdjusted numbers

Table 40

Fluid Catalytic Cracking of the 400°F⁺
Topped Severely Hydrotreated Gas Oil 3777-41

Plant 593, Run 301

Test No.	4	6
Operating Conditions		
P-P(base), psi	10	10
T-T(base), °C	30	30
$\left[\frac{\text{Cat.}/\text{Oil}}{\text{Cat.}/\text{Oil(base)}} \right]$	1.54	1.46
Conversion, Vol-%	65.2 ^a	62.2 ^a
Product Distribution, Wt-%		
C ₃ -	9.7	10.0
C ₄	6.1	6.5
C ₅	38.2 ^a	37.2 ^a
C ₆ -EP Gasoline	37.6 ^a	40.5 ^a
Cycle Oil	6.3	4.4
Carbon	97.8	98.6
Wt. Recovery		
Products, Vol-%		
C ₅ -EP Gasoline	43.9 ^a	43.2 ^a
Cycle Oil	34.8 ^a	37.8 ^a
Inspections of C₅-EP Gasoline		
°API @ 60°F	39.7 ^a	42.1 ^a
Sp. Gr. @ 60°F	0.8265 ^a	0.8151 ^a
Distillation, ASTM D 86		
IBP, °F	123	117
5%	149	139
10%	163	155
50%	267	253
90%	404	397
95%	425	432
EP	448	450
RON, Clear	98.9	98.9
RON, 3 ml TEL/Gallon	104.3	104.3
MON, Clear	85.1	85.1
Mon, 3 ml TEL/Gallon	90.0	90.0
FIA, Vol-%		
A	62.1	59.2
O	7.0	7.3
P&N	30.9	33.5

^aAdjusted numbers

Table 40 (Cont'd.)

Test No.	4	6
Properties of Cycle Oil		
°API @ 60°F	6.6 a	7.8 a
Sp. Gr. @ 60°F	1.0247 a	1.0161 a
Distillation, UOP No. 1		
IBP, °F	424	424
5%	449	442
10%	456	449
15%	464	457
% Over at 650°F	88.0	90.0
°API of 650°F- @ 60°F	8.8	9.3
Sp. Gr. of 650°F- @ 60°F	1.0086	1.0050
°API of 650°F+ @ 60°F	-8.4	-8.7
Sp. Gr. of 650°F+ @ 60°F	1.1495	1.1523
C ₃ -, Mole %		
H ₂	32.1	29.8
C ₁	18.8	19.3
C ₂ (Total)	16.0	16.4
C ₃ Olefins	24.2	25.3
C ₃	8.9	9.2
Total	100.0	100.0
C ₄ , Vol-%		
C ₄ Olefins	46.1	45.2
i-C ₄	40.0	40.6
n-C ₄	13.8	14.2
Total	100.0	100.0
C ₅ , Vol-%		
C ₅ Olefins	34.6	36.4
i-C ₅	59.9	58.3
n-C ₅	5.6	5.4
Total	100.0	100.0

^aAdjusted numbers

Table 41

Composition of HF Alkylation Feed
(Wt-% of FCC Estimated Product)

SRC-II Gas Oil

As Received	Topped 3777-36	Topped & Rerun 3777-38	Mildly Hydrotreated 3777-34	Severely Hydrotreated 3777-41		Petroleum Feedstock
				Operation A 301/1-3	Operation B 301/4,6	
C ₃ =	1.43	0.88	2.32	2.98	4.47	4.94
C ₃	0.30	0.22	0.60	1.01	1.72	1.69
C ₄ =	0.97	0.72	1.44	2.37	2.97	5.86
i-C ₄	0.22	0.10	1.22	2.10	2.40	4.53
n-C ₄	0.11	0.08	0.44	0.73	0.83	1.31
Total	3.03	2.00	8.02	9.19	12.39	18.33

