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Abstract

An Event-Join is mostly used to group several temporal attributes of an entity into
a single relation. It combines temporal equi-join and outerjoin components into one
operation. The temporal outerjoin component is different than a non-temporal one
because of a time interval predicate, and it consists of two asymmetric temporal outer-
join operations. In this paper, we motivate the need to support the efficient processing
of event-joins, and introduce several optimization algorithms, both for a general data
organization and for specialized organizations (sorted and append-only databases). For
the append-only database we introduce a new data structure, that can improve the per-
formance of event-joins as well as other queries. Finally, we evaluate the performance of
the proposed algorithms.
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1. INTRODUCTION AND MOTIVATION

Temporal data models are designed to capture the complexities of many time-dependent
phenomena, something that traditional approaches, like the relational model, were not intended to do.
Many new operators are needed in order to exploit the full potential of temporal data models in enhancing
t.l;e retrieval power of a database management system (DBMS). Many temporal operators have been
introduced in the literature, (e.g. [Adiba & Quang 88, Clifford & Tansel 85, Clifford & Croker 87,
Snodgrass 87]), yet with few exceptions (e.g., [Lum et al 84, Rotem & Segev 87, Snodgrass & Ahn 88}), the
issue of performance and optimization has not been a major focus so far. In a previous paper [Gunadhi &
Segev 88b], we identified a set of temporal joins and carried out preliminary investigation into their
optimization. In this paper, we extend that work further by studying in detail the optimization of one
type of temporal join - the event —join .

The event~join operator was first introduced by [Segev & Shoshani‘SSa] ; it is unique in that it com-
bines temporal join and outerjoin {Date 82] components into a single operation. It is used primarily to
group temporal attributes of an entity into a single relation; temporal attributes Belonging to the same
entity, but which are not synchronous in their event points, are likely to be stored in separate relations.

Many queries require that they be grouped together as one relation, but differences in their behavior over

time brings up the possibility that null values are involved in the operands and the join result.

This paper deals with optimizing event-joins in temporal relational databases. Its contributions are
the following:
e Motivating and demonstrating the need to support the efficient brocessing of event-joins.
¢ As traditional processing cannot support event-joins, we have developed optimization algorithms for
various situations, including static sorted déta.bases, and dynamic databases with general data organiza-
tion and append-only organization.
e In the context of the append-only database, we have developed a new data structures called the AP -
Tree (Append ~Only Tree). This tree is a variation of an ISAM aixd a B *-tree combination, and is useful

for other temporal queries besides event- joins.

e We compare the proposed algorithms by evaluating their costs and present some computational results.



[3-]

The paper is organized as follows: in the next section, we discuss the relational representation of
temporal data. In section 3, the event-join operator is defined and explained through an an example. Sec-
tion 4 explores the optimization of event-joins for data that is sorted and data in a'generalized setting; an
algorithm for each is described in this section. Section 5 deals with the third main type of data: append-
only databases, for which we propose two algorithms to optimize the event-join operator for such a data-
base. The new indexing structure fof append-only databases -- the AP -tree is introduced in section 6.
Section 7 presents the derivations of the cost of each of the four algorithms, and a comparison between

them. Conclusions and directions for further research are given in section 8.

2. RELATIONAL REPRESENTATION OF TEMPORAL DATA

A convenient way to look at temporal data is through the concepts of Time Sequences (75) and
Time Sequence Collection (TSC') [Segev & Shoshani 87]. A TS represents a history of a temporal
attribute(s) associated with a particular instance of an entity or a relationship. The entity or the relation-
ship are identified by a surrogate (or equivalently, the time —invariant key {Navathe & Ahmed 86)). For
example, the salary history of employee #1 is a TS . A TS is characterized by sgveral properties, such as
the time granularity, lifespan, type, and interpolation rule to derive data values for non-stored time
points. In this paper, we are concerned with two types — atepwi"w constant and discrete . Stepwise con-
s;tanc (SWC) data represents a state variable whose values are determined by events and remain the same
between events; the salary attribute represents SWC data. Discrete data represents an attribute of the
event itself, e.g. number of items sold. Time sequences of the same surrogate and attribute types can be

grouped into a time sequence collection (TSC'), e.g. the salary history of all employees forms a TSC.

There are various ways to represent temporal data in the relational model; detailed discussion can
be found in [Segev & Shoshani 88a]. In this paper we assume first normal form relations (1NF). Table 1
shows two ways of representi#g SWC data. The representations can be different at each level (external,
conceptual, physical), but we are concerned with the tuple representation at the physical level. The
representation in Table 1(b) stores data only for event point# and requires explicit storage of null values
to indicate the transition of the state variable into a non-existence state. Also, the tuples should be

ordered by time in order to determine the values between two consecutive event points. Both



representations require the use of the lifespan metadata; it is required for the time-interval representation
since we do not store non-existence nulls explicitly, for example, the lifespan is needed in order to
correctly answer the query "what was the commission rate of E2 at time 127", In order to generalize the
analysis, we assume SWC data using the time-interval representation; the event-join algorithms can be

greatly simplified for a time-point representation of SWC data and for discrete data. t

MANAGER |E# | MGR | Ts | T: COMMISSION | E# | CRATE | Ts | T:
E1 | TOM 1 5 E1 10% | 2 7
E1 | MARK 9 | 12 E1 12% | 8 20
E1 | JAY 13 | 20 E2 8% | 2 7
E2 | RON 1 18 E2 10% 8 20
E3 | RON 1 | 20

(a) time-interval representation

MANAGER |(E# { MGR | T COMMISSION | E# { CRATE | T
E1 | TOM 1 E1 g |1
E1 |9 8 E1l 10% | 2
E1l {MARK | 9 E1 12% | 8
E1 | JAY 13 E2 g |1
E2 | RON 1 E2 8% | 2
E2 |0 19 E2 10% | 8
E3 RON 1

(b) time-point representation -

Table 1: Representing Step-Wise Constant Data withtLifeupan = (1, 20|

We will point to cases where simplified algorithms can be used when we describe the event-join operation.
We use the terms surrogate, temporal attribute, and time attribute when referring to attributes of a
relation. For example, in Table 1, the surrogate of the MANAGER relation t is E#, MGR is a temporal
attribute, and Tg and Ty are time attributes. We assume that all relations are in first temporal normal
form (1TNF) [Segev & Shoshani 88a]. 1TNF requires that for each combination of surrogate instance,

i

time point in the lifespan, and temporal attribute (or attributes) there is at most one temporal value {or a

t For discrete data, using time-intervals is superfluous since the start time Tg is equal to the end time T
for each tuple



unique combination of temporal values). Note that INF does not imply 1TNF, for example, the relation
COMMISSION in Table 1(a) would not be in 1TNF if for any surrogate instance there were two tuples

with the same commission rate value and intersecting time intervals.

