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ABSTRACT

: Newt.on s method plays a central role in the development of numerlcal techniques for

optimization. In fact, most of the current practical methods for optimization can be
_viewed as variations on Newton's method. It is therefore important to understand
Newton's method as an algorithm in its own right and as a key introduction to the most
recent ideas in this area. One of the aims of this expository paper is to present and
analyze two main approaches to Newton's method for unconstrained minimization: the
line search approach and the trust region approach. The other aim is to present some
of the recent developments in the optimization field which are related to Newton's
method. In particular, we explore several variations on Newton's method which are
appropriate for large scale problems, and we also show how quaSI-Newton methods can
be derived quite naturally from Newton's method.
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1. Introduction.

Many fundamental problems in science, engineering, and economics can be
phrased in-terms of minimizing a scalar valued function of several variables.
Problems that arise in these practical settings usually have constraints placed
upon the variables. Special techniques are required to handle these constraints
but eventually the numerical techniques used must rely upon the efficient solu-
tion of unconstrained minimization problems.

Newton's method plays a central'role in the development of numerical tech-
niques for optimization. One of the reasons for its importance is that it arises
very naturally from considering a Taylor approximation to the function.
Because of its simplicity and wide applicability, Newton's method remains an
important tool for solving -many optimization problems. In fact, most of the
current practical methods for optimization {e.g. quasi-Newton methods) can be
" viewed as variations on Newton's method. It is therefore important to under-
stand Newton's method as an algorithm in its own right and as a key introduc-
tion to the-most recent ideas in this area. '

One of the aims of this paper is to present and analyze two main approaches_-

to Newton's method for unconstrained minimization: the line search approach
and the trust region approach. The other aim is to present some of the recent
developments in the optimization field which are related to Newton's method. In
particula;r. we explore several variations on Newton's method which are
appropriate for large scale problems, and we also show how quasi-Newton
methods can be derived quite naturally from Newton's method. -

We assume familiarity with some of the basic notions from computational
linear algebra (see, for example, Stewart [1973]), and the calculus of.functions
of several variables {see, for example, Chapter 7 of Bartle [1976] or Chapter 3 of
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Ortega and Rheinboldt [1970]), but otherwise the background necessary for this
paper is minimal. We begin our development by reviewing 'some standard
- definitions and results.

. Given a function J :R"->R defined in an open set D the unconstrained
- minimization problem is to find z* €D such that :

(L) fGEI<fE), zeNET,

for some open neighborhood N{z*) of the local minimizer z°. 1If z° is the only .
minimizer of f in'N(z*) then z° is an isolated minimizer of f. If N (z *) is all of
D then z° is a global minimizer of f in D.

The properties of local minimizers are better understood if we focus our
attention on a reasonable class of functions. For our purposes, it is reasonable
to assume that f is twice continuously differentiable. Under this assumption,

the properties of local minimizers can be expressed in terms of the quadratlc, :
function ‘

Y(w) = Vf (z)Tw + %’wTsz (z)w

where Vf (z) is the gradient of f at z and V2f (z) is the Hessian matriz of f at
z. Recall that the i-th component of the gradient is 8; f (z) and that the (i.7)
element of the Hessian matrix is 8;; f (z). Since S

(12)  f(z +w) = £ (2) + 9(w) + o (llw]P).

the quadratic ¥ is the local guadratic model at z of the possible reduction in f .

Unless otherwise stated, in this paper I |l is the Euclidean norm on K", or the
induced operator norm. : .

Theorem. (1.3).. Let I R"-tR be twice cont'muously dzﬁerentzable in an ope'n. set
D. If z°eD is a local minimizer of [ then Vf(z*) = 0 and V2f (z°) zsposztwe
semzdeﬁm,te If Vf (z°) = 0 and V3 (z°) is positive definite fo'r"some z’eD,
then z° is an isolated loca.l minimizer of f.

Proof Let ¥ be the local quadratic model at z° of the poss1ble reduction in f. If
z° is a local minimizer for f then (1.2) shows that:
0= ¢(ap) +o0(a?) = an (z")7p + a®pTVEf (z")p + 0 ()

for each p € R™ and all a suﬁlmently small. This- 1mp11es that Vf (z*)7p = 0 and
that pTV2f (z*)p = 0. Since p is arbitrary, we must conclude that Vf(z°) =0
and that.V2f (z°) is positive semidefinite. On the other hand, if Vf (z (z°) = 0 and
V“’f (z ) is positive. deﬁmte then '

1P(’w) }%w""Vaf (z’ Jw =Jw?, ‘
where )\ > 0 is the smal]est eigenvalue of Vef (= ) Now it follows from (1.2) that -
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z’ must be an isolated local minimizer for f.® ‘

A point z°* € R™ such that Vf (z*) = 0 is a critical point of f. Critical points
can be divided into local minimizers, local maximizers, and saddle points.
Theorem (1.3) shows, in particular, that if z° is a critical point of f and V3f (z*)
is indefinite then z° is a saddle point of f. If, however, V3f (z°) is semidefinite
and singular then Theorem (1.3) does not provide ény information on the nature
of the critical point. This gap between the necessary and sufficient conditions of
Theorem (1.8) is illustrated by the 2-dimensional function

Fl&rt) = €0 + €5

Note that (0,0) is a critical point of f and that the Hessian matrix at (0,0) is
positive semidefinite. However, (0,0) is a saddle point of f and not a local
minimizer. ‘

Algorithi:ns for the unconstrained minimization of a function f:R"*-R are
usually descent methods. Given an initial starting point zg, a descent method
_ generates a sequence of approxirhatioﬁs {zi} to a local minimizer with the pro-
pérty that

(1.4)  flzes) < f(z2), k=0,

This descent condition alone is not sufficient to guarantee that the iterates {z;}
approach a local minimizer. Stronger conditions are required to actually force
the sequence into a neighborhood of a local minimizer. Once the iterates are in
such a neighborhood, descent methods usually -allow a rapidly convergent local
method to determine the iterates. In this paper, the local method is Newton's
iteration ' '

Tpsr =% — VCf (z) 7 'Vf(z), k=0,

and our concern here is with modifications to this local method that will provide
a general purpose algorithm. . ' ‘ , _

An algorithm that is designed for geheral ‘use should be anaiyzed as
thoroughly as possible. The purpose of a convergence analysis is to predict the
behavior of the sequences produced by the algorithm. This involves establishing
properties of limit points and rates of convergence. These features, together
with requirements of storage and computatibnéd effort, aid in the selection of an
algorithm for-a specific application. At the very least, we expect an uncon-
strained minimization algorithm to produce sequences which'satisfy' .

(1.5) klir&Vf'(zk) =0.

This condition guarantees that any limit point 2° of {z} is a critical point of f. -
For algorithms which only use gradient information this is all that can be:
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expected. If an algorithm requires Hessian information, then it is reasonable to
expect that the second order necessary conditions of Theorem (1.3) wiil be
satisfied. This can be done by ensuring that

(16)  lim mIA(VEf (z)) 2 0,

where A,(4) is the smallest eigenvalue of a symmetric matrix 4. If (1.5) and (1.8)
hold then any limit point z° of {z;} satisfies the nece’ss‘a;ry conditions of Theorem
(1.3). '

In the remaindei' of this paper we shall derive Newton's'méthod in its basic
form and then introduce various modifications which have beeri devised to
" ensure that (1.4), (1.5), and (1.8) are satisfied by the sequences {z;} produced
by the method. Techniques for forcing convergence from poor startihg points is
the subject of two sections. We discuss line search methods and trust region
methods in Sections 4 and 5, respectively. Both épproaches are important and
can be applied to other optimization problems. Variations on Newton's method
are discussed in Sections 6 and 7. Since the tech.niques for forcing strategies are
all designed to bring the sequence into a neighborhood of a local minimizer and
then switch automatically to Newton's method, it is most appropriate to begin,
in Section 2, with a discussion of the unmodified local algorithm.

- 1t will be worthWthe to have a specific problem in mind in order to apprec1- _
ate some of the concerns we express with respect to implementation of the
methpds. The problem we conSLdgr is the simplest problem in the calculus of
variations. An excellent introduction to this problem may be found in Fleming
and Rishel [1975]. The problem is to minimize the functional

_ 3
(1.7) J(u)= {L(‘r.u,'a)d‘r

over the set W of piecewise continuously differentiable functions u on the inter-
val [0, 1] with specified endpoints 2(0) and u#(1). We assume that L is twice con-
' tinuously differentiable. Two classical problems of this form are the brachisto-
chrone for which L(Tu.w)= (v —a)%#(1+v)% for some constant «, and the
minimal surface of revolution for which L(Tuz,v) = (1+v)% An accessible
-introduction to the many applications related to the minimization of J may be
found in Smith [1974]. ' ’ ‘ -

The solution techmques available for minimizing J directly are very limited.
In most practical settings one would almost surely need to resort to numerical
techniques. One such technique is to discretize the continuous problem and-
then construct an appr'oximate solution by solving the discrete problem. To see -
how this might be accomplished, consider a family of n-dimensional subspaces
Wn € W. If {¢] is a basis for #,, then we can determine the minimurmi of J on



W, by setting
F@) =5 b2 - &) = J[’élft%].

and minimizing f . If Newton's method is used to minimize f, then we must be
able to compute Vf and V3f. These derlvatlves can be computed by noting that
the i-th component of Vf is ‘

8.f () = { [(62L)¢i + (85L)p4)d.
and that the (i.j) element of the Hessian V3f (x) is
| 8:;S (5) %j[(az,zL)?&j +(923L) (s 9j + Pupj) + (6s.sz)¢i¢j]d‘f
where the partial derwatlves of I are all evaluated at (T (‘r) (-r)) and
(1. 3) u(7) = ki;:lfk er(T). |

Once a solution z° is found, the components of z* can be used in (1.8) to con- .
struct an approximate minimizer u, of J. Some analysis must be carried out to
ensure that u, is near a minimizer of J. An introduction to the type of analysis
that is necessary may be found in Daniel [1971]. We shall only be concerned
with the finite dimensional minimization process that occurs once n and a par-
ticular ba51s is selected. , ' . : '

In pnnclple this is all that is required to apply New‘ton s method to f. How-
ever, some important practical considerations remain. First of all, a reasonable
starting point zo may be difficult to provide so it becomes important to have an
algorithm which convérges from arbitrary starting points. Also, since the dimen-
sion of the approximating subspace W, must increase in order to guarantee that
u, is close to a minimizer of J, it may be necessary to solve large dlmensmnal
problems. This means that the storage of the Hessian and that solutions of linear
systems involving the Hessian matrix may become prohibitively cosvt.ly. There is
also the matter of evaluating the integrals to sufficient accuracy as well as the
concern over how inaccuracies might affect the performance of the optimiiation
algorithm. We shall take up some of these problems in this papér.

