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Abstract
An Event-Join is mostly used to group several temporal attributes of an entity into 

a single relation. It combines temporal equi-join and outerjoin components into one 
operation. The temporal outerjoin component is different than a non-temporal one 
because of a time interval predicate, and it consists of two asymmetric temporal outer- 
join operations. In this paper, we motivate the need to support the efficient processing 
of event-joins, and introduce several optimization algorithms, both for a general data 
organization and for specialized organizations (sorted and append-only databases). For 
the append-only database we introduce a new data structure, that can improve the per­
formance of event-joins as well as other queries. Finally, we evaluate the performance of 
the proposed algorithms.
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1. INTRODUCTION AND MOTIVATION

Temporal data models are designed to capture the complexities of many time-dependent 

phenomena, something that traditional approaches, like the relational model, were not intended to do. 

Many new operators are needed in order to exploit the full potential of temporal data models in enhancing 

the retrieval power of a database management system (DBMS). Many temporal operators have been 

introduced in the literature, (e.g. [Adiba & Quang 86, Clifford & Tansel 85, Clifford & Croker 87, 

Snodgrass 87]), yet with few exceptions (e.g., [Lum et al 84, Rotem & Segev 87, Snodgrass & Ahn 88]), the 

issue of performance and optimization has not been a major focus so far. In a previous paper [Gunadhi Sc 

Segev 88b], we identified a set of temporal joins and carried out preliminary investigation into their 

optimization. In this paper, we extend that work further by studying in detail the optimization of one 

type of temporal join — the event -join .

The event-join operator was first introduced by [Segev -Sc Shoshani 88a]; it is unique in that it com­

bines temporal join and outerjoin [Date 82] components into a single operation. It is used primarily to 

group temporal attributes of an entity into a single relation; temporal attributes belonging to the same 

entity, but which are not synchronous in their event points, are likely to be stored in separate relations. 

Many queries require that they be grouped together as one relation, but differences in their behavior over 

time brings up the possibility that nutt values are involved in the operands and the join result.

This paper deals with optimizing event-joins in temporal relational' databases. Its contributions are 

the following:

• Motivating and demonstrating the need to support the efficient processing of event-joins.

• As traditional processing cannot support event-joins, we have developed optimization algorithms for 

various situations, including static sorted databases, and dynamic databases with general data organiza­

tion and append-only organization.

• In the context of the append-only database, we have developed a new data structures called the AP- 

Tree (Append —Only Tree). This tree is a variation of an ISAM and a B +-tree combination, and is useful 

for other temporal queries besides event- joins.

• We compare the proposed algorithms by evaluating their costs and present some computational results.



The paper is organized as follows: in the next section, we discuss the relational representation of 

temporal data. In section 3, the event-join operator is defined and explained through an an example. Sec­

tion 4 explores the optimization of event-joins for data that is sorted and data in a generalized setting; an 

algorithm for each is described in this section. Section 5 deals with the third main type of data: append- 

only databases, for which we propose two algorithms to optimize the event-join operator for such a data­

base. The new indexing structure for append-only databases — the AP -tree is introduced in section 6. 

Section 7 presents the derivations of the cost of each of the four algorithms, and a comparison between 

them. Conclusions and directions for further research are given in section 8.

2. RELATIONAL REPRESENTATION OF TEMPORAL DATA

A convenient way to look at temporal data is through the concepts of Time Sequences (TS) and 

Time Sequence Collection (TSC) [Segev Sc Shoshani 87]. A TS represents a history of a temporal 

attribute(s) associated with a particular instance of an entity or a relationship. The entity or the relation­

ship are identified by a surrogate (or equivalently, the time -invariant key [Navathe Sc Ahmed 86]). For 

example, the salary history of employee #1 is a TS. A TS is characterized by several properties, such as 

the time granularity, lifespan, type, and interpolation rule to derive data values for non-stored time 

points. In this paper, we are concerned with two types — stepwise constant and discrete . Stepwise con­

stant {SWC) data represents a state variable whose values are determined by events and remain the same 

between events; the salary attribute represents SWC data. Discrete data represents an attribute of the 

event itself, e.g. number of items sold. Time sequences of the same surrogate and attribute types can be 

grouped into a time sequence collection (TSC), e.g. the salary history of all employees forms a TSC.

There are various ways to represent temporal data in the relational model; detailed discussion can 

be found in [Segev & Shoehani 88a]. In this paper we assume first normal form relations (INF). Table 1 

shows two ways of representing SWC data. The representations can be different at each level (external, 

conceptual, physical), but we are concerned with the tuple representation at the physical level. The 

representation in Table 1(b) stores data only for event points and requires explicit storage of null values 

to indicate the transition of the state variable into a non-existence state. Also, the tuples should be 

ordered by time in order to determine the values between two consecutive event points. Both
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representations require the use of the lifespan metadata; it is required for the time-interval representation 

since we do not store non-existence nulls explicitly, for example, the lifespan is needed in order to 

correctly answer the query "what was the commission rate of E2 at time 12?”. In order to generalize the 

analysis, we assume SWC data using the time-interval representation; the event-join algorithms can be 

greatly simplified for a time-point representation of SWC data and for discrete data, f

MANAGER E# MGR Ts TS COMMISSION E# CJRATE Ts Te
El TOM 1 5 El 10% 2 7
El MARK 9 12 El 12% 8 20
El JAY 13 20 E2 8% 2 7
E2 RON 1 * 18 E2 10% 8 20
E3 RON 1 20

(a) time-interval representation

MANAGER E# MGR T COMMISSION E# CJSATE T
El TOM 1 El 0 1
El 0 8 El 10% 2
El MARK 9 El 12% 8
El JAY 13 E2 0 1
E2 RON 1 E2 8% 2
E2 0 19 E2 10% 8
E3 RON 1

(b) time-point representation

Table 1: Representing Step-Wise Constant Data with Lifespan = [1, 20]

We will point to cases where simplified algorithms can be used when we describe the event-join operation. 

