
LBL-26600

Information and Computing
Sciences Division

To be presented at the Fifteenth International Conference on
Very Large Data Bases, Amsterdam, The Netherlands,
August 22-25, 1989, and to be published in the Proceedings

Event-Join Optimization in Temporal
Relational Databases

A. Segev and H. Gunadhi DO NOT Mm
January 1989

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

DISCLAIMER

1 This document was prepared as an account of work sponsored !
| by the United States Government. Neither the United States j
j Government nor any agency thereof, nor The Regents of the i
' University of California, nor any of their employees, makes any 1
1 warranty, express or implied, or assumes any legal liability or 1
i responsibility for the accuracy, completeness, or usefulness of ;
' any information, apparatus, product, or process disclosed, or i
' represents that its use would not infringe privately owned rights. '
| Reference herein to any specific commercial products process, or ■
: service by its trade name, trademark, manufacturer, or other- j
! wise, does not necessarily constitute or imply its endorsement, ;
' recommendation, or favoring by the United States Government j
, or any agency thereof, or The Regents of the University of Cali- j
i fornia. The views and opinions of authors expressed herein do I
1 not necessarily state or reflect those of the United States !
. Government or any agency thereof or The Regents of the |
! University of California and shall not be used for advertising or i
' product endorsement purposes. j

Lawrence Berkeley Laboratory is an equal opportunity employer.

Event-Join Optim ization in Temporal
R elational D atabases

D
ISC

LA
IM

ER

r-
O

iH

O*43
fOO

CN|
O

Ii
o

m

m
^

p

This report w
as prepared as an account of w

ork sponsored by an agency of the U
nited States

G
overnm

ent.
N

either the U
nited States G

overnm
ent nor any agency thereof, nor any of their

em
ployees, m

akes any w
arranty, express or im

plied, or assum
es any legal liability or responsi­

bility for the accuracy, com
pleteness, or usefulness of any inform

ation, apparatus, product, or
process disclosed, or represents that its use w

ould not infringe privately ow
ned rights. R

efer­
ence herein to any specific com

m
ercial product, process, or service by trade nam

e, tradem
ark,

m
anufacturer, or otherw

ise does not necessarily constitute or im
ply its endorsem

ent, recom
­

m
endation, or favoring by the U

nited States G
overnm

ent or any agency thereof. The view
s

and opinions of authors expressed herein do not necessarily state or reflect those of the
U

nited States G
overnm

ent or any agency thereof.

1

t
o

Jj .1 c|

J

LBL-26600

EVENT-JOIN OPTIMIZATION IN TEMPORAL RELATIONAL DATABASES

Arie Segev and Himawan Gunadhi

School of Business Administration and
Computer Science Research Dept, Lawrence Berkeley Lab

University of California
Berkeley, Ca., 94720

Abstract
An Event-Join is mostly used to group several temporal attributes of an entity into

a single relation. It combines temporal equi-join and outerjoin components into one
operation. The temporal outerjoin component is different than a non-temporal one
because of a time interval predicate, and it consists of two asymmetric temporal outer-
join operations. In this paper, we motivate the need to support the efficient processing
of event-joins, and introduce several optimization algorithms, both for a general data
organization and for specialized organizations (sorted and append-only databases). For
the append-only database we introduce a new data structure, that can improve the per­
formance of event-joins as well as other queries. Finally, we evaluate the performance of
the proposed algorithms.

This research was supported by the Applied Mathematics Sciences Research Program of the
Office of Energy Research U.S. Department of Energy under contract DE-AC03-76SF00098.

1

1. INTRODUCTION AND MOTIVATION

Temporal data models are designed to capture the complexities of many time-dependent

phenomena, something that traditional approaches, like the relational model, were not intended to do.

Many new operators are needed in order to exploit the full potential of temporal data models in enhancing

the retrieval power of a database management system (DBMS). Many temporal operators have been

introduced in the literature, (e.g. [Adiba & Quang 86, Clifford & Tansel 85, Clifford & Croker 87,

Snodgrass 87]), yet with few exceptions (e.g., [Lum et al 84, Rotem & Segev 87, Snodgrass & Ahn 88]), the

issue of performance and optimization has not been a major focus so far. In a previous paper [Gunadhi Sc

Segev 88b], we identified a set of temporal joins and carried out preliminary investigation into their

optimization. In this paper, we extend that work further by studying in detail the optimization of one

type of temporal join — the event -join .

The event-join operator was first introduced by [Segev -Sc Shoshani 88a]; it is unique in that it com­

bines temporal join and outerjoin [Date 82] components into a single operation. It is used primarily to

group temporal attributes of an entity into a single relation; temporal attributes belonging to the same

entity, but which are not synchronous in their event points, are likely to be stored in separate relations.

Many queries require that they be grouped together as one relation, but differences in their behavior over

time brings up the possibility that nutt values are involved in the operands and the join result.

This paper deals with optimizing event-joins in temporal relational' databases. Its contributions are

the following:

• Motivating and demonstrating the need to support the efficient processing of event-joins.

• As traditional processing cannot support event-joins, we have developed optimization algorithms for

various situations, including static sorted databases, and dynamic databases with general data organiza­

tion and append-only organization.

• In the context of the append-only database, we have developed a new data structures called the AP-

Tree (Append —Only Tree). This tree is a variation of an ISAM and a B +-tree combination, and is useful

for other temporal queries besides event- joins.

• We compare the proposed algorithms by evaluating their costs and present some computational results.

The paper is organized as follows: in the next section, we discuss the relational representation of

temporal data. In section 3, the event-join operator is defined and explained through an an example. Sec­

tion 4 explores the optimization of event-joins for data that is sorted and data in a generalized setting; an

algorithm for each is described in this section. Section 5 deals with the third main type of data: append-

only databases, for which we propose two algorithms to optimize the event-join operator for such a data­

base. The new indexing structure for append-only databases — the AP -tree is introduced in section 6.

Section 7 presents the derivations of the cost of each of the four algorithms, and a comparison between

them. Conclusions and directions for further research are given in section 8.

2. RELATIONAL REPRESENTATION OF TEMPORAL DATA

A convenient way to look at temporal data is through the concepts of Time Sequences (TS) and

Time Sequence Collection (TSC) [Segev Sc Shoshani 87]. A TS represents a history of a temporal

attribute(s) associated with a particular instance of an entity or a relationship. The entity or the relation­

ship are identified by a surrogate (or equivalently, the time -invariant key [Navathe Sc Ahmed 86]). For

example, the salary history of employee #1 is a TS. A TS is characterized by several properties, such as

the time granularity, lifespan, type, and interpolation rule to derive data values for non-stored time

points. In this paper, we are concerned with two types — stepwise constant and discrete . Stepwise con­

stant {SWC) data represents a state variable whose values are determined by events and remain the same

between events; the salary attribute represents SWC data. Discrete data represents an attribute of the

event itself, e.g. number of items sold. Time sequences of the same surrogate and attribute types can be

grouped into a time sequence collection (TSC), e.g. the salary history of all employees forms a TSC.