3. EVENT JOINS

An Event -Join groups several temporal attributes of an entity into a single relation. This operation
is extremely important because due to normalization, temporal attributes are likely to reside in separate
relations. To illustrate this point, consider an employee relation in a conventional database. If the data-
base is normalized we are likely to find all the attributes of the employee entity in a single relation. If we
now define a subset of the attribute; to be temporal (e.g., salary, job-code, manager, commission-rate,
etc.) and. they are stored in a single relation, a tuple will be created whenever an event affects at least one
of those attributes. Consequently, grouping temporal attributes into a single relation should be done if
their event points are synchronized. Regardless of the nature of temporal attributes, however, a physical
database design may lead to storirig the temporal attributes of a given entity in several relations. The
analogy in a conventional database is that the database designer may create 3NF tables, but obviously,

the user is allowed to join them and create an unnormalized result.

Let r;(R;) be a relation on scheme R; = {S;, 4;1, ..., Aim, Ts, Te}- In many instances we illus-
trate the concepts using a single temporal attribute, that is, m = 1; all apply to any m > '. Also, when
the two surrogate types S; of R; and §; of R; are the same, we simpl‘y use 5. Instances of surrogate §
| are denoted by 51,82, ---. We use z; to refer to an arbitrary tuple of r;; z;(A4) is the value of attri-
bute A in tuple z;. In order to describe the event-join between r, and r,y, we first present two basic
operations TE -JOIN and TE-OUTERJOIN . TE-JOIN is the temporal equivalent of a standard eﬁui—
join; two tuples z; € r| and z, € r, are concatenated t if their join attribute’s values are equal and the
intersection of their’t.iyme intervals is non-empty; the Ts and Tz of the result tuple correspond to the

intersection interval. Semantically, this join condition is "where the join values are equal at the same

t We pefer to the data construct as a 'relation’, but we mean a 'temporal relation’. it is different from a stan-
dard relation because of the associated meta-data.
t It is-not a standard concatenation since only one pair of Tg and Tz is part of the resuit tuples.
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time”. Optimization issues in executing general TE-JOINs are discussed in [Gunadhi & Segev 88b|. In the
case of event-joins, we are concerned only with a special case of TE-JOINs where the joining attribute is
the surrogate. A TE-OUTERJOIN is a directional operation from r to r; (or vice versa). For a given
tuple z, € r,, outerjoin tuples are generated for all points ¢t such that [z,(Ts), z,{Tr)] and there does
not exist z, € rg such that z,{S) =z ,(S)and t € [zTs), zo(Ts)]. Note that all consecutive points ¢
that satisfy the above condition generate a single outerjoin tuple. Using those operations the event-join is

done as follows.

r; EVENT-JOIN r:
templ «— r, TE-JOIN roon §
temp2 «~ r, TE-OUTERJOIN roon §
temp3 « r, TE-OUTERJOIN r, on §

result «~ templ U temp2 U temp3

The above operations are illustrated in the example of Table 2, where an event-join is performed

between the MANAGER and COMMISSION relations of Table 1.

The most troublesome components of the e\;'ent-join are the outer-joins. The situation is further
complicated by the time interval predicate associated with the TE-outerjoin, preventing the usage of
non-temporal outerjoin procedures [Rosenthal & Reiner 84, Dayal 87]. An easy solution that comes to
mind is to store all non-existence tuples explicitly, e.g., tuples like (1,9, 6, 8) are added to the
MANAGER relation ‘of Table 1. In that case the outerjoin components disappear, and the problem
reduces to a TE-JOIN on §. Unfortunately, there are many situations where such a 'fix’ will degrade
overall performance rather than improve it. For exa;mple, if the whole S; domain is represented in relation
ri , representing all non-existence data explicitly will in the‘worst case double the size of the table (this is
the case of alternating state transitions between existence and non-existence). A much worse problem may
arise when a relation contains only a fraction of the S-domain values, e.g., if on the average, only % of
the employees of a large corporation earn commissions, adding to the non-existe;nce data for the 95%
other employees to the commission relation will add to storage cost, querying cost (including event joins),

and maintenance of the commission relation and any of its associated secondary indexes.



MANAGER TE-JOIN COMMISSION ON E#

templ | E# | MGR | CRATE | Ts | Te
E1 | TOM 10% 2 5
Ei1 | MARK 12% 9 12
E1 | JAY 12% | 13 | 20
E2 | RON 8% 2 7
E2 | RON 10% | 8 | 18

MANAGER TE-OUTERJOIN COMMISSION ON E#

temp2 | E# { MGR | CRATE | Ts | T
El | TOM 9 1 1
E2 | RON | ) 1 i
E2 | RON U 1 20

COMMISSION TE-OUTERJOIN MANAGER ON E#

temp3 | E# | MGR | CRATE | 75 | T
ElL |0 10% | 6 | 7

EL |90 12% | 8| s

{ E2 ] 10% 19 20

MANAGER EVENT-JOIN COMMISSION

result | E# | MGR [ CRATE | Ts | T:
El TOM 8 1 1
El | TOM 10% 2 5
E1 | ¢ 10% 6 |7
E1 |9 12% 8 8
E1l MARK 12% g 12
E1 | JAY 12% | 13 | 20
E2 | RON 81 1 1
E2 | RON 8% 2 7
E2 | RON 10% 8 18
E2 |8 10% | 19 | 20
E3 RON ) 1 20

Table 2: Event-Join Derivation

Consequently, we divide event-joins into two types — ’easy’ and ’difficult’. Easy cases are those
where the relations contain explicit tuples for all non-existence data and are sorted by (S, Ts) (the sorted

case i3 detailed in the next section). Other cases are regarded difficult. In the remainder of the paper we



are mostly concerned with the difficult cases.