2. The. Local Algonthm

Newton's method can be studied from a local pomt of view in which we
assume that the starting point z; is close to a local minimizer. This point of view
is helpful because it provides information about the ultimate behavior of
Newton's method. In Sections 4 and 5 we shall study Newtcen's method from a
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global viewpoint.

Let f:R™+R be a twice continuously differentiable function. Newton's
method for the unconstrained minimization problem can be derived by assum-
ing that we have an approximation z; to a local minimizer of f and that in a
nelghborhood of z, the approxxmatlon

f("'-'k"'w)_“f(zk)'*'"/’k( ).
is appropriate, where :
Ve (w): = VF (z)Tw + YwTWRf (2, )w

is the local quadratic model at z;, of the possible reduc_tion'i'n J . If this appfoxi—
mation is appropriate, then a presumably better approximation Tp4y = X + Sg

" can be found by requiring that the step s be a minimizer of ¥;. Theorem (1 3)
shows that s; must then satlsfy : : ’

. V’V’k(sk) =Vf(z) + sz (xk)sk = 0.

" Thus Newton's method takes an appro)amatlon Zo and attempts to 1mprove it

through the 1teratlon

(2 1) Zpa =z —VRf (-’Ck) lVf (-’L'k) k=0.

‘Note that in this derivation the only restriction on the step s is that it satisfy
the system of linear equations V¢, (w) = 0. In other words, we only require that

§; be a-critical point of 9,. As a consequence, the Newton iteration (2.1) has the

same behavior in the neighborhood of any critical point of f regardless of its’

type. This seems undesirable since we Would hke our algorlthms to have a predl-
lection towardslocal munmlzers

As it turns out, _however. this behavior is just a consequence of the fact that
lteration (2.1) is Newton's method for the solution of the system of nonlinear

equations Vf (z) = 0. Since the local properties of iteration (2.1) only depend on "
the mapping F(z) vf (z) let us cons1der Newton's method in this more gen-

eral setting.

Let F: R®>R™ be a mappmg with range and domain in R™ and consider the
problem of finding. the solutlon to the system of n equations in n unknowns
F(z)=0,o0r eqmvalently. |

Jilgr o ) =0, 1<i<n,

where f,, is the: 1-th component functmn of F. Newton's method for this problem

can be denved by assummg that we have an approximation zg to the solution of . -
‘the system of nonhnear equatlons F(z) =0, and that in a néighborhood of z; the
‘approxunatlon
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Pl +w) m Llw) = F(z,) + F(z,)w

is appropriate where F'(z) is the Jacobian matriz of the mapping F at z. The
next approximat'ion Ti4+1 = Zp + S, can then be obtained by requiring that the
step s; satisfies the system of linear equations I, (w) = 0. Thus Newton's method
attempts to improve zg by the iteration

(R) Zn =z ;F'(zk)—lr(zk)'. k=0. o C

"' In comparing iterations (2.1) and (2.2), note that (2.1) is a special case of
the Newton iteration (2.2) applied to mapping F(x) = Vf(z). Because of this
relationship, it suffices to study the local behavior of iteration (2.2). The most
important aspects of this local ‘behavior are summarized in the following two
theorems. '

Theorem (2.3). Let F: R*-+R™ be a continuously diﬁerent'i,able mapping defined
in an open-set D, and assume that F(z°) = 0 for some z° in D and that F'(z°) is
nonsingular. Then there is an open set S such that for any 2:0 in S the Newton
iterates (2.2) are well defined, remain in S, and converge to z°.

Proof: Let a be a fixed constant in (0,1). Since F" is continuous at z* and F"(z°)
is nonsingular, there is an open ball S = fz:llz —z°| < e; and a posmve con-
stant u such that

IF(z) <, |Fy) - Fiz)] < 2,

for every z and ¥ in S. Suppose that z, €S. Since Tk +1 satisfies {2.2) and
F(z*) = 0 we have that :

Tpey —Z° = = F"('ztci)‘1 [F(zk) - F(Z') - F'(zk)(ik —z')],
and hpnop
IIz:m ~z’||spllF(z,) - F(z ) = F(z)z — 2.

Now, the fundamental theorem of integral calculus implies that

F(zy) —F(z').—_ﬁ"'(zk)(xk -z = z[f'(i' +E&(zp —2°)) = F'(z))(z ;.2‘)45.
and hence, . |
@9 lewn =21 = hl@ar P ela —2) - Pl Ifpas -1

Thus,

IZxs1 =2 | s allz ~2°1
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as long as z; €S. Since a < 1, this last mequa.ht.y 1mph°s that 1f z'OES then
z €S for k = 1,2,..., and that. {z; ] convergestoz’, = :

Theorem (2. 3) states that Newton's method is lOCGllJ convergent 1n the
sehse that if the starting point zgp is sufficiently close to a solution z° then .
Newton's method converges to z°.. Unfortunately, for rhany important problermns
the domain of attraction S guaranteed by Theorem (2.3) is quite small, and
much research has gone'into developing techniques to overcome this weakness
of Newton's method. For systems of nonlinear equations this is a particularly
active field, and much interest has been generated by the recent global Newton -
methods. For an account of some of this work see, for exa.rnple Keller [1978].

" For the unconstrained minimization problem, the situation is in much better

shape, and we examine two main approaches to globalizing Newton's method in
Sectlons 4 and 5. '

Although Theorem (2. 3) is undemably unportant it does not tell the full
story. It is not enough to knov:' that a sequence converges if the rate is so slow..
that that we could not afford to'see it converge. Generally, ‘when analyzing an
iterative method we are also interested in saying as much as possible about the
expected rate of co‘nvergence of a sequence produced by the method. A reason-
able optumzatlon algorithm should be able to generate lmezzrly convergent
sequences §z;} in the sense that

(.5). Izas1 - 2° | < allz, - 2° I. &=0,

for some c¢onstant a in (0,1). If a is small then (2. 5) is adequate, but if a is close ‘
to unity, say a = 0.9, then (2.5) is not reassuring.

For many optumzatlon algorithms which use second order mformatlon, it is

possible to establish a stronger result than (2.5). A sequence {z] converges

quadratically toz® if -

(2.6)  |lZen —Z‘Ilsﬁ“% -z’ k= 0,

-for some constant B > 0. Since

h_nzkﬁ, z°| [ﬂ” ”][uzk zn]

quadratic convergence’ irnpliest.hat the number of significant digits of z; as an
approx1mat1on to z* double .at each iteration. Typically, as soon as two
significant digits are obtained, the next. three iterations will produce roughly six-
teen significant digits. :

-~ There is a middle ground between (2.5) and (2.6). A sequence {z;}] converges
superlingarly toz” if

(7 lzen .-z‘|| <Bellzm —z°|l, k=0,
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for some sequence {8, } which converges to zero. It should bé clear that a super-
linearly convergent sequence is linearly convergent, and that a quadratically
convergent sequence is superlinearly convergent. Also note that since

[z er—ze || = llze—z° 11| < 2=z °1I.
it follows that

- N Epar — T ||

= 1,
kvio |z, =z

when §{z; ] converges superlinearly to £° . This is an importani property because
. it implies that H;'rkﬂ-zk || can be used to estimate the distance of z; from z°.

An 1terat1ve method is assigned a rate of convergence if it is possible to
show that every convergent sequence produced will have at least this rate. Usu-
ally reasonable restrictions are imposed upon the domain of application for a
method in order to obtain a useful assessment of this rate. Newton's method is
usually quadratically convergent as we now demonstrate.

Theorem (2.8). Let F: R™»R™ satisfy the assumptions of Theorem (2.3). Then
the sequence {z; } produced by iteration (2.2) converges mperlznearly toz*
Ma'reave'r if

(29) NIF(z)-F@ ) =«llz —z°|l, zeD,

Jor some constant k > 0 then the sequence converges quadfatically toz”®,

Proof: Convergence of the sequence {z;} was established in Theorem (2.3), so it
only remains to establish the rate of convergence To this end define

0=t<1

ey {maXIIF'(z + ez —27)) - F'(zk)u]

and assume.that zo€ S with 4 and S defined in the"proof of V"I'heorervn (2.3). The
hypothesis on F' at z° and the convergence of the sequence to z° implies that
§8: 3 converges to zero. Since inequality (2.4) shows that

NZgsr —2° “ <Bellze —z°l,
this proves that {z, } converges superlinearly to z°. Moreover, if (2.9) holds then
B S Buxllz, —z°|, '

and hence {z, } converges quadratically to z*. =

Note that the Lipschitz condition (2.9) is necessary in order to guarantee
that Newton's method is gquadratically convergent. For example, Newton's
mcthod applied to the 1-dimensional problem defined by

F@=¢l+0g(ED], €40, F(@) =0
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is precisely superlinearl}} convergent at ¢° = 0; that is, if {£.] is a sequence gen-

"erated by Newton's method, then the ratio

[ €41

|6 [11°

is unbounded for any p > 0

Rate of convergence results are sometimes used to compare algorithms by

. claiming that the superior algorithm is the one with the highest rate: of. conver-

gence. Claims of this type should be made with care because these results are
asymptotic and thus it is usually not possible to establish the magnitude of the
constants that appear in expressions like (2.5), (2.6) and (2.7). Moreover, rate of
conver'gence results do not measure the work necessary to compute T4, from
Z;, and in many cases this information is decisive in the choice of algorithm.
For example,. consider the class of quasi-Newton methods as described in Sec-
tion 7. Sequences generated by these methods are known to be superhnearly
convergent, and usually not quadratlcally convergent. However, since they do
not require the computation of the Hessian matrix, quasi-Newton methods are
often regarded as belng superlor to the quadratlcally convergent Newton
methods :

3. Properties of Quadratlc Functlons

Quadratic functions play an important role in the development of algo-

rithms for optlrmzatlon problems. For example, we have seen in Section 2 that in

a neighborhood of a local minimizer of a function f: R"-R, Newton's method
can be derived by requiring that the step be the minimizer of the local quadratic
model ' ‘ ' '

(B1)  Ye(w) = Vf (z)Tw + JwTV2f (ze)w

of the expected reduction in f. It is therefore important to understand the pro- :
perties of quadratic functlons and to provide numerically- stable algorlthms for

~ minimizing them.