We use the terms tvrrogate, temporal attribute , and time attribute when referring to attributes of a 

relation. For example, in Table l, the surrogate of the MANAGER relation f is E#, MGR is a temporal 

attribute, and Ts and TE are time attributes. We assume that all relations are in first temporal normal 

form (ITNF) [Segev & Shoshani 88a]. 1TNF requires that for each combination of surrogate instance, 

time point in the lifespan, and temporal attribute (or attributes) there is at most one temporal value (or a

t For discrete data, using time-intervals is superfluous since the start time 7$ is equal to the end time Tg 
for each tuple
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unique combination of temporal values). Note that INF does not imply ITNF, for example, the relation 

COMMISSION in Table 1(a) would not be in ITNF if for any surrogate instance there were two tuples 

with the same commission rate value and intersecting time intervals.

3. EVENT JOINS

An Event -Join groups several temporal attributes of an entity into a single relation. This operation 

is extremely important because due to normalization, temporal attributes are likely to reside in separate 

relations. To illustrate this point, consider an employee relation in a conventional database. If the data­

base is normalized we are likely to find all the attributes of the employee entity in a single relation. If we 

now define a subset of the attributes to be temporal (e.g., salary, job-code, manager, commission-rate, 

etc.) and. they are stored in a single relation, a tuple will be created whenever an event affects at least one 

of those attributes. Consequently, grouping temporal attributes into a single relation should be done if 

their event points are synchronized. Regardless of the nature of temporal attributes, however, a physical 

database design may lead to storing the temporal attributes of a given entity in several relations. The 

analogy in a conventional database is that the database designer may create 3NF tables, but obviously, 

the user is allowed to join them and create an unnormalized result.

Let r,-(/?,•) be a relation on scheme R{ = {5,-, An, ..., A,m, Ts, Tg}. In many instances we illus­

trate the concepts using a single temporal attribute, that is, m =1; all apply to any m > ’. Also, when 

the two surrogate types S( of R( and S} of Rj are the same, we simply use S. Instances of surrogate S 

are denoted by « 1, a 2, • • •. We use x,- to refer to an arbitrary tuple of rf; x,- (A ) is the value of attri­

bute A in tuple x,-. In order to describe the event-join between r 1 and r2, we first present two basic 

operations TE-JOIN and TE -OUTERJOIN. TE-JOIN is the temporal equivalent of a standard equi- 

join; two tuples xj € rt and x2 € are concatenated f if their join attribute’s values are equal and the 

intersection of their time intervals is non-empty; the T§ and T# of the result tuple correspond to the 

intersection interval. Semantically, this join condition is "where the join values are equal at the same

t w« refer to the data construct as a 'relation’, but we mean a 'temporal relation'. It is different from a stan­
dard relation because of the associated meta-data.

t It is not a standard concatenation since only one pair of Ts and Te is part of the result tuples.



time”. Optimization issues in executing general TE-JOINs are discussed in [Gunadhi Sc Segev 88b], In the 

case of event-joins, we are concerned only with a special case of TE-JOINs where the joining attribute is 

the surrogate. A TE-OUTERJOIN is a directional operation from rt to r2 (or vice versa). For a given 

tuple arj € r!, outerjoin tuples are generated for all points t such that [i^T^ ), x i()j and there does 

not exist z2 € r2 such that ) — * i(5) and t € [z^Ty), z^ Tg)]. Note that all consecutive points t 

that satisfy the above condition generate a single outerjoin tuple. Using those operations the event-join is 

done as follows.

r, EVENT-JOIN r,: 

tempi «— r! TE-JOIN r2 on S 

temp2 +- r j TE-OUTERJOIN r2 on S 

temp3 •*— r2 TE-OUTERJOIN rj on 5 

result <— tempi U temp2 U temp3

The above operations are illustrated in the example of- Table 2, where an event-join is performed 

between the MANAGER and COMMISSION relations of Table 1.

The most troublesome components of the event-join are the outer-joins. The situation is further 

complicated by the time interval predicate associated with the TE-outerjoin, preventing the usage of 

non-temporal outerjoin procedures [Rosenthal Sc Reiner 84, Dayal 87]. An easy solution that comes to 

mind is to store all non-existence tuples explicitly, e.g., tuples like (1, 0, 8, 8) are added to the 

MANAGER relation of Table 1. In that case the outerjoin components disappear, and the problem 

reduces to a TE-JOIN on 5. Unfortunately, there are many situations where such a ’fix' will degrade 

overall performance rather than improve it. For example, if the whole 5,- domain is represented in relation 

*Y i representing all non-existence data explicitly will in the worst case double the size of the table (this is 

the case of alternating state transitions between existence and non-existence). A much worse problem may 

arise when a relation contains only a fraction of the S -domain values, e.g., if on the average, only of 

the employees of a large corporation earn commissions, adding to the non-existence data for the 95% 

other employees to the commission relation will add to storage cost, querying cost (including event joins), 

and maintenance of the commission relation and any of its associated secondary indexes.
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MANAGER TE-JOIN COMMISSION ON E#

tempi E# MGR CJRATE Ts Te
El TOM 10% 2 3
El MARK 12% 9 12
El JAY 12% 13 20
E2 RON 8% 2 7
E2 RON 10% 8 18

MANAGER TE-OUTERJOIN COMMISSION ON E#

temp2 E# MGR C RATE Ts Ts
El TOM 0 1 1
E2 RON 0 1 1
E3 RON 0 1 20

COMMISSION TE-OUTERJOIN MANAGER ON E#

tempS E# MGR CJRATE Ts Tf
El 0 10% 6 7
El 0 12% 8 8
E2 0 10% 19 20

MANAGER EVENT-JOIN COMMISSION

result E# MGR CJRATE Ts Tt
El TOM 0 1 1
El TOM 10% 2 5
El 0 10% 3 * 7
El 0 12% 8 8
El MARK 12% 9 12
El JAY 12% 13 20
E2 RON 0 1 1
E2 RON 8% 2 7
E2 RON 10% 8 18
E2 0 10% 19 20
E3 RON 0 1 20

Table 2: Event-Join Derivation

Consequently, we divide event-joins into two types — ’easy’ and ’difficult’. Easy cases are those 

where the relations contain explicit tuples for ail non-existence data and are sorted by (5 , Ts) (the sorted 

case ls detailed in the next section). Other cases are regarded difficult. In the remainder of the paper we
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are mostly concerned with the difficult cases.

