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EXECUTIVE SUMMARX 

Performing a r i s k assessment of a n u c l e a r power p l a n t r e q u i r e s t h e s t u d y 

of complex sys t ems . Because of t h i s complex i ty , t h e i s s u e s of s i z e , speed , 

t im ing , and accuracy become impor tant when c o n s i d e r i n g t h e uses of a computer 

in t h e a n a l y s i s , in a d d r e s s i n g i s s u e s concern ing a n a l y s i s of p r o b a b i l i s t i c 

e v e n t s , t h e Lawrence Livermore n a t i o n a l Labora to ry (LLNL) has developed the 

SIGMA PI method of computing t h e p r o b a b i l i s t i c performance of complex s y s t e n s . 

A d e t a i l e d d e s c r i p t i o n of SIGMA PI has been r e p o r t e d p r e v i o u s l y in 

Ref. 3 . Included a r e some performance comparisons among l e a d i n g a l t e r n a t i v e 

methods of e v a l u a t i n g system f a i l u r e p r o b a b i l i t y , P ( S ) , from a s e t of minimum 

cut s e t s . 

Purpose 

The purpose of t h i s r e p o r t i s t o demons t ra te t h a t SIGMA PI i s t h e f i r s t 

method which a d d r e s s e s a l l of t h e major problems t h a t have p reven ted 

s u c c e s s f u l e v a l u a t i o n s of P(S) i n t he p a 3 t . To accomplish t h i s purpose : 

1) We present a description of these major problems, 

2) Then we describe how leading a l te rna t ive methods, including SIGMA 

PI, address these major problems, and 

3) Then we use the performance comparisons of SIGMA PI with leading 

a l t e rna t ives , that were reported previously, to display the 

uniqueness of the SIGMA PI method. 

The major problems are of two types: algebraic and p robab i l i s t i c . 
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Algebraic Problems 

Algebraic problems a r i se because minimum cut s e t probabi l i t ies cannot be 

combined ar i thmetical ly to produce an accurate value of P(S). Therefore, the 

or ig ina l set of cut s e t s must be manipulated a lgebraical ly to form an 

equivalent set of product se t s whose probabi l i t i es can be so combined. 

Probabi l i s t ic Problems 

Probabi l is t ic problems deal with the probabi l i ty calcula t ion of product 

s e t s , which are Boolean products of basic events. Product sets with dependent 

basic events can require more calculations for evaluation than even the 
r a s t e s t computers can provide, whereas, se ts with independent basic events can 

be calculated very quickly. 

Another probabi l i s t ic problem i s the development of adequately defined 

stopping ru les for terminating probabil i ty calcula t ions when suff ic ient 

accuracy has been a t ta ined . Stopping rules can r e s u l t in s ignif icant 

reductions in computer running times. 

Available a l te rna t ives to SIGMA PI are of two types: bounding methods 

and exact methods. 

Bounding Methotis 

Before r e su l t s of research on algebraic problems ci ted above were 

ava i lab le , bounding methods, which t r i ed to by-pass these problems, were 

necessary for evaluating large fault t r e e s . Bounding methods are s t i l l in 

use, even though the i r formulas are not expected to give correct 

p robab i l i t i e s , even when the given formula i s calculated accurately. 
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In t h i s repor t , we present resu l t s from the applicat ion of two upper 

bounding methods to f ive nuclear power plant safety system faul t t r e e s . These 

two methods are known as "SUM" and "MINIMUM CtJT.r, A comparison with accurate 

fa i lure probabi l i t ies for these same faul t t r ee s computed by SIGMA PI 

demonstrate the unre l i ab i l i ty of bounding methods in general . 

We also explain in th i s report why the formula for Hunter's bound can 

require more computer time to compute an 'lpper bound to P(S) than that 

required by SIGMA PI to compute P{S) accurately. 

Exact Methods 

The only viable t:y.;;ct methods available ;oday are dis jo int ing methods, 

which compute a set of d i s jo in t sees from the or iginal set of minimum cut 

s e t s . Disjointing i s a technical solution to the algebraic problems cited 

above; i . e . , the d is jo in t se t probabi l i t ies add up to P(S). 

By 1981, the three leading dis joint ing methods today were avai lable : 

1) Nakazawa (1977), 2) Abraham (1979), ard 3) STOP (1981). In t h i s repor t , we 

present r e su l t s from the application of these three methods to the same aer ies 

of cut set problems. Each method computed the same value of P(S) "exactly," 

i . e . , to machine accuracy. 

These r e su l t s show that the re la t ive speed of STOP increased from about 

five to eight times the speed of Nakazawa, and from about eleven to fourteen 

times the speed of Abraham, as the number of basic events in the t ree 

increased from 30 to 45. Comparisons on larger t rees were not made because i t 

was not feasible to run the computer long enough to l e t the Nakazawa and 

Abraham methods f inish their runs. 
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The SIGMA PI Method 

Although disjointing methods solved many problems, they presented some 

new problems of their own. All of these problems motivated the design and 

development of the SIGMA PI method. 

The special features used by SIGMA PI to address the above problems are 

summarized as follows: 

Algebraic Problems: 

1) The SIGMA method uses the > "OP algorithm to generate disjoint 

sets for quick accuracy. 

2) It also uses a technique called DECOHP to exploit special 

structures in the cut sets to increase the speed of the 

disjointing process. 

Probabilistic Problems: 

1) The SIGMA method avoids lengthy calculations by using a 

technique called PROB to generate only sufficient disjoint sets 

required for a prespeeified accuracy. PROB provides firm upper 

and lower limits to P(S), which it uses as the basis for a 

stopping rule, and which verify that the specified accuracy has 

been attained. Thu3, PROB retains full control over accuracy. 

2) The PI method further recuces computation times by converting, 

where possible, any set of independent basic events into 

multiple sets of conditionally independent basic events. 
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' ABSTRACT 

SIGMA PI la the fas tes t method avai lable today of accurately calculat ing 

probabi l i t i es associated with large fau l t t r e e s . To demonstrate t h i s , we 

describe the major problems that have prevented successful evaluation of these 

probabi l i t ies by other methods in the pas t . Then, we describe how SIGMA PI 

addresses a l l of these problems, and we compare the performance of SIGMA PI 

with that of leading a l t e rna t ive methods under selected problem scenarios. 