There are various ways to represent temporal data in the relational model; detailed discussion can

be found in [Segev & Shoehani 88a]. In this paper we assume first normal form relations (INF). Table 1

shows two ways of representing SWC data. The representations can be different at each level (external,

conceptual, physical), but we are concerned with the tuple representation at the physical level. The

representation in Table 1(b) stores data only for event points and requires explicit storage of null values

to indicate the transition of the state variable into a non-existence state. Also, the tuples should be

ordered by time in order to determine the values between two consecutive event points. Both

3

representations require the use of the lifespan metadata; it is required for the time-interval representation

since we do not store non-existence nulls explicitly, for example, the lifespan is needed in order to

correctly answer the query "what was the commission rate of E2 at time 12?”. In order to generalize the

analysis, we assume SWC data using the time-interval representation; the event-join algorithms can be

greatly simplified for a time-point representation of SWC data and for discrete data, f

MANAGER E# MGR Ts TS COMMISSION E# CJRATE Ts Te
El TOM 1 5 El 10% 2 7
El MARK 9 12 El 12% 8 20
El JAY 13 20 E2 8% 2 7
E2 RON 1 * 18 E2 10% 8 20
E3 RON 1 20

(a) time-interval representation

MANAGER E# MGR T COMMISSION E# CJSATE T
El TOM 1 El 0 1
El 0 8 El 10% 2
El MARK 9 El 12% 8
El JAY 13 E2 0 1
E2 RON 1 E2 8% 2
E2 0 19 E2 10% 8
E3 RON 1

(b) time-point representation

Table 1: Representing Step-Wise Constant Data with Lifespan = [1, 20]

We will point to cases where simplified algorithms can be used when we describe the event-join operation.

We use the terms tvrrogate, temporal attribute , and time attribute when referring to attributes of a

relation. For example, in Table l, the surrogate of the MANAGER relation f is E#, MGR is a temporal

attribute, and Ts and TE are time attributes. We assume that all relations are in first temporal normal

form (ITNF) [Segev & Shoshani 88a]. 1TNF requires that for each combination of surrogate instance,

time point in the lifespan, and temporal attribute (or attributes) there is at most one temporal value (or a

t For discrete data, using time-intervals is superfluous since the start time 7$ is equal to the end time Tg
for each tuple

4

unique combination of temporal values). Note that INF does not imply ITNF, for example, the relation

COMMISSION in Table 1(a) would not be in ITNF if for any surrogate instance there were two tuples

with the same commission rate value and intersecting time intervals.

3. EVENT JOINS

An Event -Join groups several temporal attributes of an entity into a single relation. This operation

is extremely important because due to normalization, temporal attributes are likely to reside in separate

relations. To illustrate this point, consider an employee relation in a conventional database. If the data­

base is normalized we are likely to find all the attributes of the employee entity in a single relation. If we

now define a subset of the attributes to be temporal (e.g., salary, job-code, manager, commission-rate,

etc.) and. they are stored in a single relation, a tuple will be created whenever an event affects at least one

of those attributes. Consequently, grouping temporal attributes into a single relation should be done if

their event points are synchronized. Regardless of the nature of temporal attributes, however, a physical

database design may lead to storing the temporal attributes of a given entity in several relations. The

analogy in a conventional database is that the database designer may create 3NF tables, but obviously,

the user is allowed to join them and create an unnormalized result.

Let r,-(/?,•) be a relation on scheme R{ = {5,-, An, ..., A,m, Ts, Tg}. In many instances we illus­

trate the concepts using a single temporal attribute, that is, m =1; all apply to any m > ’. Also, when

the two surrogate types S(of R(and S} of Rj are the same, we simply use S. Instances of surrogate S

are denoted by « 1, a 2, • • •. We use x,- to refer to an arbitrary tuple of rf; x,- (A) is the value of attri­

bute A in tuple x,-. In order to describe the event-join between r 1 and r2, we first present two basic

operations TE-JOIN and TE -OUTERJOIN. TE-JOIN is the temporal equivalent of a standard equi-

join; two tuples xj € rt and x2 € are concatenated f if their join attribute’s values are equal and the

intersection of their time intervals is non-empty; the T§ and T# of the result tuple correspond to the

intersection interval. Semantically, this join condition is "where the join values are equal at the same

t w« refer to the data construct as a 'relation’, but we mean a 'temporal relation'. It is different from a stan­
dard relation because of the associated meta-data.

t It is not a standard concatenation since only one pair of Ts and Te is part of the result tuples.

time”. Optimization issues in executing general TE-JOINs are discussed in [Gunadhi Sc Segev 88b], In the

case of event-joins, we are concerned only with a special case of TE-JOINs where the joining attribute is

the surrogate. A TE-OUTERJOIN is a directional operation from rt to r2 (or vice versa). For a given

tuple arj € r!, outerjoin tuples are generated for all points t such that [i^T^), x i()j and there does

not exist z2 € r2 such that) — * i(5) and t € [z^Ty), z^ Tg)]. Note that all consecutive points t

that satisfy the above condition generate a single outerjoin tuple. Using those operations the event-join is

done as follows.

r, EVENT-JOIN r,:

tempi «— r! TE-JOIN r2 on S

temp2 +- r j TE-OUTERJOIN r2 on S

temp3 •*— r2 TE-OUTERJOIN rj on 5

result <— tempi U temp2 U temp3

The above operations are illustrated in the example of- Table 2, where an event-join is performed

between the MANAGER and COMMISSION relations of Table 1.

The most troublesome components of the event-join are the outer-joins. The situation is further

complicated by the time interval predicate associated with the TE-outerjoin, preventing the usage of

non-temporal outerjoin procedures [Rosenthal Sc Reiner 84, Dayal 87]. An easy solution that comes to

mind is to store all non-existence tuples explicitly, e.g., tuples like (1, 0, 8, 8) are added to the

MANAGER relation of Table 1. In that case the outerjoin components disappear, and the problem

reduces to a TE-JOIN on 5. Unfortunately, there are many situations where such a ’fix' will degrade

overall performance rather than improve it. For example, if the whole 5,- domain is represented in relation

*Y i representing all non-existence data explicitly will in the worst case double the size of the table (this is

the case of alternating state transitions between existence and non-existence). A much worse problem may

arise when a relation contains only a fraction of the S -domain values, e.g., if on the average, only of

the employees of a large corporation earn commissions, adding to the non-existence data for the 95%

other employees to the commission relation will add to storage cost, querying cost (including event joins),

and maintenance of the commission relation and any of its associated secondary indexes.

