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ABSTRACT 

Newton's method plays a central role in the d~velopment of numerical techniques for 
optin;lization. In fact, most of the current practical methods for optimization can be 
viewed a·s variations on Newton's method. It is therefore important to understand 

· Newton's meth.od as an algorithm ·in its own right and as a key introdu.Ction to the most 
recent ideas in this area. One of the aims of this expository paper is to present and 
analyze two main approaches to Newton's method for unconstrained minimization: the 
line search approach and the trust region approach. The other aim is to present some 
of the recent developments in the optimization field which are related to Newton's 
method. In particular, we explore several variations on Newton's method which are 
appropriate for large scale problems, and we also show how quasi-Newton methods can 
be derived quite naturally from Newton's method. 



1. Introduction. 

Newton"s MeL;.od 

Jorge J. Mor~ and. D. C. Sorensen 

Applied Mathematic-s Divis~on 
Argonne National Laboratory 

Argonne Illinois 6~439 

Many fundamental problems in science, engineering, and economics can be 
phrased in· terms of minimizing a scalar valued function of several variables. 
Problems that arise in these practical. settings u.Sually have constraints placed 
upon the variables. Special techniques are required to handle these constraints 
but eventually the numerical techniques used must rely upon the efficient solu­
tion of unconstrained nlinimization problems. 

Newton's method plays a central'.role in the development of numerical tech­
niques for optimization. One of the reasons for its importance is ·that it arises 
very naturally "from considering a Taylor approximation to the function. 
Because of its simplicity and wide applicability, Newton's method remains an 
important tool for solving ·many optimization problems. In fact, most of the 
current practical methods for optimization "(e.g. quasi-Newt;.on methods) can be 
viewed as variations on Newton's method. It is therefore important· to ·under­
stand Newton's method as an algorithm in its own right and as a key introduc­
.tion to the· most recent ideas in this area. 

One of the aims of this paper is to present and analyze two main approaches · 
to Newton's. method for unconstrained -minimization: the line search approach 
and the trust region approach. The other aim is to present some of the recent 
develop~ents in the optimization field which are related to Newton's method. In 
particular, we explore several variations· on Newton's metho4 which are 
appropriate for large scale problems, and we also show how quasi-Newton 
methods can be derived quite naturally from Newton's method. 

We assume familiarity with some of the basic nottons from computational 
linear algebra (see, for example, Stewart [1973]), and the calculus of .. functioris 
of several variables (see, for example, Chapter 7 of Bartle [-1976] or Chapt:er s·of 
Work supported in part by the Applied Mathematical Sciences Research Program (KC-o4-02) 
of the Office of Energy Research of the U.S. Department of Energy under Contract W-31-109-ED&--38. . . . .. 
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Ortega and Rheinboldt [1970]), but otherwise the background necessary for this 
paper is minimal. We begin ·our development by reviewing ·some standard 

· definitions and results. 

. Given a function f : Rn .... R defined in an open ·set D. the unconstrained 
· minimization problem is to find x • ED such that 

for some open neighborhood N(x-) of the loca.J. minimizer x•. If x• is the only . 
miriimizer of f in: N (x •) then x • is an isolated. minimizer of f . If N (x •) is all of 

D then x • is a global minimizer off in D. 

The properties of local minimizers· are better understood if we focus our 
attention on a reasonable class of functions. For ·our purposes, it is reasonable 
to assume that f is twice continuously differentiable .. Under this assumption, 
the properties of local minimizers can be expressed in terms of the quadratic. 
function 

~(w) = Vf (x)Tw -l:' 1ftwTV2/ (x)w 

where Vf (x) is th.e gra.d.ient off ~t x and V2f (x) is the Hessian .matrix of I at 
:e. Recall that the i-th component of the gradient is fh/ (x) and.that the (i,j) 

element of the Hessian matrix is BiJI (x ). Since 

(1.2) 

the quadratic 'if! is the local quadratic model at x of ~he possible reduction in f . 
UD.less otherwise stated, in this paper 11·.11 is the Euclidean norm on Rn, or the 
induced operator norm. 

Theorem (1.3). Let f: Rn_.R be twice continuo'lisly d:ifferentirihle in an open set 
D. If x • ED is a locai mi.,;,_imizer off then V f (:r: •) ~ 0 and V2t (x •) is positive 
semidefinite, If Vf (x•) = 0 and. V2f (x•) is positive definite for .some x• ED, 

thBn x ~ is an isolated. local minimizer off. 

Proof: Let ~ be the local quadratic model at x • of the possible reduction in f. If 

:e• is a local mi9-imizer for f then (1.2) shows that· 

·O~~(ap) + o(a2) = r:x.Vf(x•)Tp + a2pTV2f(x.)p + o(a2) 

for each p E Rn and all ix sufi'i~iently small. This ·implies that VI (x •? p = 0 and 
that pT'iP-1 (x.)p ~ 0. Since p is arbitrary, we must conclude that Vf (x •) = 0 
and th~t. V2/ (x •) is positive semidefinite. On the other hand, if Vf (x •) = 0 and 

Vlf (x •) is positive definite then 

.1(w) = }tuJTV2/ (x•)w ~ *XIIw 11 2·• . 

where X> 0 is the smallest eig(mvalue of~/ (x •). Now it follows from (1.2) that 

'.·' 
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z • must be an isolated local minimizer for f. • 

A point z • E: R" such that V f (z •) = 0 is a critical paint. of f . Critical points 
can be divided into local minimizers, local maximizers, and saddle points. 

Theorem (1.3) shows, in particular, that if x• is a critic~ point off and V2f (z•) 
is indefinite then z • is a saddle point of f . If, however, V2 f (z •) is semidefinite 

and singular then Theorem ( 1.3) does not provide any information on the nature 
of the critical point. This gap between the necessary and sufficient conditions of 
Theorem ( 1. 3) is illustrated by the 2-dimensional function 

f (ti.{2) = ~p + ~~. 

Note .that (0,0) is a critical point of f and that the Hessian matrix at .(0,0) is 
positive semidefinite .. However, (0,0) is a saddle point of f and not a local 
minimizer. 

Algorithms for the unconstrained minimization of a function f : Rn -+R are 
usually descent methods. Given an initial starting point z 0 , a descent method 

generates a sequence of approximations ~%,t J to a local minimizer with the pro­
perty that 

(1.4) f (z.t+I) < f (z~~:), 1c ~ 0. 

This descent condition alone is not sufficient to gu~antee that the iterates ~Z.t J 
approach a local minimizer. Stro~er conditions are required to actually force 
the sequence into a neighborhood of a local minimizer. Once the iterates are in 
such a neighborhood, descent methods usually ·allow a rapidly convergent local 
method to determine the iterates. In this paper, the local method is Newton's 
iteration 

and our concern here is with modifications to this local method that will provide 
a general purpose algorithm. 

An algorithm that is designed for general . use should be analyzed as 
thoroughly as possible. The purpose of a convergence analysis is to predict the 
behavior of the sequences produced by the alg~rithm .. This involves establishing 
properties of limit points and rates of conveJ?gence. These features, together 
with requirements of storage and computational effort, aid in the selection of an 
algorithm for· a specific application. At the very least, we expect an w"l.con­
strained minimization algorithm to produce s·equences which.satisfy 

(1.5) 

This condition guari:llltees that any limit point z • of ~Z.t J is a. critical point of f . 
For algorith.."'I.s which only use gradient information this is all that can be · 



expected. If an algorithm requires Hessian information, then it is reasonable to 
expect that the second order necessary conditions of Theorem (i.s) ~will be 
s·atisfied. This can be done by ensuring that 

(1.6) 

where X1(A) is the smallest eigenvalue of a symmetric matrix A. If (1.5) and (1.6) 
hold then any limit point x • of ~x"' J satisfies the necess.ary conditions of Theorem 
(1.3). 

In the remainder of this paper we shall derive Newton's method in its basic 
form and then· introduce various modifications which have been devised to 
ensure that (1.4), (1.5), and (1.6) are satisfied by the sequences ~x"'J produced 
by the method. Techniques for forcing convergence f.r:-om poor starting points is 
the subject of two sections. We discuss line search methods and trust region 
methods in Sections 4 and 5, respectively. Both approaches are important and 
can be applied to other optimization problems. Variations on Newton's method 
are discussed in Sections 6 and 7. Since the techniques for forcing strategies ·are 
all designed to bring the sequence into a neighborhood of a local minimizer and 
then switch automatically to Newton's method, it is most· appropriate to begin, 
in Section 2, with a discussion of the unmodified local algorithm. 

It will be worthwhile ·to have a speci(ic problem in mind in order to appreci­
ate some of the concerns we· express wi~h respect to implementation of the 
methods. The problerJ?- we consid~r is the simplest problem In the calculus of 
variations. An excellent introduction to this problem may be found in Fleming 
and Rishel [ 1975]. The problem is to minimize the functional 

1 

( 1. 7) J(u) = J L ( -r,u ,u) d.-r 
0 . 

over the set W·of piecewise continuously differentiable functions u on the inter­
val [0, 1] with specified endpoints u(O) andu(l). We assume that Lis twice con­
tinuously differentiable. Two classical problems of this form are the brachisto­
chrone for which L(-r,u,v) = (u -a)-'*(1 +v)* for some constant a~ and the 
minimal surfa~e ·of revolution for which L(-r,u,v) = u (1 +v)* .. An accessible 

·introduction to the many· applications ·related to the minimization of J may be 
found in Smith [1974]. 

The solution techniques available for minimizing J directly are very limited. 
In most practical settings one .would almost surely need to resort to numerical 
techniques. One such technique is to discretize the continuous problem and 
then construct an appr.oximate solution by solving the discrete problem. To see 
how this might be ·accomplished, consider a family of n-dimensional subspaces 

Wn c P'l. If ~yo"'~ is a basis for Wn, then ·we can determine the minimuni·of Jon 
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Wn by setting 

f(x) = f (~l· ~2·. · · · ,'~n) = J [~/k~k] • 
and minimizing f. If Newton's method is used to minimize f, then we must be 
able to compute V f and V2f . These derivatives can be computed by noting that 
the i-th component of Vf is 

1 

fJd (x) = .[[(a2L)~, + (aaL)~,)dT. 

and that the (i,j) element of the Hessian "if-J.(:r:) is 

a,Jf (~) ~· .{[(a2.2L)~,~i + (a2.sL)(~,~i + ~"~i) + (as.sL)~i~j )dT. 

where the partial derivatives of L are all evaluated at (T,u (T),u (T)) and 

(1.8) u(T) E f: ~A:~A: (T). 
A:=l 

Once a solution x• is found, the components of x• can be used in (1.8) to con­

struct an approximate minimizer U.,: of J. Some analysis must be carried out to 

ensure that U.,: is near a minimizer of J. An introduction to the type of analysis 
that is necessary may be found in Daniel [1971]. We shall only be concerned 

• I ~ . 

with the ·finite dimensional mirlimization process that occurs once ·n and a par-

ticular basis is selected. 