1. BACKGROUND - MAJOR ISSUES - COMPUTATIONAL PROBLEMS 

Performing a r i sk assessment of a nuclear power plant requires the study 

of complex systems. Because of t h i s complexity, the issues of s i 2 e , speed, 

timing, and accuracy become important when considering the uses of a computer 

in the analys is . 

Analysts are under increased pressure from decision makers t o develop 

more defensible analyses of probabi l i s t ic events. To adequately plan for such 

events, analysts must ca lcula te event probabi l i t ies with as much precision as 

data and computational resources allow. Because the causes of such events are 

so involved, current methods are imprecise, and bounding methods have been 

employed. Even when exact determination of absolute p robabi l i t i es i s not 

important, i t i s essent ia l to accurately assess variat ions in these 

probabi l i t ies as factors or parameters are varied. This assessment has been 

d i f f i cu l t to do because avai lable bounding methods can only employ bounds on 

variat ions that were estimated with bounds in the f i r s t place. 
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1.1. EVALUATION OF FAULT TREES 

The first step in evaluating PCS), the failure probability of a system 

(S), is to convert its fault tree into a Boolean sum of minimum cut sets. 

This set of minimum cut seta is called a problem set. P(S), the probability 

of the top event of the fault tree, is the probability of the union of the 

minimum cut sets. 

Fault tree analysis programs, such as FTAP (see Ref. 13), exist for 

generating problem sets from fault trees. But there are many problems that 

impact upon the efficient calculation of PCS) from a generated problem set. 

In addressing problems concerning analysis of fault trees, the Lawrence 

Livermore National Laboratory (LLNL) developed the SIGMA PI method of 

computing PCS) from a fault tree problem set. 

A detailed description of SIOiA PI has been reported previously in 

Ref. 3, which is the source of information for SIGMA PI descriptions given 

throughout this report. Included are some performance comparisons among 

leading alternative methods of evaluating system failure probability, P(S), 

from a set of minimum cut sets. 

This report was partially supported by the Division of Risk Analysis and 

Operations, Office of Nuclear Regulatory Researcb, and is a task deliverable 

for their project entitled, "Efficient Probabilistic Computations and Methods 

for FRA" CFIN No. A0392). 
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1,2, PURPOSE OF THIS REPORT 

The purpose of t h i s report i s to demonstrate that SIGMA PI i s the f i r s t 

method which addresses a l l of the major problems tha t have prevented 

successful evaluations of P(S) in the past . To accomplish t h i s purpose: 

1) We present a descript ion of these major problems, 

2) Then we describe how leading a l t e rna t ive methods, including SIGMA 

PI , address these problems, and 

3) Then we use the performance comparisons of SIGMA PI with leading 

a l t e rna t ives , that were reported previously, to display the 

uniqueness of the SIGMA PI method. 

We begin by describing sane of the major problems that have prevented 

effective evaluation of P(S). In la ter sections of t h i s repor t , we describe 

more problems encountered in applying dis joint ing techniques, so tha t s t i l l 

l a te r we can describe SIGMA PI in a manner that demonstrates, spec i f i ca l ly , 

how i t addresses a l l of these problems. 

1.3. MftJOR PROBLEMS THAT IMPftCT UPON THE EFFICIENT CALCULATION OF P(S) 

Major problems tha t impact upon the eff ic ient calculat ion of P(S) are of 

two types: algebraic and p robab i l i s t i c . 
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1.3.1. Algebraic Problems 

P(S), the system fa i lu re probabi l i ty , i s the probabil i ty of the union of 

the minimum out s e t s in the problem s e t : 

T T N(j) 
P ( S ) = P < U C(j)> = P < u n B(i,j)> 

j»1 j=1 1=1 

where: 

T i s the number of minimum out s e t s in the problem se t , 

CCj) i s the J th cut se t , 

B( i , J ) i s the i th basic event in cut se t C(j) , and 

K(j) i s the number of basic eventg in out set C(J). 

The calculat ion of the union of cut s e t s i s d i f f i cu l t even when accurate 

cut set and basic event p robabi l i t i es , P<C(j)> and P<B(i,j)>, can be 

computed. The reason i s that alffiost always some of the cut s e t s wi l l have one 

or more basic events in common, so that the sets are not d i s jo in t . Therefore, 

in general: 

T T 
P< U C(j)> * I P<C(j)> 

J-1 j=1 

This leads to the problem of manipulating the original set of cut sets 

algebraically to form an equivalent set of Boolean products that is 

"computable," i.e., whose probabilities can be combined by computationally 

efficient operations to yield P(S). 
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In Section 2, we ahal l examine the two beat known methods of generating 

equivalent se ts of t h i s kind: 

' ) The inclusion-exclusion method, 

2) The dis joint ing method. 

1.3.2. Probabi l is t ic Problems 

Any method of computing PCS) from a se t of Boolean product s e t s , 

{ o ( j ) | , *miat include a method of computing product set p robab i l i t i e s : 

K(j) 
P(D(<)> - P( O B ( i , j ) ) , 

i-1 

where B( i , j ) i s the i th basic event in set D(j) , and N(j) i s the number of 

events in D(j) . The time requires-iiue for th is calculat ion are l inear in the 

number of s t a t i s t i c a l l y independent basic events, but they are usually 

exponential in the number of dependent banic events, Section 2.4 of Ref. 10 

explains why t h i s i s so when the underlying component s t r e s s - strength 

probabil i ty d i s t r ibu t ions are assumed to be normal. The data given (which was 

derived from Ref. 9) shows that only six dependent oasic events in a set can 

require 50,000 times as much computer time as when the same six are s t a t i s ­

t i c a l l y independent. For t h i s reason, s e t s with five dependencies are usually 

considered as a cut off l imi t for feasible evaluat ion. 

Another p robabi l i s t i c problem i s the development of adequately defined 

stopping rules for terminating probabil i ty calculat ions when suff icient 

accuracy in P(S) has been a t ta ined . Stopping rules can r e su l t in conpiderable 

savings in calculations performed. 
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2. CURRENT METHODS OF EVALUATING P{S) 

There are only two kinds of methods available for evaluating P(S): 

bounding methods and exact nethods. In t h i s sect ion, we sha l l describe these ' 

two kinds in general , and then identify and describe three leading methods of 

each kind. Then, in the next sect ion, the performance of SIQ1A PI will be 

compared on selected problem se ts with performances of the other five 

methods. Also, some of the differences in approaches used by these methods 

wil l be discussed. 