6

MANAGER TE-JOIN COMMISSION ON E#

tempi E# MGR CJRATE Ts Te
El TOM 10% 2 3
El MARK 12% 9 12
El JAY 12% 13 20
E2 RON 8% 2 7
E2 RON 10% 8 18

MANAGER TE-OUTERJOIN COMMISSION ON E#

temp2 E# MGR C RATE Ts Ts
El TOM 0 1 1
E2 RON 0 1 1
E3 RON 0 1 20

COMMISSION TE-OUTERJOIN MANAGER ON E#

tempS E# MGR CJRATE Ts Tf
El 0 10% 6 7
El 0 12% 8 8
E2 0 10% 19 20

MANAGER EVENT-JOIN COMMISSION

result E# MGR CJRATE Ts Tt
El TOM 0 1 1
El TOM 10% 2 5
El 0 10% 3 * 7
El 0 12% 8 8
El MARK 12% 9 12
El JAY 12% 13 20
E2 RON 0 1 1
E2 RON 8% 2 7
E2 RON 10% 8 18
E2 0 10% 19 20
E3 RON 0 1 20

Table 2: Event-Join Derivation

Consequently, we divide event-joins into two types — ’easy’ and ’difficult’. Easy cases are those

where the relations contain explicit tuples for ail non-existence data and are sorted by (5 , Ts) (the sorted

case ls detailed in the next section). Other cases are regarded difficult. In the remainder of the paper we

7

are mostly concerned with the difficult cases.

4. EVENT-JOIN OPTIMIZATION

In this section we discuss the optimization of event-joins where the relations are either sorted or

unsorted. Before we proceed with details of the algorithms, the important concept of tuple covering,

which is used throughout the discussions, is presented first.

4.1. Concept of Tuple Covering

We first introduce the notion of covering which is used in all the event-join algorithms. To illustrate

the concept, consider the example of Table 3.

*■1 r9 Covering of x, Modified xt
& Ij 3 j 5f IS si, b, 1,2 None s 1, a , 5, 15

5 lf c , 7 si, a, e ,5,7 «i; < , 8, 15

s 1, d, 9, 12 si, a , 0, 8, 8
e 1, a , rf, 9, 12 si, a, 13, 15

si, e, 16, 20 si, a , 0, 13, 15 Fully covered

Table 3t Example of Tuple Covering

Relation rj has a scheme » (5, A Ts, Tg) and a single tuple <s 1, a , 5, 15>. r3 has a scheme

f?3 * {S, A2) Ts, Tg) and four tuples as shown in the table. During the event-join, xx 6 ^ has to be

compared with tuples x2 € r3; assume that the order of comparisons is as shown in the table (top-down).

A tuple *3 contributes to the covering of Z| if one or two result tuples (x1(5), x [(A t), x^A^), Ic } can

be derived, where Ig C (x jfTs),)]• can be viewed as a covered portion of xx. The ’modified xx

column in the table represents the uncovered portion of xs. Note that in the covering process we have

relied on the ordering of r2 by time in deriving the outerjoin tuples (those with x^A2) = 0). Also, the

covering column of the table contains only a subset of the final result since the covering of r2’s tuples is

incomplete. The remaining result tuples should be derived from TE-outerjoin r2 by In this particular

example, the remaining result tuples are <a 1, 0, 6 , 1, 2>, <s 1, 0, e , 3, 4> and <$ 1, 0, « , 16, 20>.

8

Determining and maintaining the information about the covered portion of a tuple is substantially

different if the relations are not sorted by Ts. In the sorted case we can determine outerjoin tuples as the

scanning progresses and the information about the covered portion of the tuple is maintained by simply

modifying its Ts ■ In the general case, the covered subintervals can be encountered in a random order;

moreover, an outerjoin result tuple associated with x{ 6 n can be determined only when the scanning of

r2 is complete. We first present an algorithm for the case where r j and r2 are sorted by S (primary

order) and by Ts (secondary order). In the next subsection we discuss the general case. As can be seen

from the above example, the particular values of A (and A 2 are immaterial as far as the logic of the

event-join is concerned; we are only interested in existence or non-existence of these attributes. Conse­

quently, in the remainder of the paper, whenever convenient, we use examples with relation schemas of

(St-, Ts, Ts), but the reader should keep in mind that at least one A,- attribute is part of the actual

tuples. Also, the algorithms presented in this paper involve lots of housekeeping details. For lack of space

we omit the details and provide only an outline of the algorithms. The logic of all algorithms is described

ignoring blocking of tuples; it is trivially extended to handle blocking. The cost analysis in Section 7 take

into consideration the blocking factor.

4.2. Event-Join Sort-Merge Algorithm

The Event-Join Sort -Merge algorithm processes the event-join by taking advantage of the fact

that both relations are in sort order. Unlike a conventional relation which requires only primary key order

for sorting, the temporal relation needs to be sorted on 5 as the primary order and T$ as the secondary

order. The event-join sort-merge algorithm, which will be referred to as Algorithm One, scans each rela­

tion just once in order to produce the result relation. At each iteration, two tuples (possibly with modified

Ts), *1 € rt and *2 € r2, are compared to each other and one or two result tuples will be produced

based on the relationship between the tuples on their surrogate values and time intervals.

The first comparison in Algorithm One is on the surrogate value — if they are unequal, it means that

the tuple with the lower S value, say zu does not have any matching surrogates in the other relation,

this implies that x j is fully covered, an outerjoin result tuple is generated, and the next x t tuple is read.

9

Algorithm One

(1) . Read Zi and x2- Repeat steps 2 to 4 until End-of-File (EOF). If EOF occurred for r,-, gen­
erate outerjoin tuples for the remainder of r;- ’s tuples (including the current tuple if not fully
covered).

(2) . If X; (S) < xy (S), generate an outerjoin result tuple for x,-.

(3) . For the situation where ar t(5) = x^S), there are three cases to consider (see Figure 1):
Case 1: ar< (7s) = Xj{T$)• Write an intersection result tuple.
Case 2: *,• (7s) < z} (Ts) and x,- () > Xy (7s)■ Write one outerjoin tuple for x,- and one inter­
section tuple. Modify xl and x2 and read next tuples(s).
Case 3: x. fTs) < Xj(Ts). Write an outerjoin tuple for x,-.

(4) . Modify Xj and x2 and read next tuple(s) (see Figure 1).

If on the other hand xt(S) == x2(5), there are many possible relationships that can exist between

the time intervals of the two tuples; but there are just three distinct possibilities in terms of result tuples

that have to be generated. The three cases are identified in Step 3 of Algorithm One. Figure 1 illustrates

the above points: it shows the time intervals of original pair of tuples and their relative positions to one

another, the time intervals of result tuples, the modified tuples which consist of the original tuples with

TV modified to represent the uncovered portion, and finally the action taken with respect to which

tuple(s) are read next. The next tuple of rf is read only when the current tuple has been fully covered.

Note that whenever we use the subscripts i and j in Algorithm One, t = 1 and j = 2 or i =2 and

j. =* 1. Also an intersection result tuple is equivalent to a TE-JOIN result tuple.

