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SEQUENTIAL QUADRATIC PROGRAMMING 
ALGORITHMS 

FOR OPTIMIZATION

Francisco Javier Prieto, Ph.D. 
Stanford University, 1980

The problem considered in this dissertation is that of finding local min- 
imizers for a function subject to general nonlinear inequality constraints, 
when first and perhaps second derivatives are available. The methods stud­
ied belong to the class of sequential quadratic programming (SQP) algo­
rithms. In particular, the methods are based on the SQP algorithm embod­
ied in the code NPSOL, which was developed at the Systems Optimization 
Laboratory, Stanford University.

The goal of the dissertation is to develop SQP algorithms that allow 
some flexibility in their design. Specifically, we are interested in introduc­
ing modifications that enable the algorithms to solve large-scale problems 
efficiently. The following issues are considered in detail:

• The use of approximate solutions for the QP subproblem. Instead of 
trying to obtain the search direction as a minimizer for the QP, the 
solution process is terminated after a limited number of iterations. 
Suitable termination criteria are defined that ensure convergence for an 
algorithm that uses a quasi-Newton approximation for the full Hessian. 
Theorems concerning the rate of convergence are also given. •

• The use of approximations for the reduced Hessian in the construction 
of the QP subproblems. For many problems the reduced Hessian is 
considerably smaller than the full Hessian. Consequently, there are 
considerable practical benefits to be gained by only requiring an ap­
proximation to the reduced Hessian. Theorems are proved concerning 
the convergence and rate of convergence for an algorithm that uses a 
quasi-Newton approximation for the reduced Hessian when early ter­
mination of the QP subproblem is enforced.
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• The use of exact second derivatives. The use of second derivatives, 
while having significant practical advantages, introduces new difficul­
ties; for example, the QP subproblems may be non-convex, and even a 
minimizer for the subproblem is no longer guaranteed to yield a suit­
able search direction. It is shown how to construct suitable search 
directions from approximate solutions to the QP subproblem. Also, 
theorems are proved for the convergence and rate of convergence of 
these algorithms.

Finally, some numerical results, obtained from a modification of the code 
NPSOL, are presented.
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Preface

“The whole of science is nothing more than a 
refinement of everyday thinking.”

— Albert Einstein

The last forty years have seen the introduction of numerous methods for 
the solution of general nonlinear programs, and an expansion on their use 
as satisfactory mathematical models for problems in many different fields 
of human activity. Examples of this use can be found in areas as diverse 
as general equilibrium models in economic theory, structural optimization 
in mechanical engineering, microeconomic models of the firm in business 
administration, or optimal power flow in electrical engineering, attesting 
both to the universality with which the structure of the mathematical model 
can be recognized in Nature, and also to the existence of efficient methods 
to obtain accurate and satisfactory answers to the problems considered.

Despite the fact that the widespread use of these models would not have 
been possible without the existence of efficient solution algorithms, the opin­
ion is frequently expressed among researchers in the field that no general- 
purpose algorithm available at this time combines all the desirable features, 
and in particular, that the algorithms available are limited regarding either 
the size or the difficulty of the problems they can solve.

The search for more reliable and faster algorithms constitutes the basic 
motivation for the work presented in this dissertation. It would have been 
presumptuous to have set as a goal the search for answers to all the unan­
swered questions left in this field; it has been our objective simply to explore 
some aspects promising improvements for algorithms oriented towards the 
solution of large-scale problems, on the understanding that it is in this area 
where a more substantial amount of work seems left to be done. In any 
event, it is our hope that the exploration of these topics, independent of the 
setting in which they have been studied, may help to shed some light on 
issues of general interest in the field.

The work presented in this dissertation would not have been possible 
without the financial assistance provided by the Bank of Spain, and the 
earlier results, generous support and assistance of the SOL algorithms group
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at Stanford University. Special mention is deserving of my advisor. Prof. 
Walter Murray, who not only suggested the main ideas explored in this 
dissertation and guided the course of the work to its present state, but 
also found the time for many enlightening conversations on the most diverse 
topics. Profs. Philip Gill and Michael Saunders were always willing to answer 
my many questions, and provided comments and suggestions from which 
this work has benefited greatly; the example of their behavior (and that of 
my advisor) has been one of my most important lessons during this period. 
Although I had little opportunity to benefit from her presence, Dr. Margaret 
Wright will be fondly remembered for her energy and dedication.

I am indebted to Prof. George B. Dantzig for his generous invitation 
to visit this department during the summer of 1983; this work is one of 
its consequences. It has been a privilege to have him in my dissertation 
committee.

I would like to express my gratitude to the students working with the 
SOL group, Samuel Eldersveld, Anders Forsgren, Aeneas Marxen and Duke 
Ponceleon, for providing a very pleasant and stimulating atmosphere. Spe­
cial thanks must be given to Anders Forsgren for his invaluable comments 
and suggestions. I am also deeply grateful to Dr. Ulf Ringertz for his many 
intelligent remarks, and for having provided the code for the structural op­
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Finally, I would like to thank the faculty members, staff and students at 
the Department of Operations Research, who helped in many different ways 
to make this a productive and enjoyable experience.

F.J. Prieto 
Stanford, 1989
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Chapter 1

Introduction

In this chapter we introduce the subject of the report, and give some motivation for the 
research undertaken. In addition, a brief summary of previous work in this area is presented.

1.1. The problem and algorithms

This report is concerned with issues in the field of nonlinear programming, which in its most 
general form is that of finding extreme points (minimizers or maximizers) for a univariate 
function, subject to certain conditions on the acceptable values for the variables.

For the purpose of this work, the problem is assumed to take a more restricted form. 
The effort is limited to the determination of local extreme points, and the conditions on the 
values of the variables are assumed to be given by a system of nonlinear inequalities. The 
nonlinear program considered takes the following form:

minimize F(x)
xe»n
s.t. c(x) > 0,

where .F : and c : §Jn —> 3?m.
The most reliable algorithms for solving this problem make use of the derivatives of the 

functions defining the problem, when they exist. In this spirit, the algorithms to be studied 
try to exploit the structure of the problem by constructing local approximations from the 
derivative information available. This requires additional conditions on the form of the 
problem; the basic assumption is the twice continuous differentiability of the functions F 
and c. In addition, some other assumptions of a more technical nature are required; these

1



1.1. The problem and algorithms

assumptions will be specified later.

SQP algorithms

It is not known in general how to compute a solution of the nonlinear program NLP in 
a finite number of iterations (obvious exceptions being the cases of linear and quadratic 
programming), and so the algorithms developed for its solution are sequential in nature, 
that is, an infinite sequence of points {a;fc}jfcL0 is generated, such that the limit points of 
convergent subsequences are solutions for the problem.

Among sequential algorithms a particular class, that of sequential quadratic program­
ming (SQP) algorithms, seems to be regarded as the best choice for the solution of small, 
dense problems (see Stoer [Sto85] or Gill et ai. [GMSW88], for example). The algorithms 
considered belong to this family of SQP algorithms, and the concern of our research is to 
extend the class of problems for which these algorithms may be an efficient choice.

The next paragraphs are devoted to commenting upon some of the features of SQP 
algorithms, and their relevance to this work. We start by describing the most general form 
that such an algorithm may take.

• The algorithm generates a sequence of points {£&} converging to a solution.

• At each point, x^, a linearly constrained quadratic program (QP) approximating 
locally the NLP problem is generated, and a direction pk is obtained from it.

• The next point is defined to be either i*. + p*. or the result of a linesearch from x*. 
along pk, in such a way that the value of a certain merit function is decreased.

We are not concerned with the study of a general class of algorithms, like the one 
described above, but rather with the definition and study of specific algorithms within this 
class. Although the particular forms of these algorithms axe presented in the following 
chapters, we point out here that their most significant characteristics are the use of a 
linesearch to determine the next point in the sequence, and the construction of quadratic 
subproblems of the form

minimize
p€Kn

VF(xk)Tp + ±pTHkp

S.t. c(xfc) + Vc(xk)p > 0
QP
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for some matrix whose properties are described as part of the definition of the different 

algorithms considered.

Goal of the report

Expanding upon previous remarks, this report is specially concerned with modifications to 
the way that QP approximations are constructed and solved. The modifications considered 
are oriented towards defining more flexible SQP algorithms in order to make them more 
suitable for the solution of large-scale problems. Specifically, we wish to relax the usual 
assumption that the search direction is obtained as a minimizer of the QP subproblem, and 
also to allow the use of exact second derivatives, or to require only an approximation to the 
reduced Hessian. Finally, it may be possible to take advantage of the increased flexibility 
to improve the performance of SQP methods even on small dense problems.

Incomplete QP solution

Throughout, we develop algorithms that obtain the search direction for a quadratic sub­
problem in a limited number of iterations, which often in practice is significantly smaller 
than the number required for the computation of a minimizer for the QP subproblem; the 
search direction obtained in this form will be referred to as an incomplete QP solution. In 
general, the algorithm moves from a starting point satisfying certain mild conditions to the 
first stationary point, and the search direction is constructed from the information known 
at that point.

The QP subproblems generated in the algorithms developed so far have been normally 
obtained by using quasi-Newton approximations to the full or the reduced Hessian; we shall 
also consider the option of using the exact Hessian in the definition of Hk-

Quasi-Newton approximations generate matrices that are positive definite, and at the 
same time allow the condition numbers of the approximating matrices to be controlled. In 
this way, a convex subproblem is obtained, and if it is feasible, its solution exists and is 
unique. In contrast, the use of exact Hessians leads to non-convex subproblems; moreover, 
Hk may now be singular. On the other hand, it will be seen that the use of the exact 
Hessian leads to stronger convergence results and an improved rate of convergence.
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Convergence assumptions

The convergence of the algorithms in this family normally requires additional conditions on 
the form of the problem. An aim that underlies all the work presented in this report is to 
try to develop algorithms whose convergence proofs make use of a reasonably weak set of 
assumptions. The ones that can be most frequently found in the literature are:

• existence and continuity of second derivatives for the objective and constraint func­
tions;

• full-rank Jacobians at solutions of the problem;

• bounded (above and below) eigenvalues for the approximations to the Hessian of the 
Lagrangian function;

• strict complementarity at solutions of the problem;

• existence of a feasible point for each subproblem;

• compactness of the feasible region, or of the region where the iterates lie.

The search direction

Together with these “regularity” assumptions on the form of the problem, it is necessary to 
specify the form of the direction of movement obtained from the QP subproblem, and that 
of the multiplier estimates. In the literature, the usual choices have been: •

• the direction of movement is obtained as the exact solution of the QP subproblem, 
constructed as a convex program;

• the multiplier estimates to be used are either the QP multipliers at the last minimizer 

obtained, or the least-squares multipliers at the current point.

Details about these choices are given in the next section.

Defining a solution

In the previous paragraphs several references have been made to solutions of the NLP 
problem. The following remarks try to clarify what is understood by a solution.
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Local solutions can be characterized in terms of what are known as the Karush-Kuhn- 
Tucker (KKT) conditions (see for example Fiacco and McCormick [FMC68] or Gill et al. 
[GMW81]), given in terms of the first and second derivatives of the Lagrangian function 
for the problem. The conditions come in different forms, and in particular there are sets 
of necessary conditions, and sets of sufficient conditions, but there is no practical necessary 
and sufficient characterization of this form for the general case. Given that the previous 
algorithms obtain points that satisfy the necessary conditions on the first and second deriva­
tives, it is not possible to guarantee that the points obtained correspond to solutions of the 
problem, unless additional assumptions are satisfied.

Also, given that no convexity assumption is made on the functions defining the problem, 
no a priori relationship can be established between local solutions and global solutions; this 
implies that the algorithms to be presented will not normally be able to determine whether 
the solutions obtained are global solutions.

The following terms will be used to define what solution points the algorithms are able 
to find.

• Stationary point. A feasible point x such that

VF(x) — Vc(x)TX*, X*ci(x) = 0 i=l,...,m

for some multiplier vector A* G 9?m.

• First-order KKT point. A stationary point x such that A* > 0.

• Second-order KKT point. A first-order KKT point x such that, if A denotes the rows 
of the Jacobian Vc(x) corresponding to the constraints having positive multipliers at 
x,

VvGAf(A) t;TVxxI(i,A*)i;>0, 

where the Lagrangian function L is defined as

L(x, A) = F(x) — XTc(x),

and VxxL(x,X) denotes the Hessian of the Lagrangian function, when the (partial) 
derivatives are taken only with respect to the variable x.

In the case when analytical second derivatives are unknown or directions of negative 
curvature are not computed, the algorithms to be presented only guarantee that a solution
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is a first-order KKT point. When exact Hessians are known and directions of negative 
curvature are determined and used, the solution obtained by the algorithm will be a second- 
order KKT point.

1.2. Historical background

This section presents a brief history of the evolution of SQP algorithms. Surveys for this 
area can be found in [GMW81], [Po83] or [GMSW88], for example.

The origins

The earliest reference found to methods of this family is Wilson’s doctoral dissertation 
[Wil63]. His algorithm, formulated for the special case of convex problems, solved an 
inequality constrained quadratic subproblem in each iteration, formulated using the exact 
Hessian of the Lagrangian function, and obtained the next iterate as Xk+Pk (no linesearch 
was performed).

In general, a method of this form will not be globally convergent unless some precautions 
are taken in accepting the next step. Murray [Mu69] suggested a similar algorithm, but now 
a linesearch was performed on the £2 merit function, to guarantee global convergence. Also, 
quasi-Newton approximations to the Hessian of the Lagrangian function could be used in 
the generation of the subproblem, relaxing the requirement of convexity for the problem.

SQP algorithms became popular through the work of Biggs [Big72], Han [Han76] and 
Powell [Po78] (in the literature SQP methods are sometimes referred to as Wilson-Han- 
Powell algorithms). Biggs proposed an algorithm similar to the one in [Mu69], with the 
difference that the quadratic subproblem had only equality constraints, and a term for the 
multiplier estimate had been added to the constraints.

The algorithm proposed by Han solved an inequality constrained QP subproblem, where 
the Hessian was given by a quasi-Newton approximation to the Hessian of the Lagrangian 
function, although it required the assumption that the Hessian was positive definite on the 
whole space. Also, the “exact” (or ti) penalty function

P{x,p) = F(x) + pJ2imzx.(o, -Ci(x))

was used as a merit function within the linesearch.
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Powell proposed a method similar to the one in [Han76], but he was able to show that 
the algorithm converged superlinearly even when the Hessian of the Lagrangian function 
was indefinite at the solution.

In the next paragraphs we focus on the evolution of the different elements of an SQP 
algorithm: the merit function, second-order information, the multiplier estimate, etc.

The merit function

In all nonlinearly constrained optimization algorithms the choice of the merit function is of 
great importance, not only because of its role in enforcing global convergence, but also in 
order to ensure a satisfactory performance of the algorithm.

The £\ (exact penalty) merit function has become a very popular choice after being 
proposed by Han [Han76] and Powell [Po78] for SQP algorithms. Its advantage is that 
for large enough values of the penalty parameter, minimizers for the NLP problem are 
unconstrained minimizers for the exact penalty function. On the other hand, the function 
is not smooth, and in particular it is not differentiable at the solution of the problem.

Another option is the use of the augmented Lagrangian

LA(x,X,p) = F(x) - XTc(x) + ±pc(x)Tc(x)

as the merit function. It must be noted that this function includes an additional set of 
variables, the Lagrange multiplier estimates A. In order to compute the correct value of the 
original variables a:, it is necessary to obtain the correct value for the multiplier estimate. 
In fact, this merit function has the property that, if the optimal multiplier vector is used, 
there exists a finite value of the parameter p such that the solution of the problem is an 
unconstrained minimizer of the merit function.

A property of this merit function is that it is smooth. In extensive tests, the performance 
of algorithms using this merit function has been superior to that of methods using the exact 
penalty function. On the other hand, any algorithm that makes use of this merit function 
needs to take special care of the way the multipliers are estimated; a bad estimate may 
inhibit convergence or degrade the performance of the method. The theoretical analysis of 
these algorithms is also more complex because the additional variables A need to be taken 
into account. The use of this merit function in an SQP framework was first suggested by 
Wright [Wri76] and Schittkowski [Sch81].
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The search direction

An important element of the algorithms presented in this report is the use of an incomplete 
solution of the QP subproblem as the search direction for the merit function.

In the large-scale case, the number of QP steps required to obtain a minimizer for the 
QP subproblems, particularly in the early iterations, may be very high. Regardless of the 
inefficiency this may introduce, practical implementations must impose a strict upper limit 
on the number of QP steps. There is therefore a definite interest in defining an incomplete 
solution whose computation requires a strictly limited number of steps.

Although there have been proposals in the literature to terminate the solution process for 
the QP subproblems early, the great majority of SQP algorithms, including those mentioned 
earlier in this section, define the search direction from a minimizer for the QP subproblem.

An approach solving QP subproblems inexactly is described in Dembo and Tulowitzki 
[DT85], where for a generic SQP algorithm an early termination rule is given in terms of 
the norm of the reduced gradient for the subproblem. This rule gives a search direction pk 
satisfying the condition

IIm-p*II = o(M).
where p*k denotes the minimizer for the fcth QP subproblem.

We follow a different approach, presenting an early termination rule that is constructive 
in nature, and that has a guaranteed bound on the effort necessary to satisfy it.

The multiplier estimate

An important aspect in the efficient implementation of methods using merit functions based 
on the Lagrangian function is how to select the approximation to the Lagrange multipliers 
A in each iteration.

Most SQP algorithms (for example, [Han76] or [Po78]) define A as tt, the QP multiplier 

obtained at the solution of the previous subproblem: Afc+i = tt^, where

'VF(xk) + HkPk = Vc{xk)Tirk,

Trj(yc(xk)pk + c(xfe)) = 0,

TTfc > 0.

Unfortunately, in this case the change in the Lagrangian function is no longer monotonic 
whenever the multiplier estimate is updated.
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An alternative is to use the least-squares multiplier estimate At,

K(xk) = (Vc(xk)Vc(xk)Ty1Vc(xk)VF(xk)

and to treat it as a function of x, rather than as an additional variable, simplifying the 
theoretical analysis of the algorithm. This idea appears to have been first introduced by 
Fletcher [Fle70], where it was used to construct an augmented Lagrangian merit function 
in order to solve an equality-constrained problem. For problem NLP with only equality 
constraints, Powell and Yuan [PY86] have considered the use of an augmented Lagrangian 
merit function that estimates the multipliers by XL, and they have shown several global and 
local convergence properties for this function.

Another option, compatible with the use of the QP multipliers from the previous iter­
ation, is to treat the multiplier estimate as an additional set of variables in the linesearch. 
This idea was suggested by Tapia [Tap77] for equality constrained optimization, and Schit­
tkowski [Sch81] introduced it in an SQP framework. A proof that the sequence {a:*} con­
verges to a first-order KKT point and the multiplier estimates converge to A* is given in 
Gill et al. [GMSW86b],

Trust-region methods

An alternative to the use of a linesearch on a merit function to ensure global convergence 
is the trust-region approach, where the size of the step is limited by imposing a constraint 
on the norm of the solution for the QP subproblem.

In this framework, Fletcher [Fle85] proposed an algorithm that solved a quadratic sub­
problem minimizing the Lagrangian function for the QP subproblem, subject to a bound 

on the || • ll°o norm of the solution.
Another application of this idea is given by Celis, Dennis and Tapia [CDT85] for the case 

when only equality constraints are present. Their algorithm is related to the conventional 
trust-region approach in unconstrained optimization, in the sense that they impose a bound 
on the value of the ||. ||2 norm of the solution. Also, the linearized constraints are replaced 
by a second bound on the norm of their violation.

The algorithms we consider make use of a linesearch, and trust-region constraints are 
not specifically included in the QP subproblems.



1.2. Historical background 10

Second derivative information

Several alternatives have been considered in the literature for the construction of the matrix 

Hk containing the second-order information for the quadratic subproblem.
It was mentioned earlier that in the first SQP algorithm proposed, Hk was taken to be 

the Hessian of the Lagrangian function at the current iterate. When the NLP problem is 

convex, there are no special difficulties in solving the subproblem.
If the convexity assumption is not satisfied, as is often the case in practice, the sub- 

problem can become much more difficult to solve. To avoid this risk, and to extend the 

algorithm to cases where analytic derivatives may not be available, the most frequent choice 

of Hk has been the use of a positive definite quasi-Newton approximation to the full Hes­

sian of the Lagrangian function. In this way, a convex subproblem is still obtained, and 

the subproblems can be solved efficiently. A detailed discussion of quasi-Newton updates 

can be found, for example, in Dennis and More [DM77] and Dennis and Schnabel [DS83]. 

Also, a description of different approaches to the implementation of this idea in an SQP 

framework is presented in Gurwitz [Gur87].

A difficulty with this scheme is that the Hessian of the Lagrangian function is rarely 

positive definite on the whole space (even at a solution). It is likely therefore that the use 

of quasi-Newton updates such as the BFGS method, will lead to indefinite approximations. 

Several alternatives have been proposed to compensate for this problem. Powell [Po78] 

presented a modification of BFGS for which positive definiteness was preserved and two-step 

superlinear convergence was achieved. Another possibility is to approximate the Hessian of 

the augmented Lagrangian function, where the penalty parameter has been selected large 

enough so that the Hessian can be kept positive definite; see Biggs [Big72], Tapia [Tap77] 

and Han [Han77].
Following the development of efficient QP solvers for indefinite problems, some updating 

methods have recently been proposed for which only the positive definiteness of Z^HkZk 

is preserved, where Zk denotes a basis for the null space of the Jacobian of the active con­
straints at Xk- The motivation for these approaches is that at the solution ZTVxxL(x,\)Z 

will normally be positive definite. For this type of update, see for example Fenyes [Fen87].

Another alternative along a similar line is to try to approximate only the reduced Hessian 
Z^HkZk- This scheme has the advantage of requiring the storage of a matrix that in many 

cases is significantly smaller than the full Hessian. Reduced Hessian updating methods have 

been proposed among others by Murray and Wright [MW78], Coleman and Conn [CC84],
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Nocedal and Overton [N085] and Gilbert [Gil87]. A study of the convergence properties of 
these methods for the case when only equality constraints are present is given in Byrd and 
Nocedal [BN88].

1.3. Contents of subsequent chapters

Chapter 2 describes the form of the general algorithm, whose variants will be studied in 
Chapters 4, 5 and 6. The conditions on the search direction and the multiplier estimate 
are presented, the assumptions used for the convergence proofs are introduced, and several 
results bearing on the reasonableness of the previous conditions are presented and proved.

Chapter 3 presents all results that are common to the convergence proofs for the different 
algorithms. Given that the algorithms studied are defined to share many elements (the merit 
function, the determination of the search direction, termination conditions for the linesearch, 
etc.), it has been considered convenient to group in this chapter the results common to all 
convergence proofs.

Chapter 4 studies the convergence properties of an algorithm that uses a quasi-Newton 
approximation to the full Hessian, and a search direction constructed from information 
available at a stationary point of the QP subproblem. It is shown that such an algorithm 
is globally convergent (that is, it converges to a solution from any initial point), and that 
it converges superlinearly under mild assumptions.

Chapter 5 considers the variant of the algorithm when a quasi-Newton approximation 
to the reduced Hessian is used, again only utilizing information at a stationary point of the 
QP subproblem. This algorithm is also shown to be globally convergent, but it converges 
two-step superlinearly to the solution.

Chapter 6 presents and studies an algorithm that uses exact second derivatives in the 
construction of the QP subproblem. Again, the search direction is obtained from the infor­
mation at a stationary point of the quadratic subproblem. It is shown that the algorithm 
is globally convergent, and that it converges quadratically to the solution, under mild as­
sumptions.

Chapter 7 presents numerical results obtained from the implementation of the algorithm 
introduced in Chapter 4. Finally, some remarks are included concerning the properties of 
all the previous algorithms.



Chapter 2

The Algorithm

Chapters 4, 5 and 6 present and study the convergence properties of three variants of an 
SQP algorithm. These methods differ in the way the second-order information for the 
QP subproblem (the matrix Hk defined in the previous chapter) is generated, but they 
share several common features: the merit function is the same, the search direction is 
generated according to similar principles and the linesearch procedure is analogous for the 
three methods.

This chapter describes a framework algorithm, composed of the common features men­
tioned earlier. Consequently, the following chapters only need to specify details that differ­
entiate the method presented from the others.

In addition, we enumerate the general assumptions that are needed in the convergence 
proofs for the different methods. Again, it is left to the corresponding chapters to complete 
the list with any additional assumptions required for each individual method presented. 
Finally, as the framework algorithm specifies conditions on the way the search direction is 
to be computed, and on the acceptable forms that the Lagrange multiplier estimates may 
take, this chapter ends with a justification for the reasonableness of these conditions.

2.1. Background

The basis for the algorithms presented in this report is the algorithm NPSQP, as imple­
mented in the code NPSOL [GMSW86a] developed at the Systems Optimization Labora­
tory, Stanford University. For a theoretical discussion of some properties of this algorithm,

12
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[GMSW86b] should be consulted; in fact, this reference has been the main source of infor­
mation for the work described in the following chapters.

Since its inception, NPSOL has been shown to be a very efficient code for the solution of 
small general nonlinear problems. It provides a good starting point to propose and analyze 
modifications to SQP algorithms to make them suitable for the solution of large nonlinear 
problems.

One characteristic of NPSQP that poses difficulties in the solution of large problems is 
the need to compute the minimizer for the quadratic subproblem. The number of iterations 
required to solve the QP subproblem will in general grow with the size of the problem. 
This increase in QP iterations raises two issues: in the first place, it is questionable that in 
order to preserve overall efficiency, the effort required to compute a minimizer for the QP 
subproblem can be compensated by a sufficiently small number of subproblems to be solved. 
Also, any practical QP algorithm has to impose a limit on the maximum number of QP 
iterations allowed, and so there will exist cases in which the exact solution is not obtained; 
the question then is how does this affect the convergence properties of the algorithm. Both 
issues can be addressed if we are able to obtain a satisfactory termination criterion for a QP 
algorithm that is guaranteed to be achieved in a “moderate” number of iterations. In this 
sense, a “satisfactory” criterion will be one that is efficient in the sense that the number of 
nonlinear iterations is not adversely affected.

If the solution process is terminated early, the search direction for the outer iteration (the 
step on the original variables) is defined as the “total” step taken in the QP subproblem 
up to that point. The characteristics of the point at which the termination takes place 
clearly depend on the specific strategy used to solve the QP subproblem. NPSQP, and 
the algorithms described later on, use an active-set strategy to obtain the solution starting 
from a feasible point; this strategy dictates the kind of termination conditions that can be 
imposed. As mentioned earlier, the conditions imposed should have the following properties: 
they should limit the number of QP iterations needed to obtain the search direction to a 
reasonably small value, and the conditions should be easy to implement.

Terminating the QP algorithm prior to obtaining a solution impacts the SQP algorithm 
in a number of critical ways. Not only the search direction obtained is now of “lower quality” 
than before, but also the QP multipliers available will in general not be positive, and it is 
necessary to give some rules on what constitutes an acceptable multiplier estimate when 
forming the search direction in the multiplier space. The consequences of terminating the
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QP solution early are therefore far reaching.
Another potential difficulty when large problems are considered is the use of a quasi- 

Newton approximation to the full Hessian of the Lagrangian function, as it may become 
too large to store in dense format, unless some scheme to generate sparse quasi-Newton 
approximations is used.

One possible alternative, used for example in the code MINOS, as described in [MS82], 
is to work with an approximation to the reduced Hessian. For many large-scale problems 
the size of the reduced Hessian is relatively small, and an approximation to it may therefore 
be stored in dense format.

Another alternative is to use exact second derivatives. In this case the sparsity of the 
second derivatives should alleviate the problem of storing and handling the QP Hessian, 
and even for the small-scale case, improvements in the rate of convergence and total com­
putational work can be expected.

Unfortunately, this latter approach presents some drawbacks. In the first place, sub­
problems may no longer be convex, and an indefinite QP solver must be used. Also, a 
unique minimizer for the subproblem may not exist, and it is necessary to give conditions 
under which a specific minimizer will be an acceptable search direction. On this regard, 
it should be noted that while the definition of a satisfactory termination criterion for the 
quasi-Newton algorithms is only one aspect in the improvement of their efficiency, for the 
Newton-type algorithm the termination criterion is directly related to its convergence prop­
erties. Finally, given that the convergence proofs rely heavily on the similarity of the 
convergence properties for the sequences {a;* — z*} and {pk}, if the reduced Hessian is close 
to singularity it is possible that no minimizer will be acceptable, and alternative termination 
criteria need to be specified.

The preceding topics are our main themes. The definition of the search direction will 
be introduced in this chapter, after the general form of the algorithm, to be completed in 
following chapters, has been specified. The approximation to the second-derivative infor­
mation used by each algorithm will be indicated in the corresponding chapters. The next 
sections try to provide the framework for all subsequent results.

2.2. General form of the algorithm

This section introduces the prototype algorithm. Following the remarks made in the pre­
vious section, this algorithm is directly based on NPSQP. The prototype algorithm obtains
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the search direction from an incomplete solution for a QP subproblem of the form indicated 
in the previous chapter. The iterates are determined by performing a linesearch on the 
following merit function:

(2.2.1)

where s > 0 are slack variables, and the scalar p is known as the penalty parameter. The 
linesearch is performed in the space of the variables x, A and s, and the corresponding 
search directions are denoted by p, £ and q.