4. EVENT-JOIN OPTIMIZATION

In this section we discuss the optimization of event-joins where the relations are either sorted or 

unsorted. Before we proceed with details of the algorithms, the important concept of tuple covering, 

which is used throughout the discussions, is presented first.

4.1. Concept of Tuple Covering

We first introduce the notion of covering which is used in all the event-join algorithms. To illustrate 

the concept, consider the example of Table 3.

*■1 r9 Covering of x, Modified xt
& Ij 3 j 5f IS si, b, 1,2 None s 1, a , 5, 15

5 lf c , 7 si, a, e ,5,7 «i; < , 8, 15

s 1, d, 9, 12 si, a , 0, 8, 8 
e 1, a , rf, 9, 12 si, a, 13, 15

si, e, 16, 20 si, a , 0, 13, 15 Fully covered

Table 3t Example of Tuple Covering

Relation rj has a scheme » (5, A Ts, Tg) and a single tuple <s 1, a , 5, 15>. r3 has a scheme 

f?3 * {S, A2) Ts, Tg) and four tuples as shown in the table. During the event-join, xx 6 ^ has to be 

compared with tuples x2 € r3; assume that the order of comparisons is as shown in the table (top-down). 

A tuple *3 contributes to the covering of Z| if one or two result tuples (x1(5), x [(A t), x^A^), Ic } can 

be derived, where Ig C (x jfTs), )]• can be viewed as a covered portion of xx. The ’modified xx

column in the table represents the uncovered portion of xs. Note that in the covering process we have 

relied on the ordering of r2 by time in deriving the outerjoin tuples (those with x^A2) = 0). Also, the 

covering column of the table contains only a subset of the final result since the covering of r2’s tuples is 

incomplete. The remaining result tuples should be derived from TE-outerjoin r2 by In this particular 

example, the remaining result tuples are <a 1, 0, 6 , 1, 2>, <s 1, 0, e , 3, 4> and <$ 1, 0, « , 16, 20>.



8

Determining and maintaining the information about the covered portion of a tuple is substantially 

different if the relations are not sorted by Ts. In the sorted case we can determine outerjoin tuples as the 

scanning progresses and the information about the covered portion of the tuple is maintained by simply 

modifying its Ts ■ In the general case, the covered subintervals can be encountered in a random order; 

moreover, an outerjoin result tuple associated with x{ 6 n can be determined only when the scanning of 

r2 is complete. We first present an algorithm for the case where r j and r2 are sorted by S (primary 

order) and by Ts (secondary order). In the next subsection we discuss the general case. As can be seen 

from the above example, the particular values of A ( and A 2 are immaterial as far as the logic of the 

event-join is concerned; we are only interested in existence or non-existence of these attributes. Conse­

quently, in the remainder of the paper, whenever convenient, we use examples with relation schemas of 

(St-, Ts, Ts), but the reader should keep in mind that at least one A,- attribute is part of the actual 

tuples. Also, the algorithms presented in this paper involve lots of housekeeping details. For lack of space 

we omit the details and provide only an outline of the algorithms. The logic of all algorithms is described 

ignoring blocking of tuples; it is trivially extended to handle blocking. The cost analysis in Section 7 take 

into consideration the blocking factor.

4.2. Event-Join Sort-Merge Algorithm

The Event-Join Sort -Merge algorithm processes the event-join by taking advantage of the fact 

that both relations are in sort order. Unlike a conventional relation which requires only primary key order 

for sorting, the temporal relation needs to be sorted on 5 as the primary order and T$ as the secondary 

order. The event-join sort-merge algorithm, which will be referred to as Algorithm One, scans each rela­

tion just once in order to produce the result relation. At each iteration, two tuples (possibly with modified 

Ts), *1 € rt and *2 € r2, are compared to each other and one or two result tuples will be produced 

based on the relationship between the tuples on their surrogate values and time intervals.

The first comparison in Algorithm One is on the surrogate value — if they are unequal, it means that 

the tuple with the lower S value, say zu does not have any matching surrogates in the other relation, 

this implies that x j is fully covered, an outerjoin result tuple is generated, and the next x t tuple is read.
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Algorithm One

(1) . Read Zi and x2- Repeat steps 2 to 4 until End-of-File (EOF). If EOF occurred for r,-, gen­
erate outerjoin tuples for the remainder of r;- ’s tuples (including the current tuple if not fully 
covered).

(2) . If X; (S) < xy (S), generate an outerjoin result tuple for x,-.

(3) . For the situation where ar t(5) = x^S), there are three cases to consider (see Figure 1):
Case 1: ar< (7s) = Xj{T$ )• Write an intersection result tuple.
Case 2: *,• (7s) < z} (Ts) and x,- () > Xy (7s )■ Write one outerjoin tuple for x,- and one inter­
section tuple. Modify xl and x2 and read next tuples(s).
Case 3: x. fTs) < Xj(Ts). Write an outerjoin tuple for x,-.

(4) . Modify Xj and x2 and read next tuple(s) (see Figure 1).

If on the other hand xt(S) == x2(5), there are many possible relationships that can exist between 

the time intervals of the two tuples; but there are just three distinct possibilities in terms of result tuples 

that have to be generated. The three cases are identified in Step 3 of Algorithm One. Figure 1 illustrates 

the above points: it shows the time intervals of original pair of tuples and their relative positions to one 

another, the time intervals of result tuples, the modified tuples which consist of the original tuples with 

TV modified to represent the uncovered portion, and finally the action taken with respect to which 

tuple(s) are read next. The next tuple of rf is read only when the current tuple has been fully covered. 

Note that whenever we use the subscripts i and j in Algorithm One, t = 1 and j = 2 or i =2 and 

j. =* 1. Also an intersection result tuple is equivalent to a TE-JOIN result tuple.