In principle this is .all that is required to apply Newton·s· method to f. How­
ever, ·some important practical considerations remain. First of all, a reasonable 
Starting point Xo may be difficult to provide SO it becomes important to have an 
algorithm which converges from arbitrary starting points. Also, since the dimen­
sion of the approximating subspace ·wn must increase in order to .guar~tee that 
U.,: is clo~e to a minimizer of J, it may be necessary to solve large dimensional 
problems. Thi~ me ani; that the storage of the Hessian and that solutio~ .of linear 
systems involving the Hessian matrix may become prohibitively costly: There is 

also the matter of evaluating the integrals to sufiici~nt accuracy as well as the 
concern over how inaccuracies ~ht affect the performance of the optimization 
aJgorit.hm. We shall take up some of these problemE in thie:: paper. 

2. 'lb.e.LocalAlgor.lthnl.. 

Newton's method can be studied from a local point of view in which we 
assume that the starting point x 0 is closet~ a local minimizer. This point of view 

1s helpfUl because it provides information about the ultimate behavior" of 

Newton's method. In Sections 4 and 5 we shall study Nev.'ton's method from a 
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global viewpomt. 

· Let I : Rn -+R be a twice continuously differentiable function. NeV,i.on's 
method for the unconstrained miri.imization problem can be derived by "assu..."'Il.­
ing that we have an approximation x~~; to a local minimizer of 1 and that in a 
neighborhood of X~~; th~· approximation 

is appropriate, where 

1/l~c(w): =VI (x~c)Tw + .*wTV<ll (x~c)w 

is the local quadratic model at x~~; of the possible reduction·i~ 1. If this app~oxi­
mation is appropriate, then a presumably better approximation xk+I = xk + S.t 

can be found by ~equiring that the :step s~c be a miniinizer of 1/l.t. Theorem ( 1.3} 
shows that s~c must then satisfy 

-:),. · Thus Newton's method takes an approximation x 0 and attempts to improve it 

through th7 iteration 

(2;1) xu1 =x~~; -':P'f(x~~;):_1VI(x~c). k ~0. 
. . . 

Note that ui this derivation the only restriction on the step S~~; is that it satisfy 
~ . . . . 

the system of linear equations V1f;~~;(w) = 0. In other words, we only require that 
s~c be a· critical point of'¢'~~;. As a consequence, the Newton iteration (2.1) has.the 
same behavior in -_the neighborhood of any critical point of I regardless of its · 
tjpe. This seems undesirable since we would like our algorithms to have a predi­
lection towardslocal minimizers. 

·M.· it turns out, b~wever, this behavior is justa consequence of the fact that 
iteration (2.1) is Newton's method for the solution of the system ·of nonlinear 
equations VI (x) = 0. Since the local properties of iteration (2.1) only depend on· 
the mapping F(x) = Vj(x), let us consider Newton's method in this more ·gen- · 
eral setting. 

Let F:Rn-+R·n. be a mappirig wi.th.range and domain in Rn and consider the 

problem of finding. the solution to the system of n equatioiJ.S in n unkn.ovms 
F(:t) = 0, or equivalently,_ 

f,(tt• '· · .(n) =· 0, 1 ~ i ~ n, 

where f.;. is the·i-th component function of F. Newton's method for this problem 
can be derived by. assuming, that we have an approxi,mation zk to the solution of . 
the syste~ of nonlinear equations F(~) = 0, and that in ·a neighborhood of xk the 
· appr~ximation 

. . 
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is appropriate where F'(x.) is the Jacobian matri:z: of the mapping F at x. The 

next approximation xk+l = xk + S~t; can then be obtained by requiring ~hat the 
step sk satisfies the system of linear equations L,t(w) = 0. Thus Newton's method 
attempts to improve x 0 by the iteration 

· In comparing iterations (2.1) and (2.2), note that (2.1) is a special case of 
th,e Newton iteration (2.2) applied to mapping F(x) = Vf (x ). Because of this 
relationship, it suffices to study the local behavior of iteration (2.2). The most 
important aspects of this local.behavior are sUID..ID.arized in the foll.owing two 
theorems . 

. Theorem {2.3). Let F:Rn-.gn be a continuously differentiable mapping defined 
in an open·set D, and assume that F(x•) = 0 for some x• in D and that F'(x•) is 

nunsingular. Then there is an open set S such that" for any x 0 in S the Newton 
iterates (2. 2) are well defined, remain in S, · and converge to x •. 

Proof: Let ex be a fixed constant in (0,1). Since F' is contimiol,ls, at x• and F'(x•) 

is nonsingular, there is an open half s = ~ x.: llx - .:r·u < t J and" a positive con­

stant 11- such th~t 

IIF'(x)-1 li~JL. IIF'(y) -F'(x)ll~ !!..., 
JL 

for every x and .y in S. Suppose that xA: ES. Since xk+l satisfies (2.2) ·and 
F(x •) = 0 we have that 

X.t+l -. x • = - F'(xA:")-1 (F(.z.t) ~ F(x •) - F'(xk )(x~~: - x •)), 

and hence 

Now, the fundamental theorem of integral calculus implies that 

1 

F(xA:) -F(x}.-F'(.z~t;)(x~~: -x•) = j[F'(~· + t(.zA: -x•))- F'(x~~:)](x.t ..::x•)dt, 
. . 0 . 

and hence, 

(2.4) ·uxk+l - x·u ~ JL{max IIF'(x· +t(.zk .:...z•)) - F'(.z~t;) "} ll.z.t - x·u. 
OS(Sl . . 

. . 

Thus, 
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as long as x~e e: S. Since a. < 1, this last inequality implies that if x0 e: S then 
x~e ES fork = 1,2, ... , and tha.t ~x~e J converges to x•, • · 

The.orem (2. 3) states that Newton's method is locally convergent in the· 
se:O.se that if the starting point x 0 is sufficiently close to. a solution x • then 
Newton's method converges to x •. Unfortunately, for many important problems 
the domain of attraction S guaranteed by Theorem (2.3) is quite small, and 
much rese·arch has gone into developing techniques to overcome this weakness 
of Newton's IIJ.ethod. For systems of nonlinear equations this is a particularly 
active .field, and much interest has been generated by the recent global Newton. 
methods. For. an account of some of this WC?rk see, for example, Keller [1978]. 
For the unconstrairi.ed minimization problem, the. situat.ion ·is in .. ·much better 
shape, and we examine two main approaches to globalizing Newton's method in 

Sections 4 and Q . 

. Although Theorem (2.3}'.is undeniably important, it does not tell the full 
story. It is not enough to know that a sequence converges if the rate is so slow .. 

. . . ~ . . . 
that that we could not afford to see it converge. Generally, ·when an~y~ing an 
iterative method we are also interested i1l saying as much as possible about the 
expected r·ate of co.nvergence of a seql.ience produced. b,y the method. A reason-. 
able· optimization algorithm should be able 'to generate linearly c~nvergent · 

sequences ~x~e J in the ·sense that 

(2.5) 

for some c·onstant a. in (0, 1). If a. is small then (2.?) is adequat.e, but if a. is close. 
to unity, say a.~ 0.9, then (2.5) is not reassuring, 

For many optimization algorithms which use second order information, it is 
possible to establish a stronger r~sul~ than' (2.5). A sequence ~xk J converges 
quadratic rilly to x • if 

.. for some constant {:J > 0. Since 

.llz~~:+t :x·ll ~ (Pnx·ll)[ ll,:z;~~: -.x·IIJ2 

llx .11 llx II : 

quadratic convergence implies that the number of significant digits of x~~: .as an 
approxlnl.atiori to x• double . at. each iteration. Typicap.y, as soon as two 
significant digits are obtained, the next three iterations will produce roughly six­
teen significant digits. · 

There is a middle ground between (2.5) and .(2.6). A sequence ~xk J converges 
su:perlinearly to x • if 
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for some sequence fp" J which converges to zero. It should be clear that a super­
linearly convergent sequence is linearly ·.convergent, ·and that a quadratically 
convergent sequence is superlinearly convergent: Also note that since 

it follows that 

1inl llx~+l - xk II 
~ .. +... 11 x~ - x ·n 1' 

when ~.xi: J converges superlinearly to x • . This is an important property because 

it implies that II:XA:+l-xA: II can be used to estimate the distance- of xA: from x·. 

An iterative method is assigned a rate of convergence if it is possible to 
show that every convergent sequence produced will have at least this rate. Usu­
ally reasonable restrictions are imposed upon the domain of application for a 
method in order to obtain a useful assessment of this rate. Newton's method is 
usually quadratically convergent as we now demonstrate. 

Theorem (2.8). ·Let F:Rn-JRn satisfy the assumptions of Theorem (2.3). Then 

the sequence ~ x" J produced by iteration (2.2) converges superlinearly to x • ·. 

Moreover, if 

for same constant " > 0 then the sequence converges quq.dratically to x •. 

Proof: Convergence of the sequence ~xi: J was established in Theorem· (2.3), so it 
only remains to establish the rate of convergence. To this erid define 

Pt: = IJ.{ max II F'(x. + t(xA: -x·)) - F'(xA:) u}' 
. OSfSl . 

and assume that x 0ES withp. and S defined in the.proof of-Theorem (2.3). The 
hypothesis on F' at x• and the convergence of the s~quence to x• implies that 
~Pt: J converges to zero. Since· inequality (2.4) shows that 

ilxt:+l -x·II~P"IIx" -x·u. 

this proves that fxA: j converges superlinearly to x •. Moreover, if ·(2. 9) holds then 

. · P" ~ ep.~e n xk - x ·n . 
and hence lx" J. converges quadratically to x•. • 

Note that the Lipschitz condition (2.9) is necessary in order to guarantee 
that Newton's method is quadratically convergent. For example, Newton's 

method applied to the !-dimensional problem d.P.fined by 

fU)=Hl+log(lti)J, ~;>1!0, f(O)=o, 
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is pre·cisely superlinearly convergent at t = 0: that is, if ~~k ~ is a sequence gen­
erated by Newton's method, then the ratio 

I t1:+1l 
I t1: ll+p 

I 

is unbounded for any p > 0. 

Rate of convergence results are sometimes used to compare algorithms by 
claiming that the superior algorithm is the one· with the highest rate of. conver­
gence.· Claims of this type should be made with· care· because these results are 
asymptotic and thus it is usually not possible to estabLish the magnitude of the. 
constants that appe~ iil expressions like (2.5), (2.6) and (2.7). Moreover, rate of 
convergence results do not measure the work necessary to compute x,H 1 from 
%1: ~ and in many' cases this information is decisive in the choice of algorithm. 
For example,. consider the class of quasi.:.Newton methods as· described in Sec­
tion 7. Sequences generated by these methods are known to be superlinearly 
convergent, arid usually not quadratically convergent. However, since they_ do 

~~· not require the computation of the Hessian matrix, quasi-Newt1;m methods are 
,t,• often regarded as beirig superior to the quadratically convergent Newton 
·"· 

methods. 