4. EVENT-JOIN OPTIMIZATION

In this section we discuss the optimization of event-joins where the relations are either sorted or
unsorted. Before we proceed with details of the algorithms, the important concept of tuple covering,

which is used throughout the discussions, is presented first.

4.1. Concept of Tuple Covering

We first introduce the notion of covering which is used in all the event-join algorithms. To illustrate

the concept, consider the example of Table 3.

r, £o Covering of z, Modified z;
s1,8,5 15 | s1,5,14,2 None sl,e,5, 15

81,¢,3,7 sl,a,c,5,7 51,a,8,15

s1,d,9,12 s1,a,9,8,8
¢l,8,d,9,12 |s1,a,13,15

§1,¢2,16,20 | s1,a,9, 13, 15 | Fully covered

Table 3: Example of Tuple Covering

Relation r, has a scheme R, = (5§, A,, Ty, Tr) and a single tuple <s1, a,5, 15>. r, has a scheme
Ry=(S 4, ;‘13, Ts, Tg) and four tuples as shown in the table. During the event-join, z, € r, has to be
compared with tuples z, € ry; assume that the order of comparisons is as shown in the table (top-down).
A tuple z, contributes to the covering of z, if one or two result tuples {z,(S), z,(A4,), z5(43), Ic} can
be derived, where I C (2,(Ts), z,(Ts)|. I can'be viewed as a covered portion of z,. The 'modified z,’
column in the table represents the uncovered portion of z,. Note that in the covering process we have
relied on the ordering of r, by time in deriving the outerjoin tuples (those with z{A,) = @). Also, the
covering column of the table contains onh; a subset of the final result since the covering of 7‘2’3 tuples is

incomplete. The remaining result tuples should be derived from TE-outerjoin r, by r,. In this particular

example, the remaining result tuples are <s1,8,5,1,2>, <s1,9,¢,3,4> and <s1, 8, ¢, 16, 20>.



Determining and maintaining the information about the covered portion of a tuple is substantially
 different if the relations are not sorted by Ts. In the sorted case we can determine outerjoin tuples as the
scanning progresses and the information about the covered portion of the tuple is maintained by simply
modifying its Ts. In the general case, the covered subintervals can be encountered in a\random order;
moreover, an outerjoin result tuple associated with z; € r, can be determined only when the scanning of
ro is complete. We first present an algorithm for the case where r; and rj are sorted by S (primary
order) and by Ts (secondary order). In the next subsection we discuss the general case. As can be seen
from the above example, the particular values of A, and A, are immaterial as far as the logic of the
event-join is concerned; we are only interested in existence or non-existence of these attributes. Conse-
quently, in the remainder of the paper, whenever convenient, we use examples with relation schemas of
{S:, Ts, Tg ), but the reader should keep in mind that at least one A; attribute is part c;f the actual
tuples. Also, the algorithms presented in this paper involve lots of housekeeping details. For lack of space
we omit the dejta.iis and provide only an outline of the algorithms. The logic of all algorithms is described
ignoring blocking of tuples; it is trivially extended to handle blocking. The cost analysis in Section 7 take

into consideration the blocking factor.

4.2. Event-Join Sort-Merge Algorithm
The Event -Join Sort -Merge algorithm processeﬁ the event-join by taking advantage of the fact
that both relations are in sort order. Unlike a conventional relation which requires only primary key c;rder
~for sorting, the temporal relation needs to be sorted on § as the primary order and Ts as the secondary
order. The event-join sort-merge algorithm, which will be referred to as Algorithm One, scans each rela- -
tion just once in order to produce the result relation. At each iteration, two tuples (possibly with modified
Ts), z1€ry and 25 € ry, are compared to each other and one or two result tuples will be produced

based on the relationship between the tuples on their surrogate values and time intervals.

The first comparison in Algorithm One is on the surrogate value - if they are unequal, it means that
the tuple with the lower S value, say z,, does not have any matching surrogates in the other relation,

this implies that z, is fully covered, an outerjoin result tuple is generated, and the next z, tuple is read.



Algorithm One

(1). Read z, and z,. Repeat steps 2 to 4 until End-of-File (EOF). If EOF occurred for r;, gen-
erate outerjoin tuples for the remainder of r;’s tuples (including the current tuple if not fully
covered).

(2). If £;(S) < z;(S), generate an outerjoin result tuple for z; .

(3). For the situation where z,(S) = z4(5 ), there are three cases to consider (see Figure 1):

Case 1: 2;(Ts) = 2, (Ts). Write an intersection result tuple.

Case 2: 2,(Ts) < z;(Ts) and 7, (Tg) = z;(Ts). Write one outerjoin tuple for z; and one inter-
section tuple. Modify z,; and z, and read next tuples(s).

Case 3: 7; (Tg) < z;(Ts). Write an outerjoin tuple for z;.

(4). Modify z, and z, and read next tuple(s} {see Figure 1).

If on the other hand z (S ) = z4(S), there are many possible relationships that can exist between
the time intervals of the two tuples; but there are just three distinct possibilities in terms of result tuples
that have to be generated. The three cases are identified in Step 3 of Algorithm One. Figure 1 illustrates
the a.bove’points: it shows the time intervals of original pair of tuples and their relative positions to one
another, the time intervals of result tuples, the modified tuples which consist of the original tuples with
Ts modified to represent the uncovered portion, and finally the action taken with respect to which
tuple(s) are read next. The next tuple of r; is read only when the current tuple has been t'uliy covered.
Note that whenever we use the subscripts ¢+ and j in Algorithm One, 1 = 1 and § = 2 or { =2 and

J.== 1. Also an intersection result tuple is equivalent to a TE-JOIN result tuple.