2 . 1 . BOUNDMG METHODS 

Before algebraic methods of manipulating minimum cut se t s into equivalent 

Boolean products were developed, i t was necessary to r e l y on bounding methods 

to evaluate P(S). Even today, in prac t ice , only bounding methods appear to be 

avai lable to evaluate PCS) for large system faul t t r e e s . The r e su l t s are 

often unsatisfactory because bounding methods are not expected to give correct 

answers even when the given bounding formula i s calculated accurately . 

Also, some seemingly straightforward bounding methods, such as Hunter's 

bound, reveal , af ter Implementation, that they can exceed some exact methods 

in t he i r requirements for computer time. This nan tempt the user to invent 

short cuts t o the calculat ions for the bounding formula, ("since we are only 

after an approximation anyway"). Thla then opens the door to procedures whose 

outcomes are incomprehensible. An explanation of why Hunter's bound can be so 

d i f f i cu l t to compute i s given in Section 3.2.2 below. 
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Three upper bounding methods that have been applied t o nuclear power 

plant safety system faul t t r ee s (see Section 3.H.2 of Ref. 11) a re : 

T 
1) I P(C(J)} "SUM" 

j - 1 

T 
2) 1 . 0 - II (1.0 - P(C(J)) "MINIMUM CUT" 

J=1 

T 
3) I P(C(j)) - I P(C(1) n C(j)) "Hunter's" 

J=1 ( 1 J ) E T 

where: 

-> C(j) i s the J th miniinun cut s e t , 

o T i s the number of minimum cut s e t s in the faul t t r e e , 

o T i s a subset of T-1 pai rs out of the se t of a l l possible (1,J) 

pa i r s , selected appropriately t o guarantee an upper bound, and 

to maximize the second sura in (3 ) . 

In comparison to (3). i t i s in te res t ing to note that the f i r s t two terms 

of the inclusion-exclusion method: 

T 
1) I P ( C ( J » - I p (c ( i ) n c ( j ) ) . 

j - 1 a l l ( i , j ) 

produce a lower bound to P(S) (see Chapter IV of Ref, 1 ) . 

The f i r s t bound, "SUM," i s an upper bound to P(S) unless a l l minimum cut 

se ts are d i s jo in t , in which case equali ty holds . Thus, the effects of any 

common events among minimum cut se ts are not taken into account by SUM as an 

approximation to P(S). 
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The second bound, known as the "MINIMUM CUT" upper bound, i s an upper 

bound to P(3) unless a l l cu t s e t s a re s t a t i s t i c a l l y independent, in which case 

equal i ty holds . Lambert (Ref. 7) a lso points out t h a t , i f a l l basic events 

a re s t a t i s t i c a l l y independent, then equali ty holds if and only If rone of the 

basic events in the fau l t t ree i s repl ica ted , i . e . , i f and only if each basic 

event i s Input to only one gate In the faul t t r e e . 

Both the SUM and the MINIMUM CUT upper bounds become more accurate 

estimates of PCS) as the basic event p robabi l i t i es get smaller. Section 2.4.1 

of Ref. 7 presents an example which demonstrates t h i s fact for the MINIMUM CUT 

upper bound. 

The th i rd bound (3) I s known as "Hunter's upper bound," and (4) i s often 

referred to as "Hunter's lower bound" (Refs. 5, 6) . Hunter's upper Bound is 

developed as follows: 

The T cut se t s of a faul t t ree are t reated as nodes of a graph with cut 

se t in tersect ions as a rcs . Any T-1 ( i , j ) pairs of arcs that form a spanning 

t r e e , wil l guarantee that (3) wi l l form an upper bound to P(S). In order for 

the Bound to be minimum, the cut se t arcs are selected to maximize the second 

sum in the formula over a l l spanning t r e e s . Algorithms are in use (for 

example, see Ref. 12) that can find the maximal spanning t r ee using computer 

times that increase as T 2 . This time does not include the time required t o 

calculate the cut se t intersect ion probabi l i t i es , {P(CCI) O C{j ) )} . 

We can now see that the minimizing requirement for e i ther of Hunter's 

bounds includes the probabil i ty calculat ion of a l l possible pair-wise 

combinations of the cut set in tersec t ions , (C(i) fl C ( j ) ) , of which there are 

T(T-1)/2. Each of these cut se t arcs are new se t s formed by the basic events 

from two or iginal cut s e t s . 
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2.2. EXACT METHODS 

The two best known methods of generating a "computable" set of Boolean 

products from a problem set are : 

1) the inclusion-exclusion method, and 

2) the d is jo in t ing method. 

Of these two, the only viable method i s the d is jo in t ing method. We 

include a discussion of the inclusion-exclusion method here because i t io so 

well known (see Ref. H), and because i t I s of in t e res t t o identify some of the 

complexities involved in t rying to use i t to compute PCS) accurate ly . 

2 .2 .1 . The Inclusion-Exclusion Method 

The fact that se t probabi l i t ies of the well known inclusion-exclusion 

method converge t o P(S) (Ref. *)): 

T T T 
p(s) = I P ( C ( J ) ) - I I p(ccn n c(j)) + . . . , 

j=1 i=1 j=1 

where T is the number of minimum cut sets, has made it a tempting algorithm to 
run on a high speed computer. 

Our discussion of probabilistic problems at the end of Section 1.3 makes 
it clear that this series cannot be computed for even small problem sets where 
basic events are statistically dependent, since it requires the generation and 
evaluation of larger and larger product sets. In fact, in Section 3.2.2 
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below, we show that Hunter's bounds, which Involve calculat ions that are 

equivalent to only the f i r s t two sum terms of t h i s s e r i e s , i s effect ively 

eliminated when basic event dependencies e x i s t . 

A Tact tha t i s also becoming better known i s t h a t , even for medium 

problem 3e ts , and with a l l independent basic events, converging to an accurate 

value of P(S) with t h i s s e r i e s of product sums i s s t i l l beyond our fas tes t 

computers today. The problem i s that the cumulative sum has a tendency to 

o s c i l l a t e wildly between large posit ive and negative values for too many sura 

terms before i t begins to converge. 