3. Properties ·of Quadratic FUnctions .. 

Quadratic functions play an important role in the ~evelopment of algo-
'~), ·rithms for optimization problems. For example, we have seen in Section 2 that in 
•Y· a t;teighborhood of a local minimizer of a function f: Rn_,.R, Newton's method 

can be derived by requiring that the step be the miniffiizer of the local quadratic 
model 

of the expected reduction in f. It is therefore important to understand the pro­
perties of quadratic functions and to provide numerically. stable algorithms for 

minimizing them. 
. . 

Our first result completely describes the unconstraineq minimization of 
quadratic functions. 

l2mma {3.2}. Let 'rfl: Rn·_,.R be the quadratic functi!Jn 

(3.3) . ,P(w) = gTw + '}~wT Bw 

where g €.on_ and B €.l?"~n is a symmetric matri.x. 



··,. 

a) The quadratic '1/1 has a minimum if. and only if B iS positive semidefinite 

and g is in the range of B. 

b) The quadratic '1/1 has a unique minimizer if rrnd. or.ly if B is positive 

definite. 

c) If B is positive semidefinite then every solution to the equation Bp = -g is 

a global minimizer. 

Proof: Suppose B is positive semidefinite with g in the range of B. Then Bp = -g 

has a solution, and thus 

(3.4) 'f/l(p +w) = 'f/l(p) + (Bp + g)Tw + MwT.Bw = 'f/l(p) + ~T .8w ~ 'f/l(p) 

for every w ERn. On the other hand, if p is a minimizer of 'If! then Theorem (1.3) 

implies that Bp + g ~ V'f/l(p) = o. and ~t B = 'ff:'f/l(p) is positi.ve semidefinite. 
To establish b) and c) note that (:i4) holds whenever BP = ·-g and B is positive 
semidefinite, and that strict inequality holds for w ~ 0 if and only if B is positive 

definite. • 

Given the quadratic 'f/1, there is an excellent numerical procedure for finding 
its minimizer. First an attempt is made at computing the Cholesky factorization 
of B. This factorization exists if and only if B is positive semidefinite, and in this 
case it leads to an upper triangular matrix R such that 

lf"."a negative diagonal is encountered during the factorization process, then B is 
not positive semidefinite and hence Lemma (3.2) shows that the quadratic '1/1 has 
no minimum. If the factorization is successful and R is nonsingular, then the 

· minimizer is computed by solving the system Bp = -g, or equivalently, 

RT.v = -g . Rp = v . 

If the factorization is successful but R.is singular then B is positive semidefinite 
and singular. It still may be possible to co~pute a solutionp, but from a numer­
ical point of view, this computation is unstable because arbitrarily small pertur­
bations can transform B into a positi~e defibi.te matrix or an indefuiite matrix. 

Theorem ( 1. 3) shows that in a neighborhood of. a local minimizer of I I we 
can expect the Hessian matrix t? be positive definite and then Lemma (3.2) 
shows that the local quadratic model (3.1) has a ~que minimizer. Thus, in this 
case, .the minimizer of the local quadratic model is a reasonable step for a 
minimization algorithm~ However.· away from a local minimizer the Hessian 

matrix fl2/ (x)· may have a negative eigenvalue and then Lemma (3.2) tells us 
that this local quadratic model does not have a minimum. In fact, the model is· 
not even bounded below. There are several remedies to this difi'icUlty. One pos~ 
sibility is to modify the quadratic model by addir-...g a positive semidefinite matrix 



E(:x) so that 

fl2/ (x) + E(:x) 

is positive definite. Whe.n B is replaced by this matrix the step calculation can 
proceed as described above. An algorithm based upon this step calculation is 
described in Section 4. 

Another possible remedy. is to restrict the_· region in which we assume that 
the. local quadratic model is appropriate. · Locally the model still provides an 

. . 
·excellent approximation to the expected reduction in f, so it is reasonable to 

re~trict 'if!· to a ball lw: llw II~ ~J for so~e !::. > 0, and to compute a step as the 
.m.ii:timizer of 'if! on this ~all. An algorithm based upon this step calculation is 
described iri Section 5. The following result characterizes the solutions to the 
problem of minimizing a quadratic funGtion on this restricted region. 

Lemma (3.5). Let '1/J:Rn~R be the quadratic function (3.3} and let!::.> 0 be 
given. A poi;nt p E: .R" solves the problem 

(3.6) . min~ '1/J(w): llw II~ !::.J 

if and only if there is A ~ 0 such that 

(3.7) (B + M)p = -g I A(~-IIP II)= 0, 

with B + M. pasitwe semidefinite. 

Proof: Suppose that A and p satisfy (3. 7) with E + M positive senii.detinite. Then 
Lemma (3.2) implies that p mininiizes the quadratic function 

~(w) = gTw + ~T(B + >J)w .. 

. Thus ~(w) ~ ~(:p) which implies that . 
. . . . X 

(3.8) .gTw +~TBw~gTp +~TBp + ~Tp -wTw) 
. . 2 

for all w e:Rn. Since Aprp = A/::.2 and A~ 0, it follows from (3.8) that '1/J(w) ~ '1/J(p) · 
whenever llw II~!::.. sop must solve(:3.6) .. 

Now suppose that P. solves (3.6). If ·liP II < !::. then p is an unconstrained 
minimizer of '1/J, so Lemma (3.2) implies that (3. 7) holds with A = 0, and that B is 
positive semidefinite. If liP II = A the-!1 p must also solve the equaiity constrained 
problem min~ '1/J(w) : llw II=!::. J .. Therefore, the method of Lagrange eqsures the 
existence of A such. that 

. A . 
VL(p) = 0, where L(w) = '1/J(w) + i<wTw -62). 

. ' . . . . . . 

This implies that (3.7) holds for this A and p. Moreover, since p solves (3.6) we 
. . 
lw.ve that (3.8). js valid for this A .and p whenever II w II = liP !1. UsL11g (3. 7) to 
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replace g and then rearranging terms in·(3.8) shows that 

*(w·-p )T(B + ·A/)(w -p) ~ 0 

for every w with n.or.m liP 11. It follows readily.fro.m this inequality that B +AI is 
positive semidefinite. To show that A~ 0, note that Lemma (3.1) .implies that 
(3.8) is valid for every w e: Rn . . Now, if A is not pc:>sitive then (3.8) implies that 
1JI(w) ~ 1JI(p) whenever llw II~ liP II. Sincep solves (3.6) we must have thatp is an 
unconstrained minimizer of 1J'. and then Lemma (3.1) implies that A= 0. Hence, . . 
A ~ 0 as claimed. .. 

Those familiar with various multiplier rules associated with mathematical 
programming will of course· recognize that· most of Lemma (3.5) could be 
obtained through dir.ect application of these rules. At the very least one could. 

invoke the Karush-Kuhn-Tucker conditions ~o avoid having to argue that the A 

obtained- from the Lagrange theory for equality constraints must be non­
negative. Unfortunately, the multiplier theory for inequality constraints is not.· 
treated in most advanced calculuS texts. McShane [ 1973] has an elementary· 
treatment of the standard results, and Pourciau [1980] surveys the. most recent 
results. It is interesting, however, that Lemma (3.5) cannot be obtained through 
direct application· of the standard second order mUltiplier · rules. The· gap· 
between necessary and· sufficient second order conditions preCludes this possi~:· 
bility since there is no such gap in this result. 

Computing a numerical approximation to a solution of (3.6) requires some 
care. One immediate complication is that, due to the nonlinear constraint, there 
cannot be any general direct method for solving (3.6). In fact, when g = 0 a 
solution p to (3.6) must be an eigen~ector of norm !::. corresponding to the smal­
lest eigenvalue of B. Therefore,a general method for solving (3.6) must solve a 
symmetric eigenvalue problem in this special case. 

The solution of (3.6) is straightforward if there are no solutions on the boun­
dary of ~w: llw II~ !::.J. In fact, it is not difficult t~ prove that (3._6) has no solution 
with liP II = t::. if and only if i1 is positive definite and II s-1g II < t::. . . 

If (3.6) has a solution on the boundary of ~w: llw II~ !::.L then Lemma (3.5) 
shows that it is reasonable to expect that the .no.qlinear equation 

(3.9) IIPall =!::. 

where 

Pa = -(B + al)-lg ' 

. has a solution A~ P in ( -A1,oo) where A1 is the smallest eigenvalue of. B. Note 

that (3.9) is a 1-nimP.nsi.onal zero finding problem in a that _cap_be ·~olved, ,for 
example, by Newton's method. However, since each evaluation of Pa requires the 
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solution of a system qf linear equations, it is important to solve. (3.9) with very 

few evaluations of Pa· 

. To solve (3.9), Reinsch [1967,1971] and Hebden [197~] observed indepen­
dently thB.t great advantage could be taken of the fact that the function liP a 112 is 
a rational function. in a with second order poles on a subset of the .negatives of 
the eigenvalues of the symmetric matrix B. To see this consider the decomposi­
tion 

and observe that 

(3.10) 

where ?'i is the i-th component of Qr g. Knowledge of the functionanorm (3.10) 
·shows that Newton's method may not be very efficient if it is applied to the func­
tion 

A reason for this is that 9'1 has .a pole at -A1, and thus Newton's m~thod tends to 
· ·perform poorly when th~ ~olution of (3.9) is near·.-A1. This point is clear from · q · 

Figure 3.1 which shows a typical sketch of liP a II with A1 = -7.5. 

0 ... 

0 .. 

· NORMtP) 

Figure 3.1 

Reirisch and Hebden suggested that it ·is more efficient to apply .Nev.i.on's 
method to the function 
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This function hci.s no poles, and is almost linear near a· soluti!)n of (3.9). This is 
illustrated quite well in Figure 3.2. This graph ·shows (IIPClll)-1 where IIPClll 
appears in Fig\rre 3.1. Note that (llp~ll)- 1 is almost linear for A.> -A.1.' 

1/NORMlPl 
• 
"' 

LO 7,0 1.0 

Figure 3.2 

. . 
It is clear from Figure 3.2 that Newton's met~od is botind to perform well on rp2 . 

The Newton iteration applied to finding a zero of rp2 takes the following form. 

· Algorithm (3.11) .. 

1) Let Ac, and fl > 0 be given. 