Our first result completely descnbes the unconstrained minimization of
quadratic functions.

lemma (3.2). Let ¢: R™ R be the quad'ra,tw ﬁm.ctv,on

(33)  Y(w)=gTw + Y Buw
where g. ER™ and B € R™" is a symmetric matriz.



-11-

a) The qua.d'ratw ¥ has a minimum zf and only if B is pos'z.t'we somzdeﬁm.te
: and g wzntherange of B.

. b) The guadratic ¥ h.u.s a um,q'ue minimizer if and only of B is posz,twe
definife,

¢) If Bis positive semidefinite then every solution to th.e equation Bp = —g s
a global minimizer.

Proof: Suppose B is positive semideﬂmte with g in the range of B. Then Bp =
has a solution, and thus

(34)  Yp+w)=Y@) + (Bp +g)Tw + BwTBw = y(p) + Yw’ Bw = v(p)

for every w € R®. On the other hand, if p is a minimizer of ¥ then Theorem (1. 3)
lmphes that Bp +g = V‘zp(p) 0. and that B = V3y(p) is positive semidefinite.
To establish b) and c) hote that (3.4) holds whenever Bp = —g and B is positive
semidefinite, and that strict inequality holds for w # 0 if and only if B is posit’ive
definite. = ‘ -

Given the quadratic 9, there is an excellent numerical procedure for finding
its minimizer. First an attempt is made at computing the Cholesky factorization
of B. This factorization exists if and only if B is positive semidefinite, and in this
case it leads to an upper triangular matrix K such that

"B =RTR.

If a negative diagonal is encountered during the factorization process, then B is
not positive semidefinite and hence Lemma (3.2) shows that the quadratic ¥ has
no minimum. If the factorization is successful and R is nohsingular. then the
- minimizer is computed by solving the system Bp = ~g, or equivalently, '

RTu=—-g, Rp=v.

If the factorization is successful but R.is sihgular" then B is positive semidefinite
and smgular It still may be possible to compute a-solution p, but from a numer-
fcal point of view, this computation is unstable because arbitrarily small pertur-
bations can t.ransform B mt.o a positive definite matrix or an indefirite matrix.

Theorem (1.3) shows that in a nelghborhood of a local minimizer of f, we
can expect the Hessian matrix to be positive definite and then Lemma (3.2)
shows that the local quadratic model (3.1) has a unique minimizer. Thus, in this .
case, the minimizer of the local quadratlc model is a reasonable step for a
minimization algorithm. However, away from a local minimizer the Hessian
matrix V3f (z) may have a negative eigenvalue and then Lemma (3.2) tells us
that this local quadratic model does not have a minimum. In fact, the model is’ ‘
not even boundéd below. There are several remedies to this difficulty. One pos- ’
. sibility is to. modify the quadratic model by addihg a positive semidefinite matrix
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E(z) so that
Vef (z) + E(z)

is positive definite. When B is replaced by this miatrix the step calculation can A

proceed as described ‘above. An algorithm based upon -this step ca‘culation is
described in Section 4. ‘

Another poss1ble remedy is to restrict the _region in which we assume that
the local quadratic model is appropriate. " Locally. the model still provides an

‘excellent ap;}roximation to the expected reduction in f, so it is reasonable to

restrict ¥ to a ball fw:|lw| =< A} for some A > 0, and to compute a step as the
minimizer of '¢J on this ball. An algorithm based upon this step calculation is
described in Section 5. ‘The ‘following result characterizes the solutions to the
problem of minimizing a quadratic function on this restricted region. '

Lemma (3.5). Let ¢:R™>R be the quadrat'w Sunction (3.3) and let >0 be
given. Apoint p € R® solves the p'roblem

(3.6)  min{y(w):|lw < A}
if and only if there is A= 0 such that
(87 (B+M)p=-g. Ma-|pl)=0,

with B + M positive semzdeﬁm.te

Proof: Suppose that A and p satisfy (3.7) with B + AJ p031t1ve semidefinite. Then
Lemma (3.2) implies that p minimizes the quadratic function

P(w)=gTw + YwT(B +}\1)'w,.

_Thus P(w) = {p;(p)‘whjch implies that .

(é.e) g+ YT Bw =9'p + YpTBp + l(p" ~ wlw)

. for all w € R™. Since ApTp = XA and A =0, it follows from (3. 8) that '¢('w) >¥(p)
whenever |lw| < A, so p must solve (3.6). o

Now suppose that p solves (3.6). If ||p|| <A then p is an unconstrained
minimizer of ¥, so Lemma (3.2) implies that (3.7) holds with A = 0, and that B is
positive semidefinite. If ||p || = A then p must also solve the equality constrained

’pro'blem min{¢¥(w) : |lw ! = A {. Therefore, the method of Lac,range ensures the

existence of A such.that .
VL(p) =0, where L(w)=y(w)+ %\_(wrw —A%).

This ,implies that (3.7) holds for this A and P Moreover,i since p solves (3.6) we
have that (3.8)..is valid for this A and p whenever ||w| = !lp . Using (3.7) to
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réplace g and then rearranging terms in-(3.8) shows that
 Kw P )T(B +A)(w-p)=0

for every w w1th norm ||p ||. It follows read.lly from this mequahty that B + Al is
positive semidefinite. To show that A= 0, note that Lemma (3.1) implies that
(3.8) is valid for every w € R™. .Now, if A is not positive then (3.8) implies that

Y(w) = Y(p) whenever ||w || = ||p ||. Since p solves (3.6) we must have that p is an
unconstrained minimizer of 10 and then Lemma (8.1) implies that }\ = 0. Hence,
A=0as claimed. = '

Those familiar with various multiplier rules associated with mathematical
programming will of course recognize that most of Lemma (3.5) could be
obtained through direct application of these rules. At the very least one could .
invoke the Karush-Kuhn-Tucker conditions to avoid having to argué that the A
qbtained- from the Lagrange theory for equality constraints must be non-
negative. Unfortunately, the multiplier theory for inequality constraints is not"
treated in most advanced calculus texts. McShane [1973] has an elementary:
treatment of the standard results, and Pourciau [1980] surveys the most recent
results. It is interesting, however, that Lemma (3.5) cannot be obtained through .
direct application of the standard second order muiltiplier rules. The gap’
between necessary and. sufficient second order conditions precludes this possi--
bility since there is no such gap in this result. o ' )

Computing a numerical approximation to a solution of (3.6) requires some
care. One immediate complication is that, due to the nonlinear constraint, there
cannot be any general direct method for solving (3.6). In fact, when g =0 a
solution p to (3.6) must be an eigenvector of norm A corresponding to the smal-
lest eigenvalue of B. Therefore,a general method for solving (3.6) must solve a
symmetric eigenvalue problem in this special case. ,

The solution of (3.8) is straightforward if there are no solutions on the boun-
dary of {w:||w || = A}. In fact, it is not difficult to prove that (3.6) has no solutmn
with || || = A if and only if B is positive definite and || B'g || < A. |

If (3.6) has a solution on the boundary of {w:||w || < A}, then Lemma (3.5)
shows that it is reasonable to expect that the ,nox}lineai' equation

(3.9) lpall =8
whex.'e‘ ' '
Po = —~(B + a!)"g-,

- has a solution A = 0 in (—A;,=) where A, is the smallest eigenvalue of B. Note
that (3.9) is a 1-dimensional zero finding problem in a that ‘cap'be."solved, for
example, by Newton's method. However, since each evaluation of p, requires the
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solution of a system of linear equations, it is important to solve, (3.9) with very

few evaluauons of pg.
To solve (3.9). Reinsch [1967, 1971] and Hebden [1973] observed mdepen-

dently that great advantage could be taken of the fact that the function || Pa 12 is

a rational function in a with second order poles on a subset of the negatives of

the eigenvalues of the symrnetrlc matrix B. To see this consider the decomposr'

tion
B = QAQT with A = diag (A\;, A\ . Ay ) and QTQ'ef;

and observe that

" 310)  pale= I+ a7y |- p3 ——L |

(A; + a)?

where 9 is'the i-th component of @7g

| m(a) = [|pall — A |
A Feason for this is that ¢1 hasa pole at 47\1. and thus Newton's method tends to

- "perform poorly when the solution of (3.9) is near.—\,. This point is clear from

Figure 3.1 which shows a typical sketch of ||p, || with A; = —7.5.

"~ NORM(P)

‘o9

TLe
i

3.0

a0

.0 L0 30 :'.o o % &8 70 o w0 10

Figure 3 1

Reinsch and Hebden suggested tha. it 'is' more efficient to apply Newton's

' method to the function

Knowledge of the functional form (3.10).
shows that Newton s method may. not be very eﬁ‘lment if it is apphed to the func-
. tion '
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This function hﬁs no poles, and is almost linear near a solution of (3.9). This is
lllustrated quite well in Figure 3.2. This graph shows (||p,ll)~! where ||p,||
appears in Figure 3.1. Note that (||ps|[) ! is almost linear for A > =A;.