4.3. Event-Join Nested-Loops Algorithm

The Nested-Loops method described below does not assume any kind of ordering among the tuplesr
in either relation. The event-join is achieved in two stages, the first of v_vhich is nested loops with r; and
ro being the inner and outer relations respectively. Tuples produced in the first stage are the result of
either intersections or outerjoins from r, to r, In the second stage, the order of relations are now

reversed for another nested loop, but the only result tuples created here will be outerjoins from r, to r .
]

Unlike the sorted case, maintaining the information about the covered portion of z;’s time interval
cannot be done by simply modifying T, and the following procedure is followed. In the first nested loop,

whenever a tuple z, from r, is first read, a list U is initialized with the pair of time-stamps associated



Original tuples Modified tuples
X, X Result tuple(s) i j Read next tuple

[ 1

1 | | I -

—

b= ]

H
o

—
—

-

[ |

o fully covered
m—— intersection result tuple

——— OUterjoin result tuple

Note : a time interval of original tuples, result tuples, and modified tuples can be a point.

Figure 1: Producing Event-Join Tuples for Algorithm One
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with z,. This list corresponds to the uncovered portions of r,. For each tuple ro, the algorithm applies
the test of equality on the surrogate values and a non-null intersection over time. The second condition is
needed because if two tuples share a common surrogate value but are disjoint over time, no conclusion
can be derived (in contrast to the sorted case) as to whether an outerjoin is appropriate, unless the EOF
for ro has been reached. Thus, while scanning r,, the covering of z, is achieved only bh;'ough interval
intersections, and for each z, at most one intersection result tuple will be produced. Once this is accom-
plished, the uncovered subintervals associated with z; are determined, and appropriate outerjoin result
tuples are generated. At the end of ry’s scan the interval of z; will either be completely covered, has one
uncovered segment, or at most two segments. For each uncovered segment, the time pair representing
them are inserted into U in place of the original entry. This ensures that U remains an ordered list; the
ordering within U helps the search for the appropriate interval that is relevant for a TE-JOIN in subse-
quent iterations through r,. Regardless of the number of entries in the list, any tuple z, can only inter-
sect with one entry, otherwise it would mean that there are two or more tuples in r, having the same

surrogate value and overlap in time. This implies that the condition of 1TNF has not been satisfied.

Unlike conventional nested-loops procedures, we need not retrieve all the tuples of the outer rela-
tion, since an empty U indicates that the original z, has been fully covered. In the event that the loop
terminates because the end of file r, is reached, either the whole, or parts of z,’s time interval were left
uncovered. An outerjoin result tuple is generated from each time pAir in U; the time pair determines the

time-start and time-end of the result tuple.

The second nested-loops differs from the first in that it produces only outerjoin tuples from r,. Thus
no result tuple duplicating a tuple already produced in the first stage is created. In order to reduce the
number of unnecessary scans of r;, the Algorithm uses a hash - filter [Bloom 70| created during the first
stage as follows: when r, is scanned, each time an z, is found that participates in a TE-JOIN, the hash-

filter is updated for that tuple. The hash-filter maintains H bits to represent N,, tuples, where H < N,,

i

The hash-filter entries corresponding to & (z,), where & is the hash-function, are initialized to 0, and
whenever an z, generate an intersection result tuple for the current r,, A(z,) is set to 1. This table is

kept in main memory, and in the best case scenario when there is sufficient memory to maintain one bit
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per tuple, the hash function is the count of z, tuples already accessed, and the table is a one dimensional
array indexed by this count.

During the secc;nd stage, for each tuple in the inner relation ro, if it hashes to a value of 0, then an
outerjoin tuple is produced without scanning r;. Otherwise, as in the first nested-loops, we carry out the
same updates on the coverage of z,, although no intersection tuples are produced As before, outerjoin

tuples are produced when it can be determined that no z,; exists to cover the current z,. Below we out-

line the steps of the algorithm, labeled as Algorithm Two. U; denotes the list U for z;, § =1, 2.

Algorithm Two

(1). [Nested-Loops-1] For each tuple in r: read r, and execute Step 2 until EOF for ry or z; is
fully covered. If EOF, for r,, produce outerjoin tuples for =, based on U, and initialize U,.

(2). If z,(S) = z4(S) and the two time intervals intersect, then do: write an intersection result
tuple. Update U,. Set hash-filter entry for z,to 1.

(3). [Nested-Loops-2] For each tuple z4 of ry: if hash-filter bit = 0 produce outerjoin tuple im-
mediately, an read next z,. Otherwise read r; and execute Step 4 until EOF for r, or z, is fully

covered.

(4). if zo{S) = z,(S) and the two time intervals intersect then update U,.

In the case of having space for a second bit for each of ry's tuples, Algorithm Two can be further
improved if a second filter is used. During the first stage, while covering z, it is possible that the time
interval of z, contains that of z,. In that case we set the cu.*respoﬁding filter entry to 1. Then, in Step 3

we also avoid the scan of r, if the first filter bit is 1 and the second flter bit is 1.

5. APPEND-ONLY DATABASES

' In the case of static history databases, one can store the data sorted by (S, Ts) and then apply
Algorithm One; this provides the maximum efficiency for event-joins. For a dynamic temporal database, it
may be too inefficient to keep the data sorted by (S, Ts), and consequently, either the operands are
sorted prior to the application of Algorithm One, or Algorithm ?wo is used. If the database is append-

only, the event-join algorithms can utilize this fact to enhance their efficiency.