2) Fork = 0,1, ... until''convergence" 

a) Factor B +·~I ::: R[R~& ; 

b) Solve R[R~cp" = -g ; 

c) Solve R[q" = p" ; 

d). 'L _A. + [IIPk !I ~[IIP.c !I-ll 
'~+t - " · II q" II ll 

If certain precautions are taken, then this basic iter~tion can be used. to 
solve (3.q) in mo.st cases. However, when B is indefinite there are cases in v.rhich 
t.hP. P.quat.ion (3. 9) has no solutions in ( -A. 1 ,~), and then i\lgoritbm (3.11) fa.il~. 

This happens, for example, when g = 0 ru1d B ·is indefinite. It may also happen 
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when9 '¢ 0, as illustrated by ,the following simple example. If 

B = ~~ ~]. g ,; ~]. 
then A-1 :::: -1, and if a>. 1 then liP a 112 < . .*. In .our examples g is orthogonal to the 
eigenspace of B corresponding to t~e smallest eigenvalq.e. This is typical; 9 . 

. must be orthogonal to the eigenspace . 

. S 1 = fz : Bz = A.1z, z # Oj 

corresponding to the smallest eigef:tvalue of B whenever (3.9) has no solutions in 
(-A.~ooo). To see this it suffices to note that if g is not orthogonal to S 1·• then 
')'1 # 0 ln. (3.10), and hence · 

· lim· IIPall ~co, lim IIPall = 0. 
Q1-).1 ' . . Dl1+... . 

Since small' perturbations of 9 lead to a nonzero ')'1 •. it is tempting to ignore 
· the case when 9 is orthog~nal to S 1. However: in many cases 9. is almost orthog- · 

onal· to S 1, and in these cases an algorithm based completely on Newton's 

method would require a l~rge number of iterations. This is not acceptable since 
· a matrix factorization is required for ea,ch of these iterations. 

Several algoritb.ri:ts have been proposed for the numerical solution of (3.6), 
. . . 

but Gay [1981] was the first to show that his algorithm produced a nearly 

optimal solution. Gay's algOrithm, howeve.r:-. may require a large number of itera­

tions when 9 is orthogonal to ·s 1, and fails when g = 0 and B is indefinite. Jv.Ior~ 
and Sorensen '[1981] have improved on Gay·~ algorithm, and their numerical 

results show that· it is possible to produce a nearly optimal solution to (3.6) in all 

cases arid with only a few iterations. 

We have dealt with problem (3.6) at length because it arises in a variety of 
applications. For example, the. solution of ill-posed problems in linear algebra 

usually requires the solution of (3.6) for a positive definite B. The literature on 
just .this problem is extensive; for mo,re information consult Eld~n [1977], . · · 
Gander [1976], and Varah [1979). 

4. Line Search Methods. 

. In Section 2 we mentioned the difficUlty of providing a starting point x 0 for 
' . 

Newton~s method which is sufficiently close to a local minimizer. Overcoming 

this 4ifficulty has been the subject of a CC?nsiderable amount of recent research 
in numerical optimization, and in this section we discuss the line . search 
approach to this problem. In discussing this approach ifis best' to conside:." gen- . 
. eralline search methods .first, and then specialfze to.Newton's method. 
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Given an iterate X~;;, the basic idea of a line search method is to compute a· 

direction p~;; and a parameter a~c > 0 such that the next iterate x~c+I = x~;; + a~;;p~c 
bas a lower function value. ·Convergence of the iterates to a minimizer depends 
on the choice of p~;; and a .... 

A direction p e: Rn is a descent direction for a function f : Rn ~ R at a point 
z e: Rn_ tf there is a constant a > 0 such that · 

{4.1) f(x + ~) <J(x), ae:(o.a]. 

For differentiable functions, the easiest way to guarantee that ( 4.1) holds is to 
require that 

(4.2) Vf (x)Tp < 0. 

In particular, the steepest descent choice p = -VJ (x) satisfies (4.2). Condition 
(4.2) requires· that t:he angle between -VJ (x) and p be acute, and is equivalent 
to requiring that there is a positive definite matrix B such that 

(4.3) p=-B-1VJ{~). 

This is not difficult to prove. If (4.3) ~olds then certainly (4.2) follows. Con­
versely, if (4.2) holds then 

T T 
B=l-~-~· g=i=Vf(x), 

is positive definite and satisfies (4.3). Thus descent directions differ only in the 
choice of the positive definite matrix B in (4.3). The steepest descent method 
chooses Bas the identity matrix and Newton's method chooses Bas the Hessian 
matrix; the choice of B made in a quasi-Newton method (described in Section 7) 
is a compromise between these two choices. 

Line search methods for differentiable functions assum~ that (4.2) holds: 
Note that if (4.2) does not hold then -(4.1) can fail and then.it may not be possible 
to make further reductions in f . Later, on in this section we shall see that for 
convergence purposes it is necessary. to require that p i~ not even nearly 
orthogonal to Vf (x). This can be ~chieved by imposing a bound on the condition· 
number of Bin (4.3). 

A line search algorithm examines points along the ray ~x + ap :a~ OJ in 
search of a slepl~nylh a such that I (x + ap) < f (x). If p is a descent direction 
then such a point exists. In fact, the smallest positive local minimizer a • of the 

univariate function · 

(4.4) ~(a)=f(x+cxp), a~o. 

1s such an a. However, it would not be practic.al to search for this point. Indeed, 

a line search algorithm is usually a..J. iterative scheme fer 1-dLmcnsional 



· minimization, but the search- process is usually terniinated long before an acqu­
rate minimizer is-found. Finding an ac_curate minimizer along a given ray usually 

does not yield a signific::antly larger reduction in f than a crude search, and 
better progress can often be made by making a reasonable reduction in· the · 
function I and th,en exploring other directions. These considerations have ·led 
to the development of stopping rules wfuch terminate the ·line search proces·s as 

. soon as some minimal requirement is satisfied. 

Given paraQieters ,U.E(O,*) 8:D-d 7'JE(,u.,1), and a descent directionp ER"' 

which satisfies (4.2), the steplength a> 0 belongs to ~R(,u..'l'}) if · · 

I (z + ap) ~I (x) + a,u.VI (x_)Tp, 

and 
. . . . 

I·Vf(x +a.p)Tp I ~'I'JlVf(x)Tp I~ 

In other words, the se_t SR(,u..'l'}) specifies the stopping rule. In terms of the func~ 
tion rp defined by (4.4), a steplength a belongs to ·sR(,u..'l'}) if and only' if 

(4.5) rp(a.) ~ rp(O) + a.,u.rp'(O),. 

and 

(4.6) l·rp'(a.) I ~ 7'J I rp'(O) I . 

For a typical function ·rp. the set SR(,u..'l'}) is ·shown in Figure 4.1. 

. T. f cui t tJt f V{1'41 ~ 

I 

Figure 4.1 
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The .intuitive nature of these rules should be clear. If a is not too small, then the 
first condition of the stopping rule SR(J.~-,1]) forces a sufficient decrease in the 
function. However, (4.5) allows arbitrarily small choices of a> 0, so this condi­
tion is not sufficient to guarantee convergence. The second condition rules out 
arbitrarily small choices of a > 0 and usually implies that a is near a local 
minimizer of rp. 

We assume that JL <*because if rp is a quadratic with rp'(O) < 0 and rp"(O) > 0 
then the globalmintmizer a" of rp satisfies 

and thus a • satisfies ( 4.5) only if J;. ~ *· The restriction JL < * also allows a = 1 to 
be ultimately acceptable to Newton and quasi-Newton methods; failure to take 

J.L <.*prevents these methods from converging superline~ly. 

The restriction JL < 1J guarantees that under reasonable conditions SR(JL,TJ) 
contains a non-trivial interval. For example, suppose that rp is bounded below. 
Then there is a {3 > 0 such that 

(4.7) rp(p) ~ rp(O) + J.Lf:Jrp'(O). 

Now let a" be the smallest a in (O~f:J] such that· 

rp(a) = rp(O) + J.Larp'(O). 

Then the mean value theorem shows that there is a T such that 

. rp'(r) = J.Lrp'(O) > 1Jrp'(O), 0 < T <a". 

In particular, since rp'(O) < 0 we must have that rp 1 (T) < 0. Hence, T satisfies (4.6). 

Moreover I T < a • impli~s that . 

rp(r):;;; rp(O) + J.l.Trp1 (0) I • 

and.thus -r also satisfies (4:5). Continuity of rp' now shows that SR(JL~TJ) contains a 
non-trivial interval. . 

The algorithms for selecting the steplength ·a are usually based upon 
minimizing a univariate quadratic or cubic model to rp defined by interpolation 
of function. and first derivative at trial values of a. It is important to realize that . 
lt is possible to safeguard these algorithms so that they terminate in a f..nite 

number of steps. 

Safeguarding a line search algorithm requires that we determine and 
update an interval of uncertainty I which contains points in SR(JL,TJ). The 
updating process must guarantee· that the length of I tends to zero and that 

eventually i is contained in SR(J.~-,1J). 
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To define the interval of uncertainty/, it is hel~ful to use an auxiliary func­
tion 1/1 defined by 

'if/(a) = ·9'(a) - 9'(0)- J.La9''(0), 

. and require that I be a closed interval with endpoint's CXt arid au such that 

'if/'(CXt)(au- a,)< 0, 1/I(CXt)~ 1/l(au). 1/l(a,) ~ 0. 

We now ·prove that -yi'(a•) = 0 and 1/l(a•) < 0 .for some a• in/. As.a consequence, 
if I is sufficiently small then 

11/l'(a) 1.~ (7'}- J.L) I 9''(0) I . · 1/l(a) ~ 0. 

for all a E/, and thus I is contained in SR(J.L,7'J). If we let q.• be a global minimizer 
of 1/1 on I then a• cannot be an endpoint of 1 because this contradicts the above 
requirements.on a, and au. Hence, a• is interior to I and thus '¢-''(a•) = 0. More­
over, since 1f!(a,) ~ 0 we must also have that 1/l(a•) < 0 . 

. We now show how to update / .. Given a· trial value a1 in J, we can determine a 
new interval I+ with endpoints at and ~ as follows: 

If 1jl('a1 ) ~ 1/1( a,) then at = a, and ~ =. a1• 

If 1/l(a;) < 1/l(a,) and 1/l'(a1)(a1 -a,)< 0 then at= a1 and a:= au. 

If 1/1( a, ) < 'if/( a,) and '¢'' (a1 ) ( a1 -a,) > 0 then at = a, and a: = a, . 

It is straightforward to show. that at and ~ .still define an interval of uncer­
tainty unless l!'(a1)'= 0 and 1f!(a1 ) <'¢-'(a,). Of course, in this case a1 belongs to 
SR(J.L,7'J) and there is no need to update I. Also note that. these updating rules 
can be used to determi~ an initial' interval of uncertamty. If we set a, = 0 ~hem 
a, >.0. defines an interval of uncertainty if 1f!(a1 ) ~ 0 or if 1/l'(a,) < 0. For a, 
sufficiently large, w.e .i:nust have that 1/l(a,) ~ 0 ~ess 9' is not bounded below. 