4.3. Event-Join Nested-Loops Algorithm

The Nested-Loops method described below does not assume any kind of ordering among the tuples

in either relation. The event-join is achieved in two stages, the first of which is nested loops with r1 and

r2 being the inner and outer relations respectively. Tuples produced in the first stage are the result of

either intersections or outer joins from r t to r2. In the second stage, the order of relations are now

reversed for another nested loop, but the only result tuples created here will be outerjoins from r2 to r t.
f

Unlike the sorted case, maintaining the information about the covered portion of x,- ’s time interval

cannot be done by simply modifying TV, and the following procedure is followed. In the first nested loop,

whenever a tuple xt from r j is first read, a list £f is initialized with the pair of time-stamps associated

Original tuples
X, Xt Result tuple(s)

Modified tuples
1 J Read next tuple

r t T
11 -L j

I *

T
1
1
| » * U
1

1 -1 T
1iJL I

mtmham i

* I

X
I hi j

I *

i

T T1 » * u
1 IL JL -

mrnr I *

T T *L j_ I

1

1
r T

* I

.L
Ji

nr iI * I
fully covered

Intersection result tuple

outerjoin result tuple

Note : a time interval of original tuples, result tuples, and modified tuples can be a point.

Figure 1: Producing Event-Join Tuples for Algorithm One

10

with x j. This list corresponds to the uncovered portions of r j. For each tuple x2, the algorithm applies

the test of equality on the surrogate values and a non-null intersection over time. The second condition is

needed because if two tuples share a common surrogate value but are disjoint over time, no conclusion

can be derived (in contrast to the sorted case) as to whether an outerjoin is appropriate, unless the EOF

for r2 has been reached. Thus, while scanning r2, the covering of *1 is achieved only through interval

intersections, and for each xt, at most one intersection result tuple will be produced. Once this is accom­

plished, the uncovered subintervals associated with xj are determined, and appropriate outerjoin result

tuples are generated. At the end of r2’s scan the interval of Xj will either be completely covered, has one

uncovered segment, or at most two segments. For each uncovered segment, the time pair representing

them are inserted into U in place of the original entry. This ensures that U remains an ordered list; the

ordering within U helps the search for the appropriate interval that is relevant for a TE-JOIN in subse­

quent iterations through r2. Regardless of the number of entries in the list, any tuple x2 can only inter­

sect with one entry, otherwise it would mean that there are two or more tuples in r2 having the same

surrogate value and overlap in time. This implies that the condition of ITNF has not been satisfied.

Unlike conventional nested-loops procedures, we need not retrieve all the tuples of the outer rela­

tion, since an empty U indicates that the original xl has been fully covered. In the event that the loop

terminates because the end of file r2 is reached, either the whole, or parts of xj’s time interval were left

uncovered. An outerjoin result tuple is generated from each time pair in U; the time pair determines the

time-start and time-end of the result tuple.

The second nested-loops differs from the first in that it produces only outerjoin tuples from r2. Thus

no result tuple duplicating a tuple already produced in the first stage is created, hi order to reduce the

number of unnecessary scans of r;, the Algorithm uses a hath -filter [Bloom 70] created during the first

stage as follows: when r2 is scanned, each time an x2 is found that participates in a TE-JOIN, the hash-

filter is updated for that tuple. The hash-filter maintains H bits to represent jV,2 tuples, where H < Nr^.

The hash-filter entries corresponding to k (x2), where h is the hash-function, are initialized to 0, and

whenever an x2 generate an intersection result tuple for the current xu h (x2) is set to 1. This table is

kept in main memory, and in the best case scenario when there is sufficient memory to maintain one bit

11

per tuple, the hash function is the count of z2 tuples already accessed, and the table is a one dimensional

array indexed by this count.

During the second stage, for each tuple in the inner relation r 2, if it hashes to a value of 0, then an

outerjoin tuple is produced without scanning r,-. Otherwise, as in the first nested-loops, we carry out the

same updates on the coverage of x2, although no intersection tuples are produced As before, outerjoin

tuples are produced when it can be determined that no z z exists to cover the current z2. Below we out­

line the steps of the algorithm, labeled as Algorithm Two. U; denotes the list U for x,-, i =1, 2.

Algorithm Two

(1) . [Nested-Loops-1] For each tuple in rj: read r2 and execute Step 2 until EOF for r2 or is
fully covered. If EOF, for r2, produce outerjoin tuples for Xi based on Ui and initialize Uj.

(2) . If Xi(5) x<£S} and the two time intervals intersect, then do: write an intersection result
tuple. Update Uj. Set hash-filter entry for x2 to 1.

(3) . [Nested-Loops-2j For each tuple x2 of r2: if hash-filter bit == 0 produce outerjoin tuple im­
mediately, an read next z2. Otherwise read rj and execute Step 4 until EOF for rt or x2 is fully
covered.

(4) . if x^S) =* x^S) and the two time intervals intersect then update £/'2.

In the case of having space for a second bit for each of r2’s tuples, Algorithm Two can be further

improved if a second filter is used. During the first stage, while covering xt it is possible that the time

interval of x2 contains that of Xj. In that case we set the co.responding filter entry to 1. Then, in Step 3

we also avoid the scan of r, if the first filter bit is 1 and the second filter bit is 1.

5. APPEND-ONLY DATABASES

In the case of static history databases, one can store the data sorted by (S’, T$) and then apply

Algorithm One; this provides the maximum efficiency for event-joins. For a dynamic temporal database, it

may be too inefficient to keep the data sorted by (5, TV), and consequently, either the operands are

sorted prior to the application of Algorithm One, or Algorithm Two is used. If the database is append-

only, the event-join algorithms can utilize this fact to enhance their efficiency.

There are several variations of append-only databases, some of which are not ’truly’ append-only. As

far as event-joins are concerned we view a database to be append-only if tuples are inserted at the end of

12

the file and in order of the events that generated them. The tuples can have open-end or closed-end time

intervals. To illustrate these points, consider Figure 2 that shows the time sequences for three surrogate

instances with life-spans of (l, NOW)-, each event point corresponds to the generation of a new tuple for

the surrogate (we are not concerned with the values of the temporal attributes). Let relation r,- represent

that data; the states of that relation are shown in Table 4. Note that such data is inappropriate for a

WORM device since insertions also cause updates; for example, the event at time 10 led to updating

(a 2, 1, NOW) to (a 2, 1, 9) and appending the tuple (a 2, 10, NOW). If the representation of the data in

this example would use time points instead of time intervals, it would be truly append-only.

Tims

X * avent point

Figure 2; Time Sequences for Three Surrogates with Lifespans = [l, NOW]

Deletions in append-only temporal databases are significantly different than in conventional data­

bases. In our case, they are storage management activities rather than user transactions. From a logical

point of view deletions are a result of a change in the lifespan f, i.e. an increase in the value of

LS. START. An example is a ’moving-window’ lifespan [NOW - l, NOW) where / is the length of his­

tory. In the case of step-wise constant sequences, deletion of data to reflect the new lifespan is not

guaranteed to be contiguous; Table 5 illustrates this issue. The table shows the state of r,- at t =» 21

(reproduced from Table 4) and the effect of changing the lifespan at 1 = 22 from [1, NOW] to

[7, NOW). As can be seen from the table a new lifespan can cause updates and deletions at any point in

t We use LS.START ind LS.END to refer to the boundary points of the lifespan.