The symbols <f)(a,p), or sometimes just <p(a), are used to denote

<£(a,p) = LA(x + ap,\ + a£,s + aq,p),

that is, the merit function as a function of the steplength. The derivative of <f> with respect 
to a is denoted by <£'.

The following conventions will be used in the rest of the report,

gk = VF(xk), Ak = Vc(xjt), ck = c(xk),

although the last two symbols, Ak and ck, will also be used with the same meaning but 
restricted to the set of active constraints at the given point. The term active constraint will 
be used to designate a constraint that is satisfied exactly at the current point (c,(x) = 0 
in the nonlinear problem, or afp = —c,- in the quadratic subproblem), and the set of all 
constraints active at a given point will be referred to as the active set at the point.

The objective function for the QP subproblem will be denoted by i^k(p),

i>k(p) = VF(xk)Tp+ ±pTHkp.

Sometimes, ip will denote the function of one variable ipk(a) = ipk(p + ad). Finally, sym­
bols of the form /3a(,c indicate fixed scalars related to properties of the problem, or the 
implementation of the algorithm, where “abc” identifies the specific scalar represented.

The framework algorithm

The algorithm described below will be common to the methods studied in the following 
chapters, in the sense that the latter will be defined as specific algorithms that lie within 
this framework algorithm. The framework algorithm proceeds through the following steps:

LA(x,\,s,p) = F(x) - \T(c(x) ~s) + \p{c{x) - s)T(c(x) - s)
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(i) Start from a point xq and an estimate for the Lagrange multipliers Aq. Let Hq be 
an approximation to the Hessian of the Lagrangian function at x0, satisfying certain 
properties, and let po > 0 be the initial value for the penalty parameter.

(ii) At each point x*., form the QP subproblem

minimize g%p + %pTHkP 
p€SB

subject to AkP > —cjt,

where Hk denotes an approximation to the Hessian of the Lagrangian function at 
Xk; and obtain an incomplete solution pk satisfying certain conditions to be specified 
later. Compute a vector of multipliers pk satisfying a second set of conditions to be 

specified. If pk = 0, set Xk = Pk and terminate. Otherwise, define £k = Pk — A*.

(iii) Compute $k from

max(0,cfcj) if Pk-i = 0,
k' maxfo,ct —otherwise. 

v Pk-iJ

Find pk such that 4>'(0) (or ^"(O) if a curvilinear search is used) is bounded away from 
zero by some fixed multiple of ||pfc||2-

Compute (]k from

= AkPk + Cfc - Sfc- (2.2.2)

(iv) Compute the steplength a* as follows. If pk is used as a direction of descent, the 
termination conditions for the linesearch are as follows:

If
<£(1)-X0) < <r<£'(0) (2.2.3)

set ak = 1. Otherwise, find an a/t € (0,1) such that

t(ak) - m < aak<t>'(0) (2.2.4a)

<£'(«*) > ^'(0), (2.2.4b)

where 0 < <7 < 77 < A.

KHk is indefinite, a curvilinear search may have to be used. The definition of <f> will 
be slightly modified, and the new termination conditions are given in Chapter 6.
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(v) Form Hk+1.

(vi) Update xk and Xk using

/ \ / \Zfc+l Xk Vk

-^fc+1 = Xk + Olk ik

V ** )
K Sk )

\qk >

and repeat the previous steps until convergence is reached.

This description of the algorithm still leaves many details to be specified. The termi­
nation criteria for the incomplete solution of the QP subproblem and the conditions on 
the multiplier approximation /xjt are discussed below. The specification of the form of the 
approximation to the Hessian of the Lagrangian function, is left to the correspond­
ing chapters. Finally, for the case when indefinite Hessian matrices are used in the QP 
subproblem, the form of the modified search is given in Chapter 6.

The solution of the QP subproblem

As indicated in step (ii) of the algorithm, in each iteration the search direction is com­
puted as the incomplete solution for the local quadratic programming approximation to the 
problem, by moving to a stationary point of the QP subproblem and using the information 
available at that point in the way indicated below. The subscript k corresponding to the 
iteration number will be dropped in what follows.

(i) An initial feasible point po for the QP subproblem is obtained.

When an incomplete solution for the QP subproblem is used to define the search 
direction, the choice of po becomes critical. If Hk is positive definite and the minimizer 
for the QP is used to determine the search direction, then, given the uniqueness of pk, 
the choice of po is irrelevant. If we determine the search direction from a stationary 
point that is not a minimizer, the sequence of stationary points that we compute 
depends directly on the value of p0- We wish to define the initial point in such a manner 
that, at least in the positive definite case, all stationary points are satisfactory points 
at which to terminate the solution process. The condition that we need to impose on 
Po is one that limits the size of its norm, and in particular ||po|| will l>e required to be 
small whenever the points xk are close to x*.
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We start by defining vectors s and r having components

Si = max(0, Ci - m),

r = l Ci~ Si if _ ^ < 'C* “ ^
1 C{ — Si otherwise;

where fj. denotes a multiplier estimate such that the following property holds:

\\xk - *|| -► 0 => ||cfc - 5*|| -» 0

when x is a stationary point for the NLP problem. From this definition, r has the 
following property:

|M|<||c-,||. (2.2.5)

The initial point po should then satisfy:

• If c denotes the components of c corresponding to the active constraints at po; 
for some constant f3pc > 0,

INI < /?pc||c||. (2.2.6)
• For some constant (3pcs > 0,

INI £ PvctWAV (2.2.7)

It is shown later that these conditions are easily satisfied, given a reasonable rule for 
the selection of the initial QP active set. A stronger condition, but perhaps of a more 
intuitive nature, would be to select ||po|| < /?c7n||c-||, where c~ denotes the vector of 
negative components of c (the norm of the infeasibilities at the current point). In this 
case, we would be requiring ||po|| to be small whenever we are close to a feasible point 
(and not necessarily just close to a stationary point). Its disadvantage is that near a 
solution this rule could prevent the algorithm from having some desirable properties 
(such as having one QP iteration per major iteration, for example).

(ii) A sequence of Newton steps is taken until a stationary point for the QP subproblem, 

p, is found.

(iii) If the stationary point is a second-order KKT point, the search direction is defined as
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(iv) If the stationary point is not a second-order KKT point, either the QP multiplier 
vector has some components that are negative, or the reduced Hessian (assuming 
that exact second derivatives are used) has negative eigenvalues. In this case, an 
additional step, p -|- ad, may need to be taken, where a and d should satisfy the 
conditions indicated below.

If the multiplier vector has negative elements, the conditions on the step are:

Cl. d is feasible with respect to the active constraints, Ad > 0, and its norm is 
bounded above and below, that is, for some constants f3un<i > flind > 0 it holds 
that /?un(f > ||d|| > fiind- It is assumed that < 1, in order to simplify the 
arguments in the following chapters.

C2. The rate of descent along d is sufficiently large. If V’(C) = tPiP+Cd), it is required 
that

^'(0) = (Hp + g)Td < -/3diCmax,/i,“ (2.2.8)

for some constant /?dsc > 0.

C3. The steplength a is defined as the step to the minimizer of the quadratic function 
given by —il>'(0)/(dTHd), if ip is convex and this step is feasible. Let ac 

denote the step to the nearest inactive constraint, and define

W)
dTHd
aM

if drHd > 0, 

otherwise.
(2.2.9)

Then

a = min(ac,am,aM), (2.2.10)

where aM > 0 is a specified bound on the largest acceptable step.

If the multiplier vector is non-negative and the reduced Hessian is indefinite, the 
conditions are:

C4. A direction of negative curvature d for the reduced Hessian is computed satisfying

||d|| = 1, dTHd < /3tAmin, Ad = 0, gTd < 0,

where Amin indicates the smallest eigenvalue for the reduced Hessian, and A 
denotes the Jacobian corresponding to the active set at p.
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(A weaker condition that is sufficient for the convergence of these algorithms is 
that for any sequence {<4},

fiHkdk
d{dk 0 0

holds.)

C5. Let ac be the step to the nearest constraint. The step a is defined as

a = min(ac,aM).

Finally, for both cases we impose the following condition:

C6. It is a desirable property to avoid having search directions with very small norms, 
unless the corresponding point is close to a solution. The following condition is 
sufficient to ensure this property. Define

P =
{ p+ ad 

P
if IIpII < PslpWP + ad||, 
otherwise,

(2.2.11)

for some constant (3aip > 0. In what follows it will be required that f3a[p > 1.

It should be noted that in the case when Hk is obtained from the exact second deriva­
tives, the previous rules are not sufficient for the determination of the search direction; the 
complete set of rules will be presented in Chapter 6.

The multiplier estimates

Step (ii) of the algorithm requires not only a search direction pk, but also an estimate 
Pk for the Lagrange multipliers at the current point. The QP solution is terminated at a 
stationary point, so a natural choice would be to use the QP multipliers as the estimate, 
but in general these may not be the best possible choice, as they may be negative, or the 
active set associated with the search direction may not in some cases be the same as the 
one for which the multiplier was obtained. The following set of conditions on pk is sufficient 
to ensure that the algorithms have the desired convergence properties.

C7. The estimates are uniformly bounded in norm.
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C8.
||^-A*|| = o(M),

where A* denotes the multiplier vector associated with the solution point closest to 

Xk-

C9. The complementarity condition ^{AkPk + ck) = 0 is satisfied at all iterations.

2.3. Assumptions and bounds

The algorithm will be applied to a problem satisfying the following general assumptions: 

Al. Xk lies in a closed, bounded region Q C &n, for all k.

A2. F, c,- and their first and second derivatives are continuous and uniformly bounded in 
norm on fl.

A3. The Jacobian corresponding to the active constraints at any limit point of the sequence 
generated by the algorithm has full rank.

A4. The quadratic subproblems are always feasible; furthermore, there exists a subset 
of linearly independent constraints corresponding to the violated constraints for the 
NLP problem, such that its condition number is bounded and its least-norm solution 
is feasible.

A5. Strict complementarity holds at all stationary points for the nonlinear program in 11. 

A6. The reduced Hessian is non-singular at all solution points for the problem.

The bounds

From the previous assumptions, several quantities are uniformly bounded in the algorithm. 
We introduce the notation that will be used throughout the following chapters for some of 
these bounds. The first three bounds follow from assumption A2; the fourth follows from 
A3.

finmA is a bound for the norm of the Jacobian: ||Ajk|| < f}nmA- 

Prime is a bound for the norm of the constraint vector: ||cjt|| < ftnmc-
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(3nmg is a bound for the norm of the gradient: ||^|| < /?nmff.

/3nmu is an upper bound for the norm of the multipliers corresponding to a minimizer for 
the QP subproblem: ||/2fc|| < /3nmu-

2.4. Auxiliary results

This section presents a certain number of basic results, either justifying the conditions 
introduced before, or establishing properties to be used in the following chapters.

Initial points for the QP subproblem

It is of interest to show that the condition on step (i) for the solution of the QP subproblem 
can be satisfied. In fact, the role of assumption A4 is to guarantee that this condition can 
be achieved. Condition (2.2.6) is satisfied if the Jacobians for the initial active sets have 
bounded condition numbers. Condition (2.2.7) requires some additional justification.

From A4 it follows that there exist feasible points for the QP subproblem satisfying the 
condition

Ml < &m||c-||,

for some positive constant ficm-
Consider now the following relationship, which will be often used in the next chapters. 

For any vector v defined as u, = min(c,■,«?,), where w is any other vector, it holds that 
||c-|| < |M|, since

if 
if

This implies

c~ = 0 then cj < |»,j,
c~ > 0 then if t;,- = c,- then c~ = |t;,j,

if Vi = Wi then c~ < |w,j = |v,j.

||c_|| < ||c-s||, ||c_|| < ||c-s||

and
||c"H < ||r|| < ||c-s||. (2.4.1)



2.4- Auxiliary results 23

Multiplier estimates

The next results explore some implications of the conditions on the multipliers given in the 
previous sections, and also present some examples of estimates satisfying these conditions.

A consequence of condition C7 and the form in which multipliers are updated is the 
boundedness of the multipliers in the algorithm. This result is Lemma 4.2 in [GMSW86b].

Lemma 2.4.1. For all fc > 1,

Pfcll < max |M,0<j<fc—i

and hence ||Ajt|| is bounded for all k.

Proof. By definition,

Aq = Mo

Afc+i = A* + oik(nk ~ ^k), k>l. (2.4.2)

The proof is by induction. The result holds for Aq = /io because of the boundedness of 
the multiplier estimate (condition C7). Assume that the lemma holds for A*.. From the 

definition of \k+i and norm inequalities, we have

11-Will < + (! - «fe)llAfc||-

Since 0 < a < 1, the inductive hypothesis gives

||Afc+i|| < maxJlMill,
0<j<k

as required. |
Conditions C7-C9 are sufficiently general to be satisfied by most reasonable estimates, 

as the next lemmas show. Nonetheless, some attention must be paid to the satisfaction of 
condition C7, concerning the boundedness of the estimate, although that boundedness is 
guaranteed asymptotically by assumption A3. In general, any reasonable scheme to limit 
the norm of the multiplier estimate will not affect condition C8.

An issue that needs to be mentioned regarding condition C8 is the necessity to identify 
the correct active set when xjt is close enough to x*. (Since the problem may have several 
solution points, we use x* in this context to denote the solution closest to x*.) The next
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results assume that this is the ease, but the formal proof for this property is given in 
Chapters 4, 5 and 6, where it will be shown that, independently of C8, if ||xjk — x*|| is small 
enough the correct active set must have been identified. Note that if (jx* — x*|| is bounded 
away from zero, C8 will be satisfied automatically by any multiplier estimate.

The following candidates for the estimate will be shown to satisfy C8-C9, assuming 
that the correct active set has been identified.

(i) The QP multipliers at stationary points found by the algorithm.

(ii) The least-squares multipliers at x*.

(iii) The least-squares multipliers at x* + pk-

For the following results, let {x*} denote a convergent sequence such that x* —► x*, a 
stationary point for problem NLP with multiplier vector A*. Also, we assume that ||iffc|| is 
bounded, and that

M = 0(||x*-X*||).

In Chapters 4, 5 and 6 it will be shown that this last result holds for the points obtained 
by the algorithms considered there.

Lemma 2.4.2. Let fik denote the QP multipliers at a stationary point pk of the QP sub­
problem at Xk, having the same set of active constraints as x*. If |Jpjt|| = 0(||xjt — x*||), 
then

p*-A*|| = 0(||xfe-x*||).

Proof. From the definition of pk,

Alph = HkPk + 9k,

and from the corresponding Taylor series expansion,

Alpk = A?Tpk - E«7ifeiV2Cj(xjfe)(x* - xk) + 0(\\xk - a;*||2). 

From the definition of A* and the previous equation,

A*T(pk - >?) = 9k ~ 9* + HkPk +. T,ifikiV2Ci{xk)(x* - xk) + Q(||xjfc - x*||2),
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and again using a Taylor series expansion for gk,

A*r(jik - X*) = Wk(xk - x*) + HkPk + 0(||** - **||2)

where Wk denotes the Hessian of the Lagrangian function at xk, defined using fik as the 
Lagrange multiplier estimate.

From assumptions A2 and A3 and the boundedness of Hk the desired result follows.

I
The following lemma presents the corresponding results for the least-squares multiplier 

estimates, pk-

Lemma 2.4.3. The least-squares multipliers at xk satisfy

||/i*-A*|| = 0(||x*-x*||)

and assuming Ha:* + pk — *+|| = o(||a:jk — £*||), the least-squares multipliers at xk + Pk satisfy

\\pk-\*\\ = o(\\Xk-X*W).

Proof. From AkAj^k = Akgk, A*TX* = g* and A* = A* + 0(||xjt - x*||) it follows that 

A*A*T(p,k - X*) = A*(gk - g*) + 0(\\xk - x*||) = 0(||** - x*||), 

and from the non-singularity of A*A*T we get

pk- X* = 0(\\xk - x* ||).

For the second case, under the same assumptions as before, if we denote by A'k,gk the 
corresponding values obtained at xk + pk, using A^ = A* + 0(||xfc + pk — x*||) we have

A*A*T(p’k - X*) = A*(g,k - g*) + 0(\\xk + pk - x+||) = 0(\\xk + pk - x+||),

and from the assumptions,

p'k - A* = 0(\\xk + Pk~ **||) = o(||xjt - a;*||),

completing the proof. |



Chapter 3

General Results

The previous chapter has introduced a framework algorithm to be used in the definition 
of the three methods analyzed in the following chapters. The study of these algorithms 
centers on the determination of their convergence properties, that is, the proof that they 
are globally convergent, and the characterization of their asymptotic rates of convergence.

Given the many common features of the different algorithms, the arguments used to 
show these results naturally follow the same general pattern and present a considerable 
number of similar steps. This chapter introduces the general structure shared by the proofs 
developed in the following chapters, and proves those results that apply to all algorithms, 
because they are independent of the way Hk is defined, the specific details in the determi­
nation of the search direction, etc. In this way, the actual convergence proofs given in the 
next three chapters only need to establish those results that depend on the specific details 
characterizing each one of the algorithms, and will make use of the general results in this 
chapter for those aspects that they have in common.

The lemmas presented in the following sections leave many unjustified steps in the 
argument of the proofs, corresponding to those results that are particular to each algorithm. 
These steps are stated as properties, denoted by Px, where “x” is a digit, and they are 
assumed to hold for subsequent lemmas. The convergence proofs in Chapters 4, 5 and 6 
prove that these properties hold for the different algorithms. For ease of reference, at the 
end of the chapter we include a list of all the properties introduced.

26
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3.1. Convergence properties

This section motivates the common structure shared by the convergence proofs in the fol­
lowing chapters, by presenting the questions these proofs will address. It is important to 
remember that the results presented in this chapter do not try to answer the questions 
posed below; they only introduce a number of basic results, to be used in Chapters 4, 5 and 
6 to answer these questions.

All of our algorithms generate an infinite sequence {xfc}^L0 whose limit point is a solution 
for the problem. In order to establish global convergence (i.e., independently of the initial 
point selected, the algorithm finds a solution for the problem), we want to show that the limit 
point of the sequence has certain desired properties. Notice that under assumption Al, the 
sequence will always have convergent subsequences. Furthermore, from assumptions A3 and 
A6 it is possible to show that the limit point is in fact unique. Proving global convergence 
is then equivalent to proving that the limit point is a solution point. In what follows, we 
denote the limit point by x* so that we have —*• x*. The proofs in Chapters 4, 5 and 6 
will start by examining the properties of x*.

In subsequent chapters we will also determine the rate of convergence of the sequence 
{||a:fc — **||}. Specifically, we will provide answers to the following questions:

• What is the value of

when both n = 1 and m = 1?

U Ikfc+m - g*
*-£> II**-** II

• If the previous answer is zero, is there a value of n with m = 1 for which the answer 
is finite and strictly positive?

• If the answer to the first question is not zero, is there a value of m with n = 1 for 
which the answer is zero?

To characterize the different answers to the previous questions, we say that 

(i) the algorithm converges superlinearly (or one-step superlinearly) if
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(ii) the algorithm converges two-step superlinearly if

limte±-^l = 0;
fc-oo Hi* -X*||

(iii) finally, the algorithm converges quadratically if

0 < lim ijp±!—ijJi < oo.
||xfc-x*||2

A further question of interest is how the penalty parameter p* behaves as k oo. A 
desirable property for pk is that it remain bounded throughout the algorithm, and in this 
chapter we introduce some conditions that guarantee this property.

3.2. Structure of the proofs

In this section we present and motivate the steps that we will take to obtain the answers 
to the previous questions. These steps also attempt to justify the results proved in this 
chapter, so that they can more easily be put into the framework of the convergence proofs 
presented in Chapters 4, 5 and 6. Some of the results will be shown to hold in Chapters 4, 
5 and 6, while some others axe proved in this chapter; we try to indicate for each one of the 
statements where the corresponding proof can be found.

(i) A first observation is that the sequence {xjt — x*} is not easy to study, given that part 
of the information is available at iteration k, but another part, x*, is not known until 
the end of the process. It will be seen that the sequence of search directions {p*} can 
be studied in its place, and this sequence mimics the behavior of {xjt — x*}. This is 
done here by proving that

||x* - x*|| = 0(||pfc||),

M = 0(||xfc -x*||).

(ii) A first step in establishing these relationships is to show that the correct active set at 
the solution is identified after a finite number of iterations. To be more precise, for 
the different algorithms, and in the corresponding chapters, we prove that if \\pk\\ is 
small enough, then the correct active set must have been identified.
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(iii) The convergence of the sequence {pk} is proved using the boundedness of the merit 
function. In other words, the merit function decreases in each iteration, and the 
decrease is related to the value of ||pfc||2. As the merit function is bounded below, 
from assumptions Al and A2 and Lemma 2.4.1, this implies that ||pfc|| -+ 0, and 
from the previous remarks global convergence follows. This fundamental result is 
given in the corresponding chapters for each of the different algorithms.

(iv) To establish the bound on the decrease in the value of the merit function, it is necessary 
to start by showing that the search direction is an acceptable descent direction for the 
merit function. Again, and to be more precise, what we prove in Chapters 4, 5 and 6 
is that for positive constants fli and f32,

9kPk + \plHkPk < -/?i|bfc||2 + AilM].

(v) The descent available for the merit function in any iteration is dependent on the value 
chosen for p. This property is used to select a suitable value for the penalty parameter 
in each iteration. This is different from the strategy used in many algorithms, in which 
p is selected so that the Hessian of the augmented Lagrangian is positive definite at 
the solution. All of our algorithms define p so that the directional derivative at the 
beginning of the linesearch is sufficiently negative, that is, <fi'k satisfies a condition of 
the form

**(0) < -0«\\Pk\\2,

but at the same time p is not large enough to prevent convergence. The particular 
form in which the penalty parameter is defined depends on the algorithm considered, 
and so it is left to the corresponding chapters.

(vi) The last requirement to ensure global convergence is to prove that the steplength is 
uniformly bounded away from zero. The reason for this condition is that the descent 
in the merit function is really bounded by ||o!fcPjk||2, and so in this chapter we establish 
that what goes to zero is the norm of the search direction, and not the steplength.

(vii) As a consequence of the global convergence of the algorithms and the conditions 
imposed on the estimates pk, the Lagrange multiplier estimates \k also converge to 
the correct value.
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(viii) Concerning the rate of convergence, the significant remark is that in general the 
questions raised earlier have known answers for the sequence {xk + Pk — £*}• The 
proofs given in the following chapters have two parts; in one we show that eventually 
a unit steplength is always accepted, and so the previous sequence is the relevant 
one for this question, and in the other we establish the corresponding results for this 
sequence.

(ix) A final issue is the study of conditions under which the penalty parameter remains 
bounded throughout the algorithm. Using the previous results, we introduce at the 
end of the chapter some conditions that imply this property.

The next sections present results that are common to the proofs for all three methods, 
along the lines indicated above.

3.3. Properties of the search direction

The first group of results explores the relationship of stationary points for the QP subprob­
lems and stationary points for problem NLP. The significance of this relationship is due 
to the fact that the search direction is obtained from information available at a stationary 
point of the QP subproblem. The results shown below are similar in spirit to those in 
Robinson [Rob74]. They will be used in subsequent chapters to show that the value of ||pfc|| 
is “small” if and only if we are close to a solution point, with corresponding implications 
regarding the identification of the correct active set.

Lemma 3.3.1. For any x E fi, let p be a stationary point for the QP subproblem at x. 
Then

Ve>0 3£>0 3x 3 ||p|| < £ =>• ||x — x|| < e,

where x is a stationary point for the nonlinear program NLP, with the same set of active 
constraints as p, or x is a feasible point where the Jacobian of the active constraints is 
singular.

Proof. Assume that the result does not hold; then there exist sequences » and
{xfc}fc^=i 5 such that pk is a stationary point for the QP subproblem at xjt satisfying ||pfc|| —*■ 0, 
and ||xfc — x|| > e for some e > 0 and all x with the previous properties.
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A convergent subsequence can be extracted from {a:*}, using the compactness of ft. 
Select now a sub-subsequence having fixed active set, a subset of the active set at the limit 
point x.

If we take limits in

AkPk + c* > 0

and apply assumption A2, it immediately follows that x must be feasible.
If the set of active constraints is non-singular at x, from

HkPk + = AlPk

there will exist a subsequence along which {pk} converges, Pk P- Taking limits along 
this subsequence,

g = ATp.
This result implies that x is a stationary point for the nonlinear problem, contradicting the 
assumption.

To show that the set of active constraints should be the same for p and x, in the case 
when the Jacobian at x is non-singular, assume that sequences as described above exist, but 
that the set of active constraints at each pk is not the same as the set of active constraints 
at x. As ||pfc|| -* 0> the set of active constraints at each pk must be a subset of the active 
constraints at x; but if it is a proper subset, then there must exist an index i, active at 
x, such that pk, = 0 for large enough k, and this will imply pi = 0, violating the strict 
complementarity assumption. |

The assumptions on the form of the problem guarantee that large enough steps can be 
taken from stationary points in the QP subproblems when the points considered are not 
close to solutions for the problem. The algorithm makes use of this property to move away 
from stationary points for NLP. The next result establishes the existence of some of the 
necessary bounds.

Lemma 3.3.2. There exist positive values (lapc, (33pm, Papn, such that for all stationary 
points x,

min c, > /?spc;•:ci>0
for those stationary points having some negative multiplier element,

m^Xp~ > Pspm'i
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and for those stationary points that have a non-negative multiplier vector, but are not second- 

order KKT points,

maxA,“ > flspn,

where A,- denotes the ith eigenvalue for the reduced Hessian at x.

Proof. Assume that there exists a sequence {xfc} of stationary points for problem NLP in 
0, such that

min Cki —> 0. 
i:cki>0

From the compactness of fl, a convergent subsequence can be extracted having fixed 

active set, and such that the minimum is always achieved for the same constraint (or set 
of constraints). Let x* denote the limit point, which will also be a stationary point for 
the problem (or will have a singular Jacobian for the active constraints, except we exclude 
this case by invoking assumption A3). At x* assumption A5 will be violated, as the 
corresponding constraints are active but have zero multipliers.

If the sequence is such that

using the same construction, assumption A5 will again be violated at £*, since at least one 

of the multipliers corresponding to an active constraint will be zero.
Finally, if

max A. —► 0

for a sequence of first-order KKT points, the limit point will be a second-order KKT point 
but assumption A6 will be violated, as the reduced Hessian will be singular. |

Using the previous lemmas, in Chapters 4, 5 and 6 we establish the following property 
for the different algorithms:

Pi. There exists a value e' > 0 such that if ||p^|| < e7, then the correct active set at 
a solution of problem NLP has been identified, and pk is a minimizer for the QP 
subproblem.

In what follows, we assume that this property holds.
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3.4. Equivalence of sequences

For a given sequence the next results establish the equivalence between the sequences
{xk — x*} and {pk}, allowing us to continue the study of the convergence properties for the 
algorithms on the sequence of search directions.

Lemma 3.4.1. If x* denotes the solution point closest to Xk, then there exists a constant 
Mp, independent of k, such that

||*fc - **11 < Mp\\pk\\. (3.4.1)

Proof. The proof is in essence the one for Lemma 4.1 in [GMSW86b], and takes the 
following form. Let c denote the vector of constraints active at x*, let A be the Jacobian of 
the active constraints, and Z an orthogonal basis for the null space of A. Define

h(x)
c(x)

Z(x)Tg(x)

Expanding hi(x) about x*, and noting that h(x*)

hi(x) = Hi(0i)(x - x*),

for Hi(0i) = Vhj(z* + Oi(x — x*)), where 0 < 0; < 1 (see Goodman [Go85], for a discussion 
of the definition of Hi). Define Sg as the matrix whose rows are given by Hi(0i). Then

c(x)
Z(x)Tg(x)

Sg(x - X*). (3.4.2)

Assume that ||pfc|| < e' for suitably small e1, so that property PI applies and the smallest 
singular value of the reduced Hessian of the Lagrangian function is bounded below. From 
assumption A5, Sg is nonsingular, with smallest singular value uniformly bounded below 
(see, e.g., Robinson [Rob74]). Because of assumption Al, the relation (3.4.1) is immediate 
if Ik-11 > and we henceforth consider only iterations k such that |k|| < e'.

Taking x = Xk in (3.4.2), and using the nonsingularity of Sg and norm inequalities, we 
obtain

IN - a:*|| < P(\\ck\\ + H^fcll) (3.4.3)
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for some bounded (3. We now seek an upper bound on the right-hand side of this equation. 
Since the solution for the QP subproblem identifies the correct active set, pk satisfies the 
equations

AkPk = -c* and ZlHkpk = -Zlgk.

From these equations, assumption A3 and the positive definiteness of the reduced Hessian, 
it follows that there must exist a constant /3 > 0 such that

P(\\ck\\ + ||z£y) < ||p*||. (3.4.4)

Since /3 and ft are independent of k, combining (3.4.3) and (3.4.4) gives the desired result.

I
The converse statement is proved in the next lemma. This result is not strictly necessary 

for the convergence proof, but it is included for completeness, and because it simplifies 
certain arguments. It also requires certain additional assumptions, whose validity will be 
established in the following chapters. In particular, if Zk denotes a basis for the null space 
of the Jacobian at xk corresponding to the constraints active at x* (defined in the same 
way as before), then the sequence {ZkHkZk} must be bounded, and any limit point, say 
Z*tH*Z*, must be positive definite.