2 .2 .2 . The Disjointing Method - Some More Problems 

The dis joint ing method converts the problem s e t , {C(j)l , in to an 

equivalent set of d i s jo in t s e t s , {D(j)}, expressed as another Boolean sum of 

Boolean products of basic events . The fact that the new se t s are d is jo in t 

means t h a t , if the new set probabi l i t ies can be calculated, accuracy i s 

assured because the d is jo in t set probabi l i t ies add up t o P(S), i . e . : 

P(S) = P [ U c(j)) = p ( u D( J ) ) = I P (D(J ) ) , 
j=1 j=1 j-1 

where V i s the number of d is jo in t s e t s generated. 

However, there are some problems with the d i s jo in t ing method: 

1) The new set of d i s io in t s e t s , {D(j)), tends to be much larger than 

the or iginal problem se t , tC{j)}. The f i r s t set generated will have 
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only a few basic events, but as new s e t s , D(j), are generated, they 

tend to increase in s ize in a pyramidal fashion. Also, V, the 

number of new se t3 , tends to increase considerably over T, the 

number in the original problem s e t . 

2) Available dis joint ing algorithms are designed to generate a l l of the 

V dis jo in t s e t s , and to compute P(S) from the i r probabi l i t ies "to 

machine accuracy." In the l i t e r a t u r e , t h i s type of method i s 

referred to as an "exact" nethod. 

3) From the previous discussion of probabi l i s t ic problems, we can see 

that, basic event dependencies can prevent the probability 

calculation for many of the dis joint s e t s . If only the evaluated 

set probabil i t ies are added, the resu l t is a lower bound to P(S). 

U) A stopping rule applied to a disjointing method could resu l t in 

significant reductions in computer running times. If a l l basic 

events are independent, i t i s possible to calculate probabil i t ies 

for a l l V dis joint se ts that the computer can generate with the 

given disjointing algorithm. But usually two or three decimal 

places i s a l l of the accuracy that i s required. Since the f i r s t 

disjoint se ts are the shortest , and the shortest tend to contain the 

largest probability values, only a re la t ive ly few of the f i r s t ones 

generated wil l contain enough of the required probabil i ty value t o 

give the accuracy that i s normally needed. Fortunately, the 

shortest se t s are also the easiest ones to evaluate. 
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I t i s noteworthy t h a t , thus f a r , no exact methods have been used to aid 

in the evaluation of r i sks aasociated with l a rge nuclear reactor and safety 

systems. 

2.2.3- Leading Disjointing Methods 

By 1981, the following three leading methods were avai lable: 

1) Nakazawa's Method (1977, Hef. 8 ) , 

2) Abraham's Method {1979, Ref. 1) , and 

3) The Sl-jr Method (1981, Ref. 2 ) . 

A complexity ana lys i s , reported in Chapter 1 of Hef. 3, indicates tha t , 

in the worst case, STOP requires computer time tha t i s weakly exponential in a 

function of N, the number of basic events in the s e t . A weakly exponential 

function of N i s defined as: 

e K " N , where K < 1 

In fac t , K-N i s equal to C(min), the s ize of the shor tes t cut s e t . This 

places STOP on the borderline with polynomial complexity because K i s no-mally 

very small, i . e . : 

K = C(min)/N 
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the r a t i o of the shor tes t cut se t to the fu l l set dimension. For example, i f 

C(min) i s three basic events, and N i s 100 basic events , then K - 0.03. 

An examination of the algorithms used by Abraham and Nakazawa indicates 

that the i r complexities are "strongly exponential" (K > 1.0). 

These findings are consistent with performance t e s t r e s u l t s presented in 

Section 3 .3 . 

The efficiency of the STOP algorithm i s due, in essence, t o the para l l e l 

fashion in which i t manipulates the given problem se t . The f i r s t s tep i s to 

decompose the problem set into disjoint and simpler problem se t s along a 

carefully chosen coordinate. Then, each new s e t i s s imilar ly decomposed. 

This process continues u n t i l , in the l im i t , a co l lec t ion of mutually d i s jo in t 

simple se t s i s obtained. 

This contrasts with the sequential operations in the Abraham method which 

does not view the cut se ts as a whole. Instead, each new set i s added to the 

union of previously processed s e t s , an operation that i s strongly exponential 

in complexity. 

The Nakazawa dis joint ing method shares a technique in common with STOP 

which re ta ins "prominent11 coordinates at a crucial s tep in the dis joint ing 

process. This technique makes Nakazawa's method a l i t t l e fas ter than 

Abraham's. 

1981 Technology Suacary 

We summarize the fau l t t ree technology avai lable in 1981: 

- 1 3 -



\) Fault t ree analysis programs ( e . g . , ETAP) were avai lable t o generate 

problem s e t s from fau l t t r e e s . 

2) Disjointing algorithms were avai lable t o convert problem se t s into 

se ts of d i s jo in t se ta , whose probabi l i t ies add up to P(S). 

Disjointing algorithms are a technical solut ion to the algebraic and 

probabi l i s t i c problems described in Section 1.3. However, problems with the 

d is jo in t ing method, described in Section 2.2.2 and in t h i s sec t ion, s t i l l 

needed to be resolved. 

The s ingle most s ignif icant technical development since 1981 that 

j u s t i f i e d the creation of the SIGMA PI method i s the DECOMP algorithm. As 

described below, DECOMP works with STOP to perform dis joint ing of most problem 

sets of in t e res t in computer time that ia s t i l l borderline exponential in N 

for smaller problem s e t s , but approaches l inear complexity as N gets l a rge . 

The dramatic improvement in d is jo in t ing speed due to the use of DECOMP is 

demonstrated by r e s u l t s of performance t e s t s reported in Section 3.3. 

2.2.K. The SIGMA PI Method 

SICMA PI consists of two methods, SIGMA and PI . SIGMA computes P(S) by 

summing (£) d i s jo in t set p robabi l i t i e s . The PI method prepares independent 

basic events for multiplying (il) their p robab i l i t i e s . By a careful merging of 

several analyt ic techniques in SIGMA with the PI method, SIGMA PI addresses 

a l l of the major problems tha t impact upon a successful evaluation of PCS). 