13

Snapshot at Time State of r, : {5;, Ts , TE }
f.4,- is omitted)

1 < f < 5
si, 1, NOW
s 2, 1, NOW
a 3, 1, NOW

V*>*

V
IlO

* 1, 1, 4
a 2, 1, NOW
a 3, 1, NOW
a 1. 5, NOW

7 < f < 9

5 1, 1, 4
a 2, 1, NOW
a 3, 1, NOW
a 1, 5, 6
a 1, 7, NOW

10 < f <20

a 1, 1, 4
a 2, 1, 9
a 3, 1, NOW
a 1, 3, 6
al, 7, NOW
a 2, 10, NOW

20 < f < Next Event Point

al, 1, 4
a 2, 1, 9
a 3, 1, 19
a 1, 5, 6
al, 7, NOW
a 2, 10, NOW
a 3, 20, NOW

Table 4t Progression of an Append-Only Database States

the file. Although this example used open-end time intervals, the same problem occurs for any step-wise

constant data regardless of its representation. It also demonstrates that maintaining the lifespan for an

active database with small time granularity on a real-time basis can be prohibitively expensive. For­

tunately, these updates and deletions can be done periodically without affecting the logical view of the

data, that is, the physical lifespan can be different than the logical lifespan provided that the first contains

the latter. For discrete data, the situation is much simpler and implementing a change in the lifespan can

be done by simply updating a begin-of-file pointer to the first tuple whose time value is greater than or

equal to the new LS.START.

14

State of r,-: {S{, Ts , T,}
Tuple Number Lifespan = [l, NOW]

t = 21
Lifespan = [7, NO W j

£ — 22
1 « 1, 1, 4 deleted

0m *2, 1,9 *2,7,9

3 a 3, 1, 19 a 3, 7, 19

4 a 1, 5, 6 deleted

5 a 1, 7, NOW a 1, 7, NOW

8 a 2, 10, NOW a 2, 10, NOW

7 a 3, 20, NOW a 3, 20, NOW

Table 5: Effect of Modifying the Lifespan of r,- at t — 22

If rf is an append-only relation the order of its tuples corresponds to the order of their events, thus,

they are ordered by Ts . Unfortunately, the event-join needs the primary order to be by 5, and the surro­

gate instances of r,- can be in an arbitrary order. Nevertheless, we can take advantage of the ordering by

Ts • We assume that if retroactive corrections to the history are necessary, they are done in batch mode

offline and the file is reorganized to preserve the T5-order; this is a reasonable course of action in most

environments where the normal mode of operation is not error-correction. Another solution is to use an

overflow area to store the ’correction records’; if their number is small (relative to the data file) they will

not affect the performance of the event-join algorithms.

We present two event-join algorithms in this section. The first algorithm, stated as Algorithm Three

below, follows the logic of the Nested Loops algorithms, but is different in two important ways. First,

when *1 is compared against tuples of rj we do not necessarily have to complete r2’s scan — since r2 is

append-only it follows that is fully covered if zt{51) = 12(^2) and x2 fully covers Xj, or if

xi(Si) *3(5*) and x^Ts) > x^Tg). Second, as in the sorted case, the covered portions of x(are

always contiguous and thus we can maintain that information by updating r j(7$) as was done in Algo­

rithm One. Unlike the sorted case we cannot write outerjoin tuples for x2 when r2 is scanned to cover x j

(see Step 3 of Algorithm Three). We refer to the first append-only database algorithm as Algorithm

15

Three, and outline the procedures below.

Algorithm Three

(1) . [Nested-Loops-l] For each it: read r2 and execute Step 2 until xl is fully covered or EOF for
r2 is reached. If EOF, generate outerjoin tuple for

(2) . There are four cases to consider in this step.
Case 1: > x2(Ts) — no result tuple is generated.
Case 2: x ^5) z^S) and z2(Ts) > zt(T^) ~ generate an outerjoin tuple for z^
Case 3: 1,(5) 7^ z^S) and z2(Ts) < z^Tg) — no result tur le is generated.
Case 4:x t(5) = x2(5) and x^Ty) < z2(Ts) — do Step 3.

(3) . Execute Step 3 of Algorithm One, except that no outerjoin tuple is written for x2 if
z^Tg) < x^Tj), and the hash filter is updated whenever the time intervals of zt and x2 inter­
sect.

(4) . [Nested-Loops-2] The procedure is similar to Steps 1 to 3, except that
i If hash-filter entry for x2 is 0, produce an outerjoin tuple without scanning r j.
ii Do not produce any intersection tuples.
iii No filter updates occur and on EOF for r2 the algorithm stops.

The second algorithm, stated as Algorithm Four below, avoids the final outerjoin from r2 to rj by

writing updated time-intervals for r2’s tuples while they are scanned for each xl tuples. This is achieved

by creating a copy of r2 which is updated during the first nested-loops. The benefit of this approach is

that the second nested-loops is replaced by a single scan through r2 in order to determine which tuples

require outerjoins where no tuple has been found in r j with matching surrogates. The updating procedure

for tuples in r s and r2 is similar to that of Algorithm One.

Algorithm Four

(1) . Create a working copy of r2, and call it r/ .

(2) . (Nested-Loops-1] Procedure is the same as Steps 1 to 3 of Algorithm Three, except:
i Step 3 is done exactly as in Algorithm One, that is, we write outerjoin tuples for x2.
ii *<2 is updated by writing in place its modified T5. If x2' is fully covered its Ts is set to
Tg + 1.
iii No hash-filter is used.

(3) . Read r2 in a single scan, and for those tuples where Tg < Tg, produce an outerjoin result
tuple.

Note that Step 1 of Algorithm Four can be done while scanning r2 for the first xt tuple; subsequent

Xi tuples scan r2 . Both of the above algorithms contains a nested loop component to cover x! tuples by

16

scanning r2. This component is the most expensive part of the algorithms, and reducing the number of

r2’s tuples scanned for each Xi is very important. The append-only property helps in achieving that

objective but we may further improve the performance by using a secondary index as described in the

next section.

8. THE APPEND-ONLY TREE

Let r j and r2 be append-only relations. We use a second subscript x,- whenever we need to identify

specific tuples, that is, x,y is the tuple x,- in location j (note that there is a one-to-one correspondence

between tuple number and location number). We know that if Ji > h, then xi}i{Ts) > x,7a(r5). Let xt

be an arbitrary tuple of r t and assume we know the location of x2-., where j is the j that attains

max{x3y (Ty) | s2j (Ts) < *i(Ts) and xg(S2) = Xj(5j)}. Then, we can start a backward scan of r3

from location j until zi is covered. Location j can be identified using an index on (5, Ts)* Such an

index, however, if not available to support other queries, may be too expensive for a dynamic database. In

this section we describe an index on Ts which is far cheaper to maintain compared to an 5 or (5, Ts)

index. We will refer to that index (described below) as AP -tree (Append-only Tree). Since the index

points to records based on Ts, we omit the requirement that x2-. (S2) — x1(51), and thus start from the

tuple who has the desired Ts and is the farthest (towards the end of the file). Figure 3 illustrates the pro­

cess of covering x i when the AP-tree is used. As a specific example, consider the tuples of relation rf in