Lemma 3.4.2. Let x* denote the solution point closest to xk. If any limit of the sequence 
{ZkHkZk} is positive definite, then there exists a constant Mx, independent of k, such that

llPfcll < Mx\\xk - a:*||.

Proof. We start by showing that whenever ||xfc — x*|| —► 0, we must also have ||pfc|| —► 0.
Assume that that is not the case. Then there exists a sequence {pk} obtained from QP 

subproblems at points {x*} satisfying xk —> x*, and such that ||pfc|| > e for all k and some 

e > 0.
Also, there must exist a first QP step dk along the way to pk, satisfying \\dk\\ > e, where 

e > 0 and all previous steps converge to zero. Define

£ - dk6k = c
II4||

so that 6k is a feasible QP step. Extract a subsequence along which both ZkHkZk and Sk 
have a limit. Then, if pk denotes the step taken in the QP subproblem immediately before 
obtaining dk,

(Hkpk + gk)rdk < 0,
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and taking limits we obtain
g*T? < 0 =* < 0,

but from strict complementarity and feasibility it must hold that 6% = 0. Again, taking 
limits in

i>k(Pk) ~ i’kiPk + dk)> 0

we must have
d*zTZ*TH*Z*d*z < 0,

contradicting the assumption that Z*TH*Z* \s positive definite, so p* = 0.

This result implies that there exists a ^ > 0 such that for all 6 < ^,

Ikfc - £*11 <6=> llpjkll < c',

where e' is the value in property PI, pk is obtained as the solution of the QP subproblem 
and the correct active set has been identified.

If ||xfc — £*11 > the result follows trivially. Assume that ||xfc — x*|| < 6. Then, as in 
the proof for Lemma 3.4.1, from (3.4.2) and the boundedness of S$ we get

lln-**ll>MMI + l|Z&bll). (3-4.5)
Also, from the nonsingularity of A* and ZjHkZk for large k, for small enough Hz*. - z*|| 

we have, given that pk is obtained as a minimizer of the QP subproblem,

+ I|Z&*II) > llnll- (3.4.6)

Combining (3.4.5) and (3.4.6) gives the desired result. |
The previous lemmas justify replacing the study of the sequence of distances to the 

solution set by the sequence of search directions. A result that is closely associated to the 
last two lemmas, and that completes the justification for the study of the sequence {pjt}, is 
given by the following property that, as in the previous case, will be assumed to hold for 
the rest of the chapter, and is proved in the following chapters.

P2. ||pfc|| = 0 if and only if xk is a solution for problem NLP.

It should be remembered from the remarks in Chapter 1 that the meaning of a solution 
for problem NLP depends on the algorithm used, but in any case it is either a first-order 
or a second-order KKT point.

It was mentioned before that under assumption A6 the sequence generated by the 
algorithm has a unique limit point. The next lemma proves this result.
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Lemma 3.4.3. If ||pfc|| —► 0 and i/t+i ** obtained as a;jt+i = Xk + ot^Pk, 0 < < 1, then
the sequence {x*} has a limit x*, a solution point for the problem.

Proof. From assumption Al and Lemma 3.4.1, it holds that any limit point for the se­
quence is a solution point. If there exists a unique limit point for the sequence, the proof is 
complete. Assume then that there exists more than one limit point.

From
||*Jfc+i - **|| = afc||Pfc|| -+ 0

it follows that the limit points cannot be isolated. To prove this, assume that we do have 
isolated solutions, and in particular that there exists a limit point x* and a positive value 
e such that for any other limit point x we have ||x* - x|| > e.

Let {x^} denote a subsequence converging to x*, and such that {x^.+i} is convergent, 
but its limit point x is different from x*. Select i large enough to have

IK ~ **|| < K+i - *|| < \\xkl - zjfc,+i|| < |-

We can then write

IK - **.+111 > \\x* - *11 - ll*fci - *+ll - ll**i+i - *11 =>• II** - *11 < j

but this contradicts the previous assumption.
If limit points are not isolated, select one of them, x*, and construct a sequence of limit 

points {xfc} converging to x*. From the previous remarks, as all limit points must be solution 
points,

F(xk) = L{xk) = Z(x*) = F(x*).

Notice that all solution points must have the same active set, from strict complementarity 
and nonsingularity of the Jacobian at all limit points, implying that the terms Arc are zero 

in all cases.
Define

, _ ~ ** 
k~\\xk-x*\\

and select a convergent subsequence having limit point d*. From the Taylor series expansion 
for the active constraints,

c(xjk) = 0 = c(x*) + A*dk\\xk - x*|| + 0(||xfc - x*||2),
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which implies that for any active constraint i,

0 = ajkdk + 0(pfc - x*\\) => a*Td* = 0,

and d* must be in the null space of the active constraints at x*.

For the Lagrangian function we can write

VL(xk) = VL(x*) + V2L{x*){xk - x*) + o(\\xk - x*||).

Using the property that all points considered are solutions for the problem, and so their 
Lagrangian functions have zero gradients,

0 = V2Z(x*)4 + o(l) =* V2L(x*)d* = 0,

but this contradicts assumption A6, and the sequence must have a unique limit point. | 

Descent properties

As a consequence of Lemma 3.4.1, to prove that the algorithm is globally convergent it is 
enough to show that pk —*■ 0. This result follows from the boundedness of the merit function, 
and the fact that the merit function decreases by an amount bounded away from zero by 
a multiple of ||pfc||2 in each iteration. The first step along this line of reasoning will be to 
establish that pk satisfies certain descent properties. These properties can be considered to 
be related to the well known condition for global convergence in unconstrained optimization, 
that the angle between the gradient and the search direction must be bounded away from 
orthogonality. The explicit form of the condition to be used is given (and assumed to hold) 
in the next paragraph.

P3. There exist constants /?i > 0, /?2 > 0 such that the incomplete solution for the QP 
subproblem, pk, satisfies

9kPk + \?lHkPk < -Pi\\Pk\\2 + fo\\rk\\.

3.5. The penalty parameter

The penalty parameter in the algorithm is modified so that at each iteration it is possible 
to decrease the value of the merit function by a sufficiently large amount. Chapters 4, 5 
and 6 include proofs for the following property, and specific definitions for the value of the 
penalty parameter ensuring that the desired decrease can be achieved.
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P4. There exists a value pk such that for some positive constant (3H, independent of the 
iteration,

for all p> Pk-

We will also assume that the sequence {pk} is nondecreasing.
In the case when the reduced Hessian is indefinite, a slightly different condition, also 

proved in Chapter 6, is used; in the modified condition <^(0,p) is replaced by <j>'£(0,p). The 
alterations that this change introduces in the results to follow will not be discussed here; 
they are studied in detail in Chapter 6.

Whenever p is mentioned in the results that follow, what is meant is not the actual value 
of the penalty parameter, but rather the value of the bound p from condition P4. All the 
results still hold if this value is replaced by a bounded multiple, p < Kp, for some K > 1. 
Also, we need to impose a condition on how often the value of the penalty parameter will 
be updated. It will be assumed that there exists a positive constant f3H > (3H such that no 
update is performed whenever ^(0,p) < -puWPkW2-

3.6. Boundedness of the steplength

The rest of the global convergence proof consists in showing that the steplength is bounded 
away from zero, and so the potential decrease implied by the bound in P4 and (2.2.3) is 
actually attained.

A first result, whose proof depends on the form of pk and (3H introduced in the following 
chapters, where it will be justified, gives a first bound for the rate at which the penalty 
parameter is allowed to increase in the algorithm. Tighter bounds will be introduced in 
subsequent lemmas.

P5. For any iteration ki in which the value of p is modified,

/>*(IKII2 < N

and

PfcJICfcl — sfc||| — N

for some constant TV.
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The notation ki is used in all that follows to indicate iterations at which the value of 
the penalty parameter needs to be modified.

We now introduce an expression for that will be used extensively in the proofs of 
results related to the behavior of the merit function. To derive it, consider first the gradient 
of La with respect to x, A and s,

VLa(x,\,s)

( g{x) - A(x)rX + pA(x)T(c(x) - sj ^ 

-(c(x)-s)

V A-p(c(x)-s)
(3.6.1)

It follows that </>'(0) is given by

<£'(0) = pTg - pTATX + ppTAT(c - s) - (c - s)r£ + XTq - pqT(c - s) 

= PT9 + (2A - p)T(c - s) - p\\c - s\\2 (3.6.2)

where g, A, and c are evaluated at x.
The following results, analogous to those in [GMSW86b], complete the proof for the 

boundedness of the steplength. These results start by proving the boundedness of certain 
quantities, related to the penalty parameter, that appear in the termination conditions 
for the linesearch; these results provide refined bounds for the rate at which the penalty 
parameter may increase with respect to the ones given in property P5, once this property 
is assumed to hold. In all these results it must be remembered that there exist two cases 
regarding the behavior of the penalty parameter p. It may remain bounded throughout the 
algorithm, in which case the results follow trivially, or it may need to be increased in an 
infinite number of iterations. This last case is the one addressed by the next lemmas.

Lemma 3.6.1. For all iterations ki at which the penalty parameter has to he modified,

cJ/ijt, < K\\pkl\\2 + (2A*( - PktVick, - skl), 

where denotes the QP multipliers at pkl, and K is a positive constant.

Proof. In the proof we drop the subscript fy. If ||p|| > e', the result follows from the 
assumptions and the boundedness of the multiplier estimate. Otherwise, from PI the 
search direction must have been obtained as a solution for the QP subproblem, implying 
that

gTp + pTHp = —cTji. (3.6.3)
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Also, if p denotes the value of the parameter before being modified,

> -0h\\p\\2, (3.6.4)

and from the definition of <£',

cTfi < -pTHp + PhWpW2 + (c - s)t(2X - p)- p~(c - s)r(c - s).

From the non-negativity of p~(c — s)T(c — s) and the boundedness of H the desired result 
follows. |

Lemma 3.6.2. There exists a constant M such that for all l,

Pk, (<t>k,(pk,) ~ <f>k,+1(Pk,)) < M. (3.6.5)

Proof. To simplify notation in this proof, we shall use the subscripts 0 and K to denote 
quantities associated with iterations ki and respectively. Thus, the penalty parameter 
is increased at r0 and xK in order to satisfy condition P4, and remains fixed at po for 
iterations 1,... ,K — 1.

From the definition of (f>,

Po4> = PqF - P0XT{c - s) + \pl{c - s)T(c - s). (3.6.6)

Also, property P5 implies

Pollco - Soli < M and pK\\cK - sK|| < M.

Since ||A|| is bounded (Lemma 2.4.1), the only term in (3.6.6) that might become unbounded 
is poF. The desired relation (3.6.5) then follows if an upper bound exists for po(Fo - FK).

Consider iterations for which ||po|| < e', so that property Pi applies (for all other itera­
tions p is bounded, and the result holds from assumption A2). In this case, po is obtained 
as a solution for the QP subproblem. Let p® denote the QP multipliers corresponding to 

Po-
Expanding FK about xq, we have

Fk-F0 = (xk - xo)Tgo + 0(||a;o - Zjt||2)- (3.6.7)

Similarly, if we expand cK about iq, we obtain

cK = c0 + Aq(xk - *0) + 0(||zo - *a-||2)- (3.6.8)
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From Lemma 3.4.1,

Iko - **|| < MM and ||xA- - a;*|| < Mp\\pK\\, 

and substituting the expression g0 = Aq(Io - HoPo and (3.6.8) in (3.6.7), we obtain 

F0 - Fh- = (c0 - cK)Tp0 + o(max(||po||2,||PA'||2)).

We thus seek to bound

Pq(F0 - Fk) = poCoMo - PoCk-Po + PoO (max(||p0||2, ||Pk||2)) • (3.6.9)

To derive a bound for the first term on the right-hand side of (3.6.9), Lemma 3.6.1 can 
be used to write

PocoMo < PoA'Ilpoll2 + po(c0 - s0)\2X0 - p0). (3.6.10)

Because po||co — ^o||, Po||po||2, ||Ao|| and ||po|| are bounded, from (3.6.10) we conclude 
that

PocoMo < M. (3.6.11)

Consider now the second term on the right-hand side of (3.6.9). If c^. denotes the 
negative parts for all components of cA-, from po > 0 we must have

- Pocl-Po < P0^rpo (3.6.12)

and from (2.4.1) we have

||cA|| < ||cA- -5A-||.

Using property P5 and the relation po < pA-, we conclude that

- PocApo < M. (3.6.13)

Finally, consider the third term on the right-hand side of (3.6.9). It follows from property 
P5 and the relation po < pA- that

PollPoll2 < N and Po||Pa||2 < N,

and hence
poO(max(||po||2,||pA||2)) < M. (3.6.14)

Combining (3.6.11), (3.6.13) and (3.6.14), we obtain the bound

Po{Fq - Fk) < 3M,

which implies the desired result. |
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Lemma 3.6.3. There exists a constant M such that, for all l,

fci+i-i
pkt E IKPfcll2 < M. (3.6.15)

k=ki

Proof. As in the previous lemma, we use the subscripts 0 and K to denote quantities 
associated with iterations k[ and fc/+1 respectively. For 0 < k < K — 1, property (2.2.4a) 
imposed by the choice of a*, and the fact that the penalty parameter is not increased, imply 
that

4>k ~ <f>k+i > -<r<Xk<t>'k- (3.6.16)

We can use the identity

K-l
4>a-<t>K= (3.6.17)

k=Q

together with equations (3.6.17), (3.6.16) and property P4 to obtain

K—l
E Q*IIPfcl|2 ^ ^0 - <t>K-
k=0

Rearranging this expression and using the property that 0 < a*; < 1, we obtain

K-i
\o(3h E ll«tPit||2 < <^0 - <t>K- (3.6.18)

k=0

The result follows by multiplying (3.6.18) by po and using Lemma 3.6.2. |

Lemma 3.6.4. There exists a constant M such that, for all k,

Pk\\ck ~ sjt|| < M. (3.6.19)

Proof. Using the notation of the two previous lemmas, observe that (3.6.19) is immediate 
from property P5 for k = 0 and k = K.

To verify a bound for k = 1,... ,/v - 1 (iterations at which the penalty parameter is 
not increased), we first consider x\. Let unbarred and barred quantities denote evaluation 

at xq and x\ respectively.
If Ci > Xi/po, then
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and the bound follows from Lemma 2.4.1.
If C{ < A,/po, then s,- = 0. If in addition ci > 0, then

Po\ci 5,■[ = poc« Aj

and the same result applies.
Therefore, assume that c,- < 0, ct- < A,7/>o, and expand the ith constraint function 

around xq:
Ci = Ci + atoafp + 0(||aoPo||2). (3.6.20)

Rewriting the previous expression, we obtain:

Ci = Ci - Si = (1 - a0)ci + a0(afp + Ci) + O(||a0po||2)- (3.6.21)

Adding and subtracting (1 — ao)s, on the right-hand side of (3.6.21) gives

Ci -Si = (1- a0)(c; - Si) + (1 - a0)s,- + a0(ajp + Ci) + O(||a0po||2)- (3.6.22)

The properties of ao, s. and afp + c,- imply that

(1 — ao)s,- + Q!o(s,- + <7«) > 0,

and when c/ < min(0, A,//9o), (3.6.22) gives the following inequality:

Po\ci - Si\ < p0(l - ao)|c,- - Si\ + p00(||a0po||2). (3.6.23)

There are two cases to consider in analyzing (3.6.23). First, when Ci > 0, or c, > Xi/po, 
the term p\ci - s, | is bounded above, using the same arguments as before. The second term 
on the right-hand side of (3.6.23) is bounded above, using Lemma 3.6.3. Thus, the desired 
bound

Pole,- - Si\ < M

follows if c, > min(0, A//po)- Extending this reasoning to the sequence k = 1,... ,K - 1, 
we see that the quantity po|c,(xjt) — 5t(xfc)| is bounded whenever Cj(a:fe) > min(0, A^/po), 
or €,■(£*_!) > min(0,A(/i._1)i/po).

Consequently, the only remaining case involves components of c that are negative and 
have s/ = 0 at two or more consecutive iterations. Let c denote the subvector of such 
components of c. Using the componentwise inequality (3.6.23) and the fact that 0 < a < 1, 
we have

Po||c(£i) - 5(£i)|| < Po||c(£o) - •s(x0)|| +Po0(||aopo||2)-
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If we proceed over the relevant sequence of iterations, the following inequality must hold 
for fc = 1,..., Ar - 1:

k-i
Po\\c(xk) - 5(xjt)|| < Po||c(a;o) - s(a:o)|| + PoO(j2 ||ajPj||2)- (3.6.24)

i=o

The result then follows by applying property P5 and Lemma 3.6.3 to (3.6.24). |
The next two lemmas establish the existence of a linesearch step bounded away from 

zero, independent of k and the size of p, for which a sufficient-decrease condition is satisfied.

Lemma 3.6.5. For 0 < 0 < a*,

^)<-^(0) + iV||pfc||2,

where N is a constant independent of k.

Proof. We again drop the subscript k. From (3.6.1),

V2!,, =

' V2F - £, (A, + p(c, - s,)) V2Ci + pATA -Ar -pAr >

-A
-pA

0
/

so that

/

Pi

= pTW(0)p - EiP{cm - *(0))/V2ct(%

+ p(Me)p - <?)T(^(% - ?) - 2f(M0)p - 9), (3.6.25)

where
W{0) = V2F{6) - E,(At- + ^)V2c,(0).

We now derive bounds on the first two terms on the right-hand side of (3.6.25). The 
first term is bounded in magnitude by a constant multiple of ||p||2 because of assumption 
A2 and the boundedness of ||A|| (from Lemma 2.4.1). For the second term, we expand c, 
in a Taylor series about x\

Ci(x + 0p) = Ci(x) + 0ai(x)Tp + \02pTV2Ci(x + 0;p)p,

where 0 < 0, < 0. Since s,(0) = s, + 0qi, using (2.2.2) and multiplying by p, we have 

p{ci{x + 0p) - (s,- -I- 0g,)) = p(l - 0)(ci(x) - Si) + p\02pTV2Ci(x + 0ip)p.



3.6. Boundedness of the steplength 45

We know from Lemma 3.6.4 that p\ci(x) — s,| is bounded, and Lemma 3.6.3 implies that 
p||ap||2 is bounded. Therefore,

/>|(c,(0)-s,(0))| < J„ (3.6.26)

where «/,• is a constant independent of the iteration. Using (3.6.26), we obtain the overall 
bound

S KC«'W _ 5<(0))pTv2c«'(0)p| < «%H2> (3.6.27)
t

where ,7 is a constant independent of the iteration.
Now we examine the third term on the right-hand side of (3.6.25). Using Taylor series, 

we have
a,(x + Op)Tp = ajp + 0pTW2Ci(0i)p, (3.6.28)

where 0 < 0, < 0. Using (2.2.2) and Lemmas 3.6.3 and 3.6.4, we obtain

p(a{0)p - q)jT{A{0)p -qj < p(c - s)T(c - s) + L||p||2, (3.6.29)

where Z is a constant independent of the iteration.
From (3.6.28) and the boundedness of ||£|| (Lemma 2.4.1), the final term on the right- 

hand side of (3.6.25) can be written as

- 2?(A(0)p -q)< 2£r(c -s) + M||p||2, (3.6.30)

where M is a constant independent of the iteration.
We now observe that

p(c- s)T(c - s) + 2£t(c - s) = -^'(O) + pTg + pT(c - s)

= -^'(0) -I- pT(g - ATp) - p\

and using Taylor expansions we obtain

pT(g - ATp) = pT(g* - A*Tp) + 0(||p||2) = pTA*T(X* - p) + 0(||p||2).

Condition C8 on the multipliers implies that there exists a constant M > 0 such that

pT(g - ATp) < M\\p\\2.

From pk A*, strict complementarity at the solution, and the fact that the correct active 
set is identified for ||p|| small enough (property Pi), we eventually have p >0 and pTs > 0.
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From (3.6.29), (3.6.30) and the last results, we have

P (A{0)P ~ <l)T(M0)P - «) - 2{T(A(0)P -9) < -4>'(0) + M'HpII2. (3.6.31)

Combining (3.6.27), (3.6.29) and (3.6.31) gives the required result. |

Lemma 3.6.6. The linesearch of the algorithm defines a step length a 6 (0,1] such that

<f>(a) - <£(0) < <ra<//(0) (3.6.32)

and a > a, ivhere 0 < cr < 1 and d > 0 is bounded away from zero and independent of the 

iteration.

Proof. If condition (2.2.3) is satisfied at a given iteration, then a = 1 and (3.6.32) holds 
with a trivially bounded away from zero.

Assume that (2.2.3) does not hold (i.e., a is computed by safeguarded cubic interpola­
tion). The existence of a step length a that satisfies conditions (2.2.4) is guaranteed from 
standard analysis (see, for example, More and Sorensen [MS84]). We need to show that a 
is uniformly bounded away from zero. There are two cases to consider.

From the assumption that (2.2.3) does not hold, <£(1) — </>(0) > (^'(O). Since ^(O) < 0, 
there must exist at least one positive zero of the function

it){a) = <t>{oi) — <£(0) — cra<f>{Q).

Let a* denote the smallest such zero. Since 0 vanishes at zero and a*, and 0'(O) < 0, the 
mean-value theorem implies the existence of a point d (0 < d < a*) such that 0'(d) = 0, 
i.e., for which

0'(d) = <r0'(O).

Because a < ?/, it follows that

0'(d) - = (ff — T])<j/(0) > 0.

Therefore, since the function ^(a) — r/^O) is negative at a = 0 and non-negative at d, the 
mean-value theorem again implies the existence of a smallest value d (0 < d < d) such that

0'(a) = #'(0). (3.6.33)
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The point a is the required lower bound on the step length because (3.6.33) implies that 
(2.2.4b) will not be satisfied for any a G [0,d).

Expanding <pf in a Taylor series gives

<f>{a) - 0'(O) + a4>"(6),

where 0 < 0 < d. Therefore, using (3.6.33) and noting that 77 < 1 and <£'(0) < 0, we obtain

(3.6.34)— <^'(0) n ,^(0)1 a =------^-----= (1 - n)—

(Since d > 0, 0 must be such that > 0). We seek a lower bound on d, and hence an
upper bound on the denominator of (3.6.34). We know from Lemma 3.6.5 that for some 
positive constant N

nn < -*'(0) + iviMi2 = |#'(0)l + iviMI2
implying

a >

Dividing by |<£,(0)| gives

a >

(1 - t?)l^(0)l
|^(0)| + lV||p||2- 

(1 - *?)
2 •

1 + NM
(3.6.35)

From property PI it follows that

; :.>¥h\\p\\2,

and thus, the denominator of (3.6.35) may be bounded above as follows:

1 , AW <1 , jviM!l = 1 , M
l<mi " ^nlbll2 0H •

A uniform lower bound on d is accordingly given by

. - T])
- Ph + zn’

satisfying the condition. |
From these results global convergence follows, as given by the following property, to be 

proved in the corresponding chapters,

P6. For the sequence generated by the algorithm,

lim ||xfc - x*|| = 0,
fc—*oo

where x* is a solution point for the problem.

(3.6.36)

36
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3.7. Convergence of Lagrange multiplier estimates

Once the global convergence of the algorithm has been established, the next step is to show 
that the multiplier estimate A* also converges to the desired value. The result presented 
below, given as Theorem 4.2 in [GMSWSGb], implies that the convergence of the multiplier 
estimates is a consequence of the global convergence of the algorithm, and the facts that 
the multiplier estimates are bounded in norm, and the steplength is bounded away from 

zero.

Lemma 3.7.1. Assume that P6 holds, and let X* denote the multiplier vector at x*. As­
sume also that there exists a positive value a such that the steplength at any iteration is 
bounded away from zero: > a > 0. Then

lim || A* - A*|| = 0.

Proof. From (2.4.2),
k

= ijki1} i
j=0

(3.7.1)

where k
Ikk = ot'k, 7jk = cij II “ ar)’ 3 <k, (3.7.2)

r=j+l

with Oq = 1 and a' = a^, j > 1. (This convention is used because of the special initial 
condition that Aq = po-) From the boundedness of a and (3.7.2), we observe that

0 < a < «j < 1 for all j, (3.7.3a)
k

= 1, (3.7.3b)
j=o

7ifc < (l-«)fc-J, j<k. (3.7.3c)

From condition C8 on the multipliers we must have

Pk = >? + Mkdktk (3.7.4)

with |Mjt| < M, dk = ||xjt - a;*|| and \\tk\\ = 1. From property P6, Rf can be chosen so 
that, for k > R\,

\Mkdk\ < |e. (3.7.5)
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We can also define an iteration index K2 with the following property:

(!-«)*< (3.7.6)
2(* + l)(l + /? nmu +p*ii)

for k > K2 + 1, where /3nmu is an upper bound on \\fik\\ for all k. Let K = max(/$'1,/f2). 
Then, from (3.7.1) and (3.7.4), we have for k > 2K,

K k
xk+i = J2 IjkH + Y, Tj*(A* + Mjdjtj).

j=0 j=K+l

Hence it follows from (3.7.3b) that

K k
Afc+i — A = Y'y likifli — A ) + •yjkMjdjtj.

j=0 i=K+l

From the bounds on ||/ij|| and ||<j|| we then obtain

K k
I|A*+1 - A*|| < (A.mu + ||A*H) £7;* + Y Vk\Mjdj\. (3.7.7)

j=Q j=K+l

Since k > 2K, it follows from (3.7.3a) and (3.7.3c) that

Evi. < pi - 3)*^ < E(1 - a)»-i < (K + i)(i - a)K.
i=o j=o j=o

Using (3.7.6), we thus obtain the following bound for the first term on the right-hand side 
of (3.7.7):

K
(3.7.8)(Pnmu + ||A ||)^7jfc ^ 26, 

j=0

To bound the second term in (3.7.7), we use (3.7.3b) and (3.7.5):

k k
Y 1jk\Mjdj\ Y 7»fc < h-

j=K+l j=K+l
(3.7.9)

Combining (3.7.7)-(3.7.9), we obtain the following result: given any e > 0, we can find K 
such that

||Afc-A*||<« for k > 2K -(- 1,

which implies the convergence result. |
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3.8. Unit steplength

As mentioned before, the determination of the rate of convergence for the algorithm proceeds 
in two steps. One is to show that a unit steplength is always accepted for all k large enough; 
the basic results used for this proof are introduced in this section, although the result will 
be proved in the corresponding chapters. The other step is to determine the convergence 
rate of the sequence {xk + Pk - £*}• This will be done in Chapters 4, 5 and 6.

The following lemmas determine the limiting behavior of certain subsequences related 
to the penalty parameter p. Again, for the case in which the penalty parameter remains 
bounded the results follow immediately, so their interest lies in the case when p is assumed 
to be unbounded.

The first result is an extension of property P5, and its meaning is again to obtain a 
better bound for the rate at which the penalty parameter may increase, once we know 
that the algorithm is globally convergent. As before, its proof is left to the corresponding 
chapters.

P7. For iterations ki in which the penalty parameter is increased, assuming an infinite 
sequence of such iterations exists,

lim pk^PktW2 = 0 1—+00

and

lim pktWek, ~ *fc||| = 0.
/—♦CO

Other results, extensions of those given in the previous sections, and providing refine­
ments on the rate of increase for pk, are presented in the next lemmas.

Lemma 3.8.1. If there exists an infinite subsequence {&/}, then

i^o pk‘ ~ = °-

Proof. We use the same notation as in the proof of Lemma 3.6.2. From the boundedness 
of ||A|| (Lemma 2.4.1), and the fact that po < Pki we have

~ so)| < 2||Ao|| police — "Soil —*■ 0, 

Po\^k(ck ~ 5/c)l ^ 2||Aa-|| Pa'||ck — •sA-|| —> 0,
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and from property P7 we have

Po(4>o — <}>k) — Po(Fo — Fk) —► 0. (3.8.1)

Using (3.6.10),

PoA'HpoII2 + Po(co - s0)t(2Xq - p,0) > po<%p.o > Po{cq - s0)Tfio. (3.8.2)

Using again property P7, from (3.8.2) and assumption A3, implying the boundedness of 
||/io||, we get

PoCoPo -* 0. (3.8.3)

From (2.4.1) and (3.6.12) (keeping the same notation),

- Pocl-Po < Pocffio < Po||/io||||cjr - sA-|| -»• 0. (3.8.4)

For the last term in (3.6.9), we can again use property P7 to obtain

PoO (max(||p0||2» IIP/, ||2)) -^0. (3.8.5)

From (3.8.1), (3.8.3), (3.8.4) and (3.8.5) we obtain

Po(0o — fin) 0,

giving the desired result. |

Lemma 3.8.2. For general iterations k,

lim /9jt||Pfc||2 = 0.
fc—►OO

Proof. If p is bounded, the result follows from property P6 and Lemma 3.4.2. If p is 
increased in an infinite subsequence of iterations, then from (3.6.18) and Lemma 3.6.6,

A — i 2
po £ INI2 < r

k=o aaf)H

and the result follows from Lemma 3.8.1. |

Lemma 3.8.3. For general iterations k,

lim pk\\ck - Nl =
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Proof. If p is bounded the result follows from c* > 0, A* > 0, A*Tc* = 0, property P6, 
Lemma 3.7.1 and

C{ — Si = min(c,-,—).
P

If p is increased in an infinite subsequence of iterations, consider two cases:

(i) If t is such that c* > 0, then A* = 0 and as

p\ci - s,| = | min(pc,-, A,)|,

from the convergence of the multiplier estimates, eventually p|c, — s,| = |A,| —► 0.