4.3. Event-Join Nested-Loops Algorithm

The Nested-Loops method described below does not assume any kind of ordering among the tuples 

in either relation. The event-join is achieved in two stages, the first of which is nested loops with r1 and 

r2 being the inner and outer relations respectively. Tuples produced in the first stage are the result of 

either intersections or outer joins from r t to r2. In the second stage, the order of relations are now 

reversed for another nested loop, but the only result tuples created here will be outerjoins from r2 to r t.
f

Unlike the sorted case, maintaining the information about the covered portion of x,- ’s time interval 

cannot be done by simply modifying TV, and the following procedure is followed. In the first nested loop, 

whenever a tuple xt from r j is first read, a list £f is initialized with the pair of time-stamps associated



Original tuples
X, Xt Result tuple(s)

Modified tuples
1 J Read next tuple

r t T
11 -L j

I *

T
1
1
| » * U
1

1 -1 T
1iJL I

mtmham i

* I

X
I hi j

I *

i

T T1 » * u
1 IL JL -

mrnr I *

T T *L j_ I

1

1
r T

* I

.L
Ji

nr iI * I
fully covered 

Intersection result tuple

outerjoin result tuple

Note : a time interval of original tuples, result tuples, and modified tuples can be a point.

Figure 1: Producing Event-Join Tuples for Algorithm One
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with x j. This list corresponds to the uncovered portions of r j. For each tuple x2, the algorithm applies 

the test of equality on the surrogate values and a non-null intersection over time. The second condition is 

needed because if two tuples share a common surrogate value but are disjoint over time, no conclusion 

can be derived (in contrast to the sorted case) as to whether an outerjoin is appropriate, unless the EOF 

for r2 has been reached. Thus, while scanning r2, the covering of *1 is achieved only through interval 

intersections, and for each xt, at most one intersection result tuple will be produced. Once this is accom­

plished, the uncovered subintervals associated with xj are determined, and appropriate outerjoin result 

tuples are generated. At the end of r2’s scan the interval of Xj will either be completely covered, has one 

uncovered segment, or at most two segments. For each uncovered segment, the time pair representing 

them are inserted into U in place of the original entry. This ensures that U remains an ordered list; the 

ordering within U helps the search for the appropriate interval that is relevant for a TE-JOIN in subse­

quent iterations through r2. Regardless of the number of entries in the list, any tuple x2 can only inter­

sect with one entry, otherwise it would mean that there are two or more tuples in r2 having the same 

surrogate value and overlap in time. This implies that the condition of ITNF has not been satisfied.

Unlike conventional nested-loops procedures, we need not retrieve all the tuples of the outer rela­

tion, since an empty U indicates that the original xl has been fully covered. In the event that the loop 

terminates because the end of file r2 is reached, either the whole, or parts of xj’s time interval were left 

uncovered. An outerjoin result tuple is generated from each time pair in U; the time pair determines the 

time-start and time-end of the result tuple.

The second nested-loops differs from the first in that it produces only outerjoin tuples from r2. Thus 

no result tuple duplicating a tuple already produced in the first stage is created, hi order to reduce the 

number of unnecessary scans of r;, the Algorithm uses a hath -filter [Bloom 70] created during the first 

stage as follows: when r2 is scanned, each time an x2 is found that participates in a TE-JOIN, the hash- 

filter is updated for that tuple. The hash-filter maintains H bits to represent jV,2 tuples, where H < Nr^. 

The hash-filter entries corresponding to k (x2), where h is the hash-function, are initialized to 0, and 

whenever an x2 generate an intersection result tuple for the current xu h (x2) is set to 1. This table is 

kept in main memory, and in the best case scenario when there is sufficient memory to maintain one bit
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per tuple, the hash function is the count of z2 tuples already accessed, and the table is a one dimensional 

array indexed by this count.

During the second stage, for each tuple in the inner relation r 2, if it hashes to a value of 0, then an 

outerjoin tuple is produced without scanning r,-. Otherwise, as in the first nested-loops, we carry out the 

same updates on the coverage of x2, although no intersection tuples are produced As before, outerjoin 

tuples are produced when it can be determined that no z z exists to cover the current z2. Below we out­

line the steps of the algorithm, labeled as Algorithm Two. U; denotes the list U for x,-, i =1, 2.

Algorithm Two

(1) . [Nested-Loops-1] For each tuple in rj: read r2 and execute Step 2 until EOF for r2 or is 
fully covered. If EOF, for r2, produce outerjoin tuples for Xi based on Ui and initialize Uj.

(2) . If Xi(5) x<£S} and the two time intervals intersect, then do: write an intersection result 
tuple. Update Uj. Set hash-filter entry for x2 to 1.

(3) . [Nested-Loops-2j For each tuple x2 of r2: if hash-filter bit == 0 produce outerjoin tuple im­
mediately, an read next z2. Otherwise read rj and execute Step 4 until EOF for rt or x2 is fully 
covered.

(4) . if x^S ) =* x^S) and the two time intervals intersect then update £/'2.

In the case of having space for a second bit for each of r2’s tuples, Algorithm Two can be further 

improved if a second filter is used. During the first stage, while covering xt it is possible that the time 

interval of x2 contains that of Xj. In that case we set the co.responding filter entry to 1. Then, in Step 3 

we also avoid the scan of r, if the first filter bit is 1 and the second filter bit is 1.

5. APPEND-ONLY DATABASES

In the case of static history databases, one can store the data sorted by (S’, T$) and then apply 

Algorithm One; this provides the maximum efficiency for event-joins. For a dynamic temporal database, it 

may be too inefficient to keep the data sorted by (5, TV), and consequently, either the operands are 

sorted prior to the application of Algorithm One, or Algorithm Two is used. If the database is append- 

only, the event-join algorithms can utilize this fact to enhance their efficiency.

There are several variations of append-only databases, some of which are not ’truly’ append-only. As 

far as event-joins are concerned we view a database to be append-only if tuples are inserted at the end of
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the file and in order of the events that generated them. The tuples can have open-end or closed-end time 

intervals. To illustrate these points, consider Figure 2 that shows the time sequences for three surrogate 

instances with life-spans of (l, NOW)-, each event point corresponds to the generation of a new tuple for 

the surrogate (we are not concerned with the values of the temporal attributes). Let relation r,- represent 

that data; the states of that relation are shown in Table 4. Note that such data is inappropriate for a 

WORM device since insertions also cause updates; for example, the event at time 10 led to updating 

(a 2, 1, NOW) to (a 2, 1, 9) and appending the tuple (a 2, 10, NOW). If the representation of the data in 

this example would use time points instead of time intervals, it would be truly append-only.