Table 4 at f > 20. Let a tuple of r}- be (si, 6, 7). To cover this tuple, only tuples of rf with 7$ < 7

should be examined. If we use an AP -tree, the tuple (* 1, 7, NOW) of r,* can be accessed directly, and

following a backward scan the latest tuple to be read is (a 1, 5, 6). Without the index, we would have to

scan r; from the beginning and read 5 tuples (compared to two tuples with the index). In deciding

whether or not to use the index, the cost of accessing it should also be taken into consideration. Using the

index may be beneficial since the worst case of the backward scan is processing all the way to the begin­

ning of the relation, e.g. if the first tuple of r,* in the above example would have been (s 1, 1, NOW). The

main property that affects the usefulness of the index is the uniformity of event rate among surrogates of

the outer relation. To illustrate this point consider the example of Figure 4. This figure shows the optimal

17

AP-trea

scan

cn c=i cn czd tsa cn czu □ izzi czi cm czp
ii

Begin of r2 End of r 2

>---- * 1 r2 tuple
033 last tuple read

Figure 3< Covering Tuple z s Using AP -tree

behavior of surrogates: the events corresponding to the temporal attributes of all surrogates occur at the

same time points. In the context of this example, assume that tuple (s 2, 16, 18) of r}- has to be covered.

Using an AP -tree, tuple number 12 is accessed and the backward scan ends with tuple number 11; a total

of two tuples compared with eleven for a forward scan. If we change the event rates to be as shown in

Figure 5, the AP -tree will lead us to tuple number 12, and the backward scan will end with tuple number

2, a total of eleven tuples compared with two tuples for the forward scan.

Note that a uniform rate of events for an outer relation r2 does not imply that the AP-tree need

not be used for all atj € r t. Those zt tuples who are closer to the beginning of the file may benefit more

from a forward scan. Currently, if the event rate is not uniform among the surrogates of r 2, an z j 6 r j is

likely to benefit from using the AP-tree if zl(5l) is a very active surrogate in both r t and r2.
I

We will now describe the basics of the AP -tree (more details can be found in [Gunadhi & Segev

89)). Consider the data of relation ry in Figure 4. An AP -tree indexing r,- on Ts is shown in Figure 6.

This tree is a hybrid of an ISAM index and a B+-tree. The leaves of the tree contain all the Ty values

18

X....—X-

Tim*

X 3 *v*nt point
(n) a n th tupl* In r,

Figure 4: Example of Optimal Behavior of Time Sequences

(9) (ID

(4) (6) (10) (12)
-X—XX

14 16 19 20

Tim*

X 3 *v*nt point

in) a nth tupl* In r,

Figure 5: Example of Sub~Optimal Behavior of Time Sequences * i

Cm *■{'» for each Ts value, the leaf points to the last (towards the end of the file) tuple with the specific Ts

value. Each non-leaf node indexes nodes at the next level. Note that the pointer associated with a non-leaf

key value points to a node at the next level having this key value as the smallest node value. The
i

significance of this decision is explained later on. Access to the tree is either through the root or through

the right-most leaf. The AP -tree is different than the B +-tree in several respects. First, if the tree is of

degree 2d, there is no constraint that a node must have at least d keys. Second, there is no node splitting

19

when a node gets full. Third, the online maintenance of the tree is done by accessing the right-most leaf.

Given the premise that deletions are treated as offline f storage management, only the right-hand

side of the tree can be affected. The only online transactions that affects the Ts values in an append-only

database is appending a new tuple. In most cases, just the right-most leaf is affected, either a pointer is

updated or a new key-pointer pair is added, but if it is full a new leaf has to be created to its right, and in

the worst case nodes are added along the path from the root to the right-most node and a new root node

has to be created. In Figure 6 we show the effect of new tuples on the tree. We omit here the statements

of the maintenance procedures for insertions and deletions, but it should be noted that there are several

strategies to handle the right-hand side of the tree, e.g., rather than increasing the height of the tree

online, one can have an indicator that there are non-indexed tuples (to the right of the tuple pointed to by

the right-most leaf pointer); for details see [Gunadhr & Segev 89].

Recall that in the case of event-joins, an AP -tree on r2 is used in the process of covering Xj € rj.

Therefore, we need to get to the leaf node pointing to x2-.. The following procedure is followed (v is a

key value):

Procedure AP

1 Start at the root of AP -tree.

2 For each node visited, follow the pointer corresponding to v+ *= max{v j v < *i(7V)}.

Several notes are in oder. First, the fact that non-leaf nodes index lower level nodes based on the

smallest rather than the largest key value assures that only one leaf node is visited. If the tree of Figure 6

is organized based on the largest key value and x^Tg) =■ 18, will not be found in the visited leaf

node and the leaf node to its left has to be examined as well. It turns out, also, that the maintenance of

the tree is significantly cheaper than when the indexing is based on the smallest key value. The reason is

that an addition of a tuple with a new Ts causes that T$ value to become the new largest value in an

unfilled right-most leaf node; the smallest key value in a node is unchanged as a result of appending new

t Reorganizing the tree to reflect deletions can be done during idle periods or tow load periods. All the pro­
cedures function correctly regardless of the timing; the only issue is performance.

(n) = nth tuple in r 1

s Pointer

Right-hand side of tree after appending tuples (16) through (18)

(15)(16)(17)(10)

Figure 6s Example of AP -tree Before and After an Insertion

20

tuples

In step 2 of Procedure, we assumed that a «+ exists. It is easy to see that a v+ exists for all nodes

except possibly for nodes on the path from the root to the left-most node. This case can be identified prior

to accessing the AP-tree and thus prevents unnecessary index search. In order to identify this case and an

additional case where the index search should be avoided we associate two numbers with a relation r,-,

LS.END (r,-) and iy"(r,-) == min{ T$ }. When x x has to be covered, before the index is accessed the follow­

ing rules are checked:

Rule 1: If ar t(Ts) < Ts~(rs), do not access index; xf is fully covered (for xx should be generated outer-

join tuple).

Rule 2: If *i(7V) > LS.END (r2}, do not access index; xx and all remaining tuples of rx are fully covered

(outerjoin tuples should be generated for them).

Rule 3: If ar ^Tj) < Tj“(r3) and rule 1 is not satisfied, do not access the index; perform a sequential scan

of r2 from the beginning of the file.

If any of the rules is satisfied, an index search will be inferior to the alternatives specified.