Thus, SIGMA PI i s the f i r s t method to be dedicated to the rapid and accurate 

calculat ion of P(S) for large systems. 
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The SIGMA Method: 

SIGMA i s an eff ic ient method of developing a suff ic ient number of 

d is jo in t s e t s , {D(j)}, from a given problem se t , {C(j) l , to permit the 

calculat ion of P(S) t o a desired prespecified accuracy. P(S) i s 

calculated as the sum of the probabi l i t i es of the d is jo in t products: 

P(S) = P( U C(j)) = I P(D(j) 
J J 

The efficiency of SICMA i-s due to several techniques that i t employs: 

1) STOP 

The STOP algorithm uas developed in 1981 at the LLNL 

(Ref. 2) . STOP is a very fas t method of generating a complete 

set of d i s jo in t se t s from a given problem se t , and then 

computing p(S) from them. When operating alone, STOP 

calculates P(S) t o "within machine accuracy," i . e . , STOP i s an 

"exact" method. 

2) PROB 

Under the SICMA PI mode, each time STOP develops a new 

level of d i s jo in t s e t s , a routine called PROB computes firm 

upper and lower oound3 to P(S), which i t use; as the basis for 

a stopping ru l e . These bounds converge rapidly at f i r s t and 

then more slowly as the d is jo in t ing proceeds. When these 
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bounds agree to within the accuracy specified by the user , PHOB 

terminates the ca lcula t ion. Experience shews tha t , for medium 

s ize problems with about 30 basic events, usually l ess than 

five percent of STOP'S complete dis jo int ing effort (which gives 

P(S) to machine accuracy) i s suff ic ient t o obtain three place 

accuracy in P(S). This percentage decreases as the number of 

basic events i s Increased. 

3) DECOMP 

The DECOMP algorithm examines a given problem set and 

finds any blocks among them. A block i s a special subset , C , 

of the or ig ina l set of cut s e t s , C, defined as follows: Let B 

be the se t of basic events in the problem s e t , C. Then C i s a 

blook if two conditions hold: 1) for the subset , C , a subset, 

B ' , of B are a l l don' t csresj 2) for the r e s t of the cut s e t s , 

C" = C - C , the se t of basic events , B" = B - B ' , are a l l 

don' t cares . A more complete description of blocks i s given in 

Chapter 3 of Ref. 3. 

Under normal circumstances, the or iginal problem set wil l have come from 

a s ingle faul t t r e e , and most often will consist of only a s ingle block. Bu-

STOP wil l pivot on the optimal coordinate for d is jo in t ing the problem in to two 

dis joint problem s e t s . Some of the new problem sets generated by repeated 

pivoting wil l be blocks. Whenever PROB determines that more dis joint ing by 

STOP i s required, control i s released to DECOMP which s t a r t s a new cycle by 
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finding any blocks which STOP may have generated during the previous cycle. 

DECOMP cont ola the feeding or blocks back to STOP for separate and, 

therefore, eff ic ient d i s jo in t ing . 

The complexity ana lys is of the SIGMA method, reported In Ref. 3, assumes 

the normal circumstances described above. The "expected" complexity obtained 

for large problem sets approaches l inea r i ty due to the a b i l i t y of DECOMP to 

exploit the many block s t ruc tures tliat are normally expected in large vroblem 

s e t s . By cont ras t , the Abraham and Naka2awa complexities are s t i l l strongly 

exponential under normal e ire urns tan ces because they are insens i t ive to block 

s t ruc tu re . 

The PI Method: 

The probabi l i s t i c problems described in Section 1.3 above provide a 

strong motivation for avoiding, where possible , dependencies among basic 

events. Such an opportunity presents i t s e l f whenever dependencies among 

some basic events are due to a mutual correla t ion with a "common-cause 

event." I t i s for t h i s commonly occurring opportunity that the PI method 

was developed formally. Chaptw 2 of Ref. 3 presents a detai led 

description of the PI method. 

Briefly, PI i s a method of examining Input f a i lu re d i s t r ibu t ions for 

common-cause dependencies, making sui table choices of common-cause randan 

var iables , and conditioning on zhem appropriately. These steps are 

performed by the user as he prepares the problem se t for input t o the 

SIGMA computer program. Performance of the PI method r e s u l t s in the 

conversion of a set of dependent basic events into mult iple se ts of 
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condit ionally Independent bagic events . SIGMA now must compute multiple 

p robabi l i t i es for the same s e t , D(J) . Section 1.3 above explains why the 

time required to coEpute P(D(J)) only once with dependent basic events 

can be orders of magnitude greater . 

Figure 1 i l l u s t r a t e s the merger of l^.e three major techniques in 

SIGHft Hith the PI method into the SIGMA PI method. 

3. COMPARING SICMA PI WITH OTHER METHODS 

3 . 1 . INTRODUCTION 

SIQfA PI ia tY>s first method Waich addresses a l l of the mrjor problems 

tha t have prevented effect ive evaluation of P{S) in the pas t . At t h i s level 

of problem dedication, SIGMA PI i s unique, i . e . , no a l ternat ive methods have 

been designed to compete with SIGMA PI. The leading avai lable a l te rna t ive 

methods of evaluating P(S) are ei ther exact methods or bounding methods. 

S t r i c t l y speaking, SIGMA PI should not be classified as an ejcact method 

because i t can control acouraoy, and exact Dsethods are designed to calcula te 

P(S) to machine accuracy every time, since i t can also compute p(S) exactly, 

we sha l l ca l l SIGMA PI a "controlled exact method." 

Neither can SIGMA PI be c lass i f ied as a bounding method in the usual 

sense because the upper and lower bounds which i t computes are firm, and wi l l 

converge to the "exact" value eventually, if processing is allowed to 

continue. By contras t , bounding methoc formulas that are s t i l l in use t o 

evaluate large systems are not expected to be correct even when the given 

l'ormula i s calculated "exactly." 
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Due to t h i s uniqueness In the SIGMA PI method, i t Is desirable t o begin 

our t e s t s by comparing individual features of SIGMA PI with a l te rna t ive 

methods that perform the same function. We do th i s in our performance 

comparisons below by f i r s t s t r ipping away some of the techniques that SIGMA Pi 

uses for fu l l performance. 