There are several variations of append-only databases, some of which are not ’truly’ append-only. As

far as event-joins are concerned we view a database to be append-only if tuples are inserted at the end of
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the file and in order of the events that generated them. The tuples can have open-end or closed-end time
intervals. To illustrate these points, consider Figure 2 that shows the time sequences for three surrogate
instances with life-spans of [1, NOW|; each event point cofresponds to the generation of a new tuple for
the surrogate {we are not concerned with the values of the temporal attribuvteys). Let relation r; represent
" that data; the states of that relation are shown in Table 4. Note that such data is inappropriate for-a
WORM device since insertions also cause updates; for example, the event at time 10 led to updating
(¢2, 1, NOW) to (s 2, 1, 9) and appending the tuple (s 2, 10, NOW). If the representation of the data in

this example would use time points instead of time intervals, it would be truly append-only.

sl \,( x &
82 X -
3 S
} : ! i i -
1 s 7 10 18 20

Time

X = event point

Figure 2: Time Sequences for Three Surrogates with Lifespans = {1, NOW]

Deletions in append-only temporal databases are significantly different than in conventional data-
bases. In our case, they are storage management activities rather than user transactions. From a logical
~point of view deletions are a result of a change in the lifespan 4, i.e. an increase in the value of-
LS.START . An example is a 'moving-window’ lifespan [NOW -, NOW | where ! is the length of his-
tory. In the case of step-wise constant sequences, deletion of data to reflect the new lifespan is not
guaranteed to be contiguous; Table 5 illustrates this issue. The table shows the state of r; at ¢ = 21
(reproducéd from Table 4) and the effect of changing the lifespan at ¢ = 22 from (1, NOW] to

[7, NOW|. As can be seen from the table a new lifespan can cause updates and deletions at any point in

t Weuse LS.START and LS. END to refer to the boundary points of the lifespan.
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Snapshot at Time State of r;: {S;, Ts, Tg }
(A; is omitted)

s1,1, NOW

1<t <5 | 52,1, NOW

83,1, NOW

5<t <7

7<t <9 £3,1, NOW
81,5, 6
81,7, NOW

el, 1,4
62,1,9
10t <20 3,1, NOW
81,5, 86
§1,7, NOW
82, 10, NOW

51,1, 4
82,1,9
63,1,19
20 < ¢t < Next Event Point | ¢1,5,8
81,7, NOW
32,10, NOW
s3, 20, NOW

Table 4: Progression of an Append-Only Database States

the file. Although this example used open-end time intervals, the same problem occurs for any s;ep-wise
constant data regardless of its representation. It also demonstrates that maintaining the lifespan for anA
active database with small time granularity on a real-time basis can be prohibitively expensive. For-
tunately, these updates and deletions can be done periodically without affecting the logical view of the
data, that is, the physical lifespan can be different than the logical lifespan provided that the first contains
the latter. For discrete data, the situation is much simpler and implementing a change in the lifespan can
be done by simply updating a begin-of-file pointer to the first tuple whose time value is greater than or

equal to the new LS.START.
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State of r;: {S;, Ts, T}
Tuple Number | Lifespan = {1, NOW] | Lifespan = [7, NOW|
= 21 P =122
1 sl1, 1,4 deleted
2 2, 1,9 §2,7,9
3 83,1, 19 $3,7,19
4 21,5,6 deleted
5 1,7, NOW s1,7, NOW
8 52,10, NOW 82,10, NOW
7 83, 20, NOW 83,20, NOW

Table 5: Effect of Modifying the Lifespan of r; at ¢ = 22

If r; is an append-only relation the order of its tuples corresponds to the order of their events, thus,
they are ordered by T . Unfortunately, the event-join needs the primary order to be by S, and the surro-
gate instances of r; can be in an arbitrary order. Nevertheless, we can take advantage of the ordering by
Ts . We assume that if retroactive corrections to the history are necessary, they are done in batch mode
offline and the file is reorganized to preserve the T5-order; this is a reasonable course of action in most
envixonments where the normal mode of operation is not error-correction. Another solution is to use an
overflow area to store the ’correction records’; if tixeir number is sxﬁall (relative to the data file) they will
not affect the performance of the event-join algorithms.

We present, t.wo'evene-join algorithms in this section. The first algorithm, stated as Algorithm Three ‘
below, follows the logic of the Nested Loops algorithms, but is different in two important ways. First,
when z is compared against tuples of r, we do not necessarily have to complete r,’s scan ~ since ry is
append-only it follows that z, is fully covered if z,(S,) = z{S;) and z, fully covers z,, or if
z((81) 7 z{S2) and z4{Ts) > z,(Tg). Second, as in the sorted case, the covered portions of z, are
always contiguous and thus we can maintain that information bj’f updating z (Ts) as was done in Algo-
rithm One. Unlike the sorted case we cannot write outerjoin tuples for z, when r, is scanned to cover z;

(see Step 3 of Algorithm Three). We refer to the first append-only database algorithm as Algorithm



Three, and outline the procedures below.

Algorithm Three

(1). [Nested-Loops-1| For each z: read r, and execute Step 2 until z, is fully covered or EOF for
rois reached. If EOF, generate outerjoin tuple for z,.

(2). There are four cases to consider in this step.

Case 1: 2,(Ts) > zo(Tg ) — no result tuple is generated.

Case 2: 2,(5) 5% z4(S5) and z,(Ts) > z,(Tg) - generate an outerjoin tuple for z,.
Case 3: 2,(S) 5% z4(S) and zo(Ts) < z,(Tg) -~ no result turle is generated.

Case 4:2,(5) = 24(5) and 2,(Ts) < zo(Tg) - do Step 3.

(3). Execute Step 3 of Algorithm One, except that no outerjoin tuple is written for z, if
2,(Ts) < z,(Ts), and the hash filter is updated whenever the time intervals of z; and z, inter-
sect.

(4). [Nested-Loops-2] The procedure is similar to Steps 1 to 3, except that

i If hash-filter entry for z, is 0, produce an outerjoin tuple without scanning r ;.
it Do not produce any intersection tuples.

iii No filter updates occur and on EOF for r, the algorithm stops.

The second algorithm, stated as Algorithm Four below, avoids the final outerjoin from r, to r; by
writing updated time-intervals for rq's tuples while they are scanned for each z, tuples. This is achieved
by creating a copy of r, which is upd;ted during the first nested-loops. The benefit of this approach is
that the second nested-loops is replaced by a single scan through r, in order to determine which tuples
require outerjoins where no tuple has been found in r, with matching surrogates. The updating procedure

for tuples in r, and r; is similar to that of Algorithm One.