(ii) For those i such that c* = 0, implying A* > 0, consider iteration indices large enough 
so that the correct active set is identified, implying ajp + c, = 0. Then, from the 
Taylor series expansion for c (3.6.20) and Lemma 3.6.6 (using the same notation as 
in Lemma 3.6.4),

Ci = Ci + aoafp + 0(||aoPo||2) = (1 - «o)c,- + O(||p0||2)-

Recurring this relationship for the fcth step between fc = 0 and k = K we get

fc—1 k—l
PkCk, = PoCk, = Po EU1 “ + Po°(J2 llPjll2)^

j=0 j=0

but as 0 < Oj < 1 we obtain

k—l
Pk\cki\ < Po|c0l| + po0(^ ||Pj||2). (3.8.6)

3=0

From property P7 we must have that polcoj —»■ 0, and using (3.8.6) and Lemma 3.8.2,

Pk\cki \ -* 0.

This completes the proof. |
Another relationship that will be needed in the following chapters is proved in the next 

lemma.

Lemma 3.8.4. For large enough k,
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Proof. Assume k large enough so that the correct active set has been identified.

(i) If i is such that c* > 0, from condition C9 on the multipliers, = 0.

(ii) If i is such that c* = 0, then, from strict complementarity, A* > 0. Also, from 
Lemma 3.8.3, Pfc(c^ — s^) = min^c^, A^) —► 0, so for large enough k, Lemma 3.7.1 
will imply pkCki < A*., and

sfcj = max(o,cfei - = 0,
v Pk7

proving the result. |

Using the previous lemmas, the following property will be established in Chapters 4, 5 
and 6:

P8. There exists an iteration index k such that for all indices k>k the unit steplength is 
accepted: a*. = 1.

The following chapters make use of these results to establish the rates of convergence of 
the corresponding algorithms.

3.9. Boundedness of the penalty parameter

The main consideration in the definition of the penalty parameter p is to ensure that the 
directional derivative (or the curvature along the linesearch) is sufficiently negative. This 

strategy leaves open the possibility that the value of the penalty parameter may be forced to 
grow without bounds to satisfy this condition as the algorithm progresses. Notice that for 
the convergence and rate of convergence proofs the boundedness of the penalty parameter 
is irrelevant; it is only from the point of view of the practical behavior of the algorithm that 
we may want to have p bounded.

This section presents conditions that suffice to guarantee that the penalty parameter 
remains bounded. The required conditions can be given either in terms of the properties of 
the multiplier estimates, or in terms of the behavior of the ratios ||py||/||pz|| (or both). The 
study of the sequence of ratios for quasi-Newton methods is not simple, and the conditions 
presented here are given only in terms of the properties of the multipliers.

The following lemma proves the basic result concerning the behavior of the penalty 
parameter. The notation pk is used for the QP multiplier at iteration k.
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Lemma 3.9.1. Consider an iteration index k such that for all iterations with k > k both 
properties PI and P8 hold. If

\\2pk-i -Pk-iik\\ = 0(||Pk||), 

then there exists a finite value p such that

4>k(0,p) < -PhWpicW2

for all k > k.

Proof. From the definition of <f>', (3.6.2), and the fact that pk is obtained as a solution for 
the QP subproblem, we have

^'(O) = -pTHp + (2A - /x - p)T(c - s)- jiTs - p\\c - s||2.

Also, from the correct identification of the active set and property P8,

. / Ai\ / Ci if c* = 0 
Ci - Si = mini ct, —J = l

P 10 otherwise.

Using Lemma 3.8.4 we can write

<//(0) = -pTHp + (2A - /x - /x)Tc - p||c||2, (3.9.1)

where c now denotes a vector where all the entries corresponding to the inactive constraints 
are zero.

From AYpY = —c and the non-singularity of AY (assume k large enough, and use 
assumption A3), there must exist positive constants j3\ and /?2, independent of the iteration, 
such that

IMI < Pi\\py\\ and Ibvll < fo\\c\\-

The arithmetic mean/geometric mean inequality implies that for any y, z, i > 0,

yz < |j/2 + ^2. (3.9.2)

Using this result, we can write for an adequate #3,

-pTHp < -\p^ZTHZpz + PsWPyW2-
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Also, from property P8 and the assumption on the form of ||2/x/fc_i — Hk — fikll,

(2Xk - fik - fik)Tc < /34||p||||c|| < ^slblllbyll < \p*ZTHZpz + p6\\pY\\2.

Combining these results, we obtain

<£'(0) < -\pTzZTHZpz + PtWpyW2 - p\\c\\2 < -\pTzZTHZpz - (/) - ^7/?|)||c||2,

and if we select p > the desired result follows. |
Note that if the multiplier estimate is such that

\\Pk - A*|| = 0(||xfc + Pk~ **||),

the condition in Lemma 3.9.1 is satisfied. Lemma 2.4.3 establishes this property for the 
least-squares multipliers at xk + pk, providing an example of a multiplier estimate whose 
use guarantees the boundedness of the penalty parameter.

3.10. Summary

The goal of this chapter has been to present the structure of the convergence proofs to be 
completed in the following chapters, and to establish those results that are common to the 
proofs for the different algorithms. The steps in the proofs that depend on the specific 
implementation of the different algorithms have been left to be shown in the corresponding 
chapters. These steps are collected below so that they can be more easily referenced.

The next chapters prove that the following results hold for the corresponding algorithms:

PI. There exists a value e' > 0 such that if ||pjt|| < c', then the correct active set at 
a solution of problem NLP has been identified, and pk is a minimizer for the QP 
subproblem.

P2. M = 0 if and only if xk is a solution for NLP.

P3. There exist constants /3i > 0, /?2 > 0 such that the incomplete solution for the QP 
subproblem, pk, satisfies

9kPk + \plHkpk < -^i|bfc||2 + /?2||r*||.



3.10. Summary 56

P4. There exists a value p* such that for some positive constant f3H, independent of the 
iteration,

<£'*(0>P) < -PnWpkW2

for all p> pk-

P5. For any iteration fc/ in which the value of p is modified,

pkMpkM2 < n

and

P*il|c*i “ ^ II < N

for some constant N.

P6. For the sequence generated by the algorithm,

lim \\xk - z*|| = 0,
AC—MX)

where x* is a solution point for the problem.

P7. For iterations &/ in which the penalty parameter is increased, assuming an infinite 
sequence of such iterations exists,

lim pkMPkM2 = 0
I—►CO

and
lim pkt\\ckl - sfc(|| = 0.

<—►00

P8. There exists an iteration index k such that for all iteration indices k > k & unit 
steplength is accepted: ak = 1.

The theorems where the corresponding rates of convergence are established will also be 
proved in Chapters 4, 5 and 6.



Chapter 4

Positive Definite Approximations 
to the Hessian

4.1. Introduction

In this chapter we study the convergence properties of an SQP algorithm, defined along the 
lines of the framework algorithm introduced in Chapter 2, and such that Hk is constructed 
to be positive definite. The algorithm is very similar to the one implemented in the code 
NPSOL, as described in [GMSW86a], with the difference that the search direction in a 
given iteration is computed as an “incomplete solution” for the quadratic subproblem. An 
incomplete solution in this chapter will be a feasible point for the subproblem obtained 
according to the rules indicated in Chapter 2.

The goals for this chapter can be summarized as being

• the derivation of a global convergence proof for the algorithm, following the lines 
indicated in Chapter 3; and

• the identification of additional conditions that need to be imposed to attain superlinear 
convergence, and the proof that the algorithm achieves this rate of convergence.

The steps needed for these proofs have already been presented in Chapter 3, where those 
intermediate results that are independent of the definition of Hk have also been shown. To 
complete the proofs, this chapter need only establish those results that depend on the form 
of Hk, properties P1-P8.

57
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4.2. Definition of the algorithm

The main point left to be specified in the description of the framework algorithm in Chapter 
2, is the form of the approximation to the Hessian of the Lagrangian function, Hk- The 
condition on Hk that is assumed to hold in this chapter, and that should be added to 
conditions C1-C9, is:

CIO. The matrices Hk used in the construction of the QP subproblems are positive definite 
and bounded, with bounded condition number.

This assumption is identical to the one made for NPSQP. In practice, such a sequence may 
be generated (see [GMSW86a]) by updating a quasi-Newton approximation to the Hessian 
of the Lagrangian function in each iteration.

From this condition, some quantities will be uniformly bounded in the algorithm. The 
notation introduced below is used throughout the chapter for these bounds.

/3ivjj is an upper bound for the largest eigenvalue of H: pTHp < Pivh\\p\\2-

(3svh is a positive lower bound for the smallest eigenvalue of H: pTHp > /?svjy||p||2-

4.3. Global convergence results

The results in this section establish global convergence properties for the SQP algorithm 

under study.
The first step in the proof is to show that, from assumptions A1-A2, condition CIO, 

and the form of step (i) in the solution of the QP subproblem, the norm of p will be 
uniformly bounded for any p obtained as an intermediate step during the solution of the 
QP subproblem.

From the condition ||po|| < /^pc||c|| and assumptions A1-A2, it follows that ||po|| K
and

V’(Po) < PnmgK + \PivhK2 = K.

For any p, V’(p) < K, implying

i(p + H~1g)TH(p + H-'g) - \gTH-'g < K,

and hence
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giving the bound

INI < Aimp
flnmg , (3svH + Plmg

PsvH \ PsvH

Properties of the search direction

The next result is the one presented in the previous chapter as property PI, that is, if the 
norm of the search direction in any given iteration ||p*|| is small enough, then the correct 
active set must have been identified.

If the norm of the stationary point where the search direction is computed, ||pjt||, is 
bounded away from zero, then condition C6 on the search direction implies that \\pk\\ is 
also bounded away from zero, and so the proof of PI needs only consider iterations where 
||pfc|| is small.

From Lemma 3.3.1 we know that if this norm is small, we must be close to a stationary 
point for problem NLP, x, and in that case we can use the results from Lemma 3.3.2 to 
bound the size of the search direction.

Before proving our first lemma, giving a bound on the descent from the stationary 
point, we introduce bounds for several quantities that are related to the descent that can 
be achieved in the QP subproblem at x when, starting from the origin, a step of the form 
indicated in Section 2.3 is taken.

The step to the nearest inactive constraint is bounded by

—otafd = Ci > Pspc => a > P° = ^—.
HnmAPund

The step described in condition C3 is bounded by

= (4.3.1)
V PlvHPind >

Also, the following bound on the function value holds:

V’(^) ^ P — fispd — 2^dsc^sPm^9'

Since we only have approximations to the second derivatives, we cannot guarantee find­
ing a direction of negative curvature; consequently, we can only prove convergence to a 
first-order KKT point. Whenever the term “solution point” is used in the following para­
graphs, what is meant is a first-order KKT point for problem NLP.
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The following lemma uses the previous bounds to obtain a lower bound on the descent 
available from p at a point that is sufficiently close to a stationary point for problem NLP. 
It must be remarked that only properties of the approximation to the reduced Hessian, 
ZtHZ, are used in the proof, and so the result still holds under the relaxed assumptions 
introduced in the next chapter.

Lemma 4.3.1. There exists a value (3apr > 0 such that for any stationary point x not a 
solution of problem NLP, and any point x, if ||a: - iH < /V and p is the search direction 
obtained from a stationary point for the QP subproblem at x, p, having the same active 
constraints as x, then either

ip(p) - ip(p) > \psi>d,

or at x the Jacobian for the active constraints is singular.

Proof. We consider only the case when the Jacobian of the active constraints at x has full 
rank.

If the lemma does not hold, there must exist a stationary point x, not a solution for 
problem NLP, and a sequence {x*.} converging to x, such that there exists an associated 
sequence {pk} of stationary points for the QP subproblems at the points x*, having the 
same active constraints as x, and such that

V’jfc(Pfc) “ ^k(Pk) < \Pspd

for all k.
We show first that ||pfc|| —► 0. Let p* denote any limit point for the sequence of QP 

stationary points (note that the sequence is bounded). From the assumption that the 
correct active set has been identified, it must hold that p^ = 0 (since c = 0 for the active 
constraints).

Also, from HkPk + 9k = ^kfiki selecting any convergent sequence for Hk and using the 
non-singularity of Ak for large k, H*p* = 0, but from the positive definiteness of ZjHkZk, 
it must hold that p*z = 0.

From this result it must hold that

al.Pk + Ch ->• ^
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and for large enough k (we assume that the correct active set has been identified),

• T - i ^ flspc
min ak.pk + cki>—.

*:o*.P*+c/kj>0 ^

In addition to this, if p,k denotes the QP multipliers at pk, then p.k —> p and for large 
enough k, if ||/i-|| ^ 0,

. Pspm inax/ifcj >

A bound similar to the one in the previous paragraphs can then be obtained for k large 
enough, as follows. The step to the nearest inactive constraint can be bounded by /3° = 
Define eIk = Akdk whenever ||/i~|| ^ 0. Then

9kdk+plHkdk = ejkfik.-

Consequently, for large enough k,

^(0) = (gk + Hkpkfdk < -pdsc^.

Hence a bound for the step to the minimizer is given by /3° = implying

V’(Pfc) - ^(Pk + otkdk) > iPspd,

contradicting the hypothesis. |
In the statement of Lemmas 3.3.1 and 4.3.1 the case when the Jacobian is singular has 

been explicitly considered. In the next results we make use of assumption A3 to exclude 
this case. (The possibility of having a rank-deficient Jacobian will not be examined.)

We shall show that properties PI and P2 hold for this algorithm, but first we need to 
introduce some notation.

6° denotes the value of 6 associated with c = f3spr in Lemma 3.3.1. If ||pit|| < 6° then the 
condition in Lemma 4.3.1 is satisfied.

The main result for this section is presented in the next lemma, where pk denotes the 
search direction obtained as an incomplete solution for the QP subproblem.

Lemma 4.3.2. There exists a value e' > 0 such that if ||pjt|| < e1 then pk is a minimizer 
for the QP subproblem and the correct active set at a solution has been identified.

Also, ||pfc|| = 0 if and only if xk is a first-order KKT point for problem NLP.
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Proof. From Lemma 4.3.1, it holds that if ||pt|| < &° and pk was not obtained as the 
minimizer for the QP subproblem, then

V’(Pfc) - V’(Pfc) > \Pspd

and from the continuity of there exists a £ > 0 such that \\pk — Pk\\ > 6. 
Define

0° = 2)'

If ||Pfc|| < 0i, then 

If ||pfc|| > /3°, then from condition C6,

IIP*II > lift -P*ll “ llWfell > 2 ^

llPfcll > M
0slp

>
JL
0slp

and thus in all cases the final point obtained has norm bounded away from zero.
If pk is obtained from the minimizer of the QP subproblem, then Lemma 3.3.1 can be 

used directly. Assume that a sequence of points {x*;} exists such that ||pfc|| —► 0, and all pk 
are obtained as the solutions of the corresponding QP subproblems, but the active sets do 
not correspond to the one at a solution. By extracting a subsequence having fixed active 
set (there are only a finite number of possible active sets) and taking limits, a solution for 
the original problem with that active set is obtained (from assumption A6, it must hold 
that the multiplier vectors converge to the multipliers at the limit point), contradicting the 
hypothesis. Hence, a lower bound for ||p^|| must also exist in this case.

For the second part of the lemma, from the previous remarks, = 0 if and only if Pk 
is a solution for the QP subproblem. Furthermore,

/rt rp

Pk = 0 is a solution of QP o p/t = AkPk, Hk >0, Ck > 0, //£cfc = 0

a:* is a first-order KKT point for NLP, (4.3.2)

completing the proof. |

Descent properties

As explained in Chapter 3, we need to impose some condition on the direction pk to ensure 
that adequate descent can be obtained in each iteration. To be more precise, the bound on
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the directional derivative in step (iii) of the algorithm should be satisfied. This condition 
was presented in the previous chapter as property P3.

The next lemma shows that if the starting point for the QP subproblem is selected as 
indicated in Chapter 2, the search direction satisfies property P3. Remember that r* was 
the quantity introduced in Chapter 2 to provide a bound for the norm of the initial point 
Pk0, and that its most relevant property for the proofs that follow is its relationship to 
Ck ~ Sk, given in (2.2.5).

Lemma 4.3.3. There exist constants /3\ > 0, /?2 > 0, and initial points for the QP sub­
problem that give values for p^, the search direction, satisfying

Pk9k + \plHkPk < -AlbfcH2 + #2|N|. (4.3.3)

Proof. In the proof we drop the subscript corresponding to the iteration number. Consider 
the following cases:

(i) p is obtained as the solution of the QP subproblem. Then, for some /t > 0, 

pTg + pTHp = pTATfi = -crji < -pTc~ < ||/i||||c~|| 

pTg + \pTHp < -\pTHp + /?nmu||c_||,

where (3nmu > 0 is a bound on the norm of the QP multipliers. Note that from 
condition CIO, pTHp > (3Svh\\p\\2-

(ii) p is obtained by moving from a stationary point p. Different cases need to be consid­
ered separately.

• Assume that ||p|| > 6° and ||p-po|| < \f>°- If ||c|| < ei = ^0/(2/3pc), then from (2.2.6),

IIpII<P° + IM<P0 + AkWI<*'>.
but this is a contradiction, implying that under this condition ||c|| > ti, in which case

M < A™, < ^¥11 =
Cl

Defining /?£ = /3nmg + PivHPnmp, we have

pTg + pTHp < 0Z\\p\\ < PZK\\c\\ < @2KPrime-

Using the condition on the initial point, it must hold that ||po|| > 2^°’ and
T . 1 Tu ^ 1 Tit , ‘̂‘P'2^-PnmcPpcs n n

p g + ^p Hp < —^p Hp H----- =-----------—llrll.
6°
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• Assume that ||p-po|| > \£>°- If V’« denotes the objective function for the QP subprob­
lem after the ith QP iteration, tpi = gTpi -|- ^pfHpi, we can write

i’i-i - = -OLi{gTdi + pJ-xHdi) - \a]djHdi = d-Hdi a,(l - ia,).

Summing over all the iterations to the stationary point, and letting = gTP+ \pTHp,

Vb - ^ = YUdjHdi a,(l - ia.) > /3av//E«l|di||2a,(l - ^a,-),

but from ||p — poll = || Et a«d«H > \6°, for at least one i we must have

a,||d,|| >
2m’

where m is a bound on the number of steps; using a, < 1, it must hold that

V’O - > PsvH 2m
1 1

a,' 2
r, I — 7 — \PsvH I 1 •2m ) (4.3.4)

From
Vb = p^go + \plHpo < PzWpoW < PpaPlWW (4.3.5)

we can derive the following bound:

PTg + \pTHp < < Vb - 7 < -AINI2 + PpcsftWW

for 0 < /?i < 7/Pnmp'

• If ||p|| < 6°, then from Lemma 4.3.1,

Vb V’ ^ %fispdi

and using (4.3.5)

pTg + \p2Hp < §/?sp(i -i- ppoftWrW < -/3i||p||2 + /Spca/^IMI*

where 0 < /?i < Pspd/iSPlmp)- ■
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Bounds for the penalty parameter

We now show that the penalty parameter can be selected in such a way that the initial 
descent available for the linesearch is sufficiently negative. This result is the equivalent to 
property P4 in Chapter 3, although in this case (since Hk is required to be positive definite 
from condition CIO) it seems natural to define the constant in terms of p^H^Pk, as in 
the next lemma. In the spirit of the remarks made in the previous chapter, what we define is 
a bound for the value of the parameter; the actual value should be chosen so that it satisfies 
property P4 and is bounded by a finite multiple of the value p given in the following lemma.

Lemma 4.3.4. There exists a value pk >0 such that

44(0>/>) < -\plHkPk (4.3.6)

for all p> pk-

Proof. Again, we drop the subscript corresponding to the iteration number. From (3.6.2), 
the condition to be satisfied can be written as

pTg + (2A - /i)T(c - s) - p{c - s)T(c - s) < -\pTHp.

A similar but stronger condition is

- hT{c - s) -f filmic - s) + (2A - p)T(c - s) - p[c - s)T(c - s) < 0 (4.3.7)

for a vector b uniformly bounded in norm, a constant > 0, and u, = sign(c, — s,), so that 
vT(c — s) = ||c - s||i. These parameters must satisfy

PT9 + \pTHp < -bT(c - «) + 02VT(c - s).

The following paragraphs introduce specific definitions for b and P'2.
Rearrangement of (4.3.7) shows that a sufficient condition for p is

p(c - s)T(c — s) > (2A — p — b + /3'2v)t(c — s). (4.3.8)

A value p such that (4.3.8) holds for all p > /5 is

- _ pA — p — b + fl2v\\

ik-*11
(4.3.9)
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The value p can be taken as (4.3.9) if <j>\Q,p~) > -\pTHp, where p~ denotes the value 
of the penalty parameter at the previous iteration; and as any value greater than or equal 
to p~ otherwise. |

An immediate consequence of (4.3.6) and condition CIO is the satisfaction of property 

P4,
#(0) < -\MPkf (4.3.10)

for (3h < PsuH-
The value of p in the previous lemma has been given in terms of two as yet undefined 

quantities, b and The value for (3'2 is related to the constant introduced in property P3, 
while the value of b is related to the QP multipliers at the current point. For the purpose 
of satisfying property P4, 6 can be taken to be zero, but as will be seen later, it plays an 
important role in ensuring that the penalty parameter is chosen in a way that does not 
inhibit superlinear convergence. The following paragraphs offer rules for the definition of 
these two quantities.

The conditions that b needs to satisfy to allow the algorithm to converge superlinearly
are:

h - A*,

and for small enough ||pjt||,

PfcfifJb + bl{ck - sk) < —\pkHkPk- 

The values for 6 and f3'2 in (4.3.9) can be selected as follows:

• Define p,k as the QP multipliers if Pk was obtained from the minimizer for the QP 
subproblem; otherwise define pk as a multiplier estimate satisfying conditions C7-C9.

• Define
_ = f /x if pTg + pT(c -s)< —pTHp,

1 p otherwise.

• Define

/?2 = max(0,/32),

where
faWc - *||i = pTg + \pTHp + F(c - s).
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Note that (i'2 is bounded, since from Lemma 4.3.3,

PT9 + \?THp + bT(c -s)< pTg + prHp + bT(c - s) < (fc + \\b\\)\\c - s||.

The strategy for the selection of the penalty parameter pk is to define its value to satisfy 
property P4, while remaining small enough to be bounded by a multiple of p. An example 
of a selection rule having these properties is as follows.

Let

Pk = (4.3.11)
Pk-i H<f>'(0,Pk-i) <-^PkHkPk^

max(pk, 2pk-i) otherwise 

where pk is defined as in Lemma 4.3.4. Then, for any iteration fc/ in which the parameter 
needs to be increased, it holds that pk, > ^pk,^ , and the penalty parameter goes to infinity 
if and only if its value is increased in an infinite number of iterations.

Proof of global convergence

In order to prove global convergence, we need to establish that property P5 holds. The 
proof of global convergence relies on Lemmas 3.6.1 to 3.6.6 to show that the descent in each 
iteration is bounded away from zero by a large enough value, and on the boundedness of 
the merit function. The next lemma shows that property P5 holds for this algorithm.

Lemma 4.3.5. For any iteration ki in which the value of p is modified,

pJtJKH2 < N

and

Pk^ck, -Sk,\\< N,

for some constant N.

Proof. All quantities in the proof refer to iteration &/, and so this subscript is dropped.
From the boundedness of (32, Lemma 2.4.1, the definition of 6, and condition C7 on the 

multipliers, there must exist a fixed constant N\ such that

\\2X- p-b + /3'2v\\ < Ni,

and from the definition of p and the condition that p has to be selected as a finite multiple 
of p,

p||c-s|| < Nx.
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For the second part, using Lemma 4.3.3 (we add the term bT(c—s) using the boundedness 
of ||6||), we can write after some algebraic manipulation

0'(O) = PTg + (2A - n)T(c -s)- p\\c - s||2

< ~\pTHp - /?i||p||2 + (2A - /i - 6 + /32t>)T(c - 5) - p||c - s||2,

and if we have </>'(0) > —\pTHj), then

A INI2 < (2A - /x - 6 + P2v)t(c - s) < ||2A - p-b + fovW ||c - s\\.

We reorder terms to obtain

INI2|c-s|| > Pi (4.3.12)
||2A - /i -b + p2v\\'

Multiplying both sides by p and using the same arguments as in the first part of the 
lemma yields

pINI2 < n2,
completing the proof. |

We can now complete the proof of global convergence.

Theorem 4.3.1. The algorithm described in this chapter has the property that

lim ||pfc|| = 0 fc—*00 (4.3.13)

Proof. If ||pA;|| = 0 for any finite k, the algorithm terminates and the theorem is true. 

Hence we assume that ||pjt|| ^ 0 for any k.
When there is no upper bound on the penalty parameter, the uniform lower bound on 

a of Lemma 3.6.6 and (3.6.15) implies that, for any 6 > 0, we can find an iteration index 
K such that

||Pfc|| < £ for k> K, 

which implies that \\pk\\ —► 0 as required.
In the bounded case, we know that there exists a value p and an iteration index K such 

that p = p for all k > K. We consider henceforth only such values of k.
The proof is by contradiction. We assume that there exists e > 0 and an infinite 

subsequence {ki} such that ||pjfc;|| > e for all i. Consider only indices i such that k{ > K.
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Every iteration after K must yield a strict decrease in the merit function because, using 
Lemma 3.6.6, (4.3.10) and the fact that the penalty parameter is not modified,

<£(a) - <£(0) < cra^O) < -\aajiH\\p\\2 < 0.

The adjustment of the slack variables s in step (ii) of the algorithm can only lead to a further 
reduction in the merit function, as L is quadratic in s and the minimizer with respect to s, 
is given by c; — A;/p. For iterations from the subsequence we have

“ ^(xfc) < ^(x^+i) “ < -^«/3we2-

Therefore, since the merit function with p = p decreases by at least a fixed quantity at 
every step in the subsequence, it must be unbounded below. But this is impossible, from 
assumptions Al, A2 and Lemma 2.4.1, so (4.3.13) must hold. |

Corollary 4.3.1.
lim ||xfc - x*|| = 0.

k—►oo

Proof. The result follows immediately from Theorem 4.3.1 and Lemma 3.4.1. |
A second corollary establishes the convergence for the multiplier estimates.

Corollary 4.3.2.
lim ||A* - A*|| = 0.

K—►OO

Proof. The convergence of the multiplier estimate is a consequence of Lemma 3.7.1, given 
the results in Lemma 3.6.6 and Corollary 4.3.1. |

4.4. Rate of convergence

Under suitable additional assumptions it is possible to show that the algorithm converges 
at a superlinear rate. To prove this result, we need to assume that Hk converges to an 
adequate approximation of V£xL(x*, A*), the Hessian of the Lagrangian function at the 
solution.

In the following results the symbol W, defined as W = Vxxl/, will be used to denote 
the Hessian of the Lagrangian function.

The conditions that we impose, in addition to C1-C10, are:
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Cll. Following Boggs, Tolle and Wang [BTW82], we assume

\\Zl(Hk - W*)Pill = o<l|Ptll).

where Z/., a basis for the null space of A*, is bounded in norm and its smallest singular 
value is bounded away from 0.

C12. ||/ijt - A*|| = o(||x* - a*||).

This is not the only set of conditions under which it is possible to prove that the 
algorithm converges superlinearly. The next chapter introduces and justifies an alternative 
set of conditions, where Cl2 is replaced by the requirement that the penalty parameter 
must be chosen large enough near the solution.

The proof proceeds by showing first that the sequence {x* + — x*} converges super­
linearly, and then proving that a steplength of one is eventually attained. We begin by 
showing that property P7 holds for this algorithm.

Lemma 4.4.1. If there exists an infinite subsequence of iterations {£/} at which the penalty 
parameter is increased, then

lim PhWPkM2 = 0
/—►oo

and
lim pfcjlcfc, = 0.1—+00

Proof. We drop the subscript ki in what follows. From definition (4.3.9) and boundedness 
of the ratio p/p,

p\\c - *|| < 2||2A - /x - 6 + (3'2v\\, 

and from the definition of b after Lemma 4.3.4,

h, - A*.

As the QP multipliers satisfy pTg + pTHp = —cTfi, and for p large enough p is obtained as 
the solution of the QP subproblem, b eventually satisfies

pTg + bT(c - s) < -pTHp,

implying that we can take ^ = 0 in (4.3.9).
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From Corollary 4.3.2 and the previous remarks we have

lim pAjt, - (ik, ~ h, + P2klvk,\\ = 0
/—►OO "l

and

lim elicit, -5fc(|| =0.
/—►OO

We can now use (4.3.12) to get

lim />Jfc,IKI!2 = °*/—►CO

completing the proof. |
We want to show that condition (2.2.3) is satisfied for all k large enough. To do this, 

we need to be able to express ^'(O) in a way that is related to properties of the algorithm 
already established.

We start by defining 7* = pj(gk - Ajpk) + Pk^kPk, where W is the Hessian of the 
Lagrangian function using A* as the Lagrange multiplier estimate. We show next that the 
satisfaction of (2.2.3) is directly related to the asymptotic properties of TV In what follows, 
the absence of an argument indicates values at Xk, and an argument of 0 will indicate values 
at Xk + Opk, for any fixed 0 £ [0,1].

Lemma 4.4.2. The following relationships hold:

MB) - MO) = tf(i - £*)&(0) + \9*Tk + o(|N|2)

and
A(») = a - + o(|w2).