Our most basic assumption i s that each comparison a l te rna t ive method 

applies the pi method to the original basic events equal ly . We need th i s 

assumption for comparing with SIGMA because i t provides a common basis for 

fa i r comparisons, i . e . , i t assumes that a l l methods deal with the same basic 

event dependencies in the t e s t s . This assumption was invoked in a l l of the 

performance t e s t s reported below by running them with s t a t i s t i c a l l y 

independent basic events . 

This independence assumption ignores the d i f f i cu l t i e s incurred in 

computing set probabi l i t ies when basic events are dependent; a d i f f icu l ty that 

i s common to a l l comparison methods. The approaches taken by the a l ternat ive 

methods to deal with these d i f f i cu l t i e s are compared qual i ta t ive ly in 

Section 3.1*. 

3.2. BOUNDING METHODS 

3. 2 .1 . SUM and MIHIMUM CUT 

Failure probabi l i t i es , P(S), for five nuclear reactor subsystems 

subjected to a heavy earthquake, were computed by upper bounding methods (1) 

and (2), as defined In Section 2.1 above. These values were compared with 

accurate values of P(S) computed by the SIGMA PI method. The r e su l t s are 

displayed in Table 1. 
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Table 1. P{S) Probabilities for Five Nuclear Power Plant Systems 

Mo. of 
Basic 
Events 

No. of 
Cut 
Sets 

Upper Bound 
Formula SIGM PI 

System 
Number 

Mo. of 
Basic 
Events 

No. of 
Cut 
Sets 

SUM 
£p(cg>) 1-

HIN CUT 
•n(i-p(c(j>)) 

PCS) 
Probabili ty 

Canputer 
•Time - Cray 

1 18 231 0.0095 0.00939 0.00886 0.625 
2 137 129 3-53 0.912 0.942 2.18 
3 199 295 2.01 0.989 0.989 6.87 
H 72 6K 3.59 0.991 0.991 0.59 
5 122 309 1.64 0.989 0.939 1.16 

* Seconds 
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As predicted, SUM Is a close upper bound t o SIGMA P i ' s accurate value of 

. P(S) for the low probabil i ty system (PCS) - 0.00886); and obtains Impractical 

bounds (exceeding uni ty) for the other four systems, in which the t rue f a i lu re 

p robabi l i t i es exceed 0.93. 

The fact that the MINIMUM CUT upper bound (2) a t ta ined close agreement 

with SIGMA'3 accurate values for a l l f ive systems would not have been 

predicted, because i t was known that many of the cut s e t s were s t a t i s t i c a l l y 

dependent. However, two conditions could have existed that would s t i l l 

explain t h i s unexpected r e s u l t . The MINIMUM CUT formula would be accurate if : 

1) The to ta l value of MINIMUM CUT was determined by only a subset of 

the cut s e t s , and 

2) The cut s e t s In t h i s dominant subset were nearly mutually 

independent, s t a t i s t i c a l l y . 

We present some arguments below in support of the poss ib i l i t y that these 

two conditions exis ted, based on the fact that these systems had unusual 

algebraic and probab i l i s t i c s t r uc tu r e s . 

When these five systems were evaluated for Table 1, the PI method was 

applied to the common-cause earthquake in a manner outlined in a prior 

sect ion. This provided independent basic events for t h i s problem. However, a 

fa i r ly large number of basic events were observed to be repeated often in many 

of the cut s e t s , so on the surface, many of the cut s e t s would have a high 

degree of s t a t i s t i c a l dependence among them. Under t h i s condition, the close 

agreement with SICMA P i ' s accurate values which we obtained would not have 

been predicted. 
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Two other unusual conditions existed among these five problem s e t s , 

however: 

1) Most of the cut s e t s had only one or two basic events , so that the 

average cut s e t s ize over the five problem se t s was 2.1 basic 

events . From Table 1, we can see that there were over half as many 

basic events as there were cut s e t s . I t follows tha t if enough 

basic events were repeated quite often, then probably there was a 

f a i r l y la rge subset of cut sets that had. no basic events in coraaon, 

i . e . , they would be mutually independent among themselves. 

2) Many basic event probabi l i t ies were " t iny , " i . e . , in the 1 0 ~ 1 2 

range, while most of the balance of the basic event probabi l i t ies 

were "s igni f icant , " i . e . , between 0.0001 and 0 .5 . 

This dichotomy extends to the cut ae ts ; i . e . , those that have no t iny 

basic events are the only ones that could have any s igni f icant influence on 

the t rue value of P(S). Therefore, i f most of the repeated basic events were 

the tiny ones, then the subset of mutually independent cut s e t s would tend to 

be the ones that have s ignif icant probabili ty values. These are the 

conditions under which MINIMUM CUT becomes an accurate estimator of PCS), 

In general , we can say that whenever a dichotomy of basic event 

probabi l i t ies e x i s t s , as was observed for these f ive problem a e t s , the 

accuracy of the MINIMUM CUT formula tends to increase, as the number of 

repeated basic events that are significant decreases. 
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Calculation Times: 

By using the PI method to obtain conditionally Independent basic events, 

the time requirements t o calcula te the cut set p robab i l i t i e s , P(C(j>), for the 

two upper bounding formulas (1) and (2) became neg l ig ib le . 

The times shown for the SIGMA method were measured under d i f f i cu l t t e s t 

conditions, and include considerable input/output time for processing data 

f i l e s . I t i s believed that the t rue t ines consumed by SIGMA were l e s s than 

half of the Vu lues shown, 

MINIMUM CUT Conclusions: 

We have j u s t demonstrated that the MINIMUM CUT formula can give an 

accurate estimate of P{S) when conditions are "r ight" among the problem set 

and the basic event p robab i l i t i e s . He also know that MINIMUM CUT i s an 

inaccurate estimator of P(S) under roost problem set conditions. Perhaps the 

select ive use of MINIMUM CUT to save computer time could be Jus t i f i ed i f an 

ef f ic ient method were avai lable for detecting when "r ight" conditions exis t 

that would guarantee a given level of accuracy in the computed value of PCS). 

The modest added cost of using SIGMA Pi to calculate P(S) i3 j u s t i f i ed by 

the accuracy guarantee that i t gives on a l l problem s e t s which i t evaluates . 