Algorithm Four
(1). Create a working copy of rjy, and call it 7, .

(2). [Nested-Loops-1] Procedure is the same as Steps 1 to 3 of Algorithm Three, except:

i Step 3 is done exactly as in Algorithm One, that is, we write outerjoin tuples for z,.

ii z,' is updated by writing in place its modified Ts. If zo' is fully covered its T is set to
Te + 1. .

iii No hash-filter is used.

(3). Read ry' in a single scan, and for those tuples where Ty < Tz, produce an outerjoin result
tuple.

Note that Step 1 of Algorithm Four can be done while scanning r, for the first z, tuple; subsequent

z, tuples scan r;' . Both of the above algorithms contains a nested loop component to cover z, tuples by
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scanning ro. This component is the most expensive part of the algorithms, and reducing the number of
ro’s tuples scanned for each r, is very important. The append-only property helps in achieving that
objective but we may further improve the performance by using a secondary index as described in the

next section.

6. THE APPEND-ONLY TREE

Let r; and r, be append-only relations. We use a second subscript z; whenever we need to identify
specific tuples, that is, z;; is the tuple z; in location j (note that there is a one-to-one correspondence
between tuple number and location number). We know that if j; > jg, then z; (Ts) 2 #;,(Ts). Let z,
be an arbitrary tuple of r; and assume we know the location of Zg5 where j is the j tha.t‘ attains

max{z4;{Ts) | 24;(Ts) € 2(Ts) and z4{S3) = 2,(S;)}. Then, we can start a backward scan of ry
i

from location j until z, is covered. Location 7 can be identified using an index on (S, Ts). Such an
index, however, if not available to support other queries, may be too expensive for a dynamic database. In
-this section we describe an index on T which is far cheaper to maintain compared to an S or (5, Ts)
index. We will refer to that index (described below) as AP -tree (Append-only Tree). Since the index
points to records based on Ts, we omit the requirement that z,; (S7) = z,(5,), and thus start from the
tuple who has the desired Ts and is the farthest (towards the end of the file). Figure 3 illustrates the pro-
cess of covering z, when the AP -tree is used. As a specific example, consider the tuples of relation r; in
Table 4 at ¢t > 20. Let a tuple of r; be (s1, 8, 7). To cover this tuple, only tuples of ; with Ts < 7
should be examined. If we use an AP -tree, the tuple (s 1,7, NOW ) of r; can be accessed directly, and
following a backward scan the latest tuple to be read is (s 1, 5, 8). Without the index, we would have to '
scan r; from the beginning and read 5 tuples (compared to two tuples with the index). In deciding
whether or not to use the index, the cost of accessing it should also be taken into considei‘ation. Using the
index may be beneficial since the worst case of the backward scan is processing all the way to the begin-
ning of the relation, e.g. if the first tuple of r; in the above example would have been (s 1, 1, NOW). The
main property that affects the usefulness of the index is the uniformity of event rate among surrogates of

the outer relation. To illustrate this point consider the example of Figure 4. This figure shows the optimal



17

xl

T T

g f
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AP-tree
scan
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Begin of r, End ofrz

3 r, tuple

=1 1est tuple read
Figure 3: Covering Tuple z, Using AP -tree

behavior of surrogates: the events corresponding to the temporal attributes of all surrogates occur at the
same time points. In the context of this example, assume that tuple {5 2, 16, 18) of r; has to be covered.
Using an AP -tree, tuple number 12 is accessed and the backward scan ends with tuple number 11; a total
of two tuples compared with eleven for a forward scan. If we chaxige t?le event rates to be as shown in
Figure 5, the AP -tree will lead us to tuple number 12, and the backward scan will end with tuple number

2, a total of eleven tuples compared with two tuples for the forward scan.

Note that a uniform rate of events for an outer relation r, does not imply that the AP -tree need
not be used for all z, € r,. Those z, tuples who are closer to the beginning of the file may benefit more
from a forward scan. Currently, if the event rate is not uniform among the surrogates of rp, an z; € r, is

likely to benefit from using the AP -tree if z,(5,) is a very active surrogate in both r, and r,.

1

We will now describe the basics of the AP-tree (more details can be found in [Gunadhi & Segev
89]) Consider the data of relation r; in Figure 4. An AP -tree indexing r; on T is shown in Figure 6.

This tree is a hybrid of an ISAM index and a B*-tree. The leaves of the tree contain all the Ts values
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Figure 4: Example of Optimal Behavior of Time Sequences

{, (11)
st /0 W o s =
(2) (13) (1%)
$2 > % -
(3) {4) (6) 7 (10) (12) (14)
3 SO 3E S -
- 1 L1 L1 1
! T S ! ] -
1 S 89 11 14 16 19 20 23
Time

X = svent point
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Figure 5: Example of Sub-Optimal Behavior of Time Sequences

em r;; for each Ts value, the leaf points to the last (towards the end of the file) tuple with t};e specific T
value. Each non-leaf node indexes nodes at the next level. Note that the pointer associated with a non-leaf
key value points to a node at the next level having this key value as the smallest node value. The
significance of this decision is explained later on. Access to the tjree is either through the root or through

the right-most leaf. The AP -tree is different than the B *-tree in several respects. First, if the tree is of
P

degree 24, there is no constraint that a node must have at least d keys. Second, there is no node splitting
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when a node gets full. Third, the online maintenance of the tree is done by accessing the right-most leaf.

Given the premise that deletions are treated as offline t storage management, only the right-hand
side of the tree can be affected. The only online transactions that affects the Ts values in an append-only
database is appending a new tuple. In most cases, just the right-most leaf is affected, either a pointer is
updated or a new key-pointer pair is added, but if it is full a new leaf has to be created to its right, and in
the worst case nodes are added along the path from the root to the right-most node and a new root node
has to be created. In Figure 6 we show the effect of new tuples on the tree. We omit here the statements
of the maintenance procedures for insertions and deletions, but it should be noted that there are several
strategies to handle the right-hand side of the tree, e.g., rather than increasing the height of the tree
online, one can have an indicator that there are non-indexed tuples (to the right of the tuple pointed to by

thé/riiéhtémost leaf pointer); for details see {Gunadhi & Segev 89].