There are many ways to compute the trial valt:te of a,; the only requirement 
on a, is that the length of I tends to zero, This· can be done by monitoring the 
length of I, and if say, the length of /.is not reduced by a factor o·f 0.5 after two 
trials, then a bisection step can be used for the next trial a,. 
Theorem (4. 8). Let f : Rn -'*R be continuously differentifi:ble and ·bounded below 

on Rn, and a.ssu'!'l-e that the starting point x 0 is such that Vf is 'IJ,nijormly con­

t:i:n.uous on the level set 

(4.9) 0 = ~x ERn :f (x) ~ f (xo)~.· 
. . 

Ijth2 sequence !x~~:~ is defined·by xu1 =X~~:+ Cl.I&FA: .wli.ere Vf(xt)TPA: < 0 and a~~:· 
~ a:ny steplength in SR(J.L,iJ) then 

. (4.10) . lim [V{(~k)TPA: l_ o· 
~~:-.+... IIP~c: II J - . 
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Proof:. Since VI (:r:~c)TPJc < 0 and since I is bounded below, the sequence f:r:~c J is 
well defined and lies in 0. Moreover, U (:r:~c)J is decreasing and hence qonverges. 

The proof is by contradiction. If ( 4.1 0) does not hold then there is an ~ > 0 

and a subsequence with index set K such that 

vI (:r:~e) T Pic 
- IIP~e II ~e. k EK. 

The first condition of the stopping rule SR(J.L; 7'J) shows that 

[ 
VI (:r:~e )T Pk I I (:r:~c)- I (:r:lc+l) ~ J.LCXkiiP~c II - IIP~c II ~ J.LCX~e IIPk lie, k EK, 

and since fJ (:r:~c)J is a convergent sequence, fcx~cP~c :k EKJ converges to zero. 
Now, the second condition of the stopping rule SR(J.L,7'J) yields the inequality 

(1 -7'})(-VI (:r:~e)TP~c) ~(VI (:r:~c .f. CX~t;P~c)- VI (:r:~c) )Tpk, k ~ 0, 

and hence 

e,; - l71 ~:)I~ P• ,; [ 1 ~ 77
]11111 (z, + "<P•) -111 (z,) 11. k EK. 

However, since we have already- shown that f~P.c : k EKJ converges to zero, this 
contradicts the uniform continuity of VI on 0. • 

Wolfe [1969] proved Theorem (4.8) under various choices of st_eplength 
rules, while Gill and Murray [1973] obtained a variation of Theorem (4.10) with 
the steplength chosen by a .safeguarded algorithm designed for !-dimensional 
minimization. Note, however, that !-dimensional minimization algorithms must 
b.e modified in order to find points in.SR(J.L,7'J) because the first condition of this 
rule may exclude all 1-dimensio~al local minimizers. Also note that Theorem 
(4.8) holds under the hypothesis that I :Rn-+R is continuously differentiable in 
an open set D and that the level set 

(4.11) 

is compact. The proof is aim~st identical to that of Theorem (4.8); the only 
difference occurs in proving that SR(J.L,7J) is not empty. 

The specialization of Theorem (4.8) to algorithms of the Newton class is 
almost immediate. In this case, 

· . where fB~c J is a sequenpe_ of positive definite matrices with uniformly bounded. 
condition m.i.mbers; that. is, there is a con$ta.."l.t" > 0 l';Uch that 

(4.13) 
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Under this assumption we have that 

and thus (4.10) implies that ~VI (.x.t)~ converges to zero .. In particUlar, every 
limit point of ~.x.t ~ is a cr.ltical point of 1 . 

For a line search method, this is the strongest type of resuit possible. It is 
not possible to prove that the limit points of f".x.t ~ are loc~l minimizers because, 
for example,· if .x0 is any critical point of I then a line search method terminates 
atx0. 

The choice of B.t in (4.1Z) is guided by a desire to satisfy (4.13) and still . . . . 

guarantee a fast rate of convergence. In the steepest descent method B.t· is· the 
identity matrix. For this method ( 4.13) is satisfied but convergence can be quite 
slow .. The converg_ence of N~wton's method is quite rapid when it occurs, but 
since B.t = Vlf (x.t) is not necessarily positive definite, there is no guarantee of 

.. convergence. Modifications to. Newton's met.hod have been designed to overcome 
this problem. They.set · 

(4.14) 

· .where .Ete is· chosen so that B.t is positive definite and satisfies (4.13). There are. 
many w~ys to do this, but one .of the most effective metho~s· is due to Gill and 
Murray [i974b]. 

Given a symmetric matrix A and parameters e ~ 0 and {3 > 0, Gill and . . 

Murray's method produces an upper triangular matrix R and a diagonal matrix 
E = diag(ei) ~ 0 such that A +E.= RT R . .The i-th step of the cilgorithm sets· . 

... 

. -.~1 . . . 
. • ·c:: • <: 

/'~ : O;J·- TtejTki • 1. -1 - n • 
k=l . 

J.1.i = maxf l?'v I : i < j ~ n ~ , 

ru = ~axl e . ll'ii I*. ~ L 

~ - '1:!L. i < 1' ~· n , ij - • . r« 

e, = rJ - l'ii . 

Note that if e = 0 then it is possible that .rii = 0, but in this case set rii. = 0. 

The idea behind the Gill and Murray algorithm is to increase the diagonal 
elements of A so that A +.E has a Cholesky decomposition. The increase .in rii is 
designed. to ensure that riJ is bounded relative to II A II . . and that if A is 
suffi.cient!.y positive definite then A is not modified. Note the.t the ·1ncre"iSE! in ·r~·~ 
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due to the term 1-4,/ p forces I riJ ·1· ~ {J fori < j. He rice, 

I '~tJ I ~ I ~ I + p'ln . i ~ j • 

This shows that 1-4,/ Pis bounded in terms of {J and I ~ 1. It is sensible t"o choose 
P so that thi~ bound on fLi./ {J is as small as possible, and this leads to a choice of· 

(P = Lmaxl I a.,~ I : i ~ j ~ . n . -v 

This choice, however, may confiict with the desire to leave A unmodified when­
ever A is sufficiently positive definite. The definition of ri& shows that in order to 
accomplish this {J cannot be too small. It is sufficient to require that 

fJ2 ~ maxfl au I: 1 ~ i ~ nJ .. 

To establish this claim we first show that if A is positive definite then 'Yii > 0. The 
proof is easy. Given an.index j, define p E:.Rn byletU.ng l?p = riiei. Then Pi = 1 
and 

0 <pT Ap: ri~ -pT FJp ~ ri~- £i: 'fii · 

Now, since 'Iii > 0, it follows that 

. ~· {J3- > 2> ~· '<' = aii r"i - riJ , 1. J , 
.t=l 

and since 'ftJ = riJ ru. we have that ~<{PrJ. Hence, if A is positive definite 
then ra = maX:I e, '!lf J. This shows that if A is sufficiently positive definite then 
ru = 'flt. and thus E = 0. 

A reasonable way to guarantee that rij is bounded and that E = 0 whenever 
. A "is sufficiently positive definite, is to choose 

pi' = max{ !,max! I "'I I : i >' j!. max! I "« I : 1 "' i .: n d . 
. For this choice of pit is not diffic~t to prove that 

e ~ I rii I ~ maxi t • 2n{J ~ , I riJ I ~ {J. i < j .. 

For e > 0, these inequalities show that if the Gill and Murray algorithm is applied · 
to a bounded sequence f~l of symmetric matrices, then (4.13) is satisfied. 

We now have all the ingredients for a modified Newton's method with a line 
search. In this method,-we compute P~c via (4.12) and (4.14), and determine E~c 
by Gill and Murray's modification of the Cholesky factorization with some·e > 0. 

Theorem .(4.15). Let f :Rn -+R be twice cantinuou.sly differentiable an c:.n open 
set JJ,· and. assume that the starting painl: :.c0 is such that the level set {4.11) is 

compact. If the sequence f:.c" J is defined by xol:+1 = xi= + a.1c Pk where p~ · is 
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computed by the modified Newton's method and a.~c is any steplenr;th in SR(JJ-,r;) 
then 

Pr~of: We h.a~e alreadynoted that if e > 0 and ~~J is ·bo~ded then (4.13) holds. 
In this case A.rc: = V2 j"(x~c ), and since 0 is compact, ~A.rc: J is bounded .. Thus our . . 
result is a consequence of Theorem (4.8). • 

There ts an interesting variation· of Theorem .(4.15) which shows that the 
. iterates -~x~cl usually converge. In this variation the stopping .rule SR(J.J-,"7) is 
modified by the addition of an upper boUn.d fJ on the stepleilgth. We accept fJ as 
the steplength· only if 

I (x + {Jp) ~I (x)" + {JJJ-VI (x)'~'p. 

Notf;l. that if this condition is not satisfied then (4. 7) holds, and then there is an a. 
in (O,{J) whi.ch satisfies SR(,u,17). It is not difiicwt to ·show that Theorem (4.15) 

· holds with this variation, and moreover, that · 

(4.16) 

This shows that if ~x~c J has an isolated limit point x • then fx~c ~ converges to x •. In 
particular, note that if V2 f (x •) is nonsingular at a limit point x •, then x • is an 

isolated solution of vj (x) = 0 and hence x • is also an isolated limit point of ~x~c l. 
The structure of the ·set of limit points .of fx~c ~ is further restricted by a result of 
Ostrowski [1966], page 203, which' states that U' fx~cJ is a bounded. sequence and 
( 4.16) holds, th~n the set of limit points of lx~c J is connected. 

·To "investigate the rate of convergence of the modified ·Newton's method, 
. assume that the ~equence fx~cJ converges to a point x• at which v?-j (x•) is 
sufficiently positive definite in the sense that E~c = 0 for all k sufficiently large. 
Then 

and it cari then be· shown that there is a k 0 such that the steplength a.k = 1 is in 
SR(,u,17) fork ~.k 0 . With this choice· of a.~:. the. rate of convergence is given by 
The~r~m (2.8). . . 

The·,.above argument r~lies o~ the fact that ak = 1 is eventually in SR(,u,17). 

To establish this result it is only necessary to assume that fF~c J tends to the New.- .. 
ton step in both length and direction; that is, . . . . 

. lim [liP~ .- pfll J = O, 
A:~+... . . IIP~c II . . . 

';' 
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where pf is the Newton step ( 4.17). For a proof of this result, a.."l.d a disc~ssion of . 
its relationship to quasi-Newt.on methods,.see Dennis and Mor~ [1977]. 