3 .2 .2. Hunter 's Bound 

In Section 2 .1 , we saw that ei ther of Hunter 's bounds (upper or lower) 

requires the probabil i ty calculation of a l l possible pair-wise combinations of 

the out se t in te r sec t ions , (C(i) Pi C(j) ) , of which there are T(T-l) /2 , and 
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tha t each combination : s a new s e t formed by the basic event3 from two 

or iginal cut s e t s . 

I f the basic events are mutually independent, the s e t probabi l i t ies can 

be computed as products of the i r basic event p robab i l i t i e s . Even so , t h i s 

calculat ion requires a s igni f icant computational effort for merely an upper 

bound (polynomial in T). 

I f many of the basic events are s t a t i s t i c a l l y dependent, no computer 

today has the capabi l i ty of calculat ing Hunter's bound, unless each cut s e t i s 

l imited to a maximum of two dependent basic events . This effectively 

eliminates the use of Hunter's bound for even small systems with dependent 

basic events. 

The following example displays the enormous complexities caused by 

dependent basic events even when a l l cut s e t s are l imited t o two. 

Example: Comparison of Dependent vs . Independent Basic Events. 

The la rges t system in Table I above has 309 cut s e t s . Assume each 

cut set has two basic events . We shal l compare the number of ESVNIs 

(Equivalent Single Variate Normal In tegra ls ) required to compute Hunter 's 

bound: 

1) When a l l basic events are independent, vs . 

2) When a l l basic events are dependent. 

For the f i r s t terra in Hunter 's bound, we must calculate 309 cut se t 

p robab i l i t i e s , each of which has two basic events. For the second term, 
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we mast compute (309 * 308)/2 « 47.586 set p robab i l i t i e s , most of which 

has four basic events . 

1) Independent Basic Event Calculations ESVNIs 

309 C.S. * 2 B.E./C.S. - 618 

1)7,586 Sets * 4 B.E./Set = 190.3M 

TOTAL 190,962 

2} Dependent Basic Event Calculations 

From the Appendix of Ref, 10, we get: 

* Each two-variate normal in tegral requires 14 ESVNIs, 

* Each four-var ia te normal in tegral requires 2,642 ESVNIs. 

ESVNIs 

309 C.S. * 14 ESVNIs/C.S. =• 4,326 

47,596 Sets * 2,642 ESVNIs/C.S, = 125,748,632 

TOTAL 125,752,958 

Cr icluslon: 

Even when each of tile 309 cut s e t s i s r e s t r i c t ed to two basic events 

per cut se t , Hunter's bound requires: 

191 thousand ESVNIs for independent basic events , and 

126 million ESVNIs for dependent basic events. 
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This problem set requires nearly 660 times as much computer ef for t for 

dependent basic events as for independent basic events . 

This r a t i o escalates when larger cut s e t s a re used in the problem s e t . 

3 .3 . EXACT METHODS 

For the f i r s t performance t e s t s PflOB and DECOMP a re str ipped away from 

SIGMA, leaving STOP, the exact method, t o be compared with two leading 

a l ternat ive exact methods. The r e su l t s verify that STOP i s a good d is jo in t ing 

algorithm to use in the SICMA method. 

Further performance t e s t s demonstrate that increasingly larger systems 

can be evaluated as SIGMA features are added, successively, back to STOP. 

Performance comparison data presented in t h i s section was taken from 

experiments that were reported previously in Ref. 3 . The Abraham method and 

the Nakfzawa method are leading exact methods of computing P(S) from minimum 

cut sees , which we compare below with various leve ls of SIQMA. As another 

exact method, STOP, when operating alone, computes the same value for P(S) as 

these other two methods. In the performance t e s t s below, we are in teres ted in 

comparing the computer times required to compute th i s value. 

For these t e s t s , we adhere to a s t r i c t in te rpre ta t ion of the capab i l i t i e s 

of these two a l ternat ive dis joint ing methods, as presented In the i r references 

given above. 

Two comparative experiments were conducted. 
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3 .3 -1 . Experiment #1 - Comparing SICMA Without PROB 

For experiment 1, each algorithm was run on the same se t of random 

problems, with N, the number of components ranging between 30 and 50. T, the 

number of out seta was fixed a t 20, and the proportion of don ' t care values 

fixed at 0 .8 . He compared the computer time required to compute PCS) to 

machine accuracy, i . e . , 16 decimal places for the machine used. The r e s u l t s 

are presented in Table 2, and in graphic form in Fig. 2. 

The f i r s t three l ines of Table 2 show the r e s u l t s of solving random 

coherent problems with single blocfe s t ructure by Abraham, Hakazawa, and by 

STOP alone, (no DECOMP). These are the worst ease complexity functions for 

STOP because random problem se t s have l e s s s t ruc tu re than those from regular 

faul t t ree problems. I t i s interest ing to note that for the three t r e e s izes 

t e s t ed , the r e l a t i v e speed of STOP alone increased from approximately f ive to 

eight time3 as fas t as Nakazawa, and from about eleven to fourteen times as 

fas t as Abraham, as N increa.-^d from 30 to H5. For t r ees with over U5 

components, i t was not feas ib le t o run the computer on Abraham's and 

Nakazawa's methods long enough to calculate P(S). 

Although STOP is s ignif icant ly faster than Abraham and Nakazawa in the 

worst case, the advantage i s not as s ignif icant as when DECOMP i s used 

together with STOP on some of the same problem s e t s . The r e su l t s of t h i s 

comparison are shown on l ine A of Table 2 . We see t h a t , for a faul t t r e e of 

s ize kS components, STOP alone reduced computation time from Abraham's UOOs to 

30s, and DECOMP and STOP together further reduced th i s time to ten seconds. 

SICMA (STOP plus DECOMP) required far l e s s time when problems with block 

s t ruc tu re were t e s t ed . As shown on l i n e s A, B, and C for 50 component faul t 
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Table 2. Performance Comparisons of Exact Methods 

Times in Seconds t o Canpute P(S) - Cray Computer 

Test Fault Tree 
Exact Method (Number of Components, T) 

(16 decimal places) 30 40 15 50 
ABRAHAM 1 1 . 0 107.0 1)00.0 — 

NAKAZAWA '5.0 63.0 228.0 ~ 

STOP ALONE 1.0 10.0 29.5 64.2 

STOP + DECOMP: 
A Single Block — 5.0 10.0 29.5 
B Two Blocks — — — 0.6 
C Four Blocks — — — 0.12 
D Five percent of line A -- 0.25 0.50 1.48 

1 (3 place accuracy) 
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t rees with block s t ruc tu re , the 29.5s for a s ingle block i s reduced t o 0.6s 

with two blocks, and, with four blocks, to 0.12s. This can be compared to 

Abraham and Nakazaua, whose times would have far exceeded WOs, had they been 

allowed to complete the i r calcula t ions . 