Proof. From (2.2.1) we have

T4(0) -<t> = F(0) - .F - (a + 0(p - A)) (c(0) -s-9q) + XT(c - s)
7*+ 2p(c(B) ~ s~Bq) (c(0) — s — 0qj — \p(c - s)7(c - s), 

and using the corresponding Taylor expansions around Xk,

c«(0) - ~ 9qi = (1 - 0)(ci - Si) + \02pTV2Cip + o(||p||2),
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we obtain

0(0) - 0 = OgTp + \92pTV2Fp - (1 - 0)XT(c -s)~ 0(1- 0)f(c - s)

- |02£,A, pTv2c,p - /V2ctp + At(c - s)

+ \p(l - 0)2(c - s)T(c - «) + \p(l - 0)^2£,(c,- - Si)pTV2CiP

+ ip04£,(pTv2c,p)2 - ^(c - 5)t(c-S) + o(IHI2).

From Lemmas 4.4.1, 3.8.2, 3.8.3 and 3.8.4,

0(0) - 0 = 00' + l02(/lFp + 2er(c - 5) + p(c - s)T(c - sj) + 0(||p||2)

= Oi1 ~ \e)<t> + (pTWp + pTg + pr(c - «)) + o(||p||2)

= 0(1 - i0)0' + \02(pTWp + pT(g - ATp)) + o(||p||2).

For the second result, from (3.6.1),

0'(0) = pTg(0) - pTA(9)T{\ + 0(p - A)) + ppTA(9)T{c(9) - s - 9q}

~ ^T(c(fl) - s - 0g) + qT{X + 0(p - A)) - pqT(c(0) -s-Oq),

and again using the corresponding Taylor series expansions we obtain

0'(0) = pTg + 9pTV2Fp — pTATX - 0pTAT£ - 9Y^iXipTV2Cip

~ 82'i2itipTV2CiP + p(l - 0)pTAt(c - s) + 3p02£,(afp)pTV2c;p

+ pO(i - e)Ei(a - si)pTv2cip + ^p03£,(pTv2ctp)2

- (1 - 0)^(c - 5) - ^02£,6p:rV2clp + qTX + 0qTZ

- p(l - 0)qT(c - s) - \p02^iqiPTV2Cip + o(||p||2).

From Lemmas 4.4.1, 3.8.2, 3.8.3 and 3.8.4 we finally get

0'(0) = 0' + 0(pTWp + 2^t(c - s) + p(c - s)T(c - sfj + o(||p||2)

= (1 - 0)0' + 0(p7T'Fp + pr(p - ATp)) + o(||p||2),

completing the results. |
The following results make use of the relationships introduced in this lemma only for 

the particular case 0=1.
Condition Cll implies the superlinear convergence of the sequence {xk + p* — £*}, as 

the next lemma shows.
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Lemma 4.4.3. If condition Cll holds, then

||*fc +P* - **11 = <>(11** - **ll)- (4.4.1)

Proof. Assume k to be large enough that pk is obtained as the solution of the QP sub­
problem, and the correct active set has been identified.

In what follows, all values refer to iteration k, except those corresponding to the solution. 
Consider first the decomposition of x + p — x* into null-space and range-space components:

x — x* = Zu + Yv.

For the range-space component we make use of the series expansion, restricted to the 
active constraints at x:

0 = c* = c + A{x* — x) + o(||x — x*||).

From Ap = — c and the previous decomposition,

AY v = o(||x — x*||),

and from assumption A3,
v = o(||x-x*||).

For the null-space component, consider the corresponding Taylor series expansions 
around x:

A*rA* = / = <jr + V2F(x* - x) + o(||x - x*||),

A*T\* = AtX* + E,A*V2Ci(x+ - *) + o(||x - x*||).

Combining these two results and denoting the Hessian of the Lagrangian function by W,

W(x -X*) + AT\* =g + Zi(Xi - X*W2Ci(x -x*) + o(\\x - x+||).

From Corollary 4.3.2 and Hp + g = ATji,

W(x + p — x*) + — fi) = (H — W)p -|- o(||x — x*||).

Using the decomposition of x + p - x* into null-space and range-space components, the 
previous result gives

ZTWZu = Zt(H - W)p - ZtWYv + o(||x - x*||),
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and from the properties of v, condition Cll and the nonsingularity of near the
solution,

u = o(||x-x*||),

completing the proof. |
The main result of this section is given in the next theorem, where it is shown that 

after a finite number of iterations a steplength of one is taken for all iterations thereafter, 
implying that the algorithm achieves superlinear convergence.

Theorem 4.4.1. Under the previous conditions, the algorithm converges superlinearly.

Proof. As in Powell and Yuan [PY86], observe that the continuity of second derivatives 
gives the following relationships:

F(x + p) = •F’(a:) + ^(5(a:) + 5(a: + P))TJP + o(l|p||2) 

c(x + p) = c(x) + i (A(x) + A{x + p))p + o(||p||2).

From the Taylor series expansions we have

F(x + p) = F(x) + g(x)Tp + ipTV2F(x)p + o(||p||2) 

c,(x + p) = c,(x) + a,(x)rp + ip7V2Cj(x)p + o(||p|!2),

and since (4.4.1) implies g(x + p) = g* + o(||p||), a,(x + p) = a* + o(||p||), we get

pTV2Fp = {g* - g)Tp + o(||p||2) 

pTV2c,p = (a* - aifp + o(||p||2).

Given that J2i pTV2Cip = m pTV2Cip + o(||p||2), we must have

pTWp = pT(g* - A*Tp) - pT(g - ATp) + o(||p||2). (4.4.2)

Condition C12 implies pT(p* — A*Tfi) = o(||p||2), and from (4.4.2),

pTWp + pT(g - ATp) = o(||p||2). (4.4.3)

From Lemma 4.4.2 and (4.4.3),

^(l)-^(0).= ^(0) + o(||p||2)

^(i) = 0(lbll2)^
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but from (4.3.10) condition (2.2.3) is eventually satisfied, and we have x^+i = Xk + Pk for 
all k large enough. In this case, from (4.4.1),

i.e.

lim
k-+oo

lkfc+i - x*
II**-**11

superlinear convergence, completing the proof.

4.5. Summary

In this chapter we have introduced and analyzed an algorithm that is based on the framework 
algorithm of Chapter 2. It uses a positive definite approximation to the full Hessian of the 
Lagrangian function, and an incomplete solution for the QP subproblems. The study of the 
convergence properties of this algorithm has produced the following results:

• When the search direction and the multiplier estimate axe defined satisfying conditions 
C1-C9, and the Hessian approximation Hk satisfies condition CIO, the algorithm is 
globally convergent.

• The algorithm converges superlinearly if the following conditions are satisfied:

Cll. \\Zj(Hk — Wk)Pk\\ = o(|bfc||)) where Zjt, a basis for the null space of Ak, is 
bounded in norm and its smallest singular value is bounded away from 0, and

C12. H/u- - A*|| = o(||xjt - a:*||).

In the chapter that follows, we will show superlinear convergence for this algorithm 
under condition Cll and an alternative to C12:

C12\ When the iterates are close to the solution, the penalty parameter is chosen to be 
large enough.



Chapter 5

Approximations to the Reduced 
Hessian

5.1. Introduction

This chapter considers an algorithm similar to the one presented in Chapter 4, with the 
difference that conditions CIO and Cll are relaxed. We shall now only impose conditions 
on the approximation to the reduced Hessian (but not on the full Hessian approximation).

There are three main reasons to consider relaxing our requirements. From the second- 
order optimality conditions, only the reduced Hessian can be expected to be positive 
semidefinite at a solution of the problem, and so it seems unreasonable to attempt to 
approximate the full Hessian by a matrix that is required to be positive definite. We may 
wish instead to impose positive definiteness only on the approximation to the reduced Hes­
sian. Secondly, the size of the reduced Hessian is usually smaller than that of the full 
Hessian, and in many cases the difference in size is significant. For large-scale problems, 
approximating the full Hessian is problematic, whereas approximating the reduced Hessian 
can be straightforward. Finally, it is not known in general how to construct matrices Hk 
that satisfy conditions CIO and Cll, but on the other hand, it is not too difficult to enforce 
satisfactory conditions on the asymptotic properties of the reduced Hessian approximation. 

The conditions that replace C10-C11 take the form:

CIO’. Hk is uniformly bounded, and ZjHkZk is positive definite with smallest singular 
value bounded away from zero, where Zk is a basis for the null space of the active 
constraints at the initial point for the QP subproblem at Xk.

76
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Cll’. ||Zj(//* — Wk)ZkPzk \ = 0(||Pfc||)) where denotes the Hessian of the Lagrangian 

function at Xf

The definition of the reduced Hessian requires the specification of a set of active con­
straints. Crucial to the issues presented in this chapter is the notion that at each iteration 
an initial “active set” of constraints, whose characteristics will be specified later, is selected 
prior to attempting to solve the QP subproblem. Condition CIO’ makes use of this as­
sumption when imposing conditions on the reduced Hessian approximation. From iteration 
to iteration this active set may change, and this requires the definition of a strategy to 
cope with the changing size of the reduced Hessian approximation. Fortunately, this is not 
an issue in the limit, provided we can show convergence, since any reasonable definition of 
the initial active set for the QP subproblem will eventually remain unaltered for successive 
nonlinear iterations.

Conditions CIO’ and Cll’ apply only to the reduced Hessian approximation, and the 
convergence proofs presented in this chapter impose no requirements on the matrices HkYk- 
It seems reasonable then to ask what is the role of these matrices, if any, in the algorithm 
considered. The answer is that Z^HkYk is needed for the computation of the null-space 
component of the search direction pZk, and Y^HkYk is used to obtain the QP multipliers. 
If our main concern is to define an algorithm able to deal with large-scale problems, we 
may take advantage of the freedom we have in the definition of these matrices, and select 
them so that the computations in which they appear become as simple as possible. A 
common choice has been to take ZjHkYk equal to zero and Y^HkYk to be a well-behaved 
positive definite matrix, for example the identity. With these choices and condition CIO’, 
it is clear that CIO is automatically satisfied, and the proofs in Chapter 4 only need to 
be modified wherever they make use of Cll, that is, for the purpose of establishing the 
rate of convergence of the algorithm. (In this setting Cll can no longer be expected to be 
satisfied.) The modified proof using Cll’ is given at the end of the chapter.

The preceding paragraph considers only a particular set of options for the definition of 
Hk- A more general approach to the problem would be to define an algorithm with similar 
convergence properties, but requiring only condition CIO’, instead of CIO. This situation 
arises if for a program of moderate size we are approximating the whole matrix Hk, but we 
only require ZjHkZk to be positive definite. Constructing Hk in this way would allow us 
to achieve better rates of convergence than the ones attainable when we only approximate 
the reduced Hessian.
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One case that this approach would cover is the use of one of the recently proposed 
quasi-Newton updates that preserve only the positive definiteness of the reduced Hessian 
approximation (see for example [Fen87]).

The chapter proves global convergence for an algorithm that assumes only that CIO’ 
holds. Again, note that for particular definitions of Hk that satisfy condition CIO, like 
the one indicated above, the global convergence proof in Chapter 4 is immediately applica­
ble. The chapter ends with a proof for the rate of convergence of the algorithm when the 
approximation to the Hessian is required to satisfy the relaxed convergence condition Cll’.

5.2. Global convergence results

We begin by introducing some notation for this chapter. Let Zk, as above, be a basis for 
the null space of Ak, the Jacobian corresponding to the constraints active at the initial 
point pk0, for the QP subproblem at x*. Let Ck denote the value of the constraints in this 
set at the current point, and V* a basis for the range space of AJ. The vectors pz and pY 
are used to denote the components for p in some null-space and range-space decomposition, 
respectively; the specific decomposition will in general be clear from the basis matrices used 
in the corresponding expressions. Finally, wc < 0 is a vector such that Ap = —(c + wc), 
and we extend it to a full m-dimensional vector by adding zero entries corresponding to the 
inactive constraints at the initial point.

Under condition CIO’, PkHkPk may take negative values, in which case /?*„// < 0. On 
the other hand, this cannot happen for vectors in the null space of Ak- We therefore use 
the following constant:

PszH is a positive lower bound for the smallest eigenvalue of Hk on the subspace spanned 
by Zk: plZjHkZkPz > PszH\\ZkPz\\2-

Properties PI and P2 still hold under the new conditions. They may be proved using 
arguments similar to the ones presented in Chapter 4, with only a minor modification 
introduced in Lemma 5.2.1. The main change to be made to the algorithm given in Chapter 
4 is the introduction of a new bound for the directional derivative of the merit function. 
In Chapter 4 the bound was given as —^p^HkPk, but under the relaxed assumptions on 
Hk this quantity may not be positive in all iterations. The new bound should preserve the 
property that the directional derivative is bounded away from zero by a quantity related
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to ||p||2. A reasonable choice is to use a linear combination of p^ZTHZpz and ||c||2 to form 

the bound.
A second change is the definition of p*, to take into account our lack of knowledge about 

the properties of Hk outside the null space of the “active” constraints. In Chapter 4 the 
search direction was obtained from the QP stationary point by taking a descent step with 
respect to the QP objective function. In this section the step from the stationary point is 
computed in terms of the value of the descent available for the linesearch, as this function in 
general has better properties (convexity) than the QP objective function. A more general 
approach is presented in a slightly different setting in Chapter 6.

Definition of the search direction

As mentioned above, we modify slightly the way the incomplete solution pk is obtained from 
the QP subproblem, with respect to the conditions given in Chapter 2.

The value of pk is now obtained by moving to the first stationary point for the QP 
subproblem found by the algorithm, pk, and from there, if the stationary point is not a 
minimizer for the QP subproblem, by taking a step along a descent direction. To proceed 
further does not seem worthwhile. Since only an approximation to a particular reduced 
Hessian is known, it becomes necessary to define artificially the curvature in an enlarged 
space, when any constraints are removed from the active set. If we have an approximation 
to the full Hessian, and the properties of the approximation outside the current subspace 
are not controlled, the search directions computed may be unacceptable unless special pre­
cautions are taken. In Chapter 6 we introduce conditions that would allow us to prevent 
these difficulties.

The requirement to stop at the first stationary point allows us to work with the reduced 
Hessian approximation for the initial active set exclusively, and so the possible lack of 
positive definiteness outside the corresponding subspace does not affect any of the steps 
taken during the solution process for the QP subproblem. In particular, conditions C4 and 
C5 will not be used in what follows.

Define vc to be such that ii p = p + ad, then wc = avc, where clearly vc < 0. Assume 
that d is computed so that conditions Cl, C2 and C6 are satisfied, and in particular the 
following condition holds,

gTd -|- pTHd < PdscvJt*

for some fidac > 0. Note that condition Cl implies that vc must be bounded, ||vc|| < finmv.
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Condition C3 is replaced by the following condition:

C3\ The step a is taken as the step to the minimizer of <p((), where

VKC) = ffT(P + (<*) + $ ((Pz + Cdz)TZTH Z(pz + C^z) + ||c + C^cll2) •

To be more precise, if ¥>'(0) > 0 then let a = 0. Otherwise, let ac be the step to the 
nearest inactive constraint and define

aam ~

a = min(ac,a, M^m))

where a*# is a specified bound on the largest acceptable step.

Also, from the conditions on po in step (i) of the rules to compute the incomplete search 
direction, and from the way a and d are obtained, we can show again that ||p|| is uniformly 
bounded for any p obtained during the solution of the QP subproblem.

If K denotes a uniform bound on the norm of the initial point obtained from (2.2.6) 
and assumption A2, ||po|| < K, we have

¥>(Po) < finmgK + \{PlzH + 0imA)K2 = Ky

and for any p up to p, as py = pYo, it holds that <p(p) < K, and hence

i(pz + {FHZy'zTgfpHZ^z + {ZTHZ)-lZTg) - \gTZ{ZTHZ)-xZTg < K. 

From this result, we get the bound

||pz + (ZTJ5rZ)_1ZT0||2 < +

implying
ii || ^ r> Pnmg ‘ZKftszH + finmg

For the step along d, note that

^ Pnmg ~h PszHK ~h PnmA^
a ~ P.ZH0L

and from ||d|| < /3unct we must have that for some flump.

Ibll ^ flnmp-
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The argument in the proof of Lemma 4.3.2 still applies to this algorithm, except for 
one minor change induced by the introduction of condition C3\ It now becomes necessary 
to prove that a bound similar to the one in (4.3.1) still applies to this algorithm, at least 
for the case when ||p|| is small enough (otherwise, condition C6 is sufficient to imply the 
result). The following lemma establishes this result, and so it indirectly proves the validity 
of properties Pi and P2 for the algorithm.

Lemma 5.2.1. //||p|| < where

cl _ • (RO _______PdscPspm______
- ^ ^ ’ SfivIiPund + WnmvPnmA ' ’ 

then a is bounded away from zero in condition C3\

Proof. From the definition of ^'(O),

= gTd + fzZTHZdz + cTvc 

= gTd + pTHd - pTHYdy - pyYTHZdz - vJAp

< vjp + (2f3lvHPund + /? nmv /3nm>l)||p||-

For ||p|| < 61,
^(0) < vjp + \PdscPspm <

and from condition C2,
V>'(0) < -\PdscPspm-

The step to the minimizer of ip(Q is given by a = —</(0)/y>", and as

¥>" = dTzZTHZdz + ||wc||2 < m2,x(PlvH,PlmA)Plnd = /?"

we can write a bound for this step as

PdscPispm
AP"

Again, selecting /?* = min(/?°,/?^) and using the same reasoning as in the discussion before 
Lemma 4.3.2, we get that the step satisfies a > \P*. |

From this result, properties PI and P2 follow along the lines presented in Lemma 4.3.2.
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Descent properties

The next result that we need to establish is that the descent condition given in property 
P3 holds for this algorithm.

Lemma 5.2.2. There exist constants 0 < fli < \, (h > and initial points for the QP 

subproblem that give values for the search direction pk satisfying

Pl9k + \(vikZkHkZkPzk + ||c* + wCk\\2) < -(51(pTZtZlHkZkpZk + 114 + u>cJ2) + AlkfcH.

Proof. Since no constraints are deleted from the active set until a stationary point is 
reached, we must have pY = Py0- Consider the following cases:

(i) p is obtained as the solution of the QP subproblem. Then for some /I > 0,

pTg + pTHp = pTATji = -crp, < ||/i||||c"|| < ||/i||||r||

and as u;c = 0 at the solution, ||c|| < /?nmyt||po|| and pY = pYo,

pTHp = pTzZTHZpz + (p + Zpz)THYpYQ < p^Z^HZpz + 2/3(u///3nmp/3pc3||r||,

and we finally get

PTg + \{pTzZTHZpz + ||c||2) < -\{pTzZTHZpz + ||c||2) + A^llrll,

where

A = finmu "I" ‘ZfilvHPnmpPpca + ft nmAftpca ■

(ii) p is obtained by taking a descent step on <p from a stationary point p. There are a 
number of possibilities:

• If ||p|| > 61 and ||p - po|| < ^1, we need to consider different values for ||c||. If 

||c|| < ei = 61/(2ftpc), then

but this is a contradiction, so we must have ||c|| > cj, in which case

M < Am, < ^Pll = A-ll^ll,
Cl
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implying that for f3\ = (3nmg + (/3lvH + PlmA)(inmP,

PT9 + (PzZtHZpz + ||c||2) < p\\\p\\ < P\K\\c\\.

Finally, using ||c|| < /?„m>i||po||

pTg + \{pTzZTHZpz + ||c||2) < -\{pTzZTHZpz + ||c||2) + ^||r|| 

where K = 2/3] PnmpPnmA Ppc* /f)1-

• Let <pk denote the function used to bound the desired descent. If ||p —poll > then, 
after the /;th QP iteration,

'Pk = gTPk + \{pTZkZTHZpZk + ||c||2).

Making use of the fact that pYk = Py0 for all A: up to the stationary point, we can 
write

Pk-\ -<Pk = 'Pk-i -i>k+ pl0YTHZ(pZk - pZk_1),

where ipk is the QP objective function after iteration k. For all iterations between the 
initial point and the stationary point, it holds that

PO-<P= I’d -i>+ Py^THZ(pZ - pZQ).

We can use (4.3.4) to write

\pTY(yTHZ{pz — Pzo)\ ^ 2/3/t,///3nmp||po|| ^ 2/3/u///3nmp/3pCa||r|| = A ||r||.

If we let 7 = — V’* it follows that

¥’<^<V’o-7 +

From one of the intermediate results in the proof of Lemma 4.3.3, we have 7 > 
\fiazH(b°I'2m)2. Consequently,

PT9 + \(pTzZTHZpz + ||c + mc||2) < -pi(plZTHZpz + \\c + tnc||2) + A'||r||, 

where K = K' + /3] and
0 < /3i < -^-4=-.
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• If ||j3|| < (51, we know from Lemma 5.2.1 that we have descent for ip, and the minimal 

descent rate is bounded by

where — is the step to the minimizer. As the step is at least by assuming
the same (minimum) rate of descent as before, we get for the descent from p,

V ~ tfi 2^ (0) 2 @9 — \fid»cfisim Pg’

By selecting

0<A<#s%54Sfilvlffinmp2
we can write

PT9 + \{p^ZTHZpz + \\c + u;c||2) < -f}x(p*ZTHZpz + \\c + it7c||2) + A’llr)! 

for K = PpcsPl • This completes the proof. |

Bounds for the penalty parameter

We now determine modified bounds for the penalty parameter. We assume that the mul­
tiplier estimates are obtained according to conditions C7-C9, given in Chapter 2, and in 
addition we impose an extra condition on the choice of the initial working set made at each 
iteration:

C13. The initial active set must be selected so that there exists an c" > 0 such that if 
||pfc|| < e", then the active set at pk is the initial active set.

From the definition of the search direction, pk, this condition implies that eventually p*. 
must be the solution of the QP subproblem, and it must be determined in just one QP 
iteration (no constraints added or deleted).

Define the auxiliary vector
wg = ZTg — ZTHp. (5.2.1)

Property P4 is an immediate consequence of the following lemma:

Lemma 5.2.3. There exists a value pk such that

4(0,p) < -\{pTZiZlHkZkpZk + ||4 + U7CJ|2) (5.2.2)

for all p> pk-
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Proof. From the expression for <//(0) given in (3.6.2), we can write, using (5.2.1),

^(0) = PTzZTg + p*YTg + pT{c -s)- 2^T(c -s)- p\\c - s||2

= -PTZZTH Zpz - pTzZTHYpY + pTzwg + p*YTg - pTAYpY 

- fiTAZpz - pTs - 2fT(c - a) - pUc - s||2 

= -pTzZTHZpz - ||c + tnc||2 + bT(c + wc) + pTz{wg - ZTATp)

~ pTs - 2£t(c -s)- p\\c - s||2,

where £ = /i — A and b is defined from

0 = ||c + tec||2 - PyYT(HZpz + ATp - g)

0 if ||c + U7C|| = 0
b = 0 x , •■r—----- 7tz{c + wc) otherwise.

||c + inc||2

Consequently, bT(c + wc) = 9, as ||c + iuc|| = 0 = 0.
If 6 and wc are redefined to be full m-vectors by giving the value zero to all components 

corresponding to constraints not in the initial active set, we may rewrite the previous 
equation as

^(0) = -pTzZTHZpz - ||c + u;c||2 + bTwc + pTz{wg - ZTATp) + (b- p)Ts 

+ (6-20r(c —s) —p||c-s||2.

The condition to be satisfied can then be expressed as

bTwc + p^iwg - ZTATp) + (b- p)Ts + (b- 2f)T(c - s) - p||c - s||2 

< \{pTzZTHZpz + ||c + Well2),

and a stronger condition on p is given by

p(c - s)T{c - s)>(b- 2f )T(c - «) + bTwc + p^(wg - ZTATp) + (b- p,)Ts. (5.2.3) 

A value p such that (5.2.3) holds for all p > p is

. IHI + 2||f || , vnax(Q ,bTwc +p^(Wg — ^App.) + (b — p,)Ts) ,E 0 ^
'>-'ik-Jir+ ■ ( 1

completing the result. |
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We now prove property P4. As a consequence of assumption A3 and the definition of 
wc, there exists a constant $pcj such that

IlftftrJI
Pfc + WeJ — fipc}’ (5.2.5)

From condition CIO’ and (5.2.5), we then have

PzZtH Zpz + ||c + u>c||2 > fazHWZpztf + PlcfWYPrW2 > mi^/?^, P,xH) |H|2. (5.2.6)

Defining f5H = \ min(/3pC/> P*zh) we obtain property P4,

^'(0) < -^hIIpII2. (5.2.7)

Another result that is useful in the lemmas that follow is the boundedness of the auxiliary 
variable b. From (5.2.5), assumptions A1-A2 and condition CIO’, we have that

IWI<||c-+We|| +
\\Ypy\\

\\c + Well
\\HZpz + ATp - <71| < N'. (5.2.8)

Regarding the penalty parameter, the same approach that was presented in the previous 
chapter still applies in this case; that is, we define its value to satisfy property P4 and to be 
small enough so that p/p is bounded. An example of a selection rule having these properties 
is given in the next paragraph.

Let <pk = PzkZ][HkZkPzk + ||4 + tz>cJ|2. As in (4.3.11), we define the bound for the 
penalty parameter by

Pk =
{ Pk-l

max(pk,2pk-i)

if ^'(0,/£»*-! ) < ~\<Pk 
otherwise,

(5.2.9)

where po = 0 and pk is defined by (5.2.4). 
The next result establishes property P5.

Lemma 5.2.4. Assuming the bound given in (5.2.9) for the multipliers, for any iteration 
ki in which the value of p is modified,

PkMPkM2 < N

and

Pallet, - skl|| < N,

for some constant N.
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Proof. If the penalty parameter is increased only at a finite number of iterations, the result 
follows from assumption A2, Lemma 2.4.1 and the boundedness of ||pfc||. For the rest of 
the proof we then assume that there exists an infinite sequence of iterations along which 
the penalty parameter is increased without bound.

From Lemma 5.2.2,

<£'(0) = PT9 + (2A - fi)T(c -s)- p||c - sf

< -(£ + (h)(PzZtHZpz + ||c + Well2) + (2A -/z +/?2i>)T(c - s) -/>||c- s||2,

and if <£'(()) > —^(p^ZTHZpz + ||c + tnc||2) then, from the boundedness of the multipliers 
and /?2, and from (5.2.6),

^ > ||2A"-'/H- (32v\\ (P^HZpz + ||c + tnc||2) > ^HpH2. (5.2.10)

From assumptions A1 and A2, Lemma 2.4.1, (5.2.8) and definition (5.2.4),

p||c - 5||2 < A2,

and from (5.2.10) it follows that
p\\p\\4 < N3. (5.2.11)

Under the assumption that />*, —*■ oo, this result implies that UpfcJI —> 0.
We now show that for a large enough value of the penalty parameter pkt it must hold 

that
max^0, blwckl + pTzkl{wgkl - ZjAj/xjt,) + (6fc, - pkl)Tsk^ = 0.

If ||pjfc,|| —► 0, we can show that ||6*(|| —> 0. From condition C13 we must eventually have 
Wefej = 0, and so ||cjt( + wckl || —*■ 0. Furthermore, from Lemma 3.4.1 and condition C8 on 
the multipliers, — pjt(|| —> 0. From (5.2.8) we can write the bound

ll^fcill ^ ll^fc, + iWcfc||| + PPcs{\\HklZklpzkl\\ + — pit,||),

and therefore we have \\bk[ || —> 0.
Since ||5jt(|| —► 0, there exists an index K such that bkl < pkl for all k\ > K. (We 

use strict complementarity at the solution.) Also, for ki large enough it must hold that 
||p*:, || < e", and from condition C13 in that iteration we must have wgkl = 0, pjAklZkt = 0 
and wckl = 0. Hence,

bk,wck, + Plk^gk, ~ ZkAh^ki) + (K ~ PhVsk, = (h, ~ Hkt)T*k, < o.
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From this inequality and (5.2.4) it follows that for k\ large enough, Pkt must satisfy

In this case

and (5.2.10) implies

a _!M±2!M 
IK-*,II '

PkiWck, ~ ■SfcJI < N,

Pit,IK||2 < N3pkl\\ckl -skl\\<N,

(5.2.12)

proving the result. |

Proof of global convergence

The proof of global convergence follows along the same lines as in the previous chapter. 

Theorem 5.2.1. The algorithm described in this chapter has the property that

lim |K|| = 0. (5.2.13)

Proof. Follows from the same arguments used in the proof of Theorem 4.3.1. |

Corollary 5.2.1.
lim ||xjfe -x*|| = 0.

A:—►oo

Proof. The result follows immediately from Theorem 5.2.1 and Lemma 3.4.1. | 

Corollary 5.2.2.
lim \\Xk - A*|| = 0.

*—►00

Proof. The result follows from Lemma 3.7.1, given the results in Lemma 3.6.6 and Corol­
lary 5.2.1. |
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5.3. Rate of convergence

In this chapter we assume that our approximation to the Hessian is only accurate on the 
null space of the active constraints. A consequence of the use of less precise information is 
a degradation in the rate of convergence for the algorithm. We are now only able to show 
that under condition Cll’ the algorithm converges two-step superlinearly (as opposed to 
the one-step superlinear convergence established in Chapter 4). The proof follows the same 
general pattern presented in Chapter 3.

We start by establishing property P7.

