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EXECUTIVE SUMMARY

Performing a risk assessment of a nuclear povwer plant requires the study
of complex systems, Because of this complexity, the issues of size, speed,
timing, and accuracy become important when considering the uses of a computer
in the analysis. In addressing 1ssues concerning analysis of probabilistic
events, the Lawrence Livermore National Laboratory (LLNL) has developed the
SIMA PI method of computing the probabilistic performance of complex systems.

A detailed description of SIGMA PI has been reported previously in
Ref. 3. Included are some performance comparisons among leading alternative
methods of evaiuating system failure probability, P(S), from a set of minimum

cut sets.

Purpose
The purpose of this report is to demonstrate that SIGMA PI is the first
method which addresses all of the major problems that have prevented

successful evaluations of P(S) in the past. To accomplish this purpose:

1) We present a description of these major prablems,

2) Then we deseribe how leading alternative methods, including SIGMA
PI, address these major problems, and

3) Then We use the performance comparisons of SIGMA PT with leading
alternatives, that were reported previously, to display the

unjiquenesa of the STUGMA PI method,

The major problems are of two types: algebraic and probabilistic.

-141-



Algebraic Problems

Algebraic problems arise because minimum cut set probabilities cannot be
combined arithmetically to produce an accurate value of P(S). Therefore, the
original set of cut sets must be manipulated algebraically to form an

equivalent set of product sets whose probabilities can be so combined.

Probabilistic Problems

Probabilistic problems deal with the probability calculation of product
sets, which are Boolean products of basic events. Product sets with dependent
basic events can require more calculations for evaluation than even the
cfastest computers can provide, whereas, sets with independent basic events car
be calculated very quickly.

Another probabiiistic problem is the development of adequately defined
stopping rules for terminating probability calculations when sufficient
accuracy has been attained. Stopping rules can result in significant
reductions in computer running times.

Available alternatives to SIGMA PI are of two types: bounding methods

and exact methods.

Bounding Methous

Before results of research on algebraic problems clted above were
availabie, bounding methods, which tried to by-pass these problems, were
necegsary for evaluating large fault trees. Bounding methods are still In
use, even though their formulas are not exgected to give correct

probabilities, even when the given formula is calculated accurately.

-1y



In this report, We present results from the application of two upper
bounding methods to five nuclear power plant safety system fault trees, These
two methods are known as "SUM' and "HINIMUM CUT.™ A comparison with accurate
failure probabilities for these same fault trees computed by SIGMA PI
demonstrate the unreliability of bounding methods in general.

We also explain in thia report why the formula for Hunter's bound can
require more computer time to compute an ipper bound to P(8) than that

required by SIGMA P1 to compute P{S) accurately.

Exac¢t Methods

The only viable vxict methods available oday are disjointing methods,
which compute a set of disjoint sets from the original set of minimum cut
sets. Disjointing is a technical solution fo the algebraic problems cited
above; i.e., the disjoint set probabilities add up to P(S).

By 1981, the three leading disjointing methods today were available:

1) Nakazawa (1977), 2) Abraham (1979), ard 3) STO? {(1981), In this report, we
present results from the application of these three methods to the same aeries
of cut set problems. Each method computed the same value of P(8) "exactly,”
i.e., to machine accuracy.

These results show that the relative speed of STOP increased from about
five to eight times the speed of Nakazawa, and from about eleven to fourteen
times the speed of Abraham, as the number of basic events in the tree
inereased from 30 to 45, Comparisons on larger trees were not made because it
was not feasible to run the computer long enough to let the Nakazawa and

Abraham methods finiash their runs.



The SIGMA PI Method

Although disjointing methods solved many problems, they presented some

new problems of their own. A1l of these problems motivated the design and

development of the SIGMA PI method.

The special features used by SIGMA PI to address the above problems are

summarized as follows:

Algebraic Problems:

1)

2)

The SIGMA method uses the . "OP algorithm to generate disjoint
sets for quick accuracy.

It also uses a technique called CECOMP to exploit special
structures in the cut sets to increase the speed of the

disjointing process.