Table 42

Properties of the Petroleum Feedstock

°API @ 60°F	26.0
UOP "K"	11.9
M.W., kg/kmol	370.0
Sulfur, Wt-%	0.49
Conradson Carbon, Wt-%	0.45

Table 43

FCC Operating Conditions and Conversion

SRC-II Gas Oil

	<u>As Received</u>	<u>Topped</u>	<u>Topped &Rerun</u>	<u>Mildly Hydrotreated</u>	<u>Severely Hydrotreated</u>		<u>Petroleum Feedstock</u>
					<u>Operation A</u>	<u>Operation B</u>	
P-P(base), psi	-10	-10	-10	-11	11.5	11	0
T-T(base), °C	5	2	2	3	-4	30	-11
$\left[\frac{\text{Cat.}/\text{Oil}}{\text{Cat.}/\text{Oil(base)}} \right]$	1.07	0.97	0.97	1.04	0.97	1.46	0.99
Conversion, Vol-%	44.8	46 .5	46 .5	51.3	61.5	62.2	82.2

Table 44

C_4 = Isomer Distribution from FCC Operation

Feedstock Source	SRC-II Coal Liquid 3777-41		Petroleum
Pretreatment	Severe Hydrotreatment		—
Operation	<u>A</u>	<u>B</u>	—
<u>Composition, Lv%</u>			
$iC_4 =$			27
$l-C_4 =$	48	50	23
$t2-C_4 =$	30	29	29
$c2-C_4 =$	22	21	21

Table 45

Estimated Overall C₆+ Alkylate Properties

Feedstock Source	SRC-II Coal Liquid		Petroleum
Pretreatment	Severe Hydrotreatment		—
Operation	A	B	—
Molecular Weight, kg/kmol	108.2	107.7	109.5
°API @ 60°F	69.9	69.9	69.7
RON, Clear	92.8	92.6	93.3
RON, 3 ml TEL/Gallon	104.5	104.3	105.0
MON, Clear	91.4	91.2	91.8
MON, 3 ml TEL/Gallon	105.6	105.4	106.1
RVP, psi	1.8	1.8	1.7

Table 46

HF Alkylation Estimated Yield

Operation A

Product from FCC Pilot Plant
SRC-II Coal Liquid
(BPSD)

<u>Component</u>	<u>Charge Stock</u>	<u>Isobutane Makeup</u>	<u>Overall Yield</u>
C ₃	1,189	--	1,648
C ₃ =	3,401	--	--
i-C ₄	2,221	5,427	79
n-C ₄	767	--	819
C ₄ =	2,422	--	--
i-C ₅	--	--	256
n-C ₅	--	--	--
C ₆ +	--	--	10,079
Tar	--	--	9
 Total	10,000	5,427	12,881