Tims

X * avent point

Figure 2; Time Sequences for Three Surrogates with Lifespans = [l, NOW]

Deletions in append-only temporal databases are significantly different than in conventional data­

bases. In our case, they are storage management activities rather than user transactions. From a logical 

point of view deletions are a result of a change in the lifespan f, i.e. an increase in the value of 

LS. START. An example is a ’moving-window’ lifespan [NOW - l, NOW) where / is the length of his­

tory. In the case of step-wise constant sequences, deletion of data to reflect the new lifespan is not 

guaranteed to be contiguous; Table 5 illustrates this issue. The table shows the state of r,- at t =» 21 

(reproduced from Table 4) and the effect of changing the lifespan at 1 = 22 from [1, NOW] to 

[7, NOW). As can be seen from the table a new lifespan can cause updates and deletions at any point in

t We use LS.START ind LS.END to refer to the boundary points of the lifespan.



13

Snapshot at Time State of r, : {5;, Ts , TE } 
f.4,- is omitted)

1 < f < 5
si, 1, NOW 
s 2, 1, NOW 
a 3, 1, NOW

V*>*

V
IlO

* 1, 1, 4 
a 2, 1, NOW 
a 3, 1, NOW 
a 1. 5, NOW

7 < f < 9

5 1, 1, 4 
a 2, 1, NOW 
a 3, 1, NOW 
a 1, 5, 6 
a 1, 7, NOW

10 < f <20

a 1, 1, 4 
a 2, 1, 9 
a 3, 1, NOW 
a 1, 3, 6 
al, 7, NOW 
a 2, 10, NOW

20 < f < Next Event Point

al, 1, 4 
a 2, 1, 9 
a 3, 1, 19 
a 1, 5, 6 
al, 7, NOW 
a 2, 10, NOW 
a 3, 20, NOW

Table 4t Progression of an Append-Only Database States

the file. Although this example used open-end time intervals, the same problem occurs for any step-wise

constant data regardless of its representation. It also demonstrates that maintaining the lifespan for an 

active database with small time granularity on a real-time basis can be prohibitively expensive. For­

tunately, these updates and deletions can be done periodically without affecting the logical view of the 

data, that is, the physical lifespan can be different than the logical lifespan provided that the first contains 

the latter. For discrete data, the situation is much simpler and implementing a change in the lifespan can 

be done by simply updating a begin-of-file pointer to the first tuple whose time value is greater than or 

equal to the new LS.START.
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State of r,-: {S{, Ts , T,}
Tuple Number Lifespan = [l, NOW] 

t = 21
Lifespan = [7, NO W j 

£ — 22
1 « 1, 1, 4 deleted

0m *2, 1,9 *2,7,9

3 a 3, 1, 19 a 3, 7, 19

4 a 1, 5, 6 deleted

5 a 1, 7, NOW a 1, 7, NOW

8 a 2, 10, NOW a 2, 10, NOW

7 a 3, 20, NOW a 3, 20, NOW

Table 5: Effect of Modifying the Lifespan of r,- at t — 22

If rf is an append-only relation the order of its tuples corresponds to the order of their events, thus, 

they are ordered by Ts . Unfortunately, the event-join needs the primary order to be by 5, and the surro­

gate instances of r,- can be in an arbitrary order. Nevertheless, we can take advantage of the ordering by 

Ts • We assume that if retroactive corrections to the history are necessary, they are done in batch mode 

offline and the file is reorganized to preserve the T5-order; this is a reasonable course of action in most 

environments where the normal mode of operation is not error-correction. Another solution is to use an 

overflow area to store the ’correction records’; if their number is small (relative to the data file) they will 

not affect the performance of the event-join algorithms.

We present two event-join algorithms in this section. The first algorithm, stated as Algorithm Three 

below, follows the logic of the Nested Loops algorithms, but is different in two important ways. First, 

when *1 is compared against tuples of rj we do not necessarily have to complete r2’s scan — since r2 is 

append-only it follows that is fully covered if zt{51) = 12(^2) and x2 fully covers Xj, or if 

xi(Si) *3(5*) and x^Ts) > x^Tg). Second, as in the sorted case, the covered portions of x( are 

always contiguous and thus we can maintain that information by updating r j(7$) as was done in Algo­

rithm One. Unlike the sorted case we cannot write outerjoin tuples for x2 when r2 is scanned to cover x j 

(see Step 3 of Algorithm Three). We refer to the first append-only database algorithm as Algorithm
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Three, and outline the procedures below.

Algorithm Three

(1) . [Nested-Loops-l] For each it: read r2 and execute Step 2 until xl is fully covered or EOF for 
r2 is reached. If EOF, generate outerjoin tuple for

(2) . There are four cases to consider in this step.
Case 1: > x2(Ts) — no result tuple is generated.
Case 2: x ^5) z^S) and z2(Ts) > zt(T^) ~ generate an outerjoin tuple for z^
Case 3: 1,(5) 7^ z^S) and z2(Ts) < z^Tg) — no result tur le is generated.
Case 4:x t(5 ) = x2(5) and x^Ty ) < z2(Ts ) — do Step 3.

(3) . Execute Step 3 of Algorithm One, except that no outerjoin tuple is written for x2 if 
z^Tg) < x^Tj), and the hash filter is updated whenever the time intervals of zt and x2 inter­
sect.

(4) . [Nested-Loops-2] The procedure is similar to Steps 1 to 3, except that
i If hash-filter entry for x2 is 0, produce an outerjoin tuple without scanning r j.
ii Do not produce any intersection tuples.
iii No filter updates occur and on EOF for r2 the algorithm stops.

The second algorithm, stated as Algorithm Four below, avoids the final outerjoin from r2 to rj by 

writing updated time-intervals for r2’s tuples while they are scanned for each xl tuples. This is achieved 

by creating a copy of r2 which is updated during the first nested-loops. The benefit of this approach is 

that the second nested-loops is replaced by a single scan through r2 in order to determine which tuples 

require outerjoins where no tuple has been found in r j with matching surrogates. The updating procedure 

for tuples in r s and r2 is similar to that of Algorithm One.