· 5. Trust Regi<?n Methods. 

In Newton's· method with a line search the Hessian is modified when it is not· 
sufficiently positive definite. This modification. to the quadratic model guaran­

tees convergence but seems to ignore .~he role of the quadratic model as: a. local 
approximation to the objective function~ yte now cons~der an alternative: 
approach in which the quadratic model is not modified but instead, the qua­

dratic model is only considered in a restricted trust region. We mentioned this 
technique briefly in Secti.on· 3 as motivation for Lemma. (3,5); its use for globaliz­

ing Newton's method has resulted in reliable algorithms with strong convergence 
properties.· In this section we introduce the main ideas of this approach arid 
estab'lish some of the basic convergence properties. 

Let f : Rn _.R be a twice continuously differentiable function. In Newton~s 
method with a trust region strategy, each iterate X.t has a bound ~- such that . 

where 

is the quadrat~c mode~ of the possible reduction in f within a neighborhood of. 
the iterate X.t. This suggests that it may be desirable to compute a step s~; 
which approximately solves the problem 

If the step is satisfactory in the sense that x~: + s" produces a sufficient redtic::-. . ' ' . . . 

tion in J ~then~ can be increased; if the step is llllSatisfactory then~ should 
be decreased. The following algorithm expresses these ideas in more detail. 

Algorithm (5.2). Let 0 <J.J. <11·< land 0 <71 <72 < 1 <?'3 be specified constants; 

1) Let x 0 E ~ and flo> 0 be given. 

2)For k = 0,1, ... until "convergence" 

a) Compute V f (x~:) and V2
/ (x"' ). 

b) Determine an. approximate solutions~: to problem (5. i}. · 

. :;··· '". 
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. . 

This is a basic form ~fa trust region Newton,.s i:mithod. An interesting variant of 
. . ., . . . " 

this algorithm includes a scaling matri_x for the variables. In this _variation sub-
problem (5.1) is replaced by · 

. minl'l/l~c ( w) : II D~c w II ~ fl~c. ~ 
. . 

where. D~c is a nonsingular matrix. We shall not discuss this gener~zation here; . 
however, it is' important to note .that all of the results presented here hold for 

this variant if ~D~c·~ has uniformly botinded coQdition numbers. Such a 
modification can be very .tr,nportant in prac.tice when the units ·or the variables 
are on widely different scaies. Another variation is' to use the hypercube 

lw: llw II ... :S flk1 as the trust region in (5.1). In this ~riation subproblem (5.1) is 
replaced by the quadratic programming· problem 

(5.3) min~'l/l~c(w): I wTei I :SIlk. 1 ~ i :S n L 

A difficulty with the hypercube approach is that it is quite expensive to compute 
a reasonable appro:icimation to the· global minimizer or' (5.3). This ·is not the case 
with (5.~).·-and thus we shall only consider (5'.1) in this section; 

Just as in the case of a line search we are not interested in solving the 
model problem (5.1) with great accuracy. Instead, we are interested in providir'lg 
relaxed conditions for accepting an approximate solution s~c. to problem (5~1). 
Whlch are sufficient to force convergence of the sequence ~X~ 1 generated by 
Algorithm. (5.2). In fa~t. there are ~onditions whlch guar~t~e much more than 
~onverg.ence of the method: If '1/J; is the optimal v~lue of (5.1). and if the approxi­

mate solutions" to (~.1) sati,sfies .· 

. (5.4) 

. for specified constants PI > 0 and f12 >d. then it is pos~ible to prove that under 
suitable conditions on f . the sequence ~:.::;; 1 is convergent to a point x • with 
Vf (:r: •) = 0 and ~ f (:r: •) positive semidefinite. 

It is not difficuit to obtain a vector sk which satisfies (5.4), although as men­
tioned at the end of Section 3, this requires attention to a number of details. 
Given u in (0,1), the algorithm of More and Sor_ensen [1961], for example, finds a 

vector sk such that 

'( 
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'1/l~c (s~c) -7/1: ~ a(2 -a) I ..P: 1. II sk II~ (1 + a)!::.k, 

provided ..p; "¢ 0. Of course, if ..p; = 0, then Vf (x~c) = 0 and V2j (x~c) is positive· 
semidefinite, so Algorithm (5 .. 2) terminates at xk. It is aiso worthy of mention, 
that if a =; 0•.1 then the cost of this algorithm is quite reasonable. On the aver­
age the· approximate solution of each mo~el problem requires less than two fac­
torizations of a symmetric positive def..nite matrix of order n. 

Condition (5.4) can be expressed in an alternate form which is more con­
veni~ntfor proofs of convergence. If Pk e: Rn is a solution to problem (5.1) then 
Lemma (3.5) implies that there 'is a parameter~ ~ 0 such that 

(V2j(x~c) + X~cl)P~c = -Vf(xk), ~(A~c -IIPk II)= 0. 

Now let R[R~c be the Cholesky factorization of V2f (x~c) +~/.Then 

(5.5) . I ..p; I =*(II Rlt:Pk 112 + ~t::.i). 

This expression for ..p; shows that if (5.4) holds then 

and thus the-iterates ~xkJ generated by Algorithm (5.2) satisfy 

(5.7) I (xj;)-:- I (x~c+I) ~ ~p~(IIR~cP~c 112 + X~c!::.i). 

These two ineq\].alities are essential to the proof of our next result.· 

Theorem {5. 8). Let f : Rn -+R be twice continuously differentiable on an open set 

D, and assume that the sta:rting point x 0 is such that the level set 

is compact. If the sequence ~x~cJ is produced by .Algorithm {5.2) where sk 

satisfies (5.4), then either the algorithm terminates at x, e: 0 because Vf (%1) = 0 

a:nd V2-j (x1) is positive semidefinite , or ~x~cJ has a limit point x• in 0 With 

V f (x •) = · 0 and. T:f! f (x •) positive semidefinite. 

Proof: If Vf (x1) = 0 and V2j (x,)· is positive semidefinite for some iterate x, in 0 
then the algorithm terminates; otherwise (5.4) implies that ..P~t:(s~c) < 0 for ic ~ 0 
and thus ~xk J is well defined and lies in 0. 

Let us now prove the result under the, assumpbon that ~~ J is not bol.lnded 
away from zero. If some subsequence of ~A.!:~ converges to zero then. since 0 is 
compact we can assume, without loss of generality, that the same subsequence 

·of ~x~cJ converges to some x• in.the level set 0. Since V'2f(xt=)+A.~cl is positi·.re 
semidefinite, V2j •(x ·)· is also positive semidefinite I and Vf (x .) = 0 follows by 
noting that · 
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and that (5.7) impli~s that ~IIR.~:P.~: !B c~nverges tp zero. 

We· can show that' ~A.tJ is not bounded away from zero by contradiction. If 

~ ~ e >·0 then (5.4) and (5.6) yield that 

....;.·( s. l "' )l(l, ~ l>l "' *[::I *• 11
2

. . . 

. Now, a standard estimate is that 

(5.9) I I (xo~; +so~;)-/ (x.~:)- '1/l.~:(sk) I~ *lis.~: ll2 maxlll(21 (x.~:+~s.~:)- -q21 (x.~:) 11. 
· OS~l 

and thus the last two inequalities show that 

(5.10) 

Inequality (5. 7) implies that ~~k J converges to zero and hence ~II S.t IIJ also con.:. 
· verges to zero. Thus the uniform continuity of V2 I on 0. together with (5.1~) 

implies that Pk > TJ for all k sufficiently large and then the updating rules for 6.~: 

yield that ~~k J. is bounded away from zero. This is in contradiction of the fact 
that'f~ J converges. to zero. • · 

The result we ~ave just established is only a sample of thE) available conver­
gence results for Algorithm (5.2) under assumption (5.4) for so~;. This theorem 
extends results of Fletcher [1980] and Sorensen [1980] by admitting inexact 

. solutions to the modei problem (5.1). The following additional results are lmo~ . 
.• :· a) The sequence fVI (xkH converges to zero. 

b) If X • is ·an iso~ated limit point of ~Xk f then V21 (x•) is positive semidefinite. 

c) If V2 1 (x•) is nonsingular for some limit point x~ of lx.t ~ then lx.~: J converges 
tox•. 

Thomas [1975] pr?ved a), while Mor~ and Sorensen [1981] established b) and c). 
as extensions of results due to Sorensen [1980]. Of these results, b) is charac­
teristic of the trust region approach, and is the only r~sult that does not hold for 
Newton's method' with a line search. This difference between the two approaches 
is of theoretical importa:hce. From a practical viewpoint, however, it can. be 
argued that a more important difference is that with a line search approach the 
search ·for a. lower functionvalue occurs in a 1-dimensional subspace, while with 
a trust region approach tp.e search is not restricted to a lower dimensional sub­
space._· 

An additional result which is helpful in ·establishing rate of convergence 
results is that if ~xd converges to x• and V21 (x•) is positive definite,. tq.en the 

sequence ~~k J is bounded away from zero. To prove this first note that if e0 > 0 is 
a lower bound on the eigenvalues ofV2 I (x,~:) then (5.5) shows that 
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wb.E.lre 

i . 

Now, ~ince '1/1~ (s.~;) ~ 0, we have that 

*lisA;· II~ IIVlf (z.~:)-1 IIIIV/ (z.c) II. 

and thus *lis.~: II~ tell sf II where" is an tipper bound on the condition number of 
'12/ (z.c). Hence, assumption (5.4) shows .that ther~ is a constant e1 > 0 with 

~~(s.t) ~ Yle1lls.~: 112 · 

'IbiS estimate and (5.9) then yield that 

l p~ -1 ,. ~ [JJmaxiiV2J(z.~;+ts.~;) -V:ZJ(z,~;)ll. 
e1 J O!;fSI . 

and thus P.t > 7J for all k sufficiently large. It follows that ~L\t J is bounded away 
from ze~o as desired. 

· Ra~ of convergence results can be obtained with the additional - but mild -
assumption that there is a constant {J3 > 0 such that if II s.~; .11· ~ {J3b.,~; then VI-I (:z,~;) 

is positive definite and s.~; =sf where sf is the. Newton step (5.11). With this 
assumption in mind, suppose that lz.~;J converges to x• and that V2/ (:r•) is posi­
tive definite. Then ls~J converges to zero, and hence lis.~; II~ {J3fl.t for all k 

sufficiently large. Thus .there is a k 0 ~ 0 such that s.~; = ~f fork ~ k 0 , and then 
the rate of convergence ~esuits are provided by Theorem 2.8. 

8. Approximations to the Hessian :Matrix. 

The methods we have described in the previous sect1o~ all require the 
computation of the Hessian matrix. This can be a difficult and error prone task, 
and in some cases analytic expressions for the entries of the Hessian matrix 
may not even be available. What can be done in these cases? 