For completeness, we note that these performance t e s t a were a l l run on a 

CRAY computer, which has seme optimizing features for performing certain 

Boolean operat ions. These features were used to give added speed t o SIGMA 

algorithms where they could use them. Because of differences in techniaues 

used by Abraham and Nakazaua, similar advantages could not be taken fully for 

these methods on the CRAY. 

The overal l r e su l t s presented here are unchanged by the use of these 

fea tures , because a t most, they could have caused a minor s h i f t in the SIGMA 

resu l t s a b i t to the r igh t on the graph of Fig . 2. The shape of each graph 

would remain the same if these optimizing features had not been employed. 

3.3.2. Experiment #2 - Comparing the Full SIGMA Method 

The second experiment demonstrates the computer effort that can be saved 

when PROB is used to control accuracy. We accomplished th i s by running SIGMA 

on a s ingle problem with 30 basic events and 100 cut s e t s . Although of medium 

s i z e , t h i s i s a challenging problem set for SIGMA in tha t I t consis ts of a 

s ingle block, and the basic event probabi l i t ies range uniformly between 0.1 

and 0.9. By contras t , convergence tends to be considerably fas te r when event 

fa i lu re probabi l i t ies are between 0.0 and 0 . 1 . 

Figure 3 displays the computation accuracy at tained by SIGMA as a 

function of computation time for the f i r s t 15 seconds. The le f t hand ordinate 
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measures upper (U> and lower (L) probabi l i ty U n i t s computed by SICMA, which 

converged rapidly to a t ta in three decimal place accuracy in about 1.5 

seconds. The r igh t hand ordinate indicafas the computation accuracy in terms 

of alpha ( a ) , the number ot decimal places, i . e . , U - L =•= 10 a . He can see 

that i t took 14 seconds to a t t a in about seven pisee accuracy. Not shown i s 

the f inal accuracy at ta ined: 12 place accuracy in 20 aeoonds. 

This experiment demonstrates the general case in which convergence of the 

upper and lower bounds i s very rapid a t f i r s t , then tapers off for a while as 

Intermediate accuracy levels are reached, and then speeds up again before the 

"exact" solution i s computed. 

The times shown in Fig. 3 are consistent with general experience with 

various problem se t s of t h i s approximate a lee , which has shown that SIGMA 

usually reaches three place accuracy within five percent of the time required 

for machine accuracy (16 decimal places), for larger problem se t s izes , time 

requirements for three place accuracy tend to diminish below rive percent. 

We can now estimate the overall performance of the SIGMA method over that 

of STOP alone far general prob.. an set sizes used in experiments 1 and 2. Line 

A of Table 2 represents times required by STOP + DECOMP for three t e s t a . To 

estimate the time required by the full SIOTA method to a t t a in three place 

accuracy (STOP * DECOMP + PROB), we multiplied the t-.Vee values on t h i s l ine 

by 0.05. The three resu l t s are displayed on l i n e D of Table <. Baaed on 

these r e s u l t s , we estimate that STOP alone took from *I0 to 70 times as long as 

SICMA would have taken t o a t t a in three place act-uraoy. 
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3.-4. COMPARISONS WHEN BASIC EVENTS ARE DEPENDENT 

The performance t e s t s in the previous sect ions compare the r e l a t i v e 

speeds and accuracies between SIGMA PI and the five a l te rnat ive method** when 

the calculat ion of set p robab i l i t i e s i s no r ea l problem. As explained in 

Section 3-1 f t h i s condition was purposely Invoked by running a l l performance 

t e s t s with s t a t i s t i c a l l y independent basic events . 

But, as explained in Section 1.3, serious computational d i f f i cu l t i e s can 

a r i se when too many dependencies among basic events remain af ter a l l attempts 

to remove them, such as an application of the PI method, have been made. We 

can show tha t even though a l l evaluation methods will have similar 

d i f f i cu l t i e s in computing the se t p robab i l i t i e s , P(D(J)), the SIGMA method 

alone can s t i l l produce useful r e su l t s when the r e s u l t s from a l te rna t ives are 

meaningless. 

Suppose many cut s e t s contain more dependent basic events than any of the 

methods can evaluate , say, over five dependencies per s e t . (See Probabi l i s t ic 

Problems in Section 1.3 above.) 

In the cat of exact evaluation a l t e rna t ives , a l l possible d is jo in t s e t s 

oan be generated, but only those with f ive or l ess dependent basic events can 

be evaluated, i f only these probabi l i t ies are added, only a lower bound to 

P(S) Is produced. Similar ly, in the case of an upper bounding method, only a 

lower bound to the upper bound i s computable, so the r e s u l t i s n ' t even known 

to be an upper bound. In ei ther case, an estimated value of P(S) can be 

given, but the user wi l l end up with l i t t l e indication of i t s accuracy. 

In the case of SIGMA PI, either* 
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1) The accuracy required for P(S) wi l l be a t ta ined and reported as 

such; or , 

2) SICMA wil l run out of d is joint s e t s that i t can evaluate before the 

required acDuracy I s reached. In t h i s case, SIGMA will repor t an 

estimated value for PCS) and give firm upper and lower bounds to i t s 

value. 
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PI i s not programmed for computer operation. Instead, the user 

applies the PI method to the given problem se t as he prepares 

i t for input t o the SIGMA program. 

In th i s repor t , we present r e s u l t s from the applicat ion of the SIQHA PI 

method on a s ingle problem of medium s i ze . In t h i s experiment, accuracy In 

P(S) as a function of computer time expended i s p lot ted. From th i s 

experiment, we estimate that the fu l l SIGMA algorithm would compute P{S) to 

three place accuracy Ho to 70 times as fas t as the speed attained by STOP 

alone. The re la t ive speed of SIGMA over STOP in a t ta in ing three place 

accuracy tends to increase as fau l t t r e e s i ze Increases. 
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