Algorithm Four

(1) . Create a working copy of r2, and call it r/ .

(2) . (Nested-Loops-1] Procedure is the same as Steps 1 to 3 of Algorithm Three, except:
i Step 3 is done exactly as in Algorithm One, that is, we write outerjoin tuples for x2.
ii *<2 is updated by writing in place its modified T5. If x2' is fully covered its Ts is set to 
Tg + 1.
iii No hash-filter is used.

(3) . Read r2 in a single scan, and for those tuples where Tg < Tg, produce an outerjoin result 
tuple.

Note that Step 1 of Algorithm Four can be done while scanning r2 for the first xt tuple; subsequent 

Xi tuples scan r2 . Both of the above algorithms contains a nested loop component to cover x! tuples by
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scanning r2. This component is the most expensive part of the algorithms, and reducing the number of 

r2’s tuples scanned for each Xi is very important. The append-only property helps in achieving that 

objective but we may further improve the performance by using a secondary index as described in the 

next section.

8. THE APPEND-ONLY TREE

Let r j and r2 be append-only relations. We use a second subscript x,- whenever we need to identify 

specific tuples, that is, x,y is the tuple x,- in location j (note that there is a one-to-one correspondence 

between tuple number and location number). We know that if Ji > h, then xi}i{Ts) > x,7a(r5). Let xt 

be an arbitrary tuple of r t and assume we know the location of x2-., where j is the j that attains 

max{x3y (Ty) | s2j (Ts) < *i(Ts) and xg(S2) = Xj(5j)}. Then, we can start a backward scan of r3

from location j until zi is covered. Location j can be identified using an index on (5, Ts)* Such an 

index, however, if not available to support other queries, may be too expensive for a dynamic database. In 

this section we describe an index on Ts which is far cheaper to maintain compared to an 5 or (5, Ts) 

index. We will refer to that index (described below) as AP -tree (Append-only Tree). Since the index 

points to records based on Ts, we omit the requirement that x2-. (S2) — x1(51), and thus start from the 

tuple who has the desired Ts and is the farthest (towards the end of the file). Figure 3 illustrates the pro­

cess of covering x i when the AP-tree is used. As a specific example, consider the tuples of relation rf in 

Table 4 at f > 20. Let a tuple of r}- be (si, 6, 7). To cover this tuple, only tuples of rf with 7$ < 7 

should be examined. If we use an AP -tree, the tuple (* 1, 7, NOW) of r,* can be accessed directly, and 

following a backward scan the latest tuple to be read is (a 1, 5, 6). Without the index, we would have to 

scan r; from the beginning and read 5 tuples (compared to two tuples with the index). In deciding 

whether or not to use the index, the cost of accessing it should also be taken into consideration. Using the 

index may be beneficial since the worst case of the backward scan is processing all the way to the begin­

ning of the relation, e.g. if the first tuple of r,* in the above example would have been (s 1, 1, NOW). The 

main property that affects the usefulness of the index is the uniformity of event rate among surrogates of 

the outer relation. To illustrate this point consider the example of Figure 4. This figure shows the optimal
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AP-trea

scan

cn c=i cn czd tsa cn czu □ izzi czi cm czp
ii

Begin of r2 End of r 2

>---- * 1 r2 tuple
033 last tuple read

Figure 3< Covering Tuple z s Using AP -tree

behavior of surrogates: the events corresponding to the temporal attributes of all surrogates occur at the 

same time points. In the context of this example, assume that tuple (s 2, 16, 18) of r}- has to be covered. 

Using an AP -tree, tuple number 12 is accessed and the backward scan ends with tuple number 11; a total 

of two tuples compared with eleven for a forward scan. If we change the event rates to be as shown in 

Figure 5, the AP -tree will lead us to tuple number 12, and the backward scan will end with tuple number 

2, a total of eleven tuples compared with two tuples for the forward scan.

Note that a uniform rate of events for an outer relation r2 does not imply that the AP-tree need 

not be used for all atj € r t. Those zt tuples who are closer to the beginning of the file may benefit more 

from a forward scan. Currently, if the event rate is not uniform among the surrogates of r 2, an z j 6 r j is 

likely to benefit from using the AP-tree if zl(5l) is a very active surrogate in both r t and r2.
I

We will now describe the basics of the AP -tree (more details can be found in [Gunadhi & Segev 

89)). Consider the data of relation ry in Figure 4. An AP -tree indexing r,- on Ts is shown in Figure 6. 

This tree is a hybrid of an ISAM index and a B+-tree. The leaves of the tree contain all the Ty values
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X....—X-

Tim*

X 3 *v*nt point 
(n) a n th tupl* In r,

Figure 4: Example of Optimal Behavior of Time Sequences

(9) (ID

(4) (6) (10) (12)
-X—XX

14 16 19 20

Tim*

X 3 *v*nt point 

in) a nth tupl* In r,

Figure 5: Example of Sub~Optimal Behavior of Time Sequences * i

Cm *■{'» for each Ts value, the leaf points to the last (towards the end of the file) tuple with the specific Ts 

value. Each non-leaf node indexes nodes at the next level. Note that the pointer associated with a non-leaf 

key value points to a node at the next level having this key value as the smallest node value. The
i

significance of this decision is explained later on. Access to the tree is either through the root or through 

the right-most leaf. The AP -tree is different than the B +-tree in several respects. First, if the tree is of 

degree 2d, there is no constraint that a node must have at least d keys. Second, there is no node splitting
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when a node gets full. Third, the online maintenance of the tree is done by accessing the right-most leaf.