1. COST ANALYSIS

In this section, the costs of the four algorithms presented in Sections 4 and 5 will be analyzed in

detail, and comparisons between them are made where appropriate. Below, we define basic variables that

will be used in subsequent discussions.

width (bytes) for each tuple in rf

number of tuples in r,-

B page size (bytes)

^*1 number of pages used for r,- *» J"(iVfi X Wf() / B j

M size (pages) of main memory available for an algorithm

Cf (/) cost in disk I/Os of step j of algorithm i

Ngj number of tuples resulting from the event join of r,- and r}-

21

P£J number of pages to hold the result of event join between r,- and
ry = X WrSJ) / 5 j, where denotes the joined relation

a,- percentage of tuples in r,- that produce outerjoin tuples in

0{ selectivity of the hash-filter on the tuples of r,- that require outerjoins

7,-, 7,-1 average scan length through relation r,- when ry is the inner relation

1.1. Algorithm One Costs

If the two relations are already sorted, the cost is Pfi + Pr^ + Pej, which is the disk I/O time to

join the two relations. For the case where the data need to be sorted first, each relation r,- is first sorted

into into files, each M pages in size, where F,(is the number of files needed for the sort, and is calcu­

lated as jPfj / Af j. The files are then merged together, and the total cost for the sorting/merging is

2(MFEi + Pri). We are assuming that (1) Pfj < M, and (2) the system allows FTt files to be opened

simultaneously. If one or both of these assumptions are unsatisfied, the I/O costs will be greater. The

total cost expressions are thus

Cl(total)^Pri^Pri + Pfsj (1.1)

if rf and ry are already sorted, and

= 2M(fri + F,i) + 3(/>ri + /.rj) + p£, . (1.2)

where sorting is required.

1.2. Algorithm Two Costs

Assume that the hash-filter is kept in main memory and maintains one bit per tuple. This means

that the selectivity factor & represents the portion of tuples in r,- with no matching surrogate values to

be found in ry. Take rt as the inner relation in the first nested-loop procedure. We present the cost of

the algorithm in terms of its two nested-loop procedures which we label here as NLl and NL2; therefore,

C2(totat) = C^NL 1) +CiNL 2), where

C2(NL 1) = pri + (I - <x2)NEj
B + lz(l~ orj) M Pr2+ <*1 M {2-1)

The first term represents the cost of reading in r j, the second term is the number of pages of result

tuples written, the third term reflects the average number of reads in order to produce result tuples where

Xj is fully covered by r2, and finally the last component is the cost of producing outerjoin tuples for rlt

which requires complete iteration through r2 for every M pages of r j. As for NL2,

C^NL 2) =» Prj +
O^Nej

+ - As)

B

M

4- OjA M + -Ti (1 - Or2) M P'i (2-2)

The first two components are the one time read cost of r2 and the write cost for the outerjoin result

tuples for r2; the third subexpression is the cost of producing the outerjoin tuples with the help of the

hash-filter; the fourth is the average cost of reads over the outer relation to determine that r2 tuples are

fully covered; and the last item is the cost of exhaustive search related to producing outerjoin tuples

1.3. Algorithm Three Costs

For the first case of the append-only nested-loops, the hash filter is also employed; thus we assume

that one bit per tuple is used. The difference in cost between Algorithms Three and Two are:(l) outerjoins

can be performed on average as cheaply as covered tuples in terms of disk reads for Algorithm Three; (2)

the average length of a scan through the outer relation, 7,-' , is likely to be better than the 7,- of Algo­

rithm Two, since there is a clustering of tuples on T$. Like before, C^totai) = CS(NL 1) 4- C^NL 2),

where

G$(NL 1} a— PPi 4-
(1 - <*2)^5/

B 4-72' M (3-1)

where the second expression denotes the cost of iterating through r2. For the second nested-loops,

Cs(NL 2)
r*. 1

4- 7i' (1 - <xA) IT P,s 4- orjjAj IT (32)

1.4. Algorithm Four Costa

The final algorithm differs further from the previous two nested-loop algorithms. The second part of

the algorithm needs only a single scan through r2. Although a temporary file needs to be created, it can

23

be done during the first iteration through rg in order to save I/Os. Thus the total cost expression is:

C^total) — {Ptl + 2Fraj + 2
(1 - + otxflxNgj rv

B B M <• Pr, (4)

The way the cost is estimated is as follows: the first e ression (in brackets), represent the total cost

of reading in the relations when they are the inner relations, plus the additional overhead of creating r2.

The second component is the write cost of event-join tuples during the first loop plus the cost of updating

r-x . The third component is the cost of generating the outerjoin result tuples during the second nested-

loop. The fourth term in the cost is that of scanning through r2 to produce the other result tuples.

1.5. Comparisons Among Algorithms

It is clear that Algorithm One is superior if the relations are already sorted, because the cost consists

of the minimum possible access to the relations. Also, the append-only algorithms dominate the algorithm

for the general case. The interesting question is whether the relations, if not sorted, should be sorted, and

then followed by the application of Algorithm One. Figure 7 shows some preliminary results. It should be

noted that we have assumed favorable conditions for the sorting, e.g., no limit on the number of files that

can be opened simultaneously during a sort-merge procedure; if this is not the case, the results will make

Algorithms Three and Four more attractive.

Figure 7 shows the total I/O cost of the algorithms as a function of 7,-. We set the other parameters

to be equal, i.e. — 100,000 pages, PTgJ — 200,000 pages, <*,• =* 0.1, and 0{ ■« 0.5. Additionally, we

assumed that 7/ is. equal to 7*. 7* measures the percentage of blocks in the relation that has to be

scanned. The graph in Figure 7(a) shows the performance of all four methods when 7,- was varied between

0.001 to 0.01. It shows that Algorithm Two does' worst among the algorithms, while Algorithm Four’s

efficiency increases as the scan length gets shorter. It is better than Algorithm One at at approximately

7f » 0.001. Note that 7; may be much more selective than 0.001 for an append-only database, since

measured in disk I/Os, 0.001 is 100 blocks, which is still a large pumber. Figure 7 (b) highlights just the

three best algorithms, so that a better comparison can be made at lower values of 7,-.

The value of the parameters described above reflect the filter selectivity and the number of tuples

scanned for each inner relation tuple. It should be noted that these are not all the parameters that affect

24

the relative performance, and additional computational experiments are needed. Nevertheless, it validates

our conjecture that one can do better than sorting in the append-only environment.

Alg1 O- Alg2 ■- Alg3 -D- Alg4

t/Os C'OOO)

35000

30000

25000

20000

15000

10000

5000

0.001 0.005
Mean Scan Length of Relations

Figure 7(aj

16000

14000

12000

10000

000) 8000

6000

4000

2000

0.001 0.005 0.01
Mean Scan Length of Relations

•®“ Afgl •©- Aig3 Alg4

Figure 7(b)

Figure 7. Comparison of Algorithms Over Gamma

25

2. Summary and Future Research

In this paper, we have addressed the problem of optimizing event-joins in a relational temporal

database. Event-joins are important because normalization considerations are likely to split the temporal

attributes of an entity among several relations. The event-join combines a temporal equi-join component

and a temporal outer-join component. Unlike a conventional outer-join, the temporal counterpart consists

of two asymmetric outerjoins, a fact that complicates the optimization. The complexity of processing

event-joins strategy depends on the nature of the data, its organization, and whether or not all non­

existing data is represented explicitly. We have distinguished between the step-wise-constant and discrete

data; discrete data is easier to handle since all the information contents of the tuple pertains to a single

time point; for step-wise-constant data a decision regarding a tuple of one relation is frequently based on

multiple tuples of the other relation.