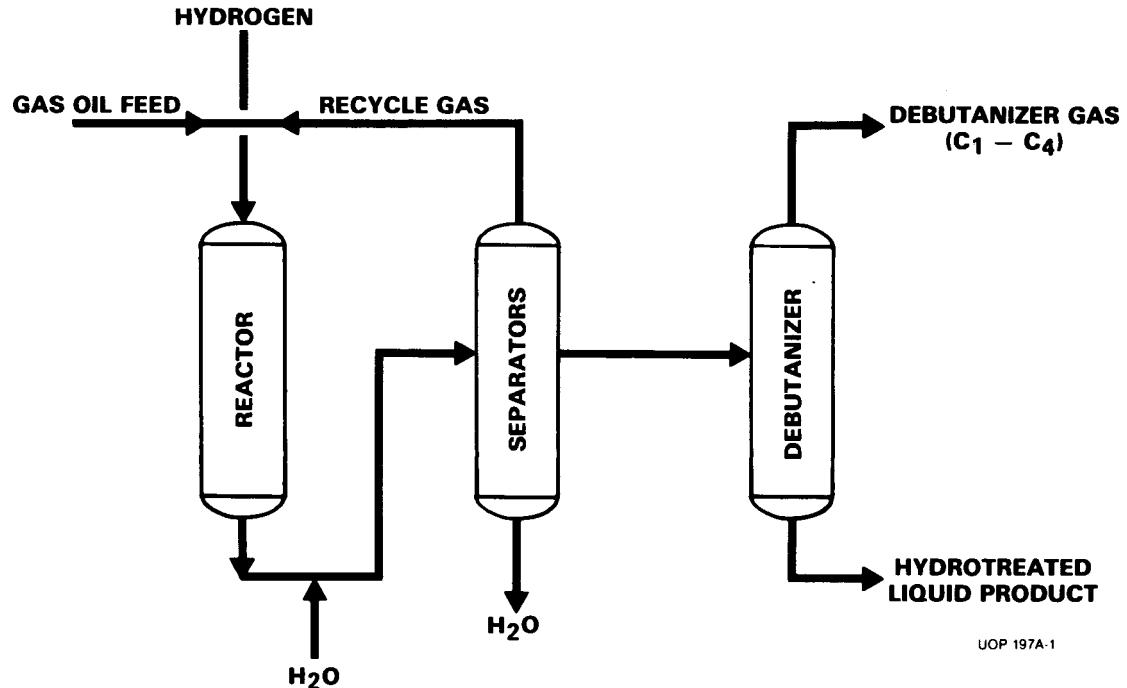
Table 47

HF Alkylation Estimated Yield

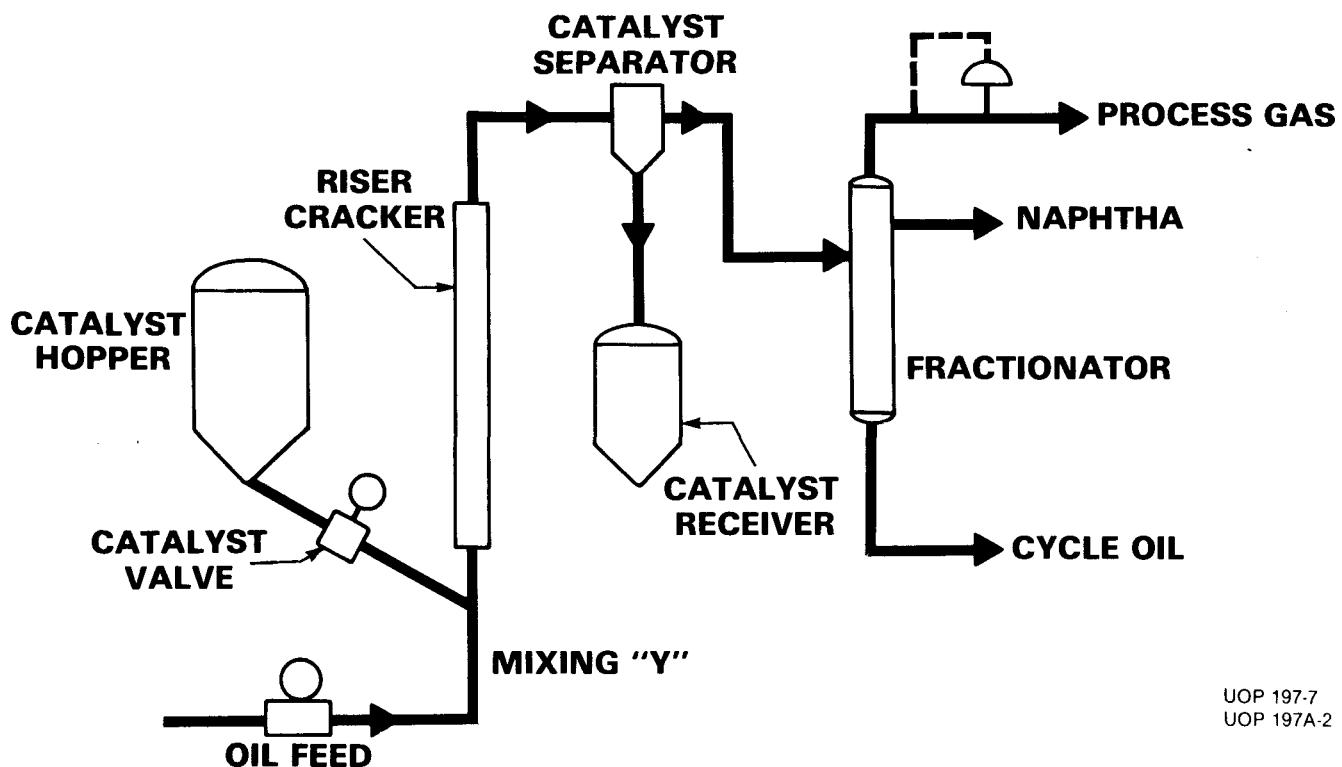
Operation B

Product from FCC Pilot Plant
SRC-II Coal Liquid
(BPSD)

<u>Component</u>	<u>Charge Stock</u>	<u>Isobutane Makeup</u>	<u>Overall Yield</u>
C ₃	1,480	--	1,979
C ₃ =	3,730	--	--
i-C ₄	1,918	5,946	79
n-C ₄	657	--	709
C ₄ =	2,215	--	--
i-C ₅	--	--	263
n-C ₅	--	--	--
C ₆ +	--	--	10,928
Tar	--	--	9
 Total	10,000	5,946	13,328


Table 48

HF Alkylation Estimated Yield


"Typical" Alkylate Feed Derived from FCC
Operation on Petroleum Feedstock
(BPSD)

<u>Component</u>	<u>Charge Stock</u>	<u>Isobutane Makeup</u>	<u>Overall Yield</u>
C ₃	965	--	1,304
C ₃ =	2,741	--	--
i-C ₄	2,391	5,122	80
n-C ₄	692	--	745
C ₄ =	3,211	--	--
i-C ₅	--	--	263
n-C ₅	--	--	--
C ₆ +	--	--	10,070
Tar	--	--	8
 Total	10,000	5,122	12,470