1/NORM (P}

oo

3.0

0.0 .10 0 () ) ) &0 7.0 % @3 e

Figure 3.2
It is clear from Fiéure 3.2 that Newfon's method is bound to perforx:ﬁ well én gpg
The Newton iteration apphed to finding a zero of g takes the following form.
Algorlthm (3.11). - .
1) Let Ag and A > O be given,
~R)Fork = 0.‘1..... uﬁtil “convergence'

a) Factor B +7\k[ = RIR, . |

b) Solve RIR.p, = —g ;

c) Solve Rlq. = py ;

L o 1) ?[lime ll = A
e =X+ liam 2 )

If certain precautions :are' taken, then this basic iteration can be used to
solve (3.8) in most cases. However, when B is indefinite there are cases in which
_ the equation (3. q) has no solutions in (=A;,~), and then Algorithm (3. 11) fails.
This happens, for example, when g=0and B 13 !ndeﬁmte It may also happen
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wheng # 0, as illustrated by the following simple example. If

ST

then A, = -1, and if @ > 1 then llpa I <%. Inour examples g is orthogonal to the
eigenspace of B correspondmg to the smallest elgenvalue This is typical; g

- must be orthogonal to the elgenspace

,Sl=iz:Bz=>\lz, z # 0}

corfespond.i.ng to the smallest eigenvalue of B whenever (3.9) has no solutions in
(—A;,»). To see this it suffices to note that if g is not orthogonal to ), then

71 #0in (3.10), and hence -

Jirg lIpall ==, Jim Ipall = 0.

Since small p’erttln'bations of g lead to a nonzero 7v,, it is tempting to ignore

- the case when g is orthogonal to S,. However, in many cases g is almost drthog--

onal to S,;, and in these cases an algonthm based completely on Newton's
method would require a 1arge number of iterations. This is not acceptable since

' a matrix factorization is reqmred for each of these 1terat10ns

Several a.lgorlt.hms have been proposed for the numerical solution of (3.8),
but Gay [1981] was the first to show that his algorithm produced a nearly
optimal solution. Gay's algorithm, however, may require a large number of itera-

tions when g is orthogonal to 'S,, and fails when g = 0 and B is indefinite. Moré ..

and Sorensen [1981] have improved on Gay's algorithm and' their numerical
results show that it is possible to produce a nearly optlmal solution to (3.6) in all
cases and with only a few itérations. '

We have dealt with problem (3.6) at length because it arises in a varlety of
applications. For example, the solution of ill-posed problems in linear algebra
usually requires the solution of (3. 6) for a positive definite B. The literature on
just this problem is extenswe for more information consult Eldén [1977], .-
Gander [1978], and Varah [1979]. '

Lme Search Methods.

. In Section 2 we mentloned the dlﬁlculty of prov1d1ng a starting pomt zg for
NewtonAs method which is summently close to a local minimizer. Overcoming
this difficulty has been the subject of a considerable amount of recent research
in numerical optimization, and in this section we discuss the line search

approach to this problem In dlscusqmg this approac ch it'is best to consider gen-
-eral line search methods first, and then specialize to Newton's method.
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Given an iterate z;, the basic idea of a line search method is to compute a
direction p, and a parameter og > 0 such that the next iterate z, 4, =z, + o
bas a lower function value. Convergence of the iterates to a minimizer depends
on the chmce of p, and Q- .

A direction p € K™ is a descent dzrectwn for a function f : K"+ R at a point .
~x €R™ if there is a constant & > 0 such that-

(4.1) (z+qp)<f(w) aE(OK]

For differentiable functions, ‘the easiest way to guarantee that (4.1) holds is to
requlre that

(4.2) \Z3 (z)"p

In particular, the steepest descent choice p = —Vf (z) satisfies (4. 2) Condition
(4.2) requires that the angle between ~Vf (z) and p be acute, and is equivalent
to requiring that there is a positive definite matrix B such that

. (43) p= —B"’Vf(Z)
This is not difficult to prove. If (4.3) holds then certamly (4.2) follows. Con-

_ versely, if (4. 2) holds then

- m_ _.‘2.9_
B=1 »7p 97p g=Vf (z)
~ is positive definite and satisfies (4.3). Thus descent directions differ only in the
|  choice of the positive definite matrix B in (4.3). The steepest descent method
chooses B as the idéntity matrix and Newton's method chooses B as the Hessian
matrix; the choice of B made in a quasi-Newton method (described in Section 7)
is a compromise between these two choices. ‘

Line search methods for differentiablc functions assume that (4.2) holds.
Note that if (4.2) does not hold then (4.1) can fail and then it may not be possible
to make further reductions in f. Later on in this section we shall see that for
convergence purposes it is necessary. to require that p is not even nearly
orthogonal to Vf (z). This can be achieved by imposing a bound on the condition -
‘number of B in (4.3). ' : _

A line search algorithm examines points along the ray {z + ap:a=0} in
search of & steplength o such that f(z + ap) < f (z). If p is a descent direction
then such a point exists. In fact, the smallest pos1t1ve local minimizer o® of the
univariate functlon : )

(¢.4) o(a)=f(z+ap), a=0,

is such an a. However, it would not be practical to search for this point. Indeed,
a liné search algorithm is usually an iterative scheme for 1-dimensional
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- minimization, but the search process is usually terminated long before anvacc_u-'

rate minimizer is found. Finding an accurate minimizer along a given ray usually
does not yield a'signiﬁqantly larger reduction in f than a crude search, and
better progress can often be made by making a reasonable reduction in' the
function f and then exploring bther directions. These considerations: have- led
to the development of stopping rules which terminate the line search process as

. soon as some minimal reqmrement is satlsﬁed

Given parameters ,u.E(O %) and n€ (u 1), and a descent direction P €R®
which satisfies (4.2), the steplength a>o0 belongs to SR(u.n) if

S(z +ap) = f(z) + auVf (z)7p.

197z + ap)7p | <097 ()7p |

In other words; the set SR(u,n) specifies the stopping rule. I}:i terms of the fuxicj _
tion ¢ defined by (4.4), a steplength a belongs to SR(u,n) if and only if

(4.5)  o(a) = ¢(0) + auyp'(0),-

"and

&

(4.6) |¢(a)]<n]|¢g(0)].

. For a typical function g, the set SR(u.n) is shown in Figure 4.1.

.'fm top vfe'p

Figure '4. 1



-19-

" The intuitive nature of these rules should be clear. If « is not too small, then the
first condition of the stopping rule SR{u,n) forces a sufficient decrease in the
function. However, {4.5) allows arbitrarily small choices of a > 0, so this condi-
tion is not sufficient to guarantee convergence. The second condition rules out
arbitrarily small choices of a > 0 and usually implies that a is near a local
minimizer of p. . : '

We assume that u < ¥ because if ¢ is a quadratic with ¢'(0) < 0 and ¢’ (0) >0
then the global mmlmizer o’ of p satisfies

v(r.x)=¢(0)+%rx’¢( 0),.

and thus o satisfies (4.5) only if 4 < %. The restriction z < % also allows a = 1 to
be ultimately acceptable to Newton and quasi-Newton methods; failure to take
u-< % prevents these methods from converging superlinearly. S

The restriction g < 7 guarantees that under reasonable conditions SR(u. n)
contains a non-trivial interval. For example suppose that ¢ is bounded below.
Then there is a 8 > 0 such that

(47)  ¢(8) = (0) + upyp'(0).
Now let a’ be the smallest a in (0,8] such that

¢(a) = p(0) + uap'(0).

Then the mean value theorem shows that there is a T such that

¢(‘r) u¢(0)>n¢(0) 0<T<a’.

In partlcular since ;o '(0) < 0 we must have that ¢'(1) < 0. Hence, T satisfies (4.6).
Moreover, T < a’ implies that

© p(1) = p(0) + pre(0),

and thus T also satisfles (4.5). Continuity of ¢' now shows that SR(u,n) contains a
non-trivial interval. , ‘

The algorithms for selecting the steplength a are usually based upon
minimizing a univariate quadratic or cubic model to ¢ defined by interpolation
of function and first derivative at trial values of a. It is important to realize that .
it is possible to safeguard these algorlthms so that they terrmnate in a finite
" number of steps. :

Safeguarding a line search algorithm requires that we determine and
update an interval of uncertai'rity I which contains points in SR(u,n). The
updating process must guarantee that the length of / tends to zero and that
eventually | is contained in SR(u,7). ‘
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To define the interval of uncertamty 1 it is helpful to use an auxiliary func-

tion 30 defined by

Ya) = p(a) — p(0) — pag'(0),

~and require that / be a closed interval with endpoints o, and a, such that

Y(a)(ow ~ o) <0, Ylau) < Plow)., Ya) =0,

We now prove that 1# (a ) = 0 and ¥(a’) < 0 for some a’ m I. As.a consequence,
if I is sufficiently small then . :

[¥'(e) | = (n—p)| ¢'(0)|. ¥(a) =<0,

for all a €/, and thus J is containéd in SR(u,n). If we let & be a glbbal minimizer

of ¥ on I then o’ cannot be an endpoint of 7 because this contradicts the above

requirements.on a; and a,. Hence, a° is interior to I and thus ¢¥'(a”) = 0. More-
over, since Y(oy) < 0 we must also have that Y(a®) <0

We now show how to update I.'Given a trial value o in I, we can deterzmne a
new interval / + with endpomts o and ag as follows:

If Y(o) = ¥(e;) then o = o; and o} =04

If Yloy) < Y(oy) and ¥'(a)(a —oy) < O then o = o and o = 0.