Probabilistic Problems:

1}

2)

The SIGMA method avoids lengthy calculations by using a
technique called PROB to generate only sufficient disjoint sets
required for a prespecified accuracy. PROB provides firm upper
and lower 1imits to P(S), which it uses as the basis for a
stopping rule, and which verify that the specified accuracy has
been attained. Thus, PROB retains full control over accuracy.
The PI method further recuces computation times by converting,
vwhere possible, any set of independent basic events into

multiple sets of conditionally independent basic events.
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> ABSTRACT
SIGMA PI 13 the fastest method available today of accurately calculating
probabilities assoclated with large fault trees. To demonstrate this, we
deseribe the major problems that have prevented successful evaluation of these
probabilities by other methods in the past. Then, Wwe describe how SIGMA PI
addresses all of these problems, and we compare the performance of SIGMA PI

with that of leading alternative methods under selected problem scenarios,

1. BACKGROUND - MAJOR ISSUES - COMPUTATIONAL PROBLEMS

Performing a risk assessment of a nucliear power plant requires the study
of complex systems., Because of this complexity, the issues of size, speed,
timing, and accuracy become important when considering the uces of 2 computer
in the analysis.

Analysts are under increased pressure from decision makers to develop
more defenaible analyses of probabillistie events., To adequately plan for such
events, analysts must calculate event precbabilities with as much precision as
data and computational resources allow., Because the causes of such eventa are
so lnvolved, current methods are imprecise, and bounding methods have been
employed. Even when exact determinaticn of absclute probabliities is not
important, it is essential to accurately assess variations in these
probavbilities as factors or parameters are varied. Thils assessment has been
4ifficult to do because available bounding methods can only employ bounds on

variations that were estimated with bounds in the first place.



1.1. EVALUATION OF FAULT TREES

The Pirst step in evaluating P(8). the failure probabllity of a system
(S}, is to convert its fault tree into a Boolean sum of minimum cut sets.
This set of minimum cut sets is called a problem set. P(S), the probability
of the top event of the fault tree, is the probability of the union of the
minimum cut sets.

Fault tree analysls programs, such as FTAP (aee Ref. 13), exist for
generating prcoblem sets from fault trees. But there are many problems that
impact upon the efficient calculation of P(S) from a generated problem set.

In addresaing problems concerning analysls of fault trees, the Lawrence
Livermore National Laboratory {LLNL) deveioped the SIGMA PI method of
computing P(S) from a fault tree problem set.

A detailed description of SIGMA PI has been reported previously in
Ref, 3, which is the source of information for SIGMA PI descriptions given
throughout this report. Included are some performance comparisons among
leading alternative methods of evaluating system failure probability, P(S),
from a set of minimum cut sets,

This report was partially supported by the Division of Risk Analysis and
Operations, Office of Nuclear Regulatory Research, and is a task deliverable
for their project entitled, "Efficient Probabilistic Computations and Methods

for PRA" (FIN No. A0392).



1.2, PURPOSE OF THIS REPORT
The purpose of this report is to demonstrate that SIGMA PI 1s the flirst
method which addresses all of the major problems that have prevented

successful evaluations of P(S) in the past., To accomplish this purpose:

1) We present a description of these major problens,

2) Then we describe how leading alternative methods, including SIGMA
P1, address these problems, and

3) Then we use the performance comparisons of SIMMA PI with leading
alternatives, that were reported previcusly, to display the

uniqueness of the SIGMA PI method.

We begin by describing some of the major problems that have prevented
effective evaluation of P(S). In later sections of this report, we describe
more problems encountered in applying disjointing techniques, so that atill
later we can describe SIGMA PI in a manner that demonstrates, specifically,

how it addresses all of these problems,

1.3. MAJOR PHOBLEMS THAT IMPACT UPON THE EFFICIENT CALCULATION OF P(S)
Major problems that impact upon the effieclent calculation of P(S) are of

ivwo types: algebrale and probabliistice.
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1.3.1. Algebraic Problems
P{S}, the system failure probability, ls the probabllity of the union of

Ehe minimum cut sets in the problem set:

T T N(3)
P(S) = P<U C({J)> =P<u N B, R
=1 =1 i=1

where:
T is the number of minimum cut sets in the problem set,
C{j) is the jth cut set,
B(i,}) is the ith basic event in cut set C(j), and

¥({j} is the number of basic events in cut set £{J).

The caleculation of the union of cut sets is difficult even when accurate
cut set and basic event probabilities, P<C(j)> and P<B(i,j)>, can be

copputed., The reason is that almost always some of the cubt seis will have one

or more basic events in common, s that the sets are not disjoint. Therefore,

in general:

T T
P<uU C{3)> # I PCi)y> .
I= J=1

This leads to the problem of manipulating the original set of cut sets

algebraically to form an equivalent set of Boolean products that is

“"computable," i.e., whose probabilities can be combined by computationally

efficient operations to yleld P(S).
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In Section 2, we shall examine the two besat known methods of generating

equivalent sets of this kind:

1)  The inclusion-exclusion method,

2} The disjolnting method.