An obvious way to overcome these difficulties is to approximate the Hessian 
matrix with difierences __ of gradients. However, there are several things to con­
Sider. Which difference approXimation should be used ? How large s.l;l.ould the 
di.trerence parameter be ? How is the performance of the minimization method 

affected when difference approximations are used ? 

The two most common type of difference approxim.ations use the forvrard 
difference and central difference formulas. The forward d.ifierence approxima­
tion is based on the Taylor's series expansion 

(6.1) 
1 . 

(-· )[Vf(z+ap)-Vf(z)]=rpf(z)p + O(a), 
ex 
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while the central difl'erence approximation is based on 

. 1 . . . 
( 

2
a )[Vj (x + ap)- 2VJ (x) + VJ (x -ap)] = V2/ (x)p + O(a2). 

In optimization work, forward ·differences are quite common because they 
require fewer gradient evaluations and usually provide the ne.cessary accuracy. 
H forward differences are used, an approximation A (x) to the Hessian matrix at 
some X e: IF can be obtained by setting 

A(x)es = (~[Vj(x+aes)-Vj(x)], l~j ~n . 
. aJ 

. . 
for some dif jerence parameter as "# 0. Unfortunately, this approximation does 
not necessarily provide a symmetric matrix. This important feature of the Hes­
sian can be obtained by using the SJITIID:etric matrix 

as the approximation to-the Hessian matrix at x. 

The choice of differ.ence parameter presents a. dilemma. ··in ·order to 
preserve .the superlinear rate of convergence enjoyed by Newton's method it ~s 
nece~sary to force the difference parameter to zero. However, as the difference 

parameter as becomes small, the differences loc:>se .significance due to c~cella­
tion. To prevent this loss of significance, the difference parameter must stay 
above a certain threshold value; This dilemma can usually be resolved in prac­
tice because it is not necessary to provide a Hessian approximation of high 
accuracy. If the Hessian approximation has an accuracy comparable to the 
desired acc~acy in the solution to the optimization problem, then convergence 
usually takes place at practically a quadratic rate. Less accurate Hessian . . . . . 
approximations decrease the rate of convergence but do not prev~nt conver-
gence. These .remarks assume that the gradient is evaluated accurately; if this. is 
not the case, we may not even be ~ble to compute a descent direct~on. : . 

Techniques for choosing the difference parameter in (6.1) ·require informa~ 

tion l;lbout Vj in a neighborhood of x which is obtained by evaluating .V/ at 
several points near X. For many practical problems it would be too expensive to 
acquire this information at each iterate. A sensible strategy for an optimization 
algo·rithm is to choose the diffe~ence p~ameter at a typical x (:possibly the 
starting point x 0), and to use this choice until it is deemed unsuitable. The 
difference parameter is only recomputed when the quality" of the difference 
approximation starts to degrade. 

There are· several algorithms for choosing th~ differ!=!nce para.rneter at a 
point. Discussing these Blgorithms in detail is not ~thin the scope of this paper, 
but we want to mention some of the ideas behind these algorithms. The main 
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ideas are clear in the 1-dimensional case, so consider a differentiable function 
rp:R~R. let fPc:(a) denote the computed value of so(a), and let 

be the (absolute) error in the computed value. The smoothness of 9'c depends on 
the :p:J.ethod used to evaluate so on the computer,· but in all cases f/Jc: is a step 
function. A reason for this is that a computer with l decimal digits of accuracy 
does not distinguish between numbers with the same first l digits. We mention 
this fact because it implies that f/Jc: is not differentiable. With these remarks in 
mind, note that our problem is to determine an a such that 

is closl:! to rp'(O). If we assume that we have an open neighborhood I of a= 0, and . . 

a bound e0 such that 

I i(a) I ~ eo, a E I, 

then it is not difficult to determine the difference parameter. Note that a 
. Taylo(s expansion of rp shows that 

fPc (a)- fPc: (0) - a9?'(0) = *~"(~)a2 + [e(a) - e(O)], 

for some ~ with I ~ I < I a I , and hence 

1 · . . 2e0 I ( a-)[rpc: (a) - f/Jc: (O)]- so'(O) I ~ }mo I a I + 'jCi"f 

where f]o is a bound for so" on I. This bound on the error between (6.2) and so'(O) 
has the correct qualitative behavior. If a is -too small then the error is dom­
inated by E0, while if a is too large then the error is determined by the curvature 
of rp. It is reasonahlf.! to choose a so that this bound is mifii.mized, and this le~ds 

to a choice of 

. (6.3) 

An algorithm for determining Eo and fJo can be based on the work of Hamming 
· [1971], pages 163-173. The basic idea is that the 4th and 5th order differences 

of riJc are a measurP. nf ~0 and that the 2nd order di.ITerences can be used to esti" 
mate fJo· It is necessary to take some ·precautions, but in general we have founq 
that an algorithm"based on these ideas and (6.3) is quite effective. 

Another way to overcome the difficulties mentioned at the beginning of this 
section is to approximate the Hessian matrix directly. As an illustration, recall 
that in the exarnple of Section 1' the (i.j) element of the Hessian rP I (x) is . 
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.Bi.;f(x) = £((o2.2L)~;.~; + (a2.3L)(~;.9J; +9Ji~;)+ (a3.3L)q,;,lfJ; )d;, 
where the partial derivatives of L are all evaluated at {-r,u(-r),u(-r)) and 

In principle,. these intefirals can be evaluated with an appropriate quadra~ure, 
and the results used to define an approximation· to the Hessian matrix. This 
requires the storage of a symmetric matrix of order n and the evaluation of 
n(n+1)1 2 integrals over [0,1]. Since the dimension n must increase in orde;r to 
refine the accuracy of u as an approximation· to the continuous problem, it is 

. usually necessary to solve large dimensional proble.ms, and clearly, the cost of 
these requirements can then be prohibitive even for moderate values of n. 

. . 
The above problems can be greatly reduced if we choose a basis ~~i J whose 

·elements vanish on most of the interval [0,1]. For example, we could choose a 
B-spline. basis. To illustrate this possibility, let -r; :;::: jh = j/n, and define. 

. - IT-7)1 . . - •. 
~;(-r)-1- h . -rE[-r;-1.7";+1], ~;(-r)-0 otherWise. 

These functions are smooth B-splines of order 2. It is· a simple matter to verify 
that 

'Pi'P; = ~;.rp; = rp;.rp; .= o. I i -J I> 1. 

and therefo~e the Hessian matrix is tridiag.oilal. Thus. the storage. is now· of .order. · 
· n, and it is only necessary to evaluate 2n integrals over intervals of lemgth 1/n. 
Similar remarks hold for the computation of the gradient. If we had chosen a 
basis of smooth B-splines of order k then the Hessian has bandwidth 2k -1. The 
computation of the gradient and Hessian is now more expensive, but there is an· 
increase in the accuracy of (6.4) as an approximation to the continuous prob-

. lem. For more information, see de Boor [1976] on splines, and Gill and Murray 
[1973] on the numerical solution of problems in the calculus of variations. 

Large scale optimization problems frequently exhibit special structure such 
as sparsity in the Hessian matrix. Approximation of sparse Hessians by 

differences is attractive because the number· of g·radient differences required is 
often small compared to. n. For example, if the Hessian matrix is tridiagoilat (as 
in the above example), then 3 gradient' differences suffice to approximate the 
Hessian. 

A technique for estimating g.eneral sparse Hessian matrices is based en the 
work of Curtis, Powell, and Reid [1974]. They pointed out that a group of 
columns of rJ2f (x) can be approximated with one gradient difference if colu..rnr..s 
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In this group do not have a nonzero in th~ same row position. To see this, let I 
be the indices of a group of columns with tr...is property, and let p be a vector 

with component Pi == 0 if j belongs to I and Pi ~ 0 otherwise. Then 

V2f (:x)p = ~PJV2f (x)ei, 
lEI 

and since the columns with indices in I do not have nonzeroes in the same .row 
position, for each (i,j) element of~ f (:x) with i E I w~ h~ve that 

(Vlf (:x)p )i == P; elV2f (z)e;. 

In view of (6.1), it follows that we can approximate all the columns with indices in 
I with just one gradient difference. 

For a tridiagonal matrix, it is easy to see that columns with indices of the 
form l mad 3 can be placed in the l-th group. Hence, as noted above, a tridiago­
nal r;natrix can be estimated with 3 gradient differences. 

For general sparsity. patterns it is not straightforward to partition the . 
columns of the matrix into the least number of groups so that columns in a 
group do not have a nonzero in the same row position Curtis, Powell, and Reid 
[1974] suggested an algorithm but did not analyze the problem. Coleman and· 
Mor~ [1981] have approached this partitioning problem through ils equivalence 
to certain graph coloring problems, and have used this point of view to analyze 
the partitioning problem and .to suggest improved algorithms. Their numerical 
results show that these improved algorithms ~re nearly optimal on practical 
problems. 

The partitioning technique that we have described for estimating sparse 
Hessians· does not make any use of the symmetry of the matrix. Powell and 
Toint [1979] have pointed out that it is often possible to use symmetry to reduce 
the number of required iradient .differences. They proposed several ways of 
doing this, and with one of thei.r· methods it is possible to estimate a tridiagonal 
Hessiap. matrix with 2 gradient differences. It turns .out that their methods can 
also .be analyzed with graph theory techniques; ~ treatment from this point of 
view is given by Coleman and Mor~ [ 1982]. 

7. Quasi-Newton Methods. 

For some problems the objective function and its gradi~nt are so expensive 
to calculate that we are not willing to compute a difference approximation to the 

· Hessia..'l matrix. l'hese are not necessarily large dimensional problems. For 
example, the problem might be to· minimize the £ 2-norm of the solution to a 
differential equation tqat depends on a few parameters. In th!.s case e;::.ch f'!.hl.C­

tion evaluation required by the uplimization method actually involves a numeri­

cal solution of a differential equation. 

• _"J 



,_; 

. -34-

In an effort to reduce the computational requirements of Newton's method,, 
Davidon [1959] introduced a revolutionary idea which provides a way to approxi­
mate the Hessian ma~rix using only the gradient .information gathered at each 
iterate. This idea has led to a highly successful class of methods wQ.ich today are. 
usually called quasi-:-Newton !'Ilethods. There is a huge literature on quasi-Newton 
methods; our purpose in this section is to provide a brief introduction to the two 
most powerful_ members of this class and to contrast quasi-Newton methods with 
methods in the Newton class. For a thorough discussion of various aspects of 
quasi-Newton methods, see the survey paper of Dennis and Mor~ [ 1.977]. 