If Y(o;) < ¥(oy) and ¥'(a )(a; —ey) > O then off = o, and of = ;.
It is straightfdrwar.d to show. that o;f and o still define an interval of uncer-
tainty unless ¢'(a;) = 0 and ¥(a,) < ¥(a;). Of course, in this case & belongs to
SR(1.m) and there is no. need to update /. Also note that these updating rules
can be used to determing an initial interval of uncertainty. If we set o; = 0 then
a; > 0 defines an interval of uncertainty if ¥(a;) =0 or if ¥'(a;) <0. For o
sufficiently large, we must have that ¥(a;) = 0 unless ¢ is not bounded beldw.

There are many ways to compute the trial value of a;; the only requirement
on a; is that the length of / tends to zero. This can be done by monitoring the
length of 7, and if say, the length of /.is not reduced by a factor of 0.5 after two
trials, then a bisection step can be used for the next trial a;.

Theorem (4. 8) Let f : R" >R be continuously differentiable and bounded below
on K", and assume that the starting point zg is such that Vf is unzfonnl:/ con-

' tinuous on the level set

(48) 0={zcR":f(z)S ] (@),

If the sequence §:z:k; is defined'by Ty41 = Zp + O Pi uhere vf (zk) <0and o
is any steple'ngth in SR{u.m) then - ‘

vrf (-’f-'k)TPk ] .
i lpell )~
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Proof: Since Vf (z;)"p, <0 and since f is bounded below, the sequence {z;] is
well defined and lies in Q. Moreover, {f (z; )] is decreasing and henc¢e converges.

The proof is by contradiction. If (4.10) does not hold then there is an £ > 0
and a subsequence with index set K such that

/4GS >¢, kEX.
[l |l '

The first condition of the stopping rule SR(u,n) shows that

VS (z) P

I (Ze) = f{ze+r) = 1ot || |l [“ 2e 1 ] = puoy |lpelle, k€K,

and since {f (z¢)] is a convergent sequence, {a;p: :k €K} converges to zero.
Now, the second condition of the stopping rule SR(u,n) yields the inequality

(1 ‘ﬂ)(—Vf (Ze)T0e) < (VF (zp + o) ~ VF ()R, k=0,
and hence

_ V7 (z) e 1)
5= T el (17

However, since we have already shown that {a.p, : k €K converges to zero, this
contradicts the uniform continuity of Vf on Q. =

VS (z + cepy) = VFf(Z) ], kEK.

Wolfe [1969] proved Theorem (4.8) under various choices of steplength
rules, while Gill and Murray [1973] obtained a variation of Theorem (4.10) with
the steplength chosen by a safeguarded algorithm designed for 1-dimensional
minimization. Note, however, that 1-dimensional minimization algorithms must
be modified in order to find points in SR(u.n) because the first condition of this
rule may exclude all 1-dimensional local minimizers. Also note that Theorem
(4.8) holds under the hypothesis that f : K* >R is continuously differentiable in
an open set D and that the level set

(1) 0={zeD:f ()= (20}

is compact. The proof is almost identical to that of Theorem (4.8); the only
difference occurs in proving that SR(w,m) is not emply.

The specialization of Theorem (4.8) to algonthms of the Newt.on class is
almost immediate. In this case,

(4 12) P = =B TVf (x),

- where {B;} is a sequence of posmve deﬁmte matrices with umformly boundedA
condition numbers that is, there isa conatant k£ > 0 such that

(413)  [|Bll|B "=k, k=0.
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Under this assu.mption we have that

v (-7-'1:) Pe o |L

and thus (4. 10) implies that in (zx)} converges to zero..In particular, every

limit point of {z,} is a critical point of f.

For a line search method, this is the strongest type of result possible. It is

~ not possible to prove that the limit points of §z,} are local minimizers because,

for example, if z is any critical point of f then a line search method terminates
at Zg. -

The choice of By in (4. 12) is guided by a desire to sat.xsfy (4 13) and sull

' guarantee a fast rate of convergence. In the steepest descent method By is the

identity matrix. For this method (4.13) is satisfied but convergence can be quite
slow. The convergence of Newton's method is quite rapid when it occurs, but
since By = V2f (z;) is not necessarily pos1t.1ve deﬁmte there is no guarantee of

.. convergence. Modifications to. Newton s method have been designed to overcome

this problem. They. set
(4 14) By = Vf (-Tk) +

" .where . E, is chosen so that B, is positive definite and satisfies (4.13). There are

many ways to do this, but one of the most effective methods is due to Gill and
Murray [1974b].

Given a symmetric matrix A and parameters £¢=0 and ﬂ >0, Gill and

| Murray s method produces an upper triangular matrix R and a d1agonal matrix

E = diag(g;) = Osuchthat4 + £ = RTR.The i-th step of the algonthm sets
7“ au ‘z:Tijki, 'isjs'n.,
p.‘;=max{ [ 74 I:i <j=mnj,

]

re =maxte, |7q |% 2.

Note that if £ = O then it is possible that 7y = 0, but in this case set 7y; = 0.

The idea behind the Gill and \{urray algorithm is to increase the diagonal
elements of 4 so that A +'£ has a.Cholesky decomposition. The increase in 7y is
designed to ensure that 7; is bounded relative to ||4A|| , and that if A is

: suﬂ)mently positive definite then A is not modified. Note that the increase in 7y
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due to the term u;/ 8 forces | 1y | < Bfori < j. Hence,
lyg 1= lay| +fn, i<y,

This shows that y;/ g is bounded in terms of § and | a; |. It is sensible to choose
B so that this bound on Mi/ B is as small as possible, and this leads to a choice of -

g = -:L—max_ilavlzi#ji.

This choice, however, rﬁay conflict with the desire to leave A unmodified when-
‘ever A is sufficiently positive definite. The definition of 7y shows that in order to
accomplish this # cannot be too small. 1t is sufficient to require that

BP>=max{|ay; |:1<i<n].
To establish this claim we first show that if 4 is positive déﬁnit.e then 7;; > 0. The
proof is easy. Given an index j, define p € R™ by letting #p =r7j;;e;. Thenp; =1
and . L '
0<pTap=rf—pTEp<rj— & =7

Now, since y;; > 0, it follows that
ﬁaz aj; >!27'k1 =rd, i<j,

and since ¥y = 7y 7y, We have that uf < f2ri. Hence, it A is posit'ive'det‘imfe
then r; = maxfe, 7#; This shows that if A4 is suﬁlclently positive definite then
ra—'ré and thus F = 0, _ '

A reasonable way to guarantee that 7yj is bounded and that £ = 0 whenever
- A is sufficiently positive definite, is to choose '

y:max{%—maxilavl:i #j‘f.ma.xilaﬁlzlvsis'n?}.

. For this choice of 8 it is not diffic_ult to prove that
ESITal<maXi8 Znﬂj ITQISﬂ 'L<]

For £ > 0, these inequalities show that if the Gill and Murray algorithm is applied -
to a bounded sequence {4} of symmetric matrices, then (4.13) is satisfied.

Weé now have all the ingredients for a modified Newton's method with a line
search. In this method, we compute p; via (4.12) and (4.14), and determine E,
by Gill and Murray’'s modification of the Cholesky factorization with some’s > 0.
Theorem (4.18). Let f .:R™"->R be ‘twice continuously diﬁei‘entidble on an ocpen
set ), and assume that the starting point zq is such that the level set (4.11) is
compact. Jf the sequence {z,] is defined by zkH‘ =z, + o, p, where p, is
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computed by the modified Newton's method and o, is any steplength in SR(umn)
then I ‘

Jlim V7 (z,) = 0.

Proof: We have already noted that if £ > 0 and {4} is bounded then (4.13) Lolds.

In this case A, = Vf(x,.), and since Q is compact iAkf is bounded. -Thus our

result is a consequence of Theorem (4 B). =

- There is an interesting variation of Theorem (4.15) whlch shows that the

iterates izk 3 usually converge. In this variation the stopplng rule SR(u.7n) is

modified by the addition of an upper bound 8 on the steplength We accept B as
the steplength only if

S(z+pp)=fiz)+ ﬁ.qu(z)T

Note that if this condltlon is not satisfied then (4.7) holds and then there is an a
in (0,8) which satisfies SR(w.m). 1t is not difficult to show that Theorem (4. 15)

" holds w1th this variation, and moreover, that -

(4.16) Jim ”-"-'ku'—zk =0

This shows that if iz,,} has an isolated lu:mt point z° then i.'z:k ] converges toz’ In
particular, note that if V3f (z *) is nonsmgular at a limit point z°, then z° is an
isolated solution of Vf (z) = 0 and hence z° is also an 1solated_hrmt point of §z}.
The structure of the set of limit points of {z; ] is further restricted by a result of
Ostrowski [ 1966] page 203, which states that if {z,} is a bounded sequence and
(4 16) holds, then the set of limit points. of {z;} is connected.

To investigate the rate of convergence of the modlﬁed Newton s method
assume that the sequence $2e3 converges to a point z* at which V3f(z°) is

A sufficiently positive definite in the sense that £ = 0 for all £ sufficiently large.

Then E
(417)  p =pf=-Vs (zk)“Vf_(z;).

and it can then be shown that there is a kg such that the steplength o = 1is in
SR(u. 'r)) for k = k. With this choice’ of o, the rate of convergence is given by
Theorem (2. 8).

The above ar&,ument relies .on the fact that rxk =1is eventual'y in SR(,u n).

~ To establish this result it is only necessary to assume that {p, ] tends to the New-. .

ton step 1n bc*h length and direction; that is,

o [ 122 =22 n]=0.
kvem| Pl
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where pY is the Newton step (4.17). For a proof of this result, and a discussion of .
its relationship to quasi-Newton methods, sée Dennis and Moré {1977]. '

5. Trust Region Methods.
In Newton's method with a line search the Hessian is modified when it is not
sufficiently positive deﬁnité This modification to the quadratic model guarah-
tees convergence but seems to ignore the role of the quadratic model as a local
approximation to the objective functmn We now consider an alternative
approach in which the quadratic model is not modified but instead, the qua-
* dratic model is only considered in a restricted trust region. We mentioned this.
technique briefly in Section 3. as motivation for Lemma (3.5); its use for globaliz-
ing Newton's method has resulted in reliable algorithms with strong convergence
pr'operties;'ln this section we introduce the main ideas of this approach arid
establish some of the basic convergence properties.