FIGURE 1
GAS OIL HYDROTREATING PLANT

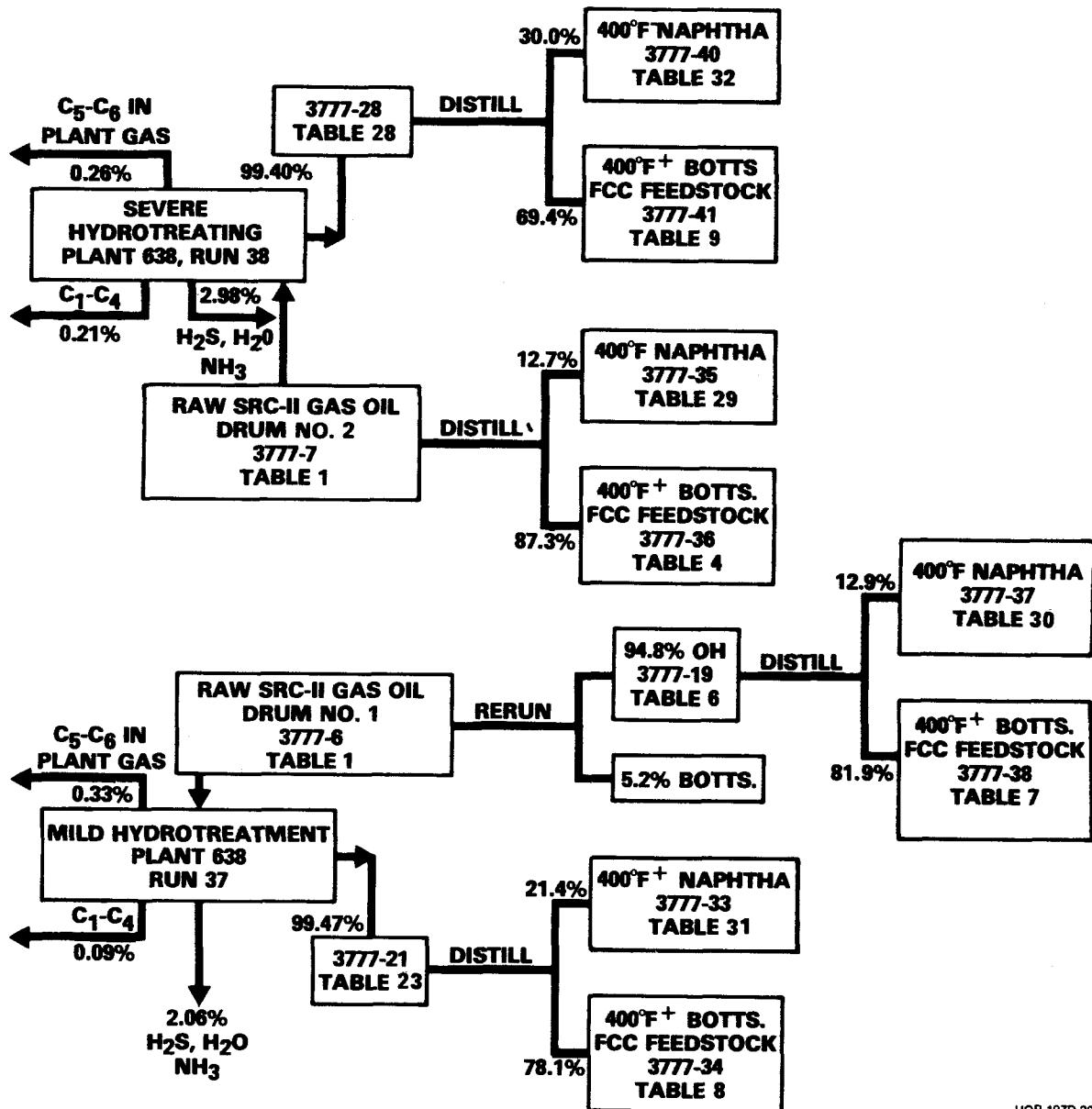


FIGURE 2
**SMALL SCALE