Given the premise that deletions are treated as offline f storage management, only the right-hand 

side of the tree can be affected. The only online transactions that affects the Ts values in an append-only 

database is appending a new tuple. In most cases, just the right-most leaf is affected, either a pointer is 

updated or a new key-pointer pair is added, but if it is full a new leaf has to be created to its right, and in 

the worst case nodes are added along the path from the root to the right-most node and a new root node 

has to be created. In Figure 6 we show the effect of new tuples on the tree. We omit here the statements 

of the maintenance procedures for insertions and deletions, but it should be noted that there are several 

strategies to handle the right-hand side of the tree, e.g., rather than increasing the height of the tree 

online, one can have an indicator that there are non-indexed tuples (to the right of the tuple pointed to by 

the right-most leaf pointer); for details see [Gunadhr & Segev 89].

Recall that in the case of event-joins, an AP -tree on r2 is used in the process of covering Xj € rj. 

Therefore, we need to get to the leaf node pointing to x2-.. The following procedure is followed (v is a 

key value):

Procedure AP

1 Start at the root of AP -tree.

2 For each node visited, follow the pointer corresponding to v+ *= max{v j v < *i(7V)}.

Several notes are in oder. First, the fact that non-leaf nodes index lower level nodes based on the 

smallest rather than the largest key value assures that only one leaf node is visited. If the tree of Figure 6 

is organized based on the largest key value and x^Tg) =■ 18, will not be found in the visited leaf 

node and the leaf node to its left has to be examined as well. It turns out, also, that the maintenance of 

the tree is significantly cheaper than when the indexing is based on the smallest key value. The reason is 

that an addition of a tuple with a new Ts causes that T$ value to become the new largest value in an 

unfilled right-most leaf node; the smallest key value in a node is unchanged as a result of appending new

t Reorganizing the tree to reflect deletions can be done during idle periods or tow load periods. All the pro­
cedures function correctly regardless of the timing; the only issue is performance.
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tuples

In step 2 of Procedure, we assumed that a «+ exists. It is easy to see that a v+ exists for all nodes 

except possibly for nodes on the path from the root to the left-most node. This case can be identified prior 

to accessing the AP-tree and thus prevents unnecessary index search. In order to identify this case and an 

additional case where the index search should be avoided we associate two numbers with a relation r,-, 

LS.END (r,-) and iy"(r,-) == min{ T$ }. When x x has to be covered, before the index is accessed the follow­

ing rules are checked:

Rule 1: If ar t(Ts) < Ts~(rs), do not access index; xf is fully covered (for xx should be generated outer- 

join tuple).

Rule 2: If *i(7V) > LS.END (r2}, do not access index; xx and all remaining tuples of rx are fully covered 

(outerjoin tuples should be generated for them).

Rule 3: If ar ^Tj) < Tj“(r3) and rule 1 is not satisfied, do not access the index; perform a sequential scan 

of r2 from the beginning of the file.

If any of the rules is satisfied, an index search will be inferior to the alternatives specified.

1. COST ANALYSIS

In this section, the costs of the four algorithms presented in Sections 4 and 5 will be analyzed in 

detail, and comparisons between them are made where appropriate. Below, we define basic variables that 

will be used in subsequent discussions.

width (bytes) for each tuple in rf 

number of tuples in r,- 

B page size (bytes)

^*1 number of pages used for r,- *» J"(iVfi X Wf() / B j

M size (pages) of main memory available for an algorithm

Cf (/) cost in disk I/Os of step j of algorithm i

Ngj number of tuples resulting from the event join of r,- and r}-
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P£J number of pages to hold the result of event join between r,- and
ry = X WrSJ) / 5 j, where denotes the joined relation

a,- percentage of tuples in r,- that produce outerjoin tuples in

0{ selectivity of the hash-filter on the tuples of r,- that require outerjoins

7,-, 7,-1 average scan length through relation r,- when ry is the inner relation

1.1. Algorithm One Costs

If the two relations are already sorted, the cost is Pfi + Pr^ + Pej, which is the disk I/O time to 

join the two relations. For the case where the data need to be sorted first, each relation r,- is first sorted 

into into files, each M pages in size, where F,( is the number of files needed for the sort, and is calcu­

lated as jPfj / Af j. The files are then merged together, and the total cost for the sorting/merging is 

2(MFEi + Pri). We are assuming that (1) Pfj < M, and (2) the system allows FTt files to be opened 

simultaneously. If one or both of these assumptions are unsatisfied, the I/O costs will be greater. The 

total cost expressions are thus

Cl(total)^Pri^Pri + Pfsj (1.1)

if rf and ry are already sorted, and

= 2M(fri + F,i) + 3(/>ri + /.rj) + p£, . (1.2)

where sorting is required.

1.2. Algorithm Two Costs

Assume that the hash-filter is kept in main memory and maintains one bit per tuple. This means 

that the selectivity factor & represents the portion of tuples in r,- with no matching surrogate values to 

be found in ry. Take rt as the inner relation in the first nested-loop procedure. We present the cost of

the algorithm in terms of its two nested-loop procedures which we label here as NLl and NL2; therefore, 

C2(totat) = C^NL 1) +CiNL 2), where

C2(NL 1) = pri + (I - <x2)NEj
B + lz(l~ orj) M Pr2+ <*1 M {2-1)



The first term represents the cost of reading in r j, the second term is the number of pages of result 

tuples written, the third term reflects the average number of reads in order to produce result tuples where 

Xj is fully covered by r2, and finally the last component is the cost of producing outerjoin tuples for rlt 

which requires complete iteration through r2 for every M pages of r j. As for NL2,

C^NL 2) =» Prj +
O^Nej

+ - As)

B

M

4- OjA M + -Ti (1 - Or2) M P'i (2-2)

The first two components are the one time read cost of r2 and the write cost for the outerjoin result 

tuples for r2; the third subexpression is the cost of producing the outerjoin tuples with the help of the 

hash-filter; the fourth is the average cost of reads over the outer relation to determine that r2 tuples are 

fully covered; and the last item is the cost of exhaustive search related to producing outerjoin tuples

1.3. Algorithm Three Costs

For the first case of the append-only nested-loops, the hash filter is also employed; thus we assume 

that one bit per tuple is used. The difference in cost between Algorithms Three and Two are:(l) outerjoins 

can be performed on average as cheaply as covered tuples in terms of disk reads for Algorithm Three; (2) 

the average length of a scan through the outer relation, 7,-' , is likely to be better than the 7,- of Algo­

rithm Two, since there is a clustering of tuples on T$. Like before, C^totai) = CS(NL 1) 4- C^NL 2), 

where

G$(NL 1} a— PPi 4-
(1 - <*2)^5/

B 4-72' M (3-1)

where the second expression denotes the cost of iterating through r2. For the second nested-loops,