Lemma 5.3.1. For iterations ki in which the penalty parameter is increased, assuming an 
infinite sequence of such iterations occurs in the algorithm,

lim pk,\\Pk,\\2 = 0
1—►OO

and

lim pk,\\ck, ~ a*, || = 0.
l—*oo

Proof. For large enough p, from definition (5.2.4) and the remarks in Lemma 5.2.4,

p||c-a||<2||6||+4|K||.

From Corollary 5.2.2, H^H —► 0, WA^pk, ~ 9k,\\ —► 0, and using Theorem 5.2.1 and Corol­
lary 5.2.1, from (5.2.8) and condition C13,

0 < \\bkl\\ < ||4( + lOdb.ll + jj^+^'||ll^^«Pg*« + ^*>*« - 9k,\\ - 0,

giving

lim elicit, -s^H =0.
I—►OO

But (5.2.10) implies
lim Pfc,||pfc,||2 = 0,

1—►OO

completing the proof. |
Our goal is to prove a result similar to Theorem 4.4.1 for the algorithm introduced in 

this chapter. As in the previous chapter, some additional conditions need to be imposed. It 
was mentioned at the beginning of the chapter that our interest is to study the consequences 
of approximating only the reduced Hessian. In this case, condition Cll cannot be enforced, 
and it is replaced by
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Cll’. Following Powell [Po78], we assume

\\zZ(Hk-Wk)ZkpZk\\ = o(\\pk\\).

Note that this condition, together with condition CIO’, implies that for points close enough 
to the solution we must have

prZkzZwzkpZk > l/3,zH\\ZkpZk\\2.

As a consequence of the use of less restrictive conditions on Hk, condition C12 is no 
longer adequate, and it also needs to be replaced. The new condition does not apply to the 
multiplier estimates, which now are only required to satisfy C7-C9; instead, it limits the 
acceptable values for the penalty parameter pk.

C12\ When the iterates are close to the solution, the penalty parameter is chosen to be 
“large enough”.

The following results will make clear what is a suitable lower bound for the penalty param­
eter.

If these conditions hold, using the previous results and Lemmas 3.8.2 to 4.4.3, we can 
show that the algorithm converges two-step superlinearly.

Theorem 5.3.1. There exists a value p, such that if pk is selected satisfying pk > p, then 
the algorithm converges two-step superlinearly.

Proof. We start by proving that if pk is large enough, condition (2.2.3) is satisfied for ail 
large k. In the rest of the proof we drop the subscript denoting the iteration number.

As in Byrd and Nocedal [BN88], we let

L(x, A, s) = F(x) — Ar(c(x) - s). (5.3.1)

We can now use a Taylor series expansion to write

AL = L(x + p, A, s) — L(x, A, s) = gTp - XTAp + ^pTWp, (5.3.2)

where W = V^.xL(x -|- $p,X,s) and 0 < 0 < 1.
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Rearranging terms,

AL = PyYT(g - ArX) + pTzZTg + \pTzZTWZpz + {\YpY + Zpz)TWYpY 

= plYT{g - AtX) + apTzZTg + (1 - a)pTzZT{W - H)Zpz

- (1 - <t)ptzZtHYPy + (\YPy + Zpz)TWYpy - (i - a)pTzZTWZpz.

Assume now that k is large enough so that ||W|| < 2||W*|| = /?*, where W* indicates the 
Hessian of the Lagrangian function at the solution, and also that the bound p^ZTWZpz > 

2 0szH\\Zpz\\2 holds. We may rewrite condition Cll’ in the form

pTzkZl(Wk - Hk)ZkPZk = uk\\ZkPzk\\\\pk\\,

where u;* —+ 0. Consequently

AL < pYYT(g - AtX) + apTzZTg - ((1 - a)\pszH - (1 - (r)uj\\Zpzf

+ + ((1 - <r)((3lvH + u) + /f)||Zpz||||yPy||.

For k large enough, there exist positive constants a\, a2 (e.g., take ai = 2(1 — (t)/3ivjj + /3* 

and C2 = - <7)I3sZh), such that

AL < plYT(g - AtX) + apTzZTg + \(?\\YpY\\2 + a1||Zp2||||ypy|| - a2||Zpz||2.

We now study the merit function (2.2.1) at a = 1. We can write it as

= L(x + p,A,s) + (L(x + p,/x,s + q) - L(x + p,A,s)j + \p\\c(x + p) - s - q\\2 

= L{x, A, s) + (Ar(c(x + p)-s)~ pT(c(x + p) - s - q)) + \p\\c{x + p) - s - q\\2 

+ PYYT(g - ATX) + apTzZTg + A/?*||ypy||2 + ai||Zpz||||ypy|| - a2||Zpz||2.

Using c,(x + p) — S{ — qi = pTV2Ci(zi)p, where Zi — x + 6ip for some Qi G [0,1], we have

</>(!) = 4>{Q) + plYT(g - AtX) + (rpTzZTg + XTq - E,'6prV2c,(z,)p - \p\\c - s||2 
+ |pEi(prV2c,(2,)p)2 + axWZpzWWYpY\\ - a2\\Zpz\\2 + \f?\\YpY\\2 

< 0(0) + ^'(O) - <rpyYTg - <r(2A - p)T(c - -s) + XTq + pYYT(g - ATX)

_ (I _ £r)p||c - S||2 + a;||Zpz||||ypy|| - a2||Zpz||2 + ^Yp^2,

where we have made use of Lemma 3.8.2 and the facts that —> 0 and the second derivatives 
of the constraint functions are uniformly bounded. This result holds for large enough k, 
and positive constants a^, (again, take for example a[ = 2ai, a2 = ^a2).
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Rewriting this expression, we get

- #0) < <T<£'(0) + (1 - o)p^yT{g - - (1 - 2<r)(r{c - s) - (1 - a)nTq

-(i - a)p\\c - s||2 + a\\\Zp2\\\\YpY\\ - a/2||Zpz||2 + f?\\YpYf.

From Lemma 4.4.3, condition C8 on the multipliers, and selecting k large enough so that 
pTq = 0, it follows that

||5 - ATp.\\ < ^||p||

for some constant (5. Finally, we can select p large enough so that for large k,

-(1 - 2(t)£t(c -s)-(±- a)p\\c - s||2 < -i(i - a)p\\c - s||2; 

for example, let p be larger than twice the bound given in (5.2.12). We then have 

<£(1) ~ #0) < ^'(0) - - a)p\\c - s||2 + alWZpzWWY PyW - a'llZp,,!)2 + a3||ypy||2,

where a" = 0,^+0 and 03 = /?* + /?.

Assume that k is large enough so that p is obtained as the solution for the QP subprob­
lem, the correct active set has been identified and pc,- < A,- for all active constraints (this 
follows from Lemma 3.8.3). From (5.2.5),

\\Ypy\\ < PpcfM < PPcf\\c - a||,

and

*0) - <H0) < ^'(0) + («i - i(i - ||c - sll2 + ari|ZPz||||c - >|| - a'2\\Zpzf,

where a'" = Ppcfa" and 03 = fipcfa^.
From the arithmetic mean/geometric mean inequality,

/ a'"2 \«;"l|Zp>lll|e- >11 < lUWZPttf + ^Hlc- >||2), (5.3.3)
v a2 /

we finally obtain

/ n'"2 \
- m < <7^(0) - ^fizp-sii2 + (4 + - 5(2 - ‘0p)Hc - •sll2- (5-3-4)

40303 + 2a1"2 
^ ~ (1 — 2<r )g2

If p is chosen so that
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then the step of a = 1 will satisfy condition (2.2.3).
Finally, applying Theorem 1 from Powell [Po78], we obtain the desired convergence 

result. |
Most of the proof for the previous theorem is devoted to showing that a unit steplength 

is eventually acceptable if the penalty parameter is sufficiently large. Clearly, the proof 
given here still holds for the algorithm presented in Chapter 4, and this gives a second set 
of alternative conditions for superlinear convergence, where the condition on the multiplier 
estimate C12 is replaced by a condition on the penalty parameter C12\

5.4. Summary

In this chapter we have studied an algorithm similar to the one presented in Chapter 4, but 
where the conditions on the approximation to the Hessian have been relaxed, so that now 
only the approximation to the reduced Hessian is required to be positive definite.

The results obtained have been:

• Under conditions C1-C9 on the search direction and multiplier estimate, and con­
dition CIO’ on the approximation to the reduced Hessian, if the approximation for 
the rest of the Hessian is assumed to be such that Hk is positive definite, then the 
algorithm is globally convergent.

• An alternative algorithm has also been shown to be globally convergent, where no 
assumption is made about the Hessian approximation outside the null space of the 
active constraints, but requiring the additional condition:

Cl 3. the initial active set must be selected so that there exists an e" > 0 such that 
if ||pfc|| < e", then the active set at pk is the initial active set.

• Finally, we have proved that the algorithm is two-step superlinearly convergent if in 
addition the following conditions are satisfied:

Cll’. \\ZRHk - Wk)ZkPzk\\ = o(||pfc||).

Cl2’. When the iterates are close to the solution, the penalty parameter is chosen to 
be large enough.

Note that when no conditions are required on the approximation to the Hessian on 
subspaces other than the null space of the active constraints, the algorithm leaves open the
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possibility of using an approximation scheme satisfying condition Cll from the previous 
chapter (instead of condition Cll’). This would allow the algorithm to attain a one-step 
superlinear rate of convergence.



Chapter 6

Exact Second Derivatives

This chapter considers a third variant of the framework algorithm presented in Chapter 
2. Again, a partial solution for the QP subproblem is used as the search direction, but in 
this case the Hessian approximation Hk is taken to be the exact Hessian of the Lagrangian 
function at the last iterate, that is

Hk = VlxL(xk,\k) = V2F(xk) - EiAfc,V2c,(xfc),

where now Hk, and even the reduced Hessian Z^HkZk, can be indefinite.
There are numerous theoretical and practical benefits deriving from the explicit use of 

second derivatives. For example, it will be seen in this chapter how to define an algorithm 
generating a sequence that converges to a second-order KKT point. Also, in practice it has 
been observed that second-derivative methods usually converge in much fewer iterations 
than those required by first-order methods. However, the use of second derivatives presents a 
number of technical difficulties, all of which stem from the loss of control over the properties 
of Hk- In order to reap all the benefits from the availability of second derivatives, we need 

to redefine the way the search direction is obtained. In all other respects the basic principles 
introduced in Chapter 2 will still be preserved.

The next section presents the definition of the incomplete solution for the QP subprob­
lems, to be used as the search direction in each iteration. The rest of the chapter proves 
global convergence for the algorithm, and shows that under mild conditions the algorithm 
converges quadratically.

95
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6.1. The search direction

The definition of the search direction given in Chapter 2 needs to be modified for the 
algorithm presented in this chapter, to take into account the possible lack of convexity 
in the subproblems, implying the possible indefiniteness of Hk and rank-deficiency in the 
reduced Hessians.

In the case when the Hessian is indefinite, the descent directions that can be obtained 
from the QP subproblems may no longer provide enough descent to guarantee the conver­
gence of the algorithm; that is, the quantities <^.(0) may no longer be sufficiently negative 
to ensure that <f>k — <j>k+i satisfies the condition used in the proofs of Theorems 4.3.1 and
5.2.1. In this section we present a procedure to generate search directions that either give 
sufficient descent, or are directions of negative curvature (satisfying pjHkPk < 0) allowing 
a sufficient decrease in the value of the merit function to ensure convergence.

The search direction Pk is defined by the following steps:

(i) Obtain a feasible initial point po for the QP subproblem such that conditions (2.2.6) 
and (2.2.7) are satisfied.

(ii) Solve the QP subproblem until a stationary point p is found, or until a direction of 
infinite descent d is obtained. The convergence results presented in this chapter do 
not assume the use of any specific QP algorithm, but the following conditions must 
be satisfied by the method selected.

• It must be an active-set algorithm, taking feasible descent steps in each iteration. 
If steps having a positive directional derivative for a = 0 are taken, the total 
descent must be uniformly bounded away from zero.

• It must be able to find a stationary point (or a direction of infinite descent) in a 
number of iterations uniformly bounded by a function of the size of the problem.

• Each QP iteration must produce a minimum descent, unless we are at a stationary 
point for the QP subproblem. To be more precise, let p denote any intermediate 
point along the solution of the QP subproblem and let d be the QP search 
direction at p; also let a indicate the step taken from p along d, obtained as 
the minimum of the steps to the unidimensional minimizer, the nearest inactive 
constraint and a specified upper bound, in the same spirit as in the definition of 
a given in condition C3. Finally, let gR denote the projection of <7 -f Hp onto
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the null space of the active QP constraints at p. We require that d satisfies the 
following condition:

iP(p) - y>(p + ad) ^ a
||ad|| — (6.1.1)

where f5qpd is some positive constant.

The reason for this condition is that it prevents the algorithm from taking steps 
that give arbitrarily small descent unless ||jiR|| is small, that is, the point p is 
close to being a QP stationary point.

(iii) Define p from p or d as follows,

(a) If a direction of infinite descent d satisfying (6.1.1) is obtained at a point p along 
the solution of the QP subproblem, define

p = p-\- ad,

where a > 0 is chosen so that ||p|| is uniformly bounded above and below.

(b) If p is a second-order KKT point for the QP subproblem, let

p = p.

(c) Otherwise, select p by computing a direction d and a steplength a satisfying 
conditions C1-C6.

(iv) The following condition is introduced to identify the circumstances under which near 
singularity in the reduced Hessian may be a problem:

C14. ||c-|| < ei, and
HPo) ~ 0(P) < «

IIpo-pII

If C14 holds, obtain an estimate for the active set at the current point, Xk, and 
compute a direction p by taking a step ad from po satisfying C1-C6. If no feasible 
step satisfying these conditions exists, let p = po.

(v) Select the search direction p as

p if V’(p) < ^(p), C14 does not hold, or p = po 
p otherwise.
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Several remarks are in order regarding the definition of p. Condition (6.1.1) could be 
replaced by the alternative condition

{g + tfp)Tpjj ^

which may provide a better expression for the stated goal of linking the lack of descent 
associated with the direction d and the proximity to a QP stationary point; but this is 
achieved at the expense of limiting the choice in the selection of directions of negative 
curvature.

In point (iv) it is required that the correct active set at a nearby stationary point should 
be identified. Under condition (6.1.1), an estimate for this active set having the desired 
properties is given by the QP active set at the initial point for the first finite QP step (the 
first step that is bounded away from zero).

Finally, condition C5 requires the computation of a direction of negative curvature. In 
the case when n is small this is straightforward. For the large-scale case, efficient methods 
are known when the reduced Hessian is not too large. Although some work has been 
carried out for problems of arbitrary size, see for example Conn and Gould [CG84], such 
methods are not very efficient. Our hope is that satisfactory methods for computing feasible 
directions of negative curvature for arbitrarily large problems will be developed in the near 
future. If a direction of negative curvature is not determined, the proofs would still hold 
if we characterize solution points to be first-order KKT points for the problem (instead of 
second-order KKT points).

Properties of the search direction

As in the previous chapters, the first result required for the convergence proof is to show 
that if ||p|| is small enough, the correct active set must have been identified. We start by 
introducing the following constant, implied by the non-singularity assumption A6:

Psvii is a positive lower bound for the smallest eigenvalue of the reduced Hessian of the 
Lagrangian function at all second-order KKT points for the NLP problem in ft.

The following lemma establishes property PI for this algorithm.

Lemma 6.1.1. There exists an e > 0 such that ||p|| < e implies that p was obtained as a 
second-order KKT point of the QP subproblem and the correct active set has been identified.
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Proof. The correct identification of the active set follows from strict complementarity at 
the solution point (see proof for Lemma 4.3.2).

Assume that the lemma does not hold, in the sense that there exists a sequence {zfc} 
such that Xk —► x* and ||pfc|| —> 0, where pk denotes the search direction obtained for the 
QP subproblem at Xk in the form described in the previous section, but pk has not been 
obtained as a second-order KKT point for the QP subproblem.

If pk = pk and ||pfc|| > ea for an infinite subsequence and some ea > 0, then as pk must 
be feasible, we must have ||cj|| —► 0. Also, as ipkiPk) 0* we must have ipk(Pk) -* 0. 
From this and condition (6.1.1) it must follow that x* is a stationary point for the NLP 
problem, given that it is feasible and in the QP subproblem we have no descent when taking 
a nonzero step from the origin to a stationary point.

If x* is a second-order KKT point, eventually pk = Pk0 and pk — pk- If x* is a stationary 
point but not a second-order KKT point, for —x*|| small enough we can find a direction 

dk and a steplength such that + akdk is feasible, as ||pfc0|| —► 0 and the information 
used is asymptotically correct. From the bound given in (4.3.1) and condition Cl,

otk > \P°g, ||4|| > And,

implying that
llAtll = \\Pko + VkdkW > \Pg(llnd-

However, this contradicts our hypothesis.
Assume now that ||pfc|| —► 0. From condition C6, this implies ||pfc|| —► 0, and from 

Lemma 3.3.1 we must have that x* is a stationary point. Suppose x* is a second-order 
KKT point. Then strict complementarity at x* and the fact that ||pfc|| —> 0 imply that 
the correct active set is eventually identified. Hence, from the positive definiteness of the 
reduced Hessian at x*, we must have that for large enough k, pk is a second-order KKT 
point for the QP subproblem.

If x* is a stationary point, but not a second-order KKT point, using the bounds given 
in Section 4.3 and assuming ||xfc — a;*|| to be small enough, we can find a direction dk and 
a steplength a*, such that

otk > %P°g, ||4|| > And,

implying that

llPfcll = WPk + 0*411 > \PgPlnd-
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Again, this is a contradiction. |
As in previous chapters, the proof proceeds by showing that property P3 holds for 

this algorithm, that is, the search direction computed according to the rules introduced in 
Section 6.1 satisfies a descent condition.

In order to prove P3, we need a preliminary result. In Chapters 4 and 5 it was possible 
to show that

i’k(Pk0)- V’Jfc(Pfc) -► 0 =» ||pfc0 - Pfcll 0,

using the positive definiteness of Hk, or of ZjHkZk at least. This argument is not valid in 
this case, and we give an alternative proof for the result in the next lemmas.

In the following lemmas the notation {?/m}^'_1 is used to represent a subsequence from 
the sequence of iterates, {j/m} C {x^}. The symbol cm denotes the vector c(ym), Hm 
corresponds to the Hessian of the Lagrangian function at ym, and pm indicates the search 
direction obtained at ym.

Lemma 6.1.2. If the convergent sequence {ym}, ym —► y*, satisfies ||c~ || —► 0, it must hold 
that

tymiPm) ^ 0 =$* UPmll * 0)

where pm denotes the search direction obtained from the process described above. Also, y* 
must be a stationary point of the NLP problem.

Proof. Assume that the lemma does not hold, i.e., that V’m(Pm) 0 but ||pm|| > £ > 0 
for all m.

Since the norm of the initial QP point goes to zero (||Pm0|| -* 0)? condition C14 must 
hold for large enough m.

To show that y* is a stationary point, take a subsequence along which the number of 
QP steps is fixed (it is bounded), and all intermediate steps converge to limit points; in the 
limit all steps give zero descent, as V’m(Pm) —► 0, implying that all intermediate points, and 
in particular the origin, must be stationary points from condition (6.1.1).

Assume that y* is a second-order KKT point, and that a set of limit points for in­
termediate steps has been obtained as indicated in the previous paragraph. For the first 
nonzero step from the origin d*, it must hold that ||dy|| > 0, as otherwise we would have 
(tzTZ*TlIZ*d^ — 0, contradicting assumption A6. But then g*Td* > 0, violating the first 

condition imposed on the QP solution method.
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It follows that at y* there exists either a direction of negative curvature or a negative 
multiplier. Since /Im —► /i* (the Jacobian of the active constraints at y* has full rank), then 
from the bounds introduced in (4.3.1) and Lemma 3.3.2, it follows for m large enough that

i’m(Pm) < -■< -jipfPifispn

when there exists a direction of negative curvature, or

ifrmiPm) ^ — 4Q:m|V’m(0)l — ~'^PgPdscPapm 

when there exists a negative multiplier.
Consequently, in either case r^mipm) is bounded away from zero, which contradicts our 

assumption. |

Lemma 6.1.3. There exists a constant ec > 0 such that for any sequence {ym} satisfying 

||cm|| < ec we must have

^Pm{Pmo} tymiPm) * 0 ^ ||Pmo Pm|| * 0-

Proof. Assume that the result does not hold. Consider any sequence {fj}, such that e, —> 0 
and ej < cj. For each fj, we can construct a sequence {j/j} C {ym} such that \\cl~|| < ej for
all /, i/j ->• j/* as / -+ oo for all j, V’j(jPio) “ $(Pj) 0 but Ibjo “ Pjll > si for some > 0
for all /. Finally, we can assume that y* y*.

From the previous properties, condition C14 must hold eventually for any of the se­
quences. Select one element from each sequence ylj = yj, such that for that point C14 is 
satisfied and yj —> y*. Then from the previous lemma we must have that pj —► 0 and y* is 
a stationary point of the problem.

Using the same arguments as in Lemma 6.1.2, if y* is not a second-order KKT point, 
then at y* we will have either a direction of negative curvature or a negative multiplier, 
and since fij —> p* (the Jacobian at y* has full rank from assumption A3), and a similar 
property holds for the reduced Hessian, we must have that

V’i(Pjo) - i’jipj) > mm(2pdscpspm,PgPLpspn), 

contradicting our assumption.
If y* is a second-order KKT point, then consider the sequence {j/*}- For this sequence 

and for j large enough, p*Q (the initial point for the QP subproblem) must be a second- 
order KKT point. This follows from condition (6.1.1), implying that all p*Q must be QP
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stationary points, and from ||Pj0|| —► 0, the identification of the correct active set from 
strict complementarity at y* and assumption A6. But from arguments used in the previous 
lemma, the fact that we have no descent from p*0 implies that the reduced Hessian must 
be singular at p*0 for large enough j, and the reduced Hessian must also be singular at y*, 
contradicting assumption A6. |

We can now prove property P3 for the algorithm.

Lemma 6.1.4. There exist constants f3i > 0 and /?2 > 0 such that

9kPk + \PkHkPk < ~(h\\Pktf + #2|M|. (6.1.2)

Proof. Define cH satisfying e > e# > 0, where e is the value from Lemma 6.1.1, and such 
that ||p|| < eH implies that p is a second-order KKT point, the correct active set has been 
identified, and the smallest eigenvalue for the reduced Hessian is greater than \j3svH.

Also, from Lemma 6.1.3, let > 0 be the value such that, if ||c-|| < ec,

\\Po ~ Pll > => i>(Po) - Mp) > 6.

Define
e'=

nmH finmp)

having the property that ||po|| < e' implies |V7(Po)| < Select

€i = min^l,ec,- (h
fipcs ‘Zflpcs ^

From condition (2.2.6) and assumption A2, there exists a constant /3nmp such that

IIPoll ^ /^pc||c|| < finmp-

One of the following conditions must hold:

• ||r|j > ci. From the boundedness of ||po|| we can write

V’(p) = P T \p Hp < ^(po) < ftnmpiftnmg 20nmHPnmp)

< -(h\\p\\2 + ^(PlPnmp + Wnmg + UnmHPnmp)\\r\\.
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• ||r|| < ei and ||/>|| > eH. This implies ||po|| < PpcsCi < and |V’(po)| < 2^- Also’ 
|bo - p|| > cn - /3PcSei > and

V’(Po) - ^{p) > & => V’(p) < -^ =*■ ^{p) < - ■Ibll2-
nmp

• ||r|| < ci and |b|| < fn- In this case, as p is a second-order KKT point for the QP 
subproblem,

gTp + pTHp = -cTp < /J„m„||c_|| < /3nmu||r||.

Using the notation Ap = p — po,

pTHp = PoHp0 + 2ApTHp0 + ApTHAp

> -PnmHPspc\\r\\2 ~ WnmH^spc\\r\\\\Ap\\ + |/3S„//||Ap||2,

and from the arithmetic mean/geometric mean inequality,

2|blll|Ap|| < ^fispcPnmH n„||2 t PsvH n A m||2
br + •IIApib,

we obtain

fisvH ^PspcflnmH

PTHp > \/3svH\\Ap\\2 - PnmHPipcfc + 4pnm^)\\r\\2-

The inequalities

I||p||2 < I||Ap||2 + llboll2 + llAplHboll < ||Ap||2 + |boll2

imply that we can write

pTHp > |/3st,H|bll2 - /^Ibll2*

where
0' = ^(^(l +

Putting all these results together, we have

V»(p) < ^nmulbll - \pTHP < -TgPsvhWpW2 + + /Wu)|bll>

completing the proof. |
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6.2. Definition of the linesearch

As a consequence of the way we have defined the matrices Hk and the incomplete solutions 
for the QP subproblems in this chapter, the search direction pk may no longer be a descent 
direction, but rather a direction of negative curvature. The linesearch model presented in 
the previous chapters is not adequate for this case. We can no longer be assured that the 
directional derivative at the beginning of the linesearch is bounded by a multiple of ||pfc||2. 
The structure of the global convergence proof would then fail to hold. We need to modify 
the linesearch model introduced in Chapter 2, and we will do so according to the ideas 
introduced in McCormick [McC77], and further developed in More and Sorensen [MS84].

The problem considered in [MS84] is that of minimizing an unconstrained function when 
in each iteration a direction of descent v, or a direction of negative curvature w, or both, 
are available. The search is carried out along the curve C — {a:(a) : x(a) = x + aw + a2v}, 
and the termination conditions when the direction of negative curvature is available are 
specified in terms of the curvature at the initial point. In our case we generate only one 
search direction pk for the original variables x in each iteration, but the search on the merit 
function is made not only in the space of the original variables, but also in the space of the 
Lagrange multipliers and the slack variables. Whenever we make use of pk as a direction of 
negative curvature, we need to define not just one search direction but both a direction of 
descent and a direction of negative curvature in this expanded space. If pk can be treated as 
a direction of descent, we prefer to avoid the complications associated with the curvilinear 
search by reverting to the linesearch model introduced in Chapter 2.

The next paragraphs present the definitions of the expanded directions for the curvilinear 
search. To motivate them, we start by studying the form of the derivatives for the merit 
function along the curve C. We define the unidimensional merit function along the curve 
of search, <^c, starting from the point y and moving along the vectors

as

M f * 1 ( w \

y = A , v = *1 , w = h

^ s J
l Ul )

\ U2 /

<t>c(a) = L(y + a2v + aw) = F(xa) - <f>i(a) + p4%{a),

(6.2.1)

where

<^(a) = A^(c(xa) - sa),
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<#(«) = i||c(zQ)-,a||2.

To simplify the expressions that appear in the analysis of the different functions related 
to the merit function, we introduce the notation

xa = x + a2v + aw,

= A + a2*i + Oiti,

sa = s + a2ui + a«2.

In the case when a normal linesearch is performed, the value of the merit function along 
the line of search will be denoted by <pN. This linesearch can be viewed as a particular case 
of the curvilinear search, when tt) = 0, and in fact for the definitions of the vectors t, and 
Ui given in this section the form of the search directions is identical if we let tn = 0, but it 
must be noted that the termination conditions are different in the two cases.

Our interest in what follows is to assign values to ii; and t, in terms of the known 
quantities at the current point; the definitions for v and w will be specified later as a 
function of the properties of the search direction pk- In order to identify satisfactory values 
for these vectors in the curvilinear search, we need to study the form of the first and second 
derivatives of the merit function at zero, as these are the values that will be used in the 
termination criteria. We start by forming the corresponding derivatives at any point. The 
first derivative is given by

4>c\a) = VF(xa)T{2av + w)~ <t>i'{a) + p4%‘(a),

where

<£f'(a) = (2afi + t2)T{c{xa) - sQ^ + A^Vc(za)(2at; + in) - 2aux - u2)

and

^2 (a) = (c(*a) ~ ■*£») (Vc(xa)(2ai> + in) - 2aii! - ii2).

For the second derivative we have

<j>c (a) = (2av + w)TV2F(xQ)(2av + in) + 2VF(xa)Tv — <f>^"(a) + p^"(a),

where

<f>\'(a) = 2(2ati + f2):r^Vc(za)(2an + in) - 2aui - u2) + 2tj(c(xa) -

+ A^2Vc(ia)u - 2ui) + E,Aai(2an + w)TV2a(xa)(2av + in)
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and

^2”(a) = ||Vc(xa)(2aw + u>) - 2a«i - t»2||2 + (c(a:a) - ,sa) - 2tii)

+ “ 5oi)(2ttt; + w)TV2Ci(xa)(2av + w).

As we mentioned earlier, we are interested in studying the values of these derivatives 
when a = 0, given that the termination criteria for the linesearch make use of these values; 
their form will determine the definition of u,-, t,. For the first derivative we have

<f>c'(0) = gTw — t^{c — s) — AT(Au; — «2) + p(c — s>jr{Aw —

and letting
«2 = Aw, t2 = 0, (6.2.2)

we obtain
^c'(0) = /u>. (6.2.3)

For the second derivative,

4>c"{Qi) = wtV2Fw + 2gTv — 2tJ(c — s) — 2t2(Aw — u2) — 2\T(Av — «i)

+ Ei(p(ci ~ «i) - Ai^to^Cftn + p\\Aw - u2\\2 + 2p{c - s)T(At; - ui),

and after replacing the expressions for u2 and t2, we obtain

<^c,,(0) = wtV2Fw + 2gTv — 2/f(c — s) + 2^/>(c — s) — A^ {Av — «i)

+ E.{p(ci -Si)~ Xi)wTV2CiW.