FLUID
CATALYTIC CRACKER**

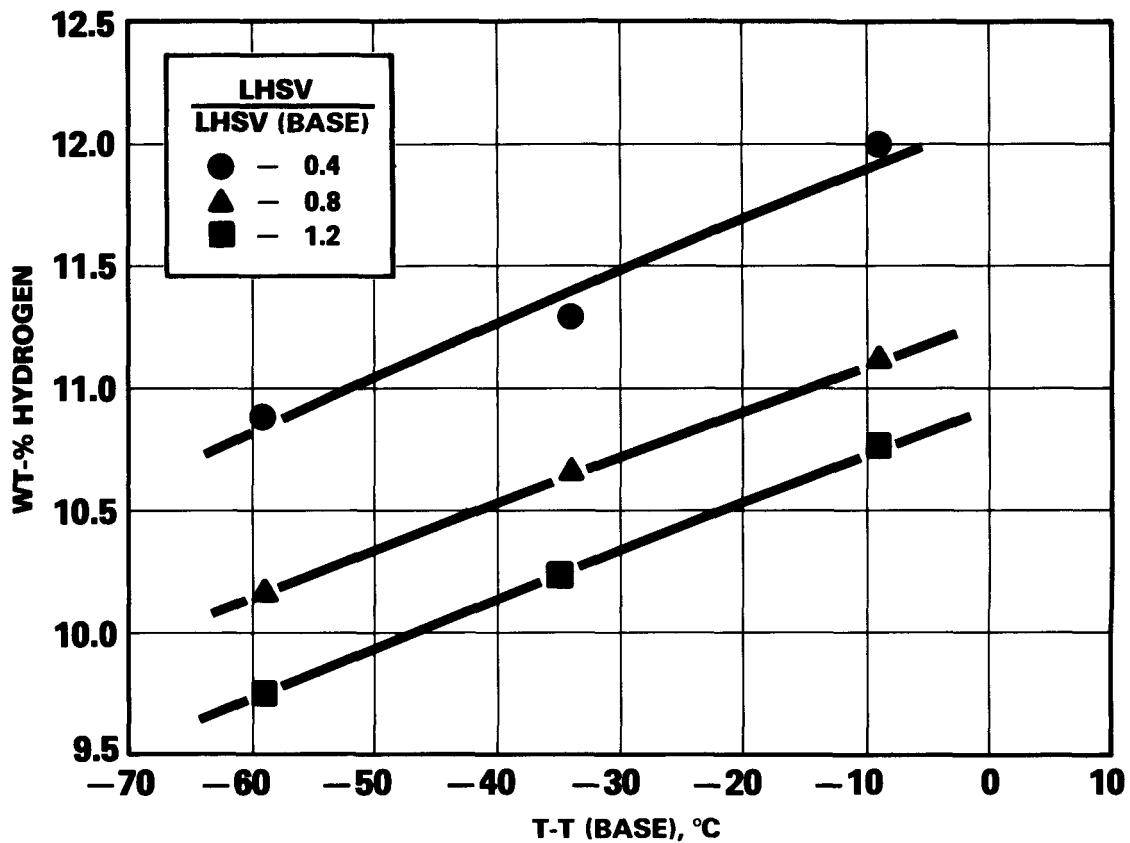
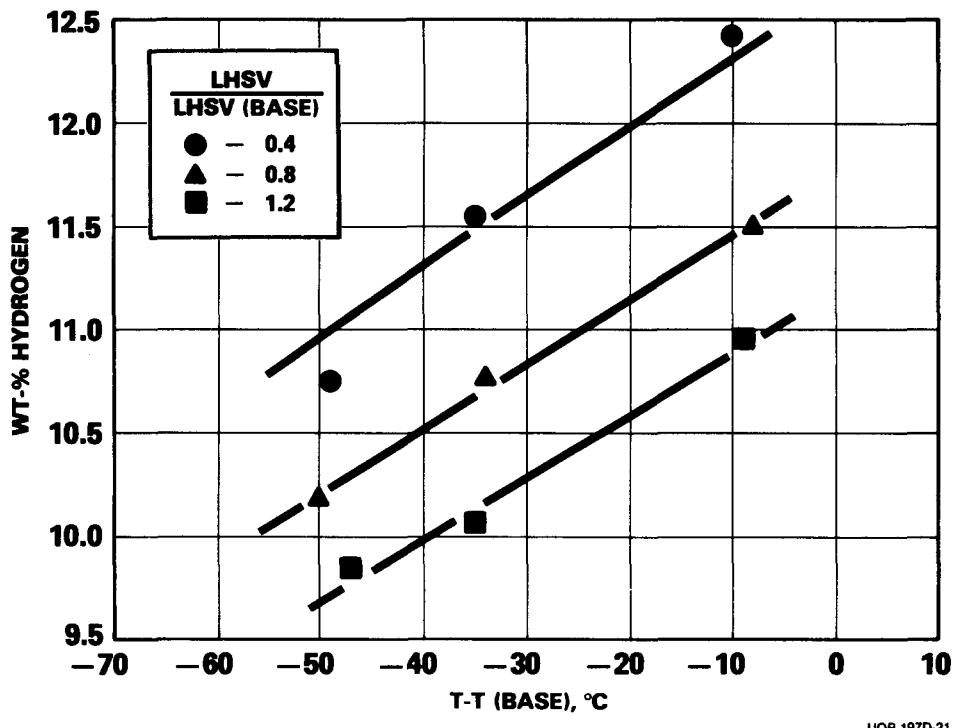