As for the data organization we addressed three cases; these are (in increasing order of complexity)

sorted by surrogate and time, append-only, and general optimization. For the sorted case (appropriate for

static databases), the processing of an event-join is the most efficient since each relation has to be read

only once. The append-only database is an appropriate organization for many dynamic temporal data­

bases and mi event-join algorithm can take advantage of the time ordering. For the append-only case we

have introduced a new data structure: the AP-Tree. This index is used to reduce the cost of scanning an

outer relation in a nested-loops procedure. The AP-Tree offers advantages of a B+-tree in terms of utili­

zation and access and maintenance cost. It is also useful for queries other than event-joins that can

benefit from time indexing.

Managing non-existence nulls is more important in temporal databases than in ’current state’ ones

because for a long history one is likely to encounter transactions of state variables between existence and

non-existence states. If all non-existence data is represented explicitly, the outer-join component of the

event-join is eliminated and it reduces to a temporal equi-join operation where the joining attribute is the

surrogate. This special case of the event-join is much simpler than the general case. As was discussed in

the paper, however, storing all non-existence data explicitly is likely to be prohibitively expensive in many

situations.

26

In section 7, we have presented a cost analysis of the proposed algorithms. The algorithm for the

sorted case (Alg. One) obviously dominates all the others. The append-only algorithms (Algs. Three &

Four) dominate the general nested-loops algorithm (Alg. Two); this is also expected. The interesting ques­

tions are whether, for the non-sorted case, the data should be sorted and then Algorithm One applied.

For the general case, the answer is yes (under the favorable sorting conditions that we assumed). For the

append-only case the answer is dependent on the selectivity of the filter and the number of tuples scanned

for each inner-loop tuple. Also, if the inner relation is significantly smaller than the outer relation, and the

selectivity factors associated with the append-only algorithms are small, sorting will be less favorable. We

currently work on a comprehensive simulation test to validate our initial finding.

Finally, it should be noted that many of the concepts presented in this paper are applicable to other

queries; in particular other joins since the concept of covering is applicable to other temporal joins. In

current and future research we try to devise more elaborate rules on when to use the AP-Tree. Also, as

evident from the cost equations, estimation of several parameters are required.

References

[Adiba & Quang 86] Adiba, M, Quang, N.B., Historical Multi-Media Databases, Proeeedinga of the Inter­

national Conference on Very Large Data Baeet, 1986, pp. 63-70.

(Ariav et al 84] Ariav, G., Seller, A., Morgan, H., A Temporal Data Model, Technical Report, New York

University, Dec. 1984.

[Bernstein et al 81] Bernstein, PA., Goodman, N., Wong, E., Reeve, C.L., Rothnie, J.B., Query Process­

ing in a System for Distributed Databases (SDD-1), ACM Transactions on Database Systems, 6, 4,

December 1981, pp. 602-625.

[Bloom 70] Bloom, BJH., Space/Time Trade-offs in Hash Coding with Allowable Errors, Communications

of the ACM, 13, 7, Jul 1970. ,

[Clifford & Croker 87] The Historical Relational Data Model (HRDM) and Algebra Based on Lifespans,

Proceedings of the International Conference on Data Engineering, Feb. 1987, pp. 528-537.

27

[Clifford & Tansel 85] Clifford, J., Tansel, A., On an Algebra for Historical Relational Databases: Two

Views, Proceedings of ACM SIGMOD International Conference on Management of Data, May 1985,

pp. 247-285.

[Date 83] Date, C.J., The Outer Join, Proceedings of the Second International Conference on Databases,

1983.

[Dayal 87] Dayal, U., Of Nests and Trees: A Unified Approach to Processing Queries That Contain Nested

Subqueries, Aggregates, and Quantifiers, Proceedings of the International Conference on Very Large

Data Bases, 1987, pp. 197-208.

[Gunadhi & Segev 88a] Physical Design of Temporal Databases, Lawrence Berkeley Lab Technical Report

LBL-24578, January 1988.

[Gunadhi & Segev 88b] A Framework for Query Optimisation in Temporal Databases, Lawrence Berkeley

Lab Technical Report LBL-26417, December 1989.

[Gunadhi & Segev 89] Indexing Structures for Temporal Database, In Progress.

[Lum et al 84] Lum, V., Dadam, P., Erbe, R., Guenauer, J., Pistor, P., Walch, G., Werner, H., Woodfill,

J., Designing DBMS Support for the Temporal Dimension, Proceedings of the ACM SIGMOD Inter­

national Conference on Management of Data, June 1984, pp. 115-130.

[Klopproge & Lockemann 83] Klopproge, M.R., Lockemann, P.C., Modeling Information Preserving Data­

bases: Consequences of the Concepts of Time, Proceedings of the International Conference on Very

Large Data Bases, 1983, pp. 399-416.

[Navathe & Ahmed 86] A Temporal Relational Model and a Query Language, UF-CIS Technical Report

TR-85-18, Univ of Florida, April 1988.

[Rosenthal & Reiner 84] Rosenthal, A., Reiner, D., Extending the Algebraic Framework of Query Process­

ing to Handle Outerjoins Proceedings of the International Conference on Very Large Data Bases,
i

Aug. 1984, pp. 334-343.

[Rotem & Segev 87] Rotem, D., Segev, A., Physical Organization of Temporal Data, Proceedings of the

International Conference on Data Engineering, pp. 547-553.

28

[Segev & Shoshani 87] Segev, A., Shoshaoi, A., Logical Modeling of Temporal Databases, Proeeedinga of

the ACM SIGMOD International Conference on Management of Data, May 1987, pp. 454-466.

[Segev & Shoshani 88a] Segev, A., and Shoshani, A., The Representation of a Temporal Data Model in the

Relational Environment, Lecture Notea in Computer Science, Vol 339, M. Rafanelli, J.C. Klensin,

and P. Svensson (eds.), Springer-Verlag, 1988, pp 39-61.

[Segev Sc Shoshani 88b] Functionality of Temporal Data Models and Physical Design Implementations,

IEEE Data Engineering, vol. 11, 4 (Dec. 1988), pp. 38-45.

[Selinger et al 79] Seiinger, P.G., Astrahan, M.M., Chamberlain, D.D., Lorie, RA.., Price, T.G., Access

Path Selection in a Relational Database System, Proeeedinga of ACM SIGMOD International

Conference on Management of Data, May 1979.

[Shoshani & Kawagoe 86] Shoshani, A., Kawagoe, K., Temporal Data Management, Proeeedinga of the

International Conference on Very Large Data Baaea, August 1986, pp. 79-88.

[Snodgrass 87] Snodgrass, R., The Temporal Query Language TQuel, ACM Transactions on Database Sys­

tems, June 1987, pp. 247-298.

[Snodgrass & Ahn 85] Snodgrass, R., Ahn, I., A Taxonomy of Time in Databases, Proceedings of ACM

SIGMOD International Conference on Management of Data , May 1985, pp. 236-246.

[Snodgrass Sc Ahn 88] Snodgrass, R., Ahn, I., Performance Analysis of Temporal Queries,' Information Sci­

ences, forthcoming.

i