Let f: K" >R be a twice continuously differentiable function. In Newton's
method with a trust region strategy, each iterate z has a bound A such that .

Sz +w) N7 (z) +p(w), lwl<A .
where _ | A
Ye(w) = VF (zp)Tw + Y Vf (z)w .

is tﬁe _quadrat.ic model of the possible reduction in f within a neighborhood of.
the iterate z;. This suggests that it may be desirable to compute a step s
which approxlmately solves the problem

(5-1) min{ ¢ (w):flw ]| < A 3.

If the step is satlsfactory in the sense that z; + s, produces a suﬁ1c1ent. reduc-
tmn in f, then A, can be increased; if the step is unsatisfactory then A, should
be decreased The following algorithm expresses these ideas in more detail.

Algorithm (5.2). Let O<u <ﬁ=< land 0<71<72<1<7gbe specified constants:
1) Let zq €R™ and Ay > O be gi‘ven.' |
2)For k =0,1,... until "convergence"”
| a) Coinpu,te Vf (zz) and V3f (.'r;).

b) Determine an approximate solution s to problem (5.1). "
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I (z +Sk) S (Z)
Vi (Sk) '

d) If pr < pthen A, := A€[7,A:,720: ] and go to b).

c) Compute p; =

)Zku =Zp t+ 5.

- ) If p =7 then Ae+y € [72De.0e ] else Akﬂ € [Ak 78Ak]

This‘is a basic form of a trust reglon Newton ] method An 1nterest1ng variant of
. this algorithm includes a scaling matnx for the varlables In tms variation sub-”
problem (5.1) is replaced by

-min{ Y (w): || Dew || < Alc }

where D, is a nonsingular matrix. We shall not discuss this generalization here;
however, it is important to note.that all of the results presented here hold for

this variant if -QD,,} has uniformly bounded condition numbers. Such a

modification can be very important in practice when the units of the variables

are on widely different scales. Another variation is to use the hypercube

. {w:||w |l < A} as the trust region in (5.1). In this varlatlon subproblem (5.1) is

replaced by the quadratic programmmg ‘problem

(5.3) mln{'wk(w) I'wTe |<Ak 1<'L<n§

A difficulty with the hypercube approach is that 1t is quite expensive to compute )
a reasonable approxxmatlon to the global minimizer of (5.3). This is not the case
with (5.1), and thus we shall only consider (5.1) in this section.

Just as in the case of a line search we are not interested in solving the
model problem (5.1) with great accuracy. Instead, we are interested in providing.
relaxed conditions for accepting an approximate solution s, to problem (5.1)
which are sufficient to force convergence of the sequence i:cki generated by
Algorlthm (5.2). In fact, there are conditions wh1ch guarantee much more than -
convergence of the method If ¢4 is the optimal value of (56.1), and if the approxl-
mate solution s; to (5 1) satisfies ° ' ‘ '

-(5'4) —’Wk(sk)251|'¢kl with ”Sb | = Bal.

- for specified constants 8; > 0 and Bz > 0, then it is possible to prove that under
sultable conditions on f, the sequence {z;} is convergent to a pomt z’ with

Vr(z ) = 0 and V3f (z *) positive semidefinite. ‘

" It is not d1ﬁ1cult- to obtain a vector s, which satisfies (5.4), although as men-
tioned at the end of Section 3, this requireé attention to a number of cetails.
Given o in (0,1), the algorithm of Moré and Sorensen [1981], for example, finds a
vector s such that : :
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Ylse) — Y= o(R-0) ¥ |, lsli=(1+0)A,,

provided y,’ # 0. Of course, if ¥ = 0, then Vf(z;) = 0 and V3f(z,) is positive -
semidefinite, so Algorithm {5.2) terminates at z;. It is also worthy of mention,
that if 0 = 0.1 then the cost of this algorithm is quite reasonable. On the aver-
age the approximate solution of each mode! problem requires less than two fac-
torizations of a symmetric positive defmfe matrix of order n. '

Condition (5.4) can be expressed in an alternate form which is more con-
venient for proofs of convergence. If p, € R™ is a solution to problem (5.1) then
Lemma (3.5) implies that there is a parameter A, = 0 such that

(VBf (z) + N )P = =V (zie) . N = lPel]) =0
Now let RTR, be the Cholesky factorization of V2f (z,) + A, /. Then

(55 1951 = Kl Repe 1P + NeBP).
This expression for 9, shows that if (5.4) holds then

(5.8) ~Hr(se) =VBi(l| Repe IF + N AE).
and thus the iterates {z;} generated by Algorithm (5.2) satisfy

(57 F(zi) = f(zes1) = Jubi (| Repe I + A AD). |
These two inequalities are essential to the proof of our next result.’

" Theorem. (5.8). Let f : R™-R be twice continuously differentiable on an open set
D, and assume that the sterting point zg is such that the level set

Q={zeD: f(z)=f(zo))}

is compact. If the sequence {xz.] is produced by Algorithm (5.2) where Sk
satisfies (6.4), then either the algorithm terminates at z, € Q) because Vf (;) = 0
and V2f (z;) is positive semidefinite , or {z] has a limit point z° in Q with
Vf(z*) =0 and V2f (z*) positive semidefinite. : '

Proof: If Vf (x;) = 0 and Vf (z,) is positive semidefinite for some iterate z in O
then the algorithm terminates; otherwise (5.4) implies that ¥ (se) <Ofork =0
and thus izki is well defined and lies in 2.

Let us now prove the result under the assumptlon that {A.} is not bounded
away from zero. If some subsequence of {A.} converges to zero then since { is
compact we can assume, without loss of generality, that the same subsequence
- of §{z,,] converges to some z° in the level set Q. Since Vf (ze) + M is positive
semidefinite, V3f (z ) is also posmve semldeﬁmte , and Vf (z°) = O follows by
notmg that - ‘

19f (z) I
IR (k) || + e

' | R 112 =
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and that (5 7) implies that H Repse 13 converges to zero.

We can show that §A\.} is not bounded away from zero by contradlctlon If
A =e>0 then (5.4) and (5.6) yield that :

;W(s,,) = mlmﬁa x[ﬂjg]susk P

_ Now, a standard estimate is that .
(5-9) If(zk +Sk) S (=) — %(Sk) | < ¥ise H"'maXIIVZ.f (zk+fsk) - Vef (zk)ll

and thus the last two 1nequaht1es show that

| (5.10) . P -1 ’< [ﬁ_z]max”vef (Zk"'fsk) sz (-Tk)”

Inequality (5.7) implies that {A;] converges to zers and hence §llse |} also con-
" verges to zero. ,Thus the uniform continuity of V3f on Q.together with (5.1_())
implies that pr > 7 for all k sufficiently large and then the npdating rules for A
yield that {A;] is bounded away from zero. This is in contradiction of the fact
that {A. ] converges to zero. = '

The result we have just established is only a sample of the available conver-
gence results for Algorithm (5.2) under assumption (5.4) for s. This theorem
extends results of Fletcher [1980] and Sorensen [1980] by admitting inexact
_solutions to the model problem (5.1). The following add1t.10na1 results are known

a) The sequence {Vf (zk)j converges to zero.
b) If z’is an isolated limit point of {z; | then Vaf (z°) is positive semidefinite.

c) If sz (z°) is nonsmgular for some limit point z* of §z. ] then {z;} converges
tozx®

Thomas [1975] proved a), while Mor¢ and Sorensen [1981] established b) and c)’.
as extensions of results due to Sorensen [1980]. Of these results, b) is charac-

teristic of the trust region approach, and is the only result that does not hold for

Newton's method with a line search. This difference between the two approaches

is of theoretical importahce. From a practical viewpoint, however, it can. be

argued that a more important difference is that with a line search approach the

search for a lower function value occurs in a 1-dimensional subspace, while with

a trust region approach the search is not restricted to a lower dimensional sub-

space.’ ' ' : ’

An add1t10na1 result Wthh is helpful in ‘establishing rate of convergence
results is that if {z;] converges to z° and V2f (z°) is posmve definite, then the
. sequence {A;} is bounded awey from zero. To prove this first note that if g > 0 is
a lower bound on the eigenvalues of V3f (z,) then (5.5) shows that
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| 9¢ | = Yeomin{AZ || s
where
(5.11) s = V35 (£.)7'VS (z).
Now, since 'w,; (sg) = 0, we have that .

Bk 1l = 1921 ()™ 111197 ().

and thus ¥||s, || < k||s¥| where « is an upper bound on the condition number of
VAf (z;). Hence, assumption (5.4) shows that there is a constant &, > 0 with

A Y (se) = el s IP.
This estimate and (5.9) then yield that

lpk -1 IS [l'] maxl]V"’f (z +s,) — VoS (z) |l

and thus px > 7 for all k'sufficiently large. It follows that {A;] is bounded away
from zero as desired.

" Rate of convergence results can be obtained with the additional - but miid -
assumption that there is a constant f3 > 0 such that if ||s; |} < BsA, then V3f (z;)
is positive definite and s, = s¥ where s is the Newton step (5.11). With this
assumption in mind, suppose that §{z;} converges to z° and that V2f (z°) is posi-
tive definite. Then {s;} converges to zero, and hence [|s; || < B34, for all k
sufficiently large. Thus there is a kg= 0 such that s, = s for k = ky, and then
the rate of convergence results are provided by Theorem 2.8.

8. Approximations to the Hessian Matrix. .

The methods we have described in the previous sections all require the
computation of the Hessian matrix. This can be a difficult and error prone task,
_and in some cases analytic expressions for the entries of the Hessian matrix
may not even be available. What can be done in these cases?