Define
ui = Av + c — s + u>, ti = p — X, (6.2.4)

for some vector u to be defined later on, implying

<f>c'(0) = wtV2Lw + 2gTv + 2(2A — p)T{c — &) — 2p||c — s||2

+ 2u7T(A - p(c - s)) + EXc. ~ Si)wTV2CiW. (6.2.5)

To make sure that the last terms in (6.2.5) take acceptable values, we select w to satisfy

LJ{ = <

0

p (c; — Si)wTV2CiW 
2 A,' p(ci Si)

if (cj — Si)wTV2CiW < 0, |u;IV2c,w| < |ct- — s,|, 
or Eilct - SiJw^CiW < \\c - s||2; 

otherwise.
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If A, — p(ci — Si) is very small or zero, and the first set of conditions does not apply, this 
definition is unsatisfactory because u>,- is either undefined or unacceptably large. To avoid 
this problem, we modify the current value of p, attempting to attain two goals: we want 
the new value for p, say p, to be bounded by a finite multiple of its existing value, and we 
want a; to be bounded by a multiple of ||tn||2. We start by imposing the following condition:

P Ci - Si
2 A, - p(a - si)

< K (6.2.6)

for some K > 1. Note that this bound implies that our second goal, ||ti;|| = 0(||u;||2), is 
attained.

We now show that our first goal can also be achieved. If the previous condition is not 
satisfied for the current value of p, then we must have

A,
p{Ci - Si) - 1 < 2K (6.2.7)

and for that to hold it must also be true that Ai(c, — s,) > 0, so we can write

A, 2K ^ " A, 2K
Ci - Si 2K + 1 < ^ < a - Si 2K - 1’

but if p is in this interval, then

2K + 1 ^ A, 2K
2K -\P-Ci-Si 2K — 1 ’

and in general there exists a value

P£ [p, 2K + 1 
2K - 1

m

u

(6.2.8)

(6.2.9)

(6.2.10)

for which the desired bound on u) holds.
With this definition,

-2p||c - s||2 + 2Jr{\ - p(c - s)j + J2iP(ci ~ Si)wTV2CiW < -p||c - s||2.

Negative curvature and descent

We now present the rules to decide how to select the linesearch model used in each iteration, 
and if the curvilinear search is to be used, how to define the values for v and w. Once the 
search direction p has been computed, let
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a) v — 0, w = p if pTHp < 2gTp < 0,
b) v = (1 + 7)p, w = ~7p if pTHp < 0, gTp > 0 and - pTHp > kgTp,
c) use a normal linesearch otherwise,

where A: is a constant satisfying 0 < fc < 1, and 7 is defined from

The convergence proofs make use of several properties that follow from the definitions 
of v and w. If we define

fp —
( 2gTv + wtH w

2.gTp
for cases a) and b), 
for case c),

then for the different cases,

a) fP = PTHp < 9TP + \pTHp,
b) fp = 2(7 + l)^Tp + 72pTHp < gTp - (72 - \)pTHp + 'i2prHp = gTp + \pTHp,
c) fP = 2gTp < gTp + \prHp if gTp < pTHp,

fp = 2gTp < 2gTp + p if 0 < pTHp < 2gTp,
fp = 2gTp < 2gTp + ■^i(kgTp + pTHp) = ■^%(2gTp + pTHp) otherwise.

From (6.1.2) and these results,

ir < min(-A|MJ + A||r||,?iI(-AWJ + AWD) < -AWIJ +4AI|r||. (6.2.11)

A second useful inequality is
fp < 2gTp, (6.2.12)

following from one of the alternative cases

a) fP = PTHp < 2gTp,
b) fp = 2(7 + l)gTp + ^rPHp < (2(7 + 1) - h2)gTp = £(2 - k)gTp < 2gTp,
c) fp = 2gTp.

Another interesting property of the previous definition is given in the next lemma.

Lemma 6.2.1. There exists an ej > 0 such that if ||pjt|| < £<*, then a normal linesearch is 
used.

Proof. Assume that the lemma does not hold. Then there exists a sequence {xjt}» and 
an associated sequence of search directions {pfc}, such that p* —♦ 0 and pk satisfies the
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conditions for cases a) or b). Without loss of generality, assume that the sequence {x*} is 
convergent, and let the limit point be x*, a second-order KKT point for problem NLP, from 

Lemma 6.1.1.
Define a new sequence of vectors {i/k} from

 Pk

and select a convergent subsequence where either case a) or case b) holds for all k. (The 
index k will also be used to denote the elements in the subsequence.) Let u* be the limit 

point for the subsequence.
From the conditions for cases a) and b),

\plHkpk\ > k\gkpk\ => \plHk^k\ > k\gjvk\,

and in the limit g*Tv* = 0. But this implies \*tA*is* = 0, and from strict complementarity 

v* G Af(A*). We also have

Vfc pjHkPk < 0 => u*tH*v* < 0,

but this contradicts the fact that we must have a strong minimizer, from assumption A6, 
proving the result. |

This result allows us to define the following constant. From Lemmas 6.1.1 and 3.4.1, 
assumption A6 and Lemma 6.2.1,

es is a positive constant such that ||pfc|| < e, implies that pk has been obtained as a second- 
order KKT point, the correct active set has been identified, the smallest eigenvalue of 
the reduced Hessian is at least ^/3svh, and a normal linesearch is used.

Finally, note that for cases a) and b), (f>c'(0) < 0.

Linesearch termination

When we use the curvilinear search, it may no longer be possible to satisfy the termination 
conditions given for the normal linesearch in Chapter 2, (2.2.3) and (2.2.4); consequently, 
they need to be replaced. Satisfactory termination criteria of a similar type to those given 
in Chapter 2 are now presented. A check is made whether the condition

^c(i)<^c(o) + Wc>) (6.2.13)
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is satisfied by the step a = 1. If not, then a value a G (0,1) satisfying

<t>c(a) < <f>c(0) + (6.2.14a)

<AC (o) > il{4>c (0) + a<t>c (0)) (6.2.14b)

for 1 > r; > > 0 and -5 > <r, is computed as the step length. The existence of a value a
satisfying (6.2.14) will be shown in Lemma 6.3.6.

From the definitions of v and tu, when case b) applies the form of the step in the original 
variables is given by a((l + 7)0 — 7)p. A consequence of this expression is that for a value

we get no change in the x variables. Though this step has no effect on the convergence 
proofs (since we are still making finite changes in the other variables), such a step may 
be considered unsatisfactory from a practical point of view. We present an alternative 
linesearch criterion for this case.

Let
a =---- ----- .

2(1+7)
If (6.2.13) holds, then let a = 1; otherwise, check condition (6.2.14a) for a = a:

^(«)<^(0) + (7y^"(0). (6.2.15)

If this condition is not satisfied either, compute a value a G (0, a) satisfying (6.2.14).

6.3. Definition and properties of the penalty parameter

To guarantee convergence of the algorithm, each step must satisfy a sufficient descent con­
dition. This implies the need to select the penalty parameter in such a way that the initial 
derivatives of the merit function (the quantities bounding the descent achieved in the line- 
search) take acceptable values, and in particular, property P4 (suitably extended) holds for 
the algorithm, both when the normal linesearch and when the curvilinear search are used. 
The next paragraphs indicate a way in which this can be done for both cases, and the rest 
of the section presents the properties associated with this definition.
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Definition of the penalty parameter

When trying to show that property P4 holds for this algorithm, we face an immediate 
complication. There is no longer any quantity readily available that provides a good measure 
for the bound /JH||pfc||2 on the initial derivatives for the linesearch. For example, the values 
used in Chapters 4 and 5, pTHp and p^ZTHZpz + ||c + ujc||2 respectively, may not even be 

positive. Consequently, we introduce in this section a definition of pk based on the value of 
the penalty parameter that makes the corresponding derivatives zero, with the addition of 
adequate safeguards.

Let

T =
2u)T(\ - p(c — s)) + Y2iP(ci _ Si)wTV2CiW for the curvilinear search, 

0 for the normal linesearch;

and

From (6.2.11),

fp = fp + 2(2A - p)T(c - s).

fP < -A||p||2 + /32l|c-s||,

where we can assume that > /?i. 
Define p\ from

2/p

Pi =
c - s

/,

if T > 0,

otherwise.
||C-S||2

Let p~ denote the value of the penalty parameter at the previous iteration. If p- = 0 and 
Pi < 0, replace fp in the previous definition by fp + /?/i||p||2, where /^ > 0 is some specified 
parameter, and recompute the value for pi accordingly.

Let

e = l|c||2 + (P - p)Tc - (p + Zpz)THYpY,

if ||c|| = 0 or the constraint is not active,

-c, otherwise,

where p denotes the QP multipliers at the solution of the QP subproblem, if available, or 
the multiplier estimate otherwise.
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From the non-singularity of the Jacobian at any limit point of the sequence {z*} (as­
sumption A3), there exists a constant (3sva > 0 such that

^ > 0.,A\\Ypr\\ * ^ S ^

It follows that b satisfies

ll6ll < PH + ||/* - £11 + -Nil#(P + Zpz)\\.

This implies the boundedness of ||fr|| and also from Lemma 3.4.1 and condition C8,

||Pfc|| -► 0 =*> \\bk\\ -* 0.

Define p2 from

m+m
2||c-s||

if§^c"(0,p ) >-p^ZTHZpz - \\c\\2 

or <f>N'(0,p-) > -p%ZTHZpz - ||c||2,

0 otherwise.

To define a bound for the penalty parameter, we introduce a positive constant (1th-, and
let

max(pi,p2)
max(pi, 0)

if HpII < Pth and ||c - s|| > ||p||2, 
otherwise.

Also, let

{Pmin p — 0,

2p otherwise.

Finally, the bound p is given by

2p

P = Pm

P

if 2p> pm, 

if Pm > 2p> p~, 
if p~ > 2p.

From this definition it immediately follows that p > 2p, and if p > 0 then p > Pmin-

Properties of the penalty parameter

From the previous definition we can show that property P4 holds for the algorithm.
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Lemma 6.3.1. For pk > 0 defined as above, there exists a constant > 0 such that either

<f>ck"(0,p) < -MPk\\2, or
<ft'(0,p) < -f3H\\Pk\\\

(6.3.1)

for all p> pk.

Proof. Define a value c1 such that min(/?tfc,ea) > c7 > 0, and whenever ||pjt|| < e1 we have 
(pk + bk)Tsk > 0. Consider the following cases:

• If ||c-5|| < ^||p||2, then

^"(0,p) = /p + T - 2p\\c - s||2 <fp< -IftlbH2,

<t>N'(0,p) = %fp-p\\c-s\\2 < \ fp < -^AIIpII2.

• If ||c - s\\ > •^■(IpII2 and ||p|| > e', then if p > 0, from p> pi,
*H2

fp + r - 2p\\c - s\\2 < -ip||c - s\\,

implying

<I>C"(0,P) < -^Pmin||c- S||2 < -^min(|^)2||p||2, 

<t>N'(0,p) < 5||2 < -iPmin(^-)2||p||2-

If p = 0,

4>c"(o,p) < -Ph\\p\\2,

^'(0,p) < -±Ph\\p\\2.

• If ||c - s|| > ^-IIpII2 and ||p|| < e', from ||p|| < ea we must have used the normal 

linesearch, and from the definition of p it must hold that p > max(p-,p2).

^'(0,^) = -pTHp - fiTc + (2A - p)T(c - s) - p||c - s||2

= -pTzZTHZpz - ||c||2 - (2£ + b)T(c -s)-(p + bfs - p\\c - s\\2

< -2pTzZTHZpz-2\\c\\2

< -Pg\\p\\2, (6.3.2)
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implying that property P4 holds. |
Following the procedure outlined in Chapter 3 for the global convergence proof, the next 

step is to establish bounds for the rate of growth of the penalty parameter. The next lemma 
shows that property P5 holds for this algorithm.

Lemma 6.3.2. For any iteration ki in which the value of p is modified,

Pfc,IK||2 < N

and

for some constant N.

Proof. We show first that for some positive constant K, whenever the value of p has to be 
modified,

||c - a|| > A'HpH2. (6.3.3)

Considering the cases introduced in the last lemma, whenever

the result holds immediately. If this is not the case, assuming that ^ > /3i + fih it follows 
that p = max(pi,0) and from

/» < -AIM2 + Allc - <11 < -» - <11 < o,

we must have pi < 0 and p is not modified.
Also,

P2\\c-s\\ = \\2Z + b\\<N1,

and

ftllc- <ll2 < /, + AIM2 < (A - A)IM2 + All<- <11 < (A + - <11.

implying

Pi||c-s|| < N2

and
p\\c - a|| < N,
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but from ||c — s|| > /^||p||2 it follows that

^||p||2 < N,

completing the desired result. |
The proof now proceeds along the same lines as those given in Chapter 3. If the normal 

linesearch is used, for the corresponding iterations the results given in Lemmas 3.6.1 to 
3.6.6 hold as given in Chapter 3. If the curvilinear search is used, it is necessary to modify 
the proofs for some of these results, as follows.

Lemma 6.3.3. At any iteration where p has to be modified,

cTfi < iVi||p||2 + JV2||c - s||,

where fi denotes the QP multipliers, and N\ and N2 are positive constants.

Proof. If ||7j|| > e3, the result follows from assumptions A2 and A3. If ||p|| < es, then p 
has been obtained as the solution for the QP subproblem, and it satisfies

gTp + pTHp= -cTfi.

Furthermore, a normal linesearch has been performed.
Let p~ denote the value of the parameter before being modified; if p = pi, then

<t>N'(0,p~) > <t>N'(0,p) > -\fp > \fii\\p\\2 - \P'2\\c - s||, (6.3.4)

and if p = p2,
<r'(0,p-) > -pTzZrHZpz - ||c||2 > -Mp\\2. (6.3.5)

From
<t>N\o,P~) = PTg + (2A - p)T(c - 5) - P~||c - s||2 

and the previous equations,

cTp, = -pTHp - <f>N'(0,p-) + (2A - p)T(c -s)- p-\\c - s||2

< PlM2 + (# + ll2A - ^ll)llC “ 5II “ P~WC ~ SH2-
From the nonnegativity of p-||c — s||2 and the boundedness of the Lagrange multiplier 
estimate the desired result follows. |

The proof of Lemma 3.6.2 does not require any modification for this case. The proof of 
Lemma 3.6.3 needs to be slightly modified, as follows.
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Lemma 6.3.4. There exists a bounded constant M such that, for all l,

pk, IKp*H2 < M- (6-3-6)
k=k.

Proof. In the case when a normal linesearch is used, the proof follows along the same lines 
as the proof for Lemma 3.6.3. For the case when a curvilinear search is used, consider the 
following argument.

The subscripts 0 and K denote quantities associated with iterations k\ and fc/+i respec­
tively. Consider the identity

(6-3.7)
k=0

and observe that the termination criterion for the linesearch (6.2.14) and the fact that the 
penalty parameter is not increased, imply that for 0 < A: < A’ — 1,

~ ^k+i ^ ~<Tal<f>k » (6.3.8)

where 0 < o < 1. Since a*, o and are positive, combining (6.3.7), (6.3.8) and the result 
of Lemma 6.3.1 gives

Y a*IWI2 ^ - <t>CK-
k=0

Rearranging terms we obtain

Y lla*P*H2 ^ (6-3.9)
k=0

The result then follows by multiplying (6.3.9) by po and using Lemma 3.6.2. |

Lemma 3.6.4 does not require any modification.
Lemma 3.6.5 applies directly to the case when a normal linesearch is performed. The 

corresponding version of this result for the case when we use a curvilinear search is given 
in the following lemma.

Lemma 6.3.5. For 0 < 9 < a*,

4>ck’"(9) < -6ak<f>f(0) - 12ak<t>k'(0) + jV||pfc||2,

where N is a constant independent of k.
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Proof. The third derivative of <t>c is given by

<f>c'"(a) = §vTV2 F{xa){2av + in) + X3i(2«w,- + Wi){2av + u;)TVfF(xa)(2ai; + w)

-01C» + P^r(«),

where

<f>^"\a) = 6tf^Vc(xa)(2at; + in) - 2atii — Uij + 6(2ati + t2)T[yc(xa)v — 2ui)

+ 3£,(2a/i. + t2i)(2ai; + w)TV2Ci(xa)(2av + in) + 6X)^a<vTV2c,(xa)(2ai; + m)

+ EiAc,Efc(2anfc + injt)(2ai; + in)TVfcC,(xa)(2o;i; + in)

and

4>%"'(a) = 6^Vc(xQ)(2ai; + in) - 2a«i - u2) ^2Vc(xa)n - 2uij

+ 3E, (Vcj(xa)(2an + in) - 20111; - U2,)(2an + in)rV2c,(xa)(2on + in)

+ Ei(c«(*o) - ■sai)E*(2avfc + wk){2av + in)rVfcC,(xa)(2ai; + in)

+ 6Et(c«(*o) “ Sai)wTV2c,(xa)(2on + in).

To compute a bound for the third derivative, the following Taylor expansions are useful:

Vcj(xa)(2at;+in) —2o«i; — «2j = —2a(c; —Sj+u;,- —in^V^iin —(2ai;+in)TV2c,-(2j)(2ai;+iu)) t 

Ci(xa) - -So; = (1 - o2)(c,- - s,-) - a2(u>i + ^inTV2c,in - ^(2ai> + in)TV2Ci(x()(2oi; + in)).

From these results, the definitions of v and in and Lemmas 6.3.4 and 3.6.4, it follows that

<£c'"(a) = 24atf(c - s) + \2ap\\c - s||2 + 0(||p||2)

= 24otf(c - s) + QawTV2Fw + 12agTv + 12a(A — h)T(c — s) — 6a<j>c (0) + 0(||p||2)

= 12o/tr(c - s) + 12agTv - 6a<£c”(0) + 0(||p||2).

We must now consider two cases. If n ^ 0 we can write

<f>c"\a) — 12avT(g - ATp) - 6a<j>c"(0) — 12apTs + 0(||p||2), (6.3.10)

and if in ^ 0 but v = 0 then

4>c (o) = ^oin^p - ATfj.) - Qa<j>c "(0) - 12a4>c (0) - 12apTs + 0(||p||2)- (6.3.11)
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From condition C8 on the multipliers, implying that for large enough k, fxTs > 0, the final 
result follows:

<t>c"\a) < -6a<t>c"(0) - 12a<f>c'(0) + lV||p||2 (6.3.12)

for some positive constant N. |
It is now possible to prove that the steplength a* is also bounded away from zero in 

the case when a curvilinear search is performed. For the normal linesearch, the equivalent 
result is given in Lemma 3.6.6.

Lemma 6.3.6. If a curvilinear search is performed, the steplength a* (0 < a* < 1) satisfies

*Uai.) ~ *S(0) < ^f(O)

and a/c > a, where 0 < <7 < 1, and a > 0 is independent of the iteration.

Proof. We show that a step satisfying the conditions for the curvilinear search termination 
criteria exists and is uniformly bounded away from zero. To take into account the variant 
in the termination conditions introduced for case b), let a denote a given initial value, to 
be selected as either 1 or d.

Assume that condition (6.2.14a) is not satisfied for a = d; that is,

<t>c{a) > <j>c{Q) + <ry <£c"(0).

Define
^(a) = ^(a) - ^c(0) - ay^"(0),

so that

#(«) = <ACV) - <^c"(0),

^"(o) = <£C”(a) - (T<j>c"(0).

For a = 0,

Vv(o) = 0,

C(0) = ^(0) < 0,

^(0) = (1 - <r)<t>c"{0) < 0.
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Define also
V>„(a) = <t>c{a) - *c(0) - ria<t>c'(Q) - r/y <^c"(0).

From ^(d) > 0, there must exist a value aj 6 (0,d) for which ^(^i) > 0- Otherwise, 
if ^(a) < 0 for all a € [0,d), integrating on this interval we have

<f>c(d) < <j>c(0) + T)d(f>c'(0) + J7y</>c"(0), (6.3.13)

implying
ipc(d) < rjd<f>c'(0) + ^ ad2<f>c"(0) < 0. (6.3.14)

Let «i be the smallest such point, implying that ^(a.) < 0 for all a € [0,ai). If we integrate 
again between 0 and aj,

0c(ai) < ^c(0) + 7?ai</>c'(0) + »7y^c,,(0), (6.3.15)

and
Vv(o:i) < J?ai<^c,(0) + (ri- oOy^'tO) < 0, (6.3.16)

so «i satisfies the termination conditions.
For Qj we have

4>c\ai) - #c'(0) - T)ai<}>c '(0) = 0, (6.3.17)

and using a series expansion for <j>c'

<f>c'((xi) = <^'(0) + oti<f>c'(0) + ^c"'(6), (6.3.18)

where 0 6 (0,£*i].
The previous equations imply

(1 - ^'(O) + ai(i - r,)4>c"(0) + ^c"\e) = o, (6.3.19)

and as we know that a positive root exists, we must have (j>c'"(9) > 0. The root is given by

(6.3.20)a, = -d - +<f>c"'(0) \

and the following bound holds:

(1 ^ [<t>c"'(o)j 2(1 ^<t>c"'{oy

Qi > maxi —2(1 — T))
<f>c"(0)
4>c'"{9y

-2(1-7?)
<f>c'(0) \

<t>c"'(e) y (6.3.21)
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From property P4, <£c"(0) < —/3w||p||2 and

<t>c'"{0) < -18min(^c"(0),^c,(0)) + iV||p||2

for some N > 0, giving

ai > max( 2(1 - Mh
18/3* + N ’

2(1 ~ r,)0H \ 
18/3* +AT )'

completing the proof. |
We can now present the global convergence theorem for this algorithm. 

Theorem 6.3.1. The algorithm described in this chapter has the property that

(6.3.22)

lim llpill = 0. (6.3.23)k—>oo

Proof. The proof is similar to the one for Theorem 4.3.1. We include it here for complete­
ness.

If ||pjfc|| = 0 for any finite k, the algorithm terminates and the theorem is true. Hence 
we assume that ||p*.|| / 0 for any k.

When there is no upper bound on the penalty parameter, the uniform lower bound on 
a from Lemmas 3.6.6 and 6.3.6, and the bounds on the growth of the penalty parameter 
given by Lemmas 3.6.3 and 6.3.4, imply that for any £ > 0 we can find an iteration index 
K such that

||p*II < £ for k> K, 

which implies that ||pfc|| —>■ 0, as required.
In the bounded case, we know that there exists a value p and an iteration index K such 

that p = pior all k > K. We consider henceforth only such values of k.
The proof is by contradiction. We assume that there exists 6 > 0 and an infinite 

subsequence {/:,■} such that Hp/tJI > e for all i. Consider only indices i such that fc, > K. 
Every iteration after K must yield a strict decrease in the merit function because, using 
Lemmas 3.6.6, 6.3.1 and 6.3.6, and the fact that the penalty parameter is not modified,

</>(«) - </>(0) < -i<Ta2/3*||p||2 < 0.

The adjustment of the slack variables s in step (ii) of the algorithm can only lead to a further 
reduction in the merit function, as Z is quadratic in s and the minimizer with respect to s, 
is given by c, — At/p. For iterations from the subsequence we have

^(zfc.+i) - #**) < tixki+i) ~ 4>{xk) < -\(ra2f3He2.
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Therefore, since the merit function with p = p decreases by at least a fixed quantity at 
every step in the subsequence, it must be unbounded below. But this is impossible, from 
assumptions Al, A2 and Lemma 2.4.1. Therefore, (6.3.23) must hold. |

Corollary 6.3.1.
lim ||a:fc — a;*|| = 0.

k—+oo

Proof. The result follows immediately from Theorem 6.3.1 and Lemma 3.4.1. |

Corollary 6.3.2.
lim ||A* - A*|| = 0.

fc—►CO

Proof. The result follows from Lemma 3.7.1, given the results in Lemma 3.6.6 and Corol­
lary 6.3.1. |

6.4. Rate of convergence

After global convergence has been established, the next step is to prove that under certain 
conditions the algorithm has a quadratic rate of convergence. Note that in this section 
we can always assume that Lemma 6.2.1 applies, as we are only interested in the limiting 
behavior of the algorithm. Consequently, we need only consider the case when a normal 
linesearch is used.

Again, it is necessary to start by presenting some results on the growth rate of the 
penalty parameter. The next lemma establishes property P7 for the algorithm.

Lemma 6.4.1. If there exists an infinite subsequence {fcj} of iterations in which the penalty 
parameter is modified,

lim pfc||K||2 = 0,
/—►CO

and

lim pkMckt - Sfc,|| = 0.
/—►CO

Proof. We drop the subscript ki in what follows. From the definition of p,

P2\\c-S\\ = l|2f + b\\,
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and from the fact that ||6jt|| —> 0 as ||pjt|| —> 0, it must hold that

lim H2&, + 6*, || = 0.
l—*oo

Assume that ||p|| < From (6.3.2),

< -Pq\\p\\2 < 0,

and from
^*'(0,^1) = 0

it must hold that pi < 2p2, implying that

lim Pk,\\ck, ~ «jb,|| = 0.I—►OO

We can now use (6.3.3) to get
lim PkMPkM2 = 0,
/—►OO

completing the proof. |
The proofs for Lemmas 3.8.1, 3.8.2 and 3.8.3 hold for this algorithm.

Conditions for quadratic convergence

The last requirement for the proof of quadratic convergence is to establish that a unit step 
is always taken for points close enough to the solution (property P8). The condition needed 
to prove this result, and to ensure that the sequence {a;*. — z*} converges quadratically, is 
a slightly modified version of condition C12 on the multipliers:

C12”. The multiplier estimate satisfies

\\pk - A*|| = 0(||a:* + Pk~ **11).

Lemma 6.4.2. If condition C12” is satisfied, there exists an iteration index k such that 
for all indices k >k a unit steplength is accepted: a/t = 1.

Proof. Assume that ||p|| is small enough so that a normal linesearch has been performed. 
Given that condition Cll in Chapter 4 is trivially satisfied for this algorithm (remember 
that Hk = Wk), from Lemma 4.4.3 we have that

IN + pit - **11 = o(IN - *+||);
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using this result in condition C12” we obtain

A*|| = o(||zfc-x*||).

Hence condition Cl2 is also satisfied. We can now use the same argument presented in the 
proof of Theorem 4.4.1 to conclude that the desired result holds for this algorithm. |

The proof of quadratic convergence is given in the following theorem.

Theorem 6.4.1. The algorithm presented in this chapter converges quadratically.

Proof. It is enough to show that \\x + P — £*|| = 0(\\x — x*\\2), as the previous lemma 
showed that a unit step is always taken for large k. Assume k to be large enough so that 
Pk is obtained as the solution of the QP subproblem, and the correct active set has been 
identified.

We drop the iteration index k in all that follows. Consider first the decomposition of 
x + p — x* into null-space and range-space components:

x — x* = Zu -\-Yv.

For the range-space component, consider the series expansion restricted to the active 
constraints at the point:

0 = c* = c + A(x* — a;) + 0(||x — a;*||2).

From Ap = -c and the previous decomposition,

A(x + p - x*) = 0(\\x - x*||2).

For the null-space component, consider the corresponding Taylor series expansions 
around x:

A*rA* = g* =g + V2F(x* - x) + 0(||x - x*||2), 

A*tA* = AtA* + £,A*V2Ci(x* - x) + 0(||x - z*!!2).

Combining these two results,

H(x - x*) + ArA+ = gr + £,-(A,- - A*)V2c,(x - x*) + 0(||x - x*||2),
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and from IIp + <7 = .AT/2,

H{x + p- x*) + At(X* -ji) = E,(A,- - A?)V2c,-(z - x*) + 0(\\x - x*\\2).

Now using condition C12” on the multiplier estimate,

pk- \* = 0(||xfe +Pk~ *+||),

and assuming that ||p|| is small enough so that a step of one is taken in all iterations and 
therefore A* = Pk-u the previous equation reduces to

H(x + p-x*) + At(X* - p) = 0(\\x - x*112)•

Putting these results together,

H At 
A 0

x + p- x* 
X* — p

0(\\x-x*\\2),

and using the non-singularity of the reduced Hessian and the Jacobian of the active con­
straints at the solution,

x + p — x* 
X*-p

0(||*-**||2),

implying

completing the proof. |

lim
k—>oo II** - ^ll2

= K < ex,

6.5. Summary

In this chapter we have introduced and analyzed a third algorithm based on the framework 
algorithm of Chapter 2. Its distinctive feature is the use of exact Hessian matrices of the 
objective and constraint functions. As before, the search direction is obtained from an in­
complete solution for the QP subproblem. Some conditions on the incomplete solution have 
been presented that allow some convergence properties of the algorithm to be established. 
The results are:

• When the search direction satisfies the conditions introduced in Section 6.1, the mul­
tiplier estimate satisfies conditions C7-C9, and the Hessian for the QP subproblem, 
Hk, is the exact Hessian of the Lagrangian function, then the algorithm is globally 
convergent.
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• If the multiplier estimates /z* satisfy the following condition: 

Cl2”. Il/tfc - A*|| = 0(\\xk+pk - a:*||).

Then the algorithm converges quadratically.



Chapter 7

Numerical Results

In this chapter we present numerical results obtained from an implementation of the al­
gorithm described and analyzed in Chapter 4. The implementation has been written as a 
modification of NPSOL, with the only difference being the use of an incomplete solution 
for the QP subproblem as the search direction, and the consequences of this change on the 
rest of the algorithm. The details of the modification are given in the following section.