UOP 197-7
UOP 197A-2

FIGURE 3
FEEDSTOCK DERIVATION



UOP 197D-22

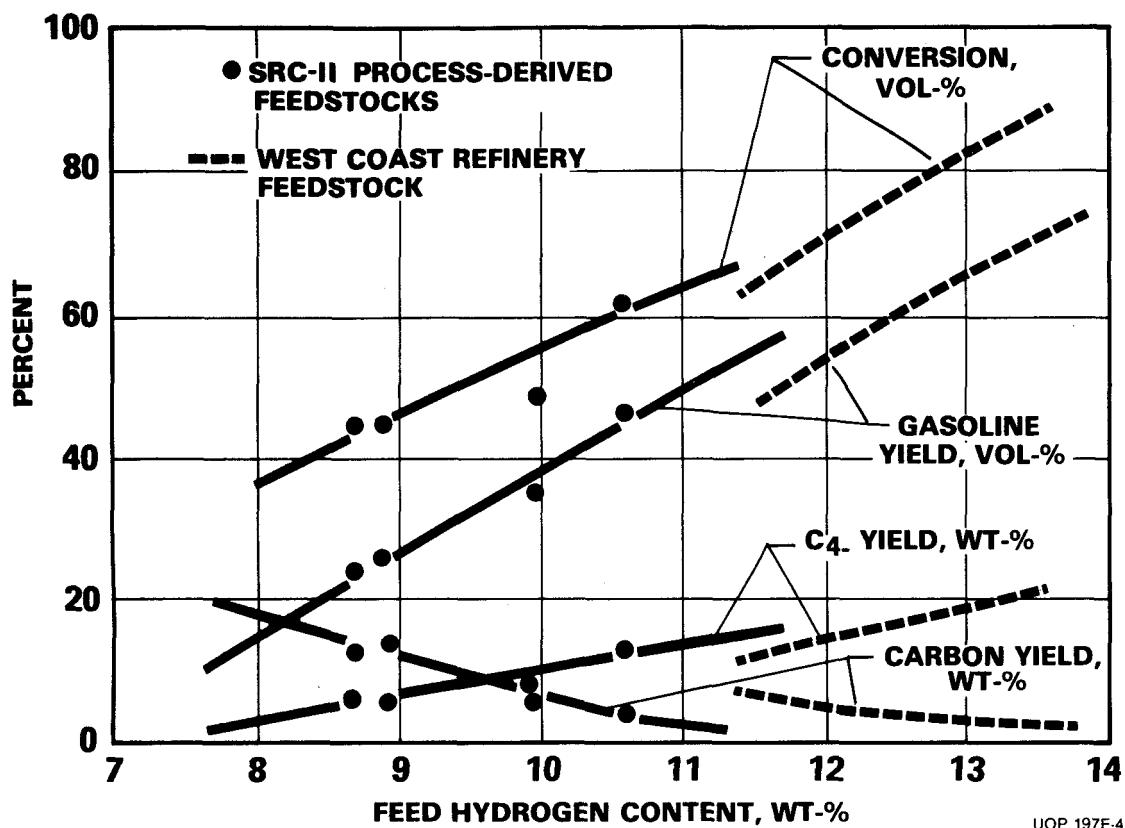

FIGURE 4
HYDROGEN CONTENT OF
HYDROGENATED SRC-II GAS OIL vs.
TEMPERATURE, °C, AT BASE PRESSURE

FIGURE 5
HYDROGEN CONTENT OF HYDROGENATED
SRC-II GAS OIL vs. TEMPERATURE, °C, AT
500 PSI ABOVE BASE PRESSURE

FIGURE 6
EFFECT OF FEEDSTOCK HYDROGEN
CONTENT ON RESPONSE TO FLUID
CATALYTIC CRACKING