Recall that in the case of event-joins, an AP -tree on rg is used in the process of covering z; € r;.
Therefore, we need to get to the leaf node pointing to z,; . The following procedure is followed (visa

key value):

Procedure AP
1 Start at the root of AP -tree.
2« : Fsi'each node visitéd, follow the pointer corré’sponding tov* - max{v | v < z,(Tg)}.

Several notes are in oder. First, the [act that non-leaf nodes index lower level nodes based on the
smallest rather than t-he. largest key value assures that only one leaf node is visited. If the tree of Figure 6
is organized based on the largest key value and z,{Tz) == 18, v* will not be found in the visited leaf
node and the leaf node to its left has to be examined as well. It turns out, also, that the maintenance of

the tree is significantly cheaper than when the indexing is based on the smallest key value. The reascn is

that an ﬁddit.ionv of a t,uple with a new T causes that Ts value to become the new largest value in an

e

unfilled ﬁéh&-most leaf node; the smallest key value in a node is 'unchanged as a result of appending new

} Reorganizing the tree to reflect deletions can be done during idle periods or low load periods. All the pro-
cedures function correctly regardless of the timing; the only issue is performance.
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tuples

In step 2 of Procedure, we assumed that a v* exists. It is easy to see that a v™ exists for all nodes
except possibly for nodes on the path from the root to the left-most node. This case can be identified prior
to accessing the AP -tree and thus prevents unnecessary index search. In order to identify this case and an

additional case where the index search should be avoided we associate two numbers with a relation r;,

LS.END (r;) and Ts5(r;) = min{Ts}. When z, has to be covered, before the index is accessed the follow-
ing rules are checked:

Rule 1: If z,(Ts) < Ts(r3), do not access index; z; is fully covered (for z,; should be generated outer-
join tuple). “

Rule 2: If 2,(Ts) = LS.END (r;), do not access index; z, and all remaining tuples of r, are fully covered
(outerjoin tuples should be generated for them).

Rule 3: ‘H' 2,(Ts) < Ts(r;) and rule 1 is not satisfied, do not access the index; perform s sequential scan

of ro from the beginning of the file.

If any of the rules is satisfied, an index search will be inferior to the alternatives specified.

1. COST ANALYSIS

In this section, the costs of the four algorithms presented in Sections 4 and 5 will be analyzed in
detail, and comparisons between them are made where appropriate. Below, we define basic variables that

will be used in subsequent discussions.

’, width (bytes) for each tuple in r;
N, number of tuples in r;
B page size (bytes)
P, number of pages used for r; = {(N,' X W)/ B]
M size (pages) of main memory available for an algorithm
Ci(7) cost in disk [/Os of step ; of algorithm ¢

Ng; number of tuples resulting from the event join of r; and r;



Pg; number of pages to _hold the result of event join between r; and
rp o= [ (Ngs X W,,EJ) / B‘], where rz; denotes the joined relation

oy percentage of tuples in r; that produce outerjoin tuples in rg;

B: selectivity of the hash-filter on the tuples of r; that require outerjoins

Y, ! average scan length through relation r; when r; is the inner relation

1.1. Algorithm One Costs
If the two relations are already sorted, the cost is P, + P, + Pg;, which is the disk I/O time to

join the two relations. For the case where the data need to be sorted first, each relation r; is first sorted

into into F, " files, each M pages in size, where F,' is the number of files needed for the sort, and is calcu-
lated as l- P, /M 1 The F,.. files are then merged together, and the total cost for the sorting/merging is
AMF, + P, ). We are assuming that (1) P, < M, and (2) the system allows F, files to be opened

simultaneously. If one or both of these assumptions are unsatisfied, the I/O costs will be greater. The

total cost expressions are thus

Ci(total) = P, + P, + P, (11)
if r;and r; are already sorted, and
=2M(F, +F,)+3P, +P,)+ Pg; . (1.2)

where sorting is required.

1.2. Algorithm Two Costs

Assume that the hash-filter is kept in main memory and maintains one bit per tuple. This means
that the selectivity factor 3; represents the portion of tuples in r; with no matching surrogate values to
be found in r;. Take r, as the inner relation in the first nested-loop procedure. We present the cost of
the algorithm in terms of its two nested-loop procedures which we label here as NL1 and NL2; therefore,

Coftotal ) = C,(NL 1) +C {NL 2), where

(I-Q)N P, P,
CoNL 1)=P"x+ l‘—‘——g—i]'f"h(l-ag) [—A-?I- ‘P,.2+01 —ﬁl- P,2 . (2.1)
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The first term represents the cost of reading in r,, the second term is the number of pages of result
tuples written, the third term reflects the average number of reads in order to produce result tuples where
z, is fully covered by r,, and finally the last component is the cost of producing outerjoin tuples for r;,

which requires complete iteration through r, for every M pages of ;. As for NL2,

ayNg; P“z ' P,
Cg(NL?)”P,z"F I' B 14‘02,32 !’7]‘?“)’1 (1-a9) I:T/f—]‘p" (2.2)

P,
+ ay(l - B2) {-—M}- ]P'z
The first two components are the one time read cost of r, and the write cost for the outerjoin result
tuples for r,; the third subexpression is the cost of producing the outerjoin tuples with the help of the
hash-filter; the fourth is the average cost of reads over the outer relation to determine that r, zuplés are

fully covered; and the last item is the cost of exhaustive search related to producing outerjoin tuples.