An obvious way to overcome these difficulties is to approximate the Hess1an
matrix with differences of gradients. However, there are several things to con-
sider. Which difference approximation should be used ? How large should the
difference parameter be ? How is the performance of the minimization method
affected when difference approximations are used ? ‘ A

The two most ccmmon type of difference approximations use the forward
difference and central difference formulas. The forward difference approxima-
tion is based on the Taylor's series expansion

(6.1) (DI +ap) -V (2)] = Fr (2)p + O(a),
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while the central difference approximation is based on
(20 [V (= +ap) —2V7 (z) + Vf (z —op)] = V¥ (2)p + O(a?).

In optimization work, forward differences are quite common because they
require fewer gradient evaluations and usually provide the necessary accuracy.
If forward differences are used, an approximation A{z) to the Hess1an matrix at
some z € k™ can be obtained by setting

A(z)e; = (a_ﬁ [Vf (z +oe;)-Vf ()], 1sj<n.

for some dif f erence parameter a, # 0. Unfortunately.' this approximation does
not necessarily provide a symmetric matrix. This important feature of the Hes-
sian can be obtained by using the symmetric matrix

KL A(z) + A(z)T]

as the approxunatlon to the Hessian matrix at z.

_ The choice of difference pararneter presents a- dllemma ‘In order to
fpreserve the superhnear rate of convergence enjoyed by Newton's method it is
necessary to force the difference parameter to zero. However, as the difference
parameter a; becomes small, the differences loose significance due to cancella-
tion. To prevent this loss of sxgmﬁcance, the difference parameter must stay
"above a certain threshold value: This dilemma can usually be resolved in prac-
tice because it is not necessary to provide a Hessian approximation of high
accuracy‘. If the Hessian approximation has an accuracy comparable to the
desired accuracy in the solution to the optimizatioh problém then convergence -
usually takes place at practically a quadratlc rat.e Less accurate Hessian
appronmatlons decrease the rate of convergence but do not prevent conver-
gence. These remarks assume that the gradient is evaluated accurately, if this is
not the case, we rnay not even be able to compute a descent direction '

Techmques for choosmg the difference parameter in (6.1) reqmre informa- -
tion about Vf in a neighborhood of z which is obtaxned by evaluatmg Vf at
several points near z. For many practical problems it would be too expensive to ‘
acquire this information at each iterate. A sensible strategy for an optimization
algorithm'is to choose the difference parameter at a typical z (p0351bly the
starting point zy), and to use this choice until it is deemed unsuitable. The
difference parameter is only recomputed when the quahty of the dlﬁerence
approximation starts to degrade '

There are several algorithms for choosing the difference parameter at a'
_ point. Discussing these algorithms in detail is not within the scope of this paper,
but we want to mention some of the ideas behind these algorithms. ‘The main
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ideas are clear in the 1-dimensional case, so consider a aiﬁerentiable function
¢:R-R, let p.(a) denote the computed value of gp{a), and let
e(a) = pc(a) — p{a),

be the (absolute) error in the computed value. The smoothness of p; depends on
the method used to evaluate ¢ on the computer, but in all cases ¢ is a ‘stepb
function. A reason for this is that a computer with decimal digits of accuracy
does not distinguish between numbers with the same first I digits. We mention
this fact because it implies that ¢; is not differentiable. With these remarks in
mind, noﬁe that our problem is to determine an a such that

. ‘1 :
62 (Dlpela) - pe (0]
is close to #'(0). If we assume that we have an open neighborhood I of « = 0, and
a bound ¢4 such that
Je(a) | = g0, ael,

then it is not difficult to determine the difference parameter Note that a
~ Taylor's expansion of y shows that :

¢o (@) = ¢ (0) — ap'(0) = Yp"(E)a® + [£(a) ~ £(0)].,
for some ¢ with ] ¢] < |a], and hence

280
la|

|(_)[¢c(a) ~ 9 (0)] = ¢'(0) | <¥mol | +

where 7 is a bound for ¢" on /. This bound on the error between (6.2) and ¢'(0)
has the correct qualitative behavior. If a is too small then the error is dom-
inated by o, while if a is too large then the error is determined by the curvature
of ¢. It is reasonable to choose a go that this bound is minimized, and this leads
to a choice of

‘ 1%
-(6.3) a=n2[7£):—] .

An algorithm for determining &p and 7 can be based on the work of Hamming
' [1971], pages 163-173. The basic idea is that the 4th and 5th order differences
of . are a raeasure nof £y and that the 2nd order differences can be used to esti-
mate 7. It is necessary to take some precautions, but in general we have found
that an algorithm based on these ideas and (6.3) is quite effective.

Another waLy to overcome the difficulties mentioned at the beginning of this
section is to approximate the Hessian matrix girectly. As an illustration, recaill
that in the exainple of Section 1, the (i.j) element of the Hessian V3f {z) is
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4 1 '
B:5f (z) = {[(‘az.zﬁ)% @i + (023L)(@i9j + Pi9;) + (B33l )p:0; ]dT

where the partial derivatives of L are all evaluated at (7,2 (7).22(7)) and

\

64 um=Dee).

- In principle, these inte_grals can be evaluated: with an appropriate quadrature,

and the results used to define an approximation to the Hessian matrix. This
requires the storage of a symmetric matrix of order n and the evaluation of
n(n+1)/ 2 integrals over [0,1]. Since the dimension n must increase in order to
refine the accuracy of v as an approximation to the continuous problem, it is

~usually necessary to solve large dimensional problems, and clearly, the cost of

these requirements can then be prohibitive even for moderate values of n.

The above problems can be greatly reduced if we chbose a basis {g;} whose

-elements vanish on most of the interval [0,1]. For example, we could choose a

B-spline basis. To illustrate this: possibility, let 7; = jh = j/n, and define

|"'—7’j,|

R g TE[TJ’:—LTJ"-H]. ¢;(T) =0 otherwise.

vl-(T) =1-

These functions are smooth B—sphnes of order 2. It is-a simple rnatter to verify
that

Yi¥; = PiP; = PiPj ‘5‘0, |_"3 -jl>1,

and therefore the Hessian matrix is tridiagonal. Thus.the storage.is now of order. -

‘n, and it is 6nly necessary to evaluate 2n integrals over intervals of léngth /n.

Similar remarks hold for the computation of the gradient. If we had chosen a
basis of smooth B-splines of order k then the Hessian has bandwidth 2k —1. The
complitation of the gradient and Hessian is now more expensive, but there is an "
increase in the accuracy of (6.4) as an approximation to the continuous prob-

.lem. For more 1nformatlon, see de Boor [1978] on splines, and Gill and" ]V‘urray

[1973] on the numencal solution of problems in the calculus of variations.

Large scale optimization problems frequently exhibit special structure such
as sparsity in the Hessian matrix. Approxunatlon of sparse Hessians by
differences is attractive because the number of gradlent differences required is
often small compared to n. For example, if the Hessian matrix is tridiagonal {as
in the above example), then 3 gradient differences suffice to approximate the
Hessian. ’ ‘ ' : _

A technique for estimating general sparse Hessian matrices is based on the

work of Curtis, Powell, and Reid [1974]. They pointed out that a group of
columns of V2f (z) can be approximated with one gradient difference if columns
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in this group do not have a nonzero in the same row position. To see this, let 7
be the indices of a group of columns with this property, and let p be a vector
with component p; = 0 if j belongs to / and p; # 0 otherwise. Then

VEf (z)p = jieljp,-sz (z)ey,

dnd since the columns with indices in J do not have nonzeroes in the same row
position, for each (i,j) element of V3f (z) with j € / we have that

(V3f (z)p )i = pj el V2f (z)e; .

In view of (8.1), it foilows' that we can approximate all the columns with indices in
I with just one gradient difference.

For a tridiagonal matrix, it is easy to see that columns with indices of the
form ! mod 3 can be placed in the I-th group. Hence, as noted above, a tridiago-
nal matmx can be estimated with 3 gradient dlﬁerences

For general sparsity.patterns it is not straightforward to pa.rtltlon the .
columns of the matrix into the least number of groups so that columns in a
group do not have a nonzero in the same row position Curtis, Powell, and Reid
[1974] suggested an algorithm but did not analyze the problem. Coleman and -

Moré [1981] have approached this parti,t.ioning problem through its equivalence
'~ to certain graph coloring problems, and have used this point of view to analyze
the partitioning problem and to suggest improved algorithms. Their numerical
results show that these improved algorithms are nearly optlmal on practlca.l
problems

The partitioning technique that we have described for estimating sparse
Hessians does not make any use of the symmetry of the matrix. Powell and
Toint [1979] have pointed out that it is often possible to use symmetry to reduce
the number of required gradient differences. Thecy propoused several ways of
doing this, and with one of their methods it is possible to estimate a tridiagonal
Hessian matrix with 2 gradient differences. It turns out that their methods can
also be analyzed with graph theory techniques; a treatment from this point of
view is given by Coleman and Moré [1982]. o

7. Quasi-Newton Methods. \

For some problems the objective function and its gradient are so expensive
to calculate that we are not willing to compute a difference épproxirnation to the
" Hessian matrix. These are not necessarily large dimensional problems. For

example, the problem might be to minimize the Lznorm of the solution to a
 differential equation that depends on a few parameters. In this case each func-
tion evaluation required by the oplimization method actually involves a numeri-
cal solution of a differential equation. '
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In an effort to reduce the computational requirements of Newton's method,

" . Davidon [1959] introduced a revolutionary idea which provides"a way to approxi-

mate the Hessian matrix using only the gradlent information gathered at each
iterate, Th1s idea has led to a highly successful class of methods which today are.
usua}ly.called quas17Newton methods. There is a huge literature on quasi-Newton
methods; our purpose in this section is to provide a brief introduction to the two
most powerful members of this class and to contrast quasi-Newton methods with
" methods in the Newton class. For a t.horough discussion of various aspects -of
quasi-Newton methods, see the survey paper of Dennis and Moré [1977].