Cs(NL 2)
r*. 1

4- 7i' (1 - <xA) IT P,s 4- orjjAj IT (32)

1.4. Algorithm Four Costa

The final algorithm differs further from the previous two nested-loop algorithms. The second part of 

the algorithm needs only a single scan through r2. Although a temporary file needs to be created, it can
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be done during the first iteration through rg in order to save I/Os. Thus the total cost expression is:

C^total) — {Ptl + 2Fraj + 2
(1 - + otxflxNgj rv

B B M <• Pr, (4)

The way the cost is estimated is as follows: the first e ression (in brackets), represent the total cost 

of reading in the relations when they are the inner relations, plus the additional overhead of creating r2. 

The second component is the write cost of event-join tuples during the first loop plus the cost of updating 

r-x . The third component is the cost of generating the outerjoin result tuples during the second nested- 

loop. The fourth term in the cost is that of scanning through r2 to produce the other result tuples.

1.5. Comparisons Among Algorithms

It is clear that Algorithm One is superior if the relations are already sorted, because the cost consists 

of the minimum possible access to the relations. Also, the append-only algorithms dominate the algorithm 

for the general case. The interesting question is whether the relations, if not sorted, should be sorted, and 

then followed by the application of Algorithm One. Figure 7 shows some preliminary results. It should be 

noted that we have assumed favorable conditions for the sorting, e.g., no limit on the number of files that 

can be opened simultaneously during a sort-merge procedure; if this is not the case, the results will make 

Algorithms Three and Four more attractive.

Figure 7 shows the total I/O cost of the algorithms as a function of 7,-. We set the other parameters 

to be equal, i.e. — 100,000 pages, PTgJ — 200,000 pages, <*,• =* 0.1, and 0{ ■« 0.5. Additionally, we 

assumed that 7/ is. equal to 7*. 7* measures the percentage of blocks in the relation that has to be 

scanned. The graph in Figure 7(a) shows the performance of all four methods when 7,- was varied between 

0.001 to 0.01. It shows that Algorithm Two does' worst among the algorithms, while Algorithm Four’s 

efficiency increases as the scan length gets shorter. It is better than Algorithm One at at approximately 

7f » 0.001. Note that 7; may be much more selective than 0.001 for an append-only database, since 

measured in disk I/Os, 0.001 is 100 blocks, which is still a large pumber. Figure 7 (b) highlights just the 

three best algorithms, so that a better comparison can be made at lower values of 7,-.

The value of the parameters described above reflect the filter selectivity and the number of tuples 

scanned for each inner relation tuple. It should be noted that these are not all the parameters that affect



24

the relative performance, and additional computational experiments are needed. Nevertheless, it validates 

our conjecture that one can do better than sorting in the append-only environment.

Alg1 O- Alg2 ■- Alg3 -D- Alg4
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Figure 7. Comparison of Algorithms Over Gamma
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2. Summary and Future Research

In this paper, we have addressed the problem of optimizing event-joins in a relational temporal 

database. Event-joins are important because normalization considerations are likely to split the temporal 

attributes of an entity among several relations. The event-join combines a temporal equi-join component 

and a temporal outer-join component. Unlike a conventional outer-join, the temporal counterpart consists 

of two asymmetric outerjoins, a fact that complicates the optimization. The complexity of processing 

event-joins strategy depends on the nature of the data, its organization, and whether or not all non­

existing data is represented explicitly. We have distinguished between the step-wise-constant and discrete 

data; discrete data is easier to handle since all the information contents of the tuple pertains to a single 

time point; for step-wise-constant data a decision regarding a tuple of one relation is frequently based on 

multiple tuples of the other relation.

As for the data organization we addressed three cases; these are (in increasing order of complexity) 

sorted by surrogate and time, append-only, and general optimization. For the sorted case (appropriate for 

static databases), the processing of an event-join is the most efficient since each relation has to be read 

only once. The append-only database is an appropriate organization for many dynamic temporal data­

bases and mi event-join algorithm can take advantage of the time ordering. For the append-only case we 

have introduced a new data structure: the AP-Tree. This index is used to reduce the cost of scanning an 

outer relation in a nested-loops procedure. The AP-Tree offers advantages of a B+-tree in terms of utili­

zation and access and maintenance cost. It is also useful for queries other than event-joins that can 

benefit from time indexing.

Managing non-existence nulls is more important in temporal databases than in ’current state’ ones 

because for a long history one is likely to encounter transactions of state variables between existence and 

non-existence states. If all non-existence data is represented explicitly, the outer-join component of the 

event-join is eliminated and it reduces to a temporal equi-join operation where the joining attribute is the 

surrogate. This special case of the event-join is much simpler than the general case. As was discussed in 

the paper, however, storing all non-existence data explicitly is likely to be prohibitively expensive in many

situations.
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In section 7, we have presented a cost analysis of the proposed algorithms. The algorithm for the 

sorted case (Alg. One) obviously dominates all the others. The append-only algorithms (Algs. Three & 

Four) dominate the general nested-loops algorithm (Alg. Two); this is also expected. The interesting ques­

tions are whether, for the non-sorted case, the data should be sorted and then Algorithm One applied. 

For the general case, the answer is yes (under the favorable sorting conditions that we assumed). For the 

append-only case the answer is dependent on the selectivity of the filter and the number of tuples scanned 

for each inner-loop tuple. Also, if the inner relation is significantly smaller than the outer relation, and the 

selectivity factors associated with the append-only algorithms are small, sorting will be less favorable. We 

currently work on a comprehensive simulation test to validate our initial finding.

Finally, it should be noted that many of the concepts presented in this paper are applicable to other 

queries; in particular other joins since the concept of covering is applicable to other temporal joins. In 

current and future research we try to devise more elaborate rules on when to use the AP-Tree. Also, as 

evident from the cost equations, estimation of several parameters are required.
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