The purpose of the testing reported in this chapter is to demonstrate that the efficiency 
and robustness of the modified algorithm are comparable to those of NPSOL. Naturally, we 
can only test the hypothesis on the domain of problems NPSOL is designed to solve, namely 
problems having a moderate number of variables and constraints, although on these prob­
lems the opportunities for improvement are limited, as we discuss in later sections. What 
this implementation really tests is whether the introduction of flexibility in the determina­
tion of the search direction has a significant cost.

7.1. Implementation

In this section we describe the implementation used for the early-termination rules intro­
duced in Chapter 2. The rest of the algorithm is identical to NPSOL, and a detailed 
description of other implementation issues can be found in Gill et al. [GMSWSGa].

From the kth QP subproblem, the search direction Pk is computed according to the 
following steps. (The subscript k corresponding to the iteration number is dropped from 
now on.)

126
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• An initial feasible point po is obtained following the same procedure as NPSOL. Con­
ditions (2.2.6) and (2.2.7) have not been implemented, as the feasibility phase in 
NPSOL seems to give results that are adequate with respect to these conditions.

• The solution process continues until the first stationary point p is reached, and the 
corresponding QP multipliers fi are computed. In all that follows we work with a 
multiplier vector p that is weighted by the norms of the corresponding constraints,

Hi = Pi||a;||.

• Let eM denote machine precision. If

Vi p,-> (7.1.1)

then p is taken as the search direction.

• If (7.1.1) does not hold, we can take a step away from a subset of the active constraints 
while decreasing the value of the QP objective function. To identify the set of active 
constraints to be deleted, define

Mmin = t

and introduce a vector e/ as

{||flj|| if Hi ^

0 otherwise.

For the results presented in the following sections, f3mb = 10~3.

• There is also a limit on the maximum number of constraints to be deleted. If the 
previous condition is satisfied by more than a specified number of active constraints, 
/3m/, only the fimi ones having the smallest multipliers are deleted. For the results 
given, pmi = 50. For most problems this limit has no effect, since the total number of 
constraints is less than 50. •

• The direction away from the selected constraints is obtained as the least-norm solution 
of the system

Ad = e7;
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that is, we define
dy = (AY)-le„ dz = 0,

to obtain
d = Ydy.

• If ac denotes the step to the nearest inactive constraint, and am is defined as in 
(2.2.9):

 (9 + Hpfd 
am ~ d?Hd ’

we define a as in condition C3:

a = min(ac,Q!m,aM),

where is 1010 for this case.

• We obtain the search direction p from (2.2.11):

= 1 *
ad if ||p|| < PsipWi* + od)!, 

otherwise,

where (lsip = 100; with this value the step ad is accepted in nearly all cases.

• Finally, the multiplier estimate used in the linesearch is taken to be the QP multiplier 
if p = p. Otherwise, it is taken to be the least-squares estimate \L obtained from

AAtXl = Ag.

7.2. Test problems

The two algorithms, NPSOL and its variant using an incomplete solution for the QP sub­
problem as the search direction, have been compared by solving a collection of 114 problems 
from the literature. Some features of these test problems are given in Table 1, along with 
the “optimal” function values obtained in the actual runs.

The problems have been obtained from the following sources: •

• Problem 1 is the example problem distributed with NPSOL; its description can be 
found in [GMSW86a]. Problems 3 and 4 are slight reformulations of the same problem,
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where the bounds — 1 < £3 < 1 have been replaced by the constraint X3 < 1. Problem 
4 uses the same starting point as Problem 1. Problem 3 uses the starting point

fl 2 n 2 1 i 2 _i _in 
V3’3’10’3’3’3’3’ 3’ 3/’

• Descriptions for problems 6 and 12-15 can be found in [MS82], The version of problem 
6 considered is the one corresponding to a value T = 10. Problems 12 and 13 start 
from point (d) for Wright No. 4 as indicated in the reference, while problems 14 and 
15 start from points (a) and (b) for Wright No. 9, respectively.

• A description of the SQUARE ROOT problems (17-20) and of EXPO (9) can be found 
in Fraley [Fra88].

• Problems 21-30 were obtained from Boggs and Tolle [BT84].

• All problems having names starting with “HS” are from Hock and Schittkowski [HS81].

• Problems 85-95 can be found in Dembo [Dem76].

All the above problems have been used in the past to test NPSOL. It should be noted that 
the problems in this group are small; the average number of variables is 10, and the average 
number of constraints is 6. Nevertheless, many of these problems are considered hard to 
solve. Moreover, for some of these problems the assumptions made in Chapter 2 to establish 
the convergence results fail to hold; for example, in some cases the Jacobian at the solution 
is singular, or no feasible points exist for some QP subproblems.

In addition to the previous set, the algorithms have been tested on another group of 
problems:

• The structural optimization problems 99-114 are described in Ringertz [Rin88]. The 
letters “I” and “E” in the problem name indicate if the formulation used included 
explicitly the displacement variables (“E”) or eliminated them in advance. Also, the 
following number (10, 25, 36 or 63) denotes the number of bars in the truss considered. 
Finally, whenever a number is included at the end of the name (006, 040 or 060), the 
initial point has been modified to be Xj = 6, 40 or 60 respectively.

These problems have been introduced because of the atypical behavior of quasi-Newton 
SQP algorithms on them. For this group, the ratio of QP to nonlinear iterations is large
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when compared to the size of the problem; on the first test set (problems 1-98) the average 
ratio for NPSOL is 2 QP iterations per nonlinear iteration, while on problems 99-114 the 
average ratio is 30.

The normal behavior of NPSOL on the first set of test problems is to require a relatively 
large number of QP iterations in the first few nonlinear iterations. Typically, the number 
of QP iterations declines exponentially until near the solution, when only one iteration is 
required. As a result, significant savings achieved by incomplete solution of QP subproblems 
in the early iterations are masked by a large number of subproblems requiring only a few 
QP iterations. As an example, for problem 98 the largest number of QP iterations needed 
in any nonlinear iteration is reduced from 57 for NPSOL to 15 for the algorithm using early 
termination. This effect is much less clear when we look at total numbers of QP iterations 
(244 for NPSOL vs. 170 for early termination).

The STRUC problems depart from this “standard” behavior, in the sense that the 
number of QP iterations declines much more gradually. (Although only one QP iteration 
is required in the end, most nonlinear iterations require more.) This offers the possibility 
of observing the reductions that can be achieved by using the early-termination criterion, 
with limited distortion from the asymptotic behavior of NPSOL.

Finally, the problems in this second group are larger than the ones presented above; the 
average number of variables is now 55, and the average number of constraints is 100. For 
all the reasons mentioned, this set of problems provides a better environment in which to 
test the ability of the proposed early-termination criterion to reduce the total number of 
QP iterations.

Computing environment

Version 4.02 of NPSOL was used in the comparisons, and all parameters used in the code 
were given their default values (see [GMSWSGa]). No attempt has been made to improve 
the results by selecting a different set of parameters, as the main goal of the comparison is 
to determine the reliability of the changes introduced in NPSOL.

The runs were performed as batch jobs on a DEC VAXstation II with 5 megabytes of 
main memory. The operating system was VAX/VMS version 4.5, and the compiler used 
was VAX FORTRAN version 4.6 with default options.
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Table 1

Problem Set Description

No. Problem name Variables
1 NPSOL SAMPLE PROBLEM 92 SINGULAR 23 HEXAGON 94 HEXAGON (ALT. START) 95 LC7 76 ALAN MANNE’S PROBLEM 307 ROSEN-SUZUKI 48 QP PROBLEM 79 EXP6 610 STEINKE2 611 NORWAY 712 MHW4 513 MHW9 514 MHW9 INEQUALITY 1 515 MHW9 INEQUALITY 2 516 WOPLANT 1217 SQUARE ROOT 1 918 SQUARE ROOT 2 919 SQUARE ROOT 3 920 SQUARE ROOT 4 421 BT1 222 BT2 323 BT3 524 BT4 325 BT5-HS63 326 BT6-HS77 527 BT7 528 BT8 529 BT9-HS39 430 BT10 231 BT11-HS79 532 BT12 533 BT13 534 POWELL TRIANGLES 735 POWELL BADLY SCALED 236 POWELL WRIGGLE 237 POWELL-MARATOS 238 HS72 439 HS73 (CATTLE FEED) 440 HS107 941 MUKAI-POLAK 642 INFEASIBLE SUBPROBLEM 243 HS26 344 HS32 345 HS46 546 HS51 547 HS52 548 HS53 549 PENALTYl A 5050 PENALTYl B 5051 PENALTYl C 5052 HS13 253 HS64 354 HS65 355 HS70 456 HS71 457 HS74 4

Linear
constraints

Nonlinear
constraints

Optimal
objective

4 14 — .1349963e+01
0 2 .0000000e+00
4 15 -.1349963e+01
4 15 — .1349963e+01
7 0 .9295973e+06

10 10 — .2670099e+01
0 3 — .4400000e+02
7 0 — .1847785e+07
0 0 •1866481e—19
0 4 .4000131e—03
6 0 — .2402344e+02
0 3 .2787187e+02
0 3 — .3618808e+02
0 3 - .2104078e+03
0 3 — ,6043539e+04
3 5 ,1555716e+02
0 9 ,2500000e+04
0 9 ,2999795e+01
0 9 .2000000e+01
0 4 .25000006+04
0 1 — .10000006+01
0 1 .3256820e-01
3 0 .40930236+01
1 1 -.4551055e-03
1 1 ,9577426e+03
0 2 .24150516+00
0 3 .3065000e+03
0 2 .lOOOOOOe+Ol
0 2 —. 1000000e+01
0 2 — .1000000e+01
0 3 .91713436-01
0 3 .61881196+01
0 1 .0000000e+00
0 5 .2331371e+02
0 1 .13051956-23
0 2 -.19116186-15
0 1 — .lOOOOOOe+Ol
0 2 ,7266794e+03
2 1 .29894386+02
0 6 .5055012e+04
0 2 .50000006+01
1 1 —
0 1 .19694336-20
1 1 .lOOOOOOe+Ol
0 2 .19367826- 22
3 0 .38518606-32
3 0 ,5326648e+01
3 0 .40930236+01
1 0 .43136356-01
1 0 .4313635e-01
1 0 .43136356-01
0 1 .10021816+01
0 1 .62998426+04
0 1 .9535289e+00
0 1 •7498464e-02
0 2 .17014026+02
2 3 .51264986+04
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Table 1 (cont.) 
Problem Set Description

No. Problem name Variables
Linear

constraints
Nonlinear

constraints
Optimal
obiective

58 HS75 4 2 3 ,5174413e+0459 HS78 5 0 3 — .2919700e+0160 HS80 5 0 3 .5394985c—0161 HS81 5 0 3 .5394985c—0162 HS84 5 0 3 —.5329025e+0763 HS85 5 0 38 -.1905155e+0164 HS86 (COLVILLE 1) 5 10 0 -.3234868e+0265 HS87 (COLVILLE 6) 6 0 4 .8927598e+0466 HS93 6 0 2 ,1350760e+0367 HS95 6 0 4 .1561953e—0168 HS96 6 0 4 .1561953c—0169 HS97 6 0 4 •3135809e+0170 HS98 6 0 4 .3135809e+0171 HS99 7 0 2 -.8290102e+0972 HS100 7 0 4 .6806301e+0373 HS104 8 0 5 .3951163e+0174 HS105 8 i 0 •1138418c+0475 HS108 (HEXAGON) 9 0 13 -,8660254e+0076 HS109 9 i 8 .5362069e+0477 HS110 10 0 0 -.4577847e+0278 HSlll 10 0 3 -.4773239e+0279 HS112 (CHEMICAL EQ.) 10 3 0 -.4776109e+0280 HS113 10 3 5 •2430621e+0281 HS114 10 5 6 -.1768807e+0482 HS117 (COLVILLE 2) 15 0 5 ,3234868e+0283 HS118 (LC PROBLEM) 15 17 0 •6648204e+0384 HS119 (COLVILLE 7) 16 8 0 .2448997e+0385 DEMBO IB 12 0 3 •3168222e+0186 DEMBO 2-HS83 5 0 6 •1012243e+0587 DEMBO 3 7 4 10 •1227226e+0488 DEMBO 4A 8 0 4 .3951163e+0189 DEMBO 4C 9 0 5 •3952139e+0190 DEMBO 5-HS106 8 3 3 •7049248e+0491 DEMBO 6-HS116 13 3 10 .9758751e+0292 DEMBO 7 16 8 11 •1747870e+0393 DEMBO 8A 7 0 4 ■1809765e+0494 DEMBO 8B 7 0 4 .9118806e+0395 DEMBO 8C 7 0 4 .5436680e+0396 OPF 67 0 60 .9927005e+0097 GBD EQUILIBRIUM MODEL 44 38 6 .4510281c-1698 WEAPON ASSIGNMENT 100 12 0 -.1735019e+0499 STRUCIlOKON 10 0 11 .4156398e+04100 STRUCE10KON 18 10 8 •4156398e+04101 STRU CI10 VAN 10 0 12 ■5076669e+04102 STRUCE10VAN 18 10 8 .5076669e+04103 STRUCI25006 8 0 74 .5451627e+03104 STRUCE25006 44 50 36 .5451627e+03105 STRUCI25DAT 8 0 74 .5451627e+03106 STRU CE25DAT 44 50 36 .5451627e+03107 STRUCI36DAT 21 0 76 .3389915e+05108 STRU CE36DAT 75 72 54 .3389915e+05109 STRU CI63040 63 0 128 .6117064e+04110 STRUCE63040 147 126 84 .6117064e+04111 STRUCI63060 63 0 128 .6117064e+04112 STRUCE63060 147 126 84 .6117064e+04113 STRU CI63DAT 63 0 128 .6117064e+04
114 STRU CE63DAT 147 126 84 .6117064e+04
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7.3. Results

The results obtained from running both algorithms on the test set described in the previous 
section are presented in Table 4.

The parameters chosen to characterize the relative performance of both algorithms have 
been: the number of outer (nonlinear) iterations for each problem; the number of calls to 
the routine computing the values of the objective function, the constraint functions and 
their derivatives (function evaluations); the total number of inner (QP) iterations for the 
problem (including the number of iterations necessary to compute a feasible point); and 
the running (CPU) time needed to solve the problem. The results corresponding to both 
algorithms are given as a single entry in the tables, in the form

NPSOL result/Early-termination result.

Given that many of the problems are not convex, the algorithms may converge to dif­
ferent solutions. A few such events are indicated in Table 4. Another possible outcome is 
failure—that is, the algorithm terminates without finding a solution, because the iteration 
limit has been exceeded, because no significant progress can be made at the current point 
with respect to the merit function, or because the objective or constraint functions need 
to be evaluated at a point for which they are not defined in the code. Such failures are 
indicated by “—

To summarize the results from the test set we now give statistics for the whole set of 
problems. We start by presenting in the following table the number of failures for both 
algorithms. These values illustrate the reliability of the early-termination algorithm: it is 
able to solve 98% of the number of problems solved by NPSOL, and 92% of all the problems 
attempted.

Table 2

Problems Successfully Solved

NPSOL Early termination

107 105

Table 3 presents a summary of the results for the four quantities monitored in Table 4.
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The values have been computed as the geometric means for the ratios of the values for 
NPSOL and for the early-termination algorithm; that is, entries larger than one indicate 
that the corresponding value for NPSOL is larger than the value for the early-termination 
code (excluding those problems where one of the algorithms failed). Separate entries have 
been provided for problems 1-98 (the smaller problems), and for problems 99-114 (the 
structural optimization problems).

Table 3
Average Behavior: NPSOL vs. Early Termination

Problems

All 1-98 99-114

Nonlinear iterations .988 .979 1.044

Function evaluations .994 .999 .963

QP iterations 1.190 1.112 1.884

CPU time 1.043 1.022 1.200

We now comment briefly on the implications of these results.

• The early-termination rule seems to behave very well regarding the numbers of non­
linear iterations and function evaluations; even if we are now using a search direction 
of “worse quality” than in NPSOL, the numbers are very close for both algorithms. •

• The number of QP iterations is reduced by 20% for the complete set. When judging 
this figure we must take into account that the problems are small, implying that 
the number of QP iterations required per nonlinear iteration is also small. (In fact, 
the average value for the test set is 5.6 QP iterations per nonlinear iteration.) The 
opportunity for improvement is correspondingly limited. Moreover, both codes use the 
active set at the solution of the previous QP subproblem as a prediction for the correct 
active set in the current subproblem, resulting in a small number of QP iterations close 
to the solution. Finally, the early-termination rule still requires a feasible point, and 
the feasibility phase is the same as in NPSOL. When this phase accounts for most
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of the total number of iterations, as with the STRUC problems, the possibility of 
improvement is further diminished.

Nonetheless, it should be noted that for problems 99-114 the improvement obtained 
is significantly greater than 20%, as the mean ratio is now 1.88; in fact, when we 
look only at the larger problems, the relative performance of the early-termination 
algorithm improves markedly. This offers the promise that for even larger problems 
the results obtained may be substantially better than the values shown above.

• The CPU time required by the early-termination algorithm is lower than the time for 
NPSOL, but by a factor that is much smaller than for the number of QP iterations. 
This is due not only to the fact that function evaluations can be expensive when 
compared to the effort to solve each QP subproblem, but also to some details in 
the implementation that have been chosen to affect the number of QP iterations, 
even at the expense of running time. For example, the multiplier estimate used 
for the linesearch (the least-squares multiplier) is expensive to compute when many 
constraints are deleted in the last step, as the factorization for the Jacobian of the 
active constraints must be updated. There are still options to be explored that might 
improve the running times for the modified algorithm.

Finally, Figures 1 and 2 show plots of the results included in Table 4, in an attempt to 
make these results more easily understandable. The vertical axes give the base 2 logarithms 
of the ratios between the corresponding values for NPSOL and the early-termination (ET) 
algorithm. A value of 1 would correspond to a case in which NPSOL requires twice the 
number of nonlinear iterations, or function evaluations, etc. needed by the early termination 
algorithm.
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Table 4 

Numerical Results

No. Problem name
Nonlinear
iterations

Function
evaluations

QP
iterations

CPU 
time (s)

i NPSOL SAMPLE PROBLEM 12/13 16/18 45/34 3.69/3.612 SINGULAR 15/15 16/16 4/4 1.03/1.053 HEXAGON 15/16 21/23 32/29 4.41/4.414 HEXAGON (ALT. START) 11/11 16/14 35/26 3.56/3.265 LC7 7/9 9/11 13/16 .76/.9S
6 ALAN MANNE’S PROBLEM 17/17 18/18 40/37 21.13/21.927 ROSEN-SUZUKI 8/8 11/11 9/9 •81/.818 QP PROBLEM 8/10 9/11 23/15 1.10/1.049 EXP6 33/53 35/57 38/57 1.96/3.08

10 STEINKE2 -75 —/« -/14 —/.87
11 NORWAY 4/6* 5/7 34/13 1.23/.65
12 MHW4 10/10 18/15 14/12 1.31/1.25
13 MHW9 30/19* 56/28 42/24 3.71/2.31
14 MHW9 INEQUALITY 1 28/23 38/28 59/40 3.41/2.73
15 MHW9 INEQUALITY 2 41/14* 58/27 80/24 4.83/1.77
16 WOPLANT 25/29 29/33 44/35 6.85/7.17
17 SQUARE ROOT 1 -•/-* -/- -/- -/-18 SQUARE ROOT 2 23/23 36/36 0/0 5.01/5.32
19 SQUARE ROOT 3 6/6 9/9 7/7 .9S/.94
20 SQUARE ROOT 4 -7-* -/- -/- -/-21 BTl 11/11 19/19 11/11 •81/.83
22 BT2 9/9 14/14 9/9 .71/.70
23 BT3 2/2 5/5 2/2 •19/.19
24 BT4 12/12 18/18 13/13 .92/.92
25 BT5-HS63 6/6 9/9 8/8 .58/.58
26 BT6-HS77 15/15 21/21 16/16 1.52/1.54
27 BT7 31/31 56/56 32/32 3.36/3.43
28 BT8 17/17 19/19 17/17 1.25/1.44
29 BT9-HS39 13/13 16/16 14/14 .95/1.19
30 BT10 8/8 11/11 0/0 •48/.52
31 BT11-HS79 9/9 12/12 10/10 1.05/1.06
32 BT12 27/27 57/57 28/28 3.04/3.04
33 BT13 32/32 44/44 34/34 2.61/2.62
34 POWELL TRIANGLES 23/15 37/16 36/23 3.27/2.28
35 POWELL BADLY SCALED 12/12 15/15 13/13 .85/.85
36 POWELL WRIGGLE 34/32 69/55 60/40 2.77/2.39
37 POWELL-MARATOS 6/6 7/7 6/6 .44/.44
38 HS72 7/7 8/8 8/8 .69/.67
39 HS73 (CATTLE FEED) 4/4 5/5 4/4 .38/.36
40 HS107 11/11 18/18 27/18 2.77/2.56
41 MUKAI-POLAK 10/10 16/16 13/13 1.08/1.11
42 INFEASIBLE SUBPROBLEM -7-* -/- -/- -/-43 HS26 47/47 64/64 48/48 3.39/3.41
44 HS32 2/4 3/5 3/5 .25/.38
45 HS46 55/55 58/58 56/56 5.26/4.98
46 HS51 2/2 5/5 2/2 .18/.14
47 HS52 2/2 5/5 2/2 .19/.16
48 HS53 2/2 5/5 2/2 .19/.16
49 PENALTYlA 16/16 18/19 77/41 20.01/16.49
50 PENALTYl B 6/7 14/19 67/32 14.77/11.77
51 PENALTYlC 29/15 85/40 152/65 24.35/11.65
52 HS13 22/19 23/20 13/10 1.29/1.22
53 HS64 29/43 39/62 47/60 2.34/3.33
54 HS65 8/9 10/11 16/16 .70/.78
55 HS70 36/—* 39/— 39/— 3.33/—
56 HS71 5/7 6/9 9/9 .53/.67
57 HS74 10/26 15/48 14/28 1.17/2.68

* Failed to solve the problem.
* Converged to a different minimizer.
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Table 4 (cont.) 

Numerical results

No. Problem name
Nonlinear
iterations

Function
evaluations

QP
iterations

CPU 
time (s)

58 HS75 6/8 10/11 7/9 ■72/.9059 HS78 10/10 14/14 ll/ll 1.15/1.1560 HS80 8/8 10/10 8/8 •92/.9261 HS81 14/14 20/20 15/15 1.57/1.6062 HS84 -74 —/5 ~/9 —/.5163 HS85 17/14 18/15 33/20 4.00/3.1264 HS86 (COLVILLE 1) 6/7 8/8 11/11 •62/.6465 HS87 (COLVILLE 6) 11/8 18/9 18/14 1.63/1.2366 HS93 12/12 15/15 14/14 1.36/1.3867 HS95 1/1 2/2 1/1 .15/.1568 HS96 1/1 2/2 1/1 .17/.1569 HS97 3/3 6/6 3/3 •40/.4170 HS98 3/3 6/6 8/8 .43/.4471 HS99 23/—’ 44/— 74/- 3.99/—72 HS100 14/14 29/29 18/18 2.07/2.0273 HS104 18/18 20/20 23/23 3.36/3.3774 HS105 43/—* 61/— 97/— 27.14/—75 HS108 (HEXAGON) 24/32 45/49 57/87 6.78/9.3676 HS109 11/10 13/11 25/29 3.23/3.2677 HS110 6/6 9/9 24/15 ,78/.6978 HS111 41/49 64/75 44/52 8.08/9.0579 HS112 (CHEMICAL EQ.) 19/—* 39/— 54/— 2.78/—80 HS113 14/16 19/23 38/36 3.12/3.4181 Hsm 18/16 19/24 36/33 3.81/3.6082 HS117 (COLVILLE 2) 17/18 21/27 96/39 6.75/5.3483 HS118 (LC PROBLEM) 4/4 6/6 20/20 1.35/1.4084 HS119 (COLVILLE 7) 12/17 16/19 41/47 4.25/5.6085 DEM BO IB 281/—* 437/— 296/— 75.46/—86 DEMBO 2-HS83 4/4 6/6 4/4 •54/.5487 DEMBO 3 9/8 11/9 37/20 2.01/1.7888 DEMBO 4A 19/19 23/23 24/24 3.53/3.3189 DEMBO 4C 13/13 15/15 20/23 3.10/3.2090 DEMBO 5-HS106 17/18 21/24 30/31 2.90/3.0491 DEMBO 6-HS116 36/43 96/69 144/248 21.84/29.6592 DEMBO 7 19/12 24/15 126/68 15.54/9.8293 DEMBO 8A 33/42 85/118 105/99 7.52/9.1794 DEMBO SB 29/29 69/71 88/73 6.51/6.4595 DEMBO 8C 25/27 60/68 89/65 6.19/6.0696 OFF 18/17 19/18 53/51 468.12/456.1097 GBD EQUILIBRIUM MOD. 5/6 6/7 37/26 6.22/6.1098 WEAPON ASSIGNMENT 96/73 98/76 244/170 120.78/114.9399 STRUCI10KON 18/17 34/30 65/42 13.67/11.73100 STRUCE10KON 26/29 49/67 87/84 17.68/20.75101 STRUCI10VAN 23/19 41/34 54/51 16.30/13.85102 STRUCE10VAN —*/24 —/48 —/91 —/19.44103 STRUCI25006 42/37 68/62 147/85 92.44/80.99104 STRUCE25006 20/28 32/36 178/95 357.83/260.79105 STRUCI25DAT 11/12 19/21 24/22 24.75/27.11106 STRUCE25DAT 52/21 106/37 687/65 647.13/191.44107 STRUCI36DAT 23/20 38/34 59/46 120.79/108.02108 STRUCE36DAT 29/30 53/62 87/90 971.16/1021.87109 STRUCI63040 117/112 211/202 6116/3091 8182.13/7159.03110 STRUCE63040 375/—* 794/— 3545/— 77286.64/—111 STRU CI63060 —*/98 —/244 —/3899 —/8281.02112 STRUCE63060 63/115 150/316 6675/3407 25090.15/33228.42113 STRUCI63DAT 246/136 354/412 9043/2060 12591.61/11424.54114 STRU CE63D AT 52/72 86/145 8049/2858 41793.84/22740.66
* Failed to solve the problem, 
t Converged to a difTerent minimizer.
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Figure 1. Nonlinear iterations and function evaluations: NPSOL vs. Early termination



7.5. Results 139

X

NPSOL

2.5--

2.0 - -

1.5 - -

1.0--

0.5 -

x-x-)—^loooeeooo^oig^^j-
Problem

-0.5--

QP iterations

Figure 2. QP iterations: NPSOL vs. Early termination

From Figures 1 and 2 it can be noticed that the results obtained present a significant 
lack of correlation from one problem to the next; the comments offered earlier in this section 
apply when the average behaviors are considered, rather than for each individual problem. 
In Figure 1, the values for the numbers of nonlinear iterations and function evaluations are 
clearly clustered around zero, with relatively small deviations from the average. In contrast 
to these results, the predominance of positive values for the number of QP iterations can 
be easily appreciated in Figure 2, especially for those (larger) problems beyond problem 92.
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7.4. Further work

We conclude the report with some comments on those areas where further improvement in 
the algorithm is desirable.

• Two of the assumptions introduced in Chapter 2 were the nonsingularity of the Jaco­
bian for the active constraints at the solution, and the existence of a feasible region 
for all QP subproblems. Many of the failures in the solution of the test problems can 
be attributed to the corresponding subproblems lacking one of these properties (or 
being close to violating them). NPSOL includes rules to deal with these difficulties 
but they are not guaranteed to be able to cope with all possible situations, particu­
larly in the case of infeasible subproblems. A third related issue that appeared several 
times in the solution of the problem set, was the need for a disproportionate effort to 
obtain feasible points for the QP subproblems. In some of the problems the work to 
obtain a feasible point was far greater than the remaining work needed to compute a 
satisfactory search direction. For example, in problem number 114, 80% of the quite 
considerable solution time was spent in the feasibility phase by both algorithms.

These last two issues are closely related. It can be expected that a procedure to 
terminate the feasibility phase early may not only yield further reductions in the total 
number of QP iterations needed to solve the problems, but at the same time may 
provide a way to deal with infeasible QP subproblems.

• Another open area, also related to the assumptions made in Chapter 2, is the theoret­
ical study of the relaxation of the strict complementarity requirement. Some recent 
work on this topic by Burke [Bur89] indicates that it might still be possible to identify 
a satisfactory active set at the solution in a finite number of iterations. Several other 
associated issues are also open: for example, determination of the best strategy to 
compute a Lagrange multiplier estimate when the Jacobian is becoming progressively 
more ill-conditioned, and study of the theoretical rate of convergence achievable by 
the algorithm when strict complementarity does not hold.

• Finally, a more general issue is identification of the best strategy for the solution of the 
QP subproblems in the large-scale case. This report focused on active-set methods, 
but recently there has been great interest in the use of interior-point methods, in 
which the inequality constraints are rewritten in the form of equality constraints and
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simple bounds, and a barrier function formulation is used to move the simple bounds 
into the objective function. These methods may become a promising alternative for 
use within our framework (to solve the QP subproblems), as they seem able to avoid 
the exponential complexity associated with determination of the correct active set.

Exploration of these alternatives offers a great number of possibilities for further 
research in the quest for a satisfactory method to solve large-scale nonlinear programs.
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