In very simplistic terms a quasi-Newton method might be termed as an 
"earn while you learn" method: It is to be contrasted with methods in the Ne~on 
.cl.ass throl1gh the. manner of .maintaining an approximate Hessian. In. quasi­
Newton methods, the approxirriate Hessian must satisfy the quasi-Newton equa:.. · 
tion. To derive tbis equation, suppose that we have a positive definite approxima-

. tion B~c to the Hessian of f at x". We can then compute a descent direction P~c 
via 

(7.1) P~c = - B~~; -•vj (x~c), 

and a steplength cx~c in SR(JL,7J). This defines· the step s~c = CX~cP~c and the next 
iterate· xk+l = x~c +sA, .. Since 

it might be reasonable to seek an update to the ·approximate. Hessian. which. 
satisfies 

. . 
(7.2) B~c+ 1s~~; = Y~c = VJ(x~c+t) -VJ(x~~;). 

t • • ! 

This is the quasi-Newton equation anP. a method for generati.hg B~c+l from B~c so 
that (7.2) holds is a quasi-Newton update. The quasi-Ne~on equation is essen­
tially a gradient difference .along. the niost r·ecent search direction. Thus, quasi­
Newton methods only use the search direction to obtain c~vat~e information, 
while methods in the Newton class use n directions. 

Various specific formulas exist for updating the matrix B~c, and we shall con­
centrate on those updates which guarantee that B~c+t is symmetric and positive· 
definite. Note that if Bk+1 is positive definite then (7.2) implies ~hat y[sk is posi­
tive: This condition is satisfied whenever ex~~; is in SR(JL,7J) because then 

y[s~c =·Vf (x~c+ 1 )s~c - Vf (i~c)s~c ~ (1-7]) I Vf (x~c)Ts~c·l. · 

We shall show·below that if y[s~c is positive, then th~re q.re symmetric and posi- · 
tive definite matrices which satisfy the quasi-Newton equation. 
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In a_ discussion of quasi-Newton updates, it is customary and convenient to 
drop subscripts. Assume, therefore, that we have an approximate Hessian B, 

and vectors s andy with yTs positive. We then want to obtain update formulas 
that produce matrices B.,. according to the quasi-Newton equation 

The simplest derivation of such a formula is to ask for the nearest matrix to B 

which satisfies (7.3). If B ... = B + E. then our problem is to find a solution to 

(7.4) minli!EII: (B + E)s:::: y J, 

where II· 11 is a suitable matrix norm. It is natural to choose the Frobenius norm 
defined by 

IIA IIJ. = f: IIAvi 112 = trace (AT A), 
(=1 

for any set v 1 , • · · , vn of orthonormal vectors, because this is the Euclidean 
norm in the space of matrices. With the Frobenius norm it is a simple matter to 

·verify that 

_ (y- Bs)sT 
E- T s s 

solves problem (7.4). Just note that E satisfies (B + E)s = y ·and that if£ is any 
other matrix that satisfies this equation then 

. T £ T. T 
IIEIIF =I( (y -{'s)s !IF= II ~s !IF~ IICIIFII s~ IIF = 11211F· 

ss ss . ss . 

This E. is the unique solution to (7 .4) since II · IIF is convex and the constraint in 
(7.4) is linear. The explicit updating formula for B is therefore given by 

B.,.= B + (y ~BS)sT 
.sTs 

This is Broyden's [1965] rank-1 update formula; it is a rank:-1 update because 
rank (E)~ 1. Broyden's update ~s the most powerful quasi-Newton update for 
the solution of systems of nonlinear equations. For minimization. however, there . . . 

are. more suitable updates. A reason for this is that B.,. is usually neither sym­
metric n:oi positive definite even though· B might possess thesP. properties. In 
St!clion 4 we saw the importance of these properties in obtaining convergence 
for descent methods. Therefore, we are very interested in updating formulas 
which maintain symmetry and positive definiteness in the matrices B. One way 
to obtain these prop~rties is to require that B = RT R a~d obtain R + = R + E 

·such that B+ = R!R~ satisfies (7.3). It would b~7 quit~ natural to seek the correc­
tion E' as a solution to the problem 
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(7.5) minlll E IIF: (R + E)T(R + E)s = y ·J. 

Variational techniques can be used to show that the correction E which solve's 
this problem is a rank-2 update to R. To our knowledge this approach has not 
been tried in practice because there is a rank-1 correction E which meets our 
requirements and has proven to be extremely successful. We might motivate a 
derivation of this rank-1 .update by .considering the implications of the quasi­

N~wton equation on· the factors of B+. If B+ = R!R+ satisfies (7.3) then E must 
satisfy 

{7.6) (R+E)Tv = y , (R+E)s = v , vTv = yTs > 0. · 

Conversely, if E satisfies (7.6) for a given vector v, then B+ = R!R+ satisfies 
(7.3). Thus a reasonable alternative to solving problem (7.5) is to specify a ·vee-. 
tor v of norm (yTs)* and then obta,in a correction.matrix E which satisfies (7.6) 
as well as 

·:: . The solution to (7: 7) for a given v ·is. 

_ v(y- RTv)T 
E- T v v 

and it follows that this E satisfies (7.6) if and only if v = TRs for some T. Since. 
we .must have v Tv = y T s, this condition determines ~. We have thus shown that 

(7.8) 
_ v(y -RTv)T . _ ( T )M Rs· 

R+- R + vTv. . v - y s IIRs II' 

induces a symmetric positive definite quasi-Newton update. 

The updating· formula we have just derived was discovered independently by 
Broyden[1969,1970], Fletcher[1970], Goldfarb[l970], Shanno[1970], and is often 
refer:red to as the BFGS formul~. We have concentrated upon this particular 

. update because it appears to work best in practice. The derivation of the BFGS 
update which we have presented is due to Dennis and Schnabel [1981]. Davidon 
and Sorensen [1980] have' provided another derivation of the ~FGS update by 
obtaining the quasi~Newton equation (7.6) as interpolation conditions on tti.egra-. 
dient of the local quadratic model, and then showing that v =·TRs is a con-. 
sistent choice. However, while nunierous derivations of this update formula have . 
been given, the superior performanc.e of the BFGS update has not yet received a. 
satisfactory explanation. 

A quasi-NeWton . method based on the ~FGS update would generate a 

sequence lxt ~ defmed hy xk+l = x" + Pt where Pt is the direction ('l.l) .and ~B~ ~ 
is chosen by the BFGS formula. If B0 is s.Ymmetiic and p~sitive definite, .·and if a..1c 

satisfies the stopping. rules SR(J.L,7]), then y[s" is positive and thus Bk is well 
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defined and positive definite fork > o~ For this method Powell [1975]. has shown 
that if I : R""-+R satisfies the assumptions. of Theorem (4..15), and iff is convex 
on the level set 0, then ~Vf (x.~;)J converges to zero. Moreover, if ~xk~ converges 
to X. and. V2f (x .) is positive definite, then ~xk r converges superlinearly to X.. In 

practice this method converges for general functions f, so there· is a wide gap 
between this result and what is observed in practice. 

At first sight, it would seem that Powell's result is a rather straightforward 
extension: of the analysis of Newton's method. However, this would be the case 
only if we could. show that the condition numbers of ~B.~;J ar.e uniformly bounded. 
Interestingly enough,. Powell shows this·, but only after convergence has been 
established. 

The form of the· update (7.8) is ql.lite amenable to stahl~ numerical compu­
tation. In particular·, it is possible to maintain the· matrices R in triangular form. 
This facilitates th~ solution of the system: (7; 1) and reduces the storage. The 
reduction to triangular form can be accomplished· by standard (see,. for exam­
ple, Gill, Golub, Murray, and Saunders [1974]), matrix updating techniques. If R. 

is upper triangular, then a product of elementary rotations Q = Qi Q2 · ·· · Q2., 

can be constructed in such a way that 

(7.9) 9 + = QR+ = ,JR + v(y -TRTv)T l "lfl v v . . 

is also upper triangular. Since Q is orthogonal, 

ll T-h - RTQTQID' - RTR +.tt· + - + n + - + + ' 

and. thus It+ is the required factor. of B +· Since Q· is the product. of 2n. elemen­
tary rotations, the arithmetic required in (7.9) is on: the order of n 2 :floating 

. point operations. This is to be compared to the- order of n 3 operations req).lired 

to form B+ and then factor. Anoth€'r advantage of keeping H in triangular form 
is that the condition number of triangular matrices can easily be monitored. 
This provides the opportunity to alter these matrices when extreme ill­

conditio~ng occurs. 

8. Current Research. 

It is fairly safe to say that Newton's method and quasi-Newton methods are 
understood we~l enough to provide reliable software for general small to mc::diu..~ 
size unconstrained minimization problems.' Several subroutines are available 
through software libraries and others are under development. 

Currently, researchers are focusing much of their attention upon lar.ge 
scale problems. The ground rules for what constitutes an effectivP. al,gorithm can 
change drastically when the number of variables becomes large. We have tacitly 
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assumed. that the solution of a linear system of order n is, at worst, comparable 
in cost to the evaluation of the gradient and Hessian. This assumption may not 
be valid in large scale problems, and then it is necessary to take advantage of 
the special structure of the problem. With suitable modifications, Newton's 

' ' 

method can still be _an effective tool f~r large -scale problems. We have already 
mentioned, in Section 6, one possible modification in connection with the esti­
mation o,f. sparse Hessian matrices by gradiep.t differences. Modifications ci:m 
also be made to the algorithms for determining the Newton direction ·For exam- . 
ple, since the Newton methods of this paper only require the Cholesky decompo­
sition of a symmetric matrix, for sparse problems it is possible to reduce the 
amount of work and storage required by this decomposition. This is a well under-. . . . : . 

stood problem; see, for example, George and Lii,l [1979]. Another possibility-is to 
only determine ~ approximation to the Newton "direction This possibility is 
explored, for example, by Dembo and Steihaug [1980]. 

So far modifications of quasi-:Newtori methods to account for sparsity have 
. not had the resounding success that these methods have had in the d~nse case. 
·This is despite uitensive effort in this area.' There .may be furi.damental.reasons 
fo~ this as noted by Sorensen [1981]. However, itwould- seem that this subject is 
just not fully understood. at ·present, and thus this is still a very active research­
area. The interested reader should COnSult Steihaug [1980] and Taint [1981] for. 
information and additional references. 

The situation in greatest need of research at present arises when the Hes­
sian matrix cannot be stored in.fast memor.y. ·Currently the method· of choice for 
this .situation is a con)ugate direction· method .. It. would take· a full article- to 
describe these methods. ~"letcher [1980] has a nice ·introduction to tl;le basic 
ideas behind conjugate direction methods, while Buckley [1978a,1978b] and Gill 

. and Murray [1979] describe some ~f the recent work in this area. 

The development of methods . for these very difficult and highly practical 
situations hinges upon a thorough understanding of Newton's method. It is our . 
hope that this paper will provide a basis for work in the.se areas. · 
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