1.3. Algorithm Three Costs

For the first case of the append-only nested-loops, the hash filter is also employed; thus we assume
that one bit per tuple is used. The difference in cost between Algorithms Three and Two are:(1) outerjoins
can be performed on average as cheaply as covered tuples in terms of disk reads for Algorithm Three; {2)
the average length of a scan through the outer relation, 7;' , is likely to be better than the 4; of Algo-

rithm Two, since there is a clustering of tuples on Ts. Like before, Cs(total ) = C4(NL 1} + C5{NL 2),

where
1 - ay)N, P,
Cs(NL1)=P, + [.(.__Eﬂl_ﬂ_]ﬂg (—-‘»-I-‘—]P,’ (3.1)

where the second expression denotes the cost of iterating through r,. For the second nested-loops,

a. P, P,
CfNL2) = P, + [ ’1;" ] +7 (1-ams) [‘H{} P, + axf {-ﬂi I P, (3.2)

1.4. Algorithm Four Costa !

The final algorithm differs further from the previous two nested-loop algorithms. The second part of

the algorithm needs only a single scan through r;. Although a temporary file needs to be created, it can



be done during the first iteration through 7, in order to save [/Os. Thus the total cost expression is:

P,
+ M T -Pr2 (4)

The way the cost is estimated is as follows: the first ¢ ression {in brackets), represent the total cost

(1 - agfs)Ng, N 2B Ng;
B B

C(total ) = {1—”,l + 2P,J + 2 {

of reading in the relations when they are the inner relations, plus the additional overhead of creating r,.
The second component is the write cost of event-join tuples during the first loop plus the cost of updating
ro' . The third component is the cost of generating the outerjoin result tuples during the second nested-

loop. The fourth term in the cost is that of scanning through r, to produce the other result tuples.

1.5. Comparisons Among Algorithms

It is clear that Algorithm One is superior if the relations ar;a already sorted, because the cost consists
of the miniﬁmm possible access to the relations. Also, the append-only algorithms dominate the algorithm
for the general case. The interesting question is whether the relations, if not sorted, should be sorted, and
then followed by the application of Algorithm One. Figure 7 shows some preliminary results. It should be
noted that we have assumed favorable conditions for the sorting, e.g., no limit on the number of files that

~can be opened simultaneously during a sort-merge procedure; if this is not the case, the results will make

Algorithms Three and Four more attractive.

Figure 7 shows the total I/O cost of the algorithms as a function of +; . We set the Other parameters

to be equal, i.e. P,_ == 100,000 pages, P, == 200,000 pages, a; == 0.1,. and §; = 0.5. Additionally, we

i 7
assumed that ~;' is.equal to 4;. ~7; measures the percentage of blocks in the relation that has to be
scanned. The graph in Figure 7(a) shows the ;:erformance of all four methods when ~; was varied between
0.001 to 0.01. It shows that Algorithm Two does worst among the algorithms, while Algorithm Four’s
efficiency increases as the scan length gets shorter. It is better than Algorithm One at at approximately
v == 0.001. Note that v; may be much more selective than 0.001 for an append-only database, since

measured in disk [/Os, 0.001 is 100 blocks, which is still a large pumber. Figure 7 (b) highlights just the

three best algorithms, so that a better comparison can be made at lower values of ;.

The value of the parameters described above reflect the filter selectivity and the number of tuples

scanned for each inner relation tuple. It should be noted that these are not all the parameters that affect
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the relative performance, and additional computational experiments are needed. Nevertheless, it validates

our conjecture that one can do better than sorting in the append-only environment.
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2. Summary and Future Research

In this pﬁper, we have addressed the problem of optimizing event-joins in a relational temporal
database. Event-joins are important because normalization considerations are likely to split the temporal
attributes of an entity among several relations. The event-join combines a temporal equi-join component,
and a temporal outer-join component. Unlike a conventional outer-join, ti;e temporal counterpart consists
of two asymmetric outer-joins, a fact that complicates the optimization. The complexity of processing
event-joins strategy depends on the nature of the data, its organization, and whether or not all non-
existing data is represented explicitly. We have distinguished between the step-wise-constant and discrete
data; discrete data is easier to handle since all the information contents of the tuple pertains to a single
time point; for atep;wise-constant data a decision regarding-a tuple of one relation is frequently based on
multiple tuples of the other relation.

As for the data organization we addressed three cases; these are (in increasing order of complexity)
sorted by surrogate and time, append-only, and general optimization. For the sorted case (appropriate for
static databases), the processing of an event-join is the most efficient since each relation has to be read
only once. The append-only database is an appropriate organization for many dynamic temporal data-
bases and an event-join algorithm can take advantage of the time ordering. For the append-only case we
have introduced s new data structure: the AP-Tree. This index is used to reduce the cost of scanning an
outer relation in a nested-loops procedure. The AP-Tree offers adv;ntages of a B*-tree in terms of utili-
zation and access and maintenance cost. It is also useful for queries other than event-joins that can

benefit from time indexing.

Managing non-existence nulls is more important in tempora.i databases than in ’current state’ ones
because for a long history one is likely to encounter transactions of state variables between existence and
non-existence states. If all non-existence data is represented explicitly, the outer-join component of the
event-join is eliminated and it reduces to a temporal equi-join operation where the joining attribute is the
surrogate. This special case of the event-join is much simpler than the general case. As was discussed in

the paper, however, storing all non-existence data explicitly is likely to be prohibitively expensive in many

situations.
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In section 7, we have presented a cost analysis of the proposed algorithms. The algorithm for the
sorted case (Alg. One) obviously dominates all the others. The append-only algorithms (Algs. Three &
Four) dominate the general nested-loops algorithm (Alg. Two); this is also expected. The interesting ques-
tions are whether, for the non-sorted case, the data should be sorted and then Algorithm One applied.
For the general case, the answer is yes (under the favorable sorting conditions that we assumed). For the
append-only case the answer is dependent on the selectivity of the filter and the number of tuples scanned
for each inner-loop tuple. Also, if the inner relation is significantly smaller than the outer relation, and the
selectivity factors associated with the append-only algorithms are small, sorting will be less favorable. We
currently work on a comprehensive simulation test to validate our initial finding.

Finally, it should be noted that many of the concepts presented in this paper are applicable to other
queries; in particular other joins since the concept of covering is applicable to other temporal joins. In

current and future research we try to devise more elaborate rules on when to use the AP-Tree. Also, as

evident {rom the cost equations, estimation of several parameters are required.
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