In very s1mphst1c terms a quasi-Newton method might be termed as an
"earn while you learn " method It is to be contrasted with methods in the Nev}tou
class through the manner of mamtalmng an approximate Hessian. In quasi-
Newton methods, the apprommate Hessian must satisfy the quasi- Newton equa-
tion. To derive this equation, suppose that we have a positive definite approxima-

tion B to t.he Hessian of f at zk We can then compute a descent direction Pk
via

(7.1)  pe=—Br" lVf (’-‘k)

and a steplength oy in SR(p, 7). This defines-the step se = agp and the next
1t.erate T4+ = X + 5. Since -

[fvzf (zk"‘iésk)d,’é]ék‘_: \24 (-Tk+1) = Vf (Zk).,

it might be reasonable to seek an update to the: approxn:nate Hessian. which.
satisfies :

(7.2) :Bk+.13k =y =V/ (F-‘kn) !-‘Vf'(zk)-

This is the quasi-Newton equation and a method for generating B, from B, so
that (7.'2) holds is a quasi-Newton update. The quasi-Newton equaticn is essen-
- tially a gradient difference along the miost recent search direction. Thus, quasi-
Newton methods only use the search direction to obtain curvature information, .
while methods in the Newton class use n directions.

Various spec1ﬁo formulas exist for updating the matrix B, and we shall con-
centrate on those updates which guarantee that Bys, is symmetric and positive
definite. Note that if B+, is positive definite then (7.2) implies that uls is posi-
tive: 'I‘hls condition is satisfied whenever ¢, is in SR(u,'r)) because then

yksk =Vf (-"’kﬂ)sk - Vf (Ze)si, = (1""1) |Vf (zx)Ts |

We shall show below that if yis, is. posmve then there are symmetr-c aqd posi- -
tive definite matrices which satisfy the quasi-Newton equation.
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Ina discussion of quasi-Newton updates, it is customary and convenient to
drop subscripts. Assume, therefore, that we have an approximate Hessian B,
and vectors s and y with yTs positive. We then want to obtain update formulas
that produce matrices B, according to the quasi-Newton equation '
(7.3) Bys=y.

The simplest derivation of such a formula is to ask for the nearest matrix to B
which satisfies (7.3). f B, = B + E, then our problem is to find a solution to
(7.4) rmnﬂ]E'II (B +E)s ’=y;.

where [| - || is a suitable matrix norm. It is natural to choose the Frobenius norm
defined by

1Al = gi:frvi P = trace (47 4),

for any set v,, -+ - ,v, of orthonormal vectors, because this is the Euclidean
norm in the space of matrices. Wxth the Frobemus norm it is a simple matter to
‘verify that

_ (y—=Bs )sT

sTs

‘solves problem (7.4). Just note that F satisfies (B + E)s =y and that if £ is any
other matrix that satisfies this equation then

A
8l = =BTy BTy ST -2,

This E is the unique solution to (7.4) sihce I llr is convex and the constraint in
(7.4) is linear. The explicit updating formula for B is therefore given by

B+=B+$L=£-)-S—T—,

This is Broyden's [1965] rank-1 update formula; it is a rank-1 update because
rank(E) = 1. Broyden's update is the most powerful quasi-Newton update for
the solution of systems of nonlinear equations. For minimization, however, there
are more suitable updales. A reason for this is that B, is usually neither sym- '
metric nor positive definite even though‘B might possess these properties. In
Section 4 we saw the importance of these properties in obtaining convergence
for descent methods. Therefore, we are very interested in updating formulas
which maintain symmetry and positive definiteness in the matrices B. One way
to obtain these properties is to require that B = RTR and obtain R, =R +F
‘such that B, = RTR+ satlsﬁes 7 3) It would be qmte na'tural to seek the correc-
tion £ as a solution to the problem
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" (7.5) rmninEllp (R+EYI(R + E)s =y3.

Variational techmques can be used to show that the correction £ which solves
this problem is a rank-2 update to R. To our knowledge this approach has not
been tried in practice because-there is a rank-1 correction £ which meets our
requirements and has proven to be extremely successful. We might motivate a
derivation of this rank-1 update by considering the implications of the qua'si-'
- Newton equation on the factors of B+ 1f B, = RTR+ satisfies (7.3) then £ must
satisfy

(7.6) (R+E)Tv =y, (R+E)s =v, vivu=yTs>0.

Cbhversely. if E satisfies (7.6) for a given vector v, then B, = RI}?+ satisfies
(7.3). Thus a reasonable alternative to solving problem (7.5) is to specify a vec-.
tor v of norm (y7s)* and then obtam a correction matmx E whlch satlsﬁes (7.6)
as well as

(7.7) - min || E ||y : (R +E')T’U =y}
* The solution to (7 7) for a given v is.

. E= 'u(y —RT'U)T
- vy !

and it follows that this £ satisfies (7.6) if and only if v = TRs for some 7. Since ,

we ’m'ust have vTv = yTs, this condition determines 7. We have thus shown that

'v(y RTv)T

(7.8) R.=R+
v ‘U

o induces a symmetrlc positive definite quasi-Newton update.

The updating formula we have just derived was discovered mdependently by
Broyden[1969,1970], Fletcher[1970], Goldfarb[1970], Shanno[1970], and is often
referred to as the BFGS formula. We have concentrated upon this particular

. update because it appears to work best in practice. The derivation of the BFFGS
update which we have presented is due to Dennis and Schnabel [1981]. Davidon
and Sorensen [1980] have provided another denvatmn of the BFGS update by
obtalmng the quasi-Newton equatlon (7.8) as Lnterpolatxon condltlons on the gra-
dient of the local quadratic model, and then showing that v =TRs is a con-.
sistent choice. However, while numerous derivations of this update formula have .
been given, the superior performance of the BFGS update has not yet received a
satisfactory explanation. o ' '

A quasi-Newton . method based on the BFGS update would generate a
sequence {z,} defined by Tp+r = Te + Pi where 2 is the direction (7 1) and {5y}
is chosen by the BFGS formula. It By is symmetrlc and posmve definite, and if o .
satlsﬁes the stopping rules SR(u,n), then yis, is posmve and thus Bk is well
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- defined and positive definite for k > 0. For this method Powell [1975] has shown
that if f : R* - R satisfies the assumptions. of Theorem (4.15), and if f is convex
on the level set Q, then {Vf (z,)} converges to zero. Moreover, if {z;] converges
to z° and V3f (z°) is positive definite, then {z,} converges superlinearly-to z°. In
practice this method converges. for general functions J . so there is a wide gap:
between this result and what is observed in practice. .

" At first sight, it would seem that Powell's result is a rather straightforward
extension of the analysis of Newton's method. However, this would be the case
only if we could show that the condition numbers of {B,} are uniformly bounded.
Interestingly enough, Powell shows this, but only after convergence has been
established.

The form of the update (7.8) is quite amenable to stable numerical compu-
tation. In particular, it is possible to maintain the matrices Rin triangular form.
This facilitates the solution of the system: (7.1) and reduces the storage. The
reduction to triangular form can be accomplished by standard (see, for exam-
ple, Gill, Golub, Murray, and Saunders [1974]) matrix updating techniques. If R
is upper triangular, then a product of elementary rotations @ = @&z = @z, .
can be constructed in such a way that o ‘

o [ (- RTYT)
(7.9) E+==QR+=¢%R+-ldy:ﬁ;-2L4

is also upper triangular. Since § is orthogonal,
 RIR.=RIQ"@R. = RIR,.

and.thus . is the required factor of B;. Since @ is the product of 2n elemen-
tary rotations, the arithmetic required in (7.9) is on the order of n? floating
'point-. operations. This is to be compared to the order of n3 operations required
to form B, and then factor. Another advantage of keeping X in triangular form
is that the condition number of triangular matrices can easily be monitored.
This provides the opportunity to alter these matrices when extreme ill-
conditioning occurs.

8. Current Research.

It is fairly safe to say that Newton's method and quasi-Newton methods are
under'stood well enough to provide reliable software for general smail ‘e medium
size unconstrained minimization problems.” Several subroutines are available
through software libraries and others are under development.

Currently, researchers are focusing much of their attention upon large
scale problems. The ground rules for what constitutes an effective algorithm can
changc drastically when the number of variables becomes large. We have tacitly
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assumed that the solution of a linear system of order =n is, at worst, comparable
in cost to the evaluation of the gradient and Hessian. This aséumption may not
be valid in large scale problems, and then it is necessary to take advantage of
_ the special structure of- the problem. With suitable modifications, Newton's ; ‘
method can still be an effective tool for large scale problems. We have already

mentioned, in Section 6, one poss1ble modlﬁcatxon in connection with the esti-
mation of .sparse Hessian matrices by gradient differences. Modifications can

also be made to the algorithms for determining the Newton direction. For exam-
ple, since the Newton methods of this paper only require the Cholesky decompo-

sition of a symmetric matrix, for sparse problems it is possible to reduce the

amount of work and storage reqmred by this decornposulon This is a well under-

stood problem; see, for example, George and Liu [1979]. Another possibility is to

only determine an approximation to the Newton du‘ecuonT This possibility is

explored, for example, by Dembo and Steihaug [1980].

So far modifications of quas1—Newton methods to account for spars1ty have

" not had the resounding success that these methods have had in the dense case

Thls is desp1te intensive effort in this area.. There may be fundamental reasons
for this as noted by Sorensen [1981_]. However, it would seem that this subject is
just not fully understood. at present, and thus this is still a very active research-
area. The interested reader should consult Stelhaug [1980] and Toint [1981] for.
information and additional references.

The situation in greatest need of research at present arises when the Hes-
sian matrix cannot be stored in fast memory. Currently the method-of choice for
this situation is a conjugate direction method. It. would take: a full article to
describe these methods. Fletcher [1980] has a niceintroduction fo the basic
ideas behind conjugate direction methods, while Buckley [1978a,1978b] and Gill
‘and Murray [1979] describe some of the recent work in this area.

The development of methods for these very difficult and highly praétical
situationis hinges upon a thorough understanding of Newton's method. 1t is our
. bope that this paper will provide a basis for work in these areas.’
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