1.3.2. Probabllistic Problems

Any method of computing P(8) from a set of Boolean product sets,

{o(11}, must include a metheod of cumputing product set prohabilities:

N
PG = P(N 0 BULD)

i=1
where B(i,j, is the ith basic event 1n sec D{Jj}, and N{j) is the number of
events in D(j). The time require.<ate for this calculation are linear in the
number of statistically independent basiz 2vents, but they are usually
exporiential in the number of dependent basic events. Section 2.4 of Ref. 10
explaing why this is so when the underlying component stress ~ strength
probability distributions are assvmed to be normal. The data given (which was
derived from Ref., 9} shows that only six dependent Lasic events in a set can
require 50,000 times as much computer time as when the same six are statis-
tically independent. For thls reason, sets with five dependencies are usually
considered as a cut off limit for feasible evaluation.

Another probabilistic problem 1s the development of adequately deflned

stopping rules for terminating probabllity calculaticns when sufficient
aceuraecy in P(S) has been attained. Stopping rules can reault in considerable

savings in calculations performed.



2. CURRENT McTHODS OF EVALUVATING P(S)

There are only two kinds of methods available for evaluating P(S):
bounding methods and exact methods. In this section, we shall describe these !
two kinds in general, and then identify and describe three leading methods of
each kind. Then, in the next section, the performance of SIGMA PI will be
compared on selected problem sets with performances of the other five

methods., Also, some of the differences in approaches used by these methods

will be discussed.

2.1. BOUNDING METHODS

Before algebraic methods of manipulating minimun cut sets into equivalent
Boolean products were developed, it was necessary to rely on bounding methods
to evaluate P(8). Even today, in practice, only bounding methods appear to be
available to evaluate P(S) for large system fault trees. The resulis are
often unsatisfactory because bounding methods are not expected to give correct
answers even when the given bounding formula is calculated accurately,

Also, some seemingly straightforward bounding methods, such as Hunter's
bound, reveal, after implementation, that they can exceed aome exact methods
in their requirements for computer time. This 7Jan tempt the user to invent
short cuts to the calculations fcr the bounding fommula, ("since we are only
af'ter an approximation anyway"). This then opens the door to procedures whose
outcames are incomprehensible. An explanation of why Hunter's bound can be so

difficult to compute 1s given in Section 3.2.2 below.



Three upper bounding methors that have been applied to nuclear power

plant safety system fault trees (see Section 3.4.2 of Ref. 11} are:

T
1) I pC(3N nSyMn
3=
T
2} 1.0- 1 (1.0 - P(C(IN) "MINIMIM CUT"
J=1
T
3) T OP(C(I)) - ) P(C(1) N c(in "Hunter*s"
J=1 (1,3)er
where:

0 C(j) is the jth minimum cut set,

o T is the number of minimum cut setso in the fault tree,

[+] T is a subset of T-1 pairs out of the set of all possible (1,j)
palrs, selected appropriately to guarantee an upper bound, and

to maximize the second sum in (3).

In comparison to (3), it is interesting to note that the first two terms

of the inclusion-exclusion method:

P{(C(J)) - T P(C{i) N Cc(i)) |,
1 ail (1,3

I}

H t~103

J
produce a lower bound to P(S) (see Chapter IV of Ref, i),
The first bound, "SUM," i{s an upper bound to P(S) unless all minimum cut
sets are digjolnt, In which case equality holds. Thus, the effects of any
comaion events among minimum cut sets are not taken into account by SUM as an

approximation to P(S).



The second bound, known as the "MINIMUM CUT" upper bound, is an upper
bound to P(S) unless all cut sets are statistically independenst, in which case
equality holds. Lambert (Ref. 7) also points out that, if all basic events
are statistically independent, then equality holds irf and only if rone of the
basic events in the fault tree i3 replicated, i.e., if and only if each basic
event is input to only one gate in the fault tree.

Both the SUM and the MINIMIM CUT upper bounds become more accurate
estimates of P(8) as the baslc event probabilities get smaller, Section 2.4.1
of Ref. 7 presents an example which demonstrates this fact for the MINIMUM CUT
upper bound.

The third bound (3) is known as "Hunter's upper bound," and (4) is often
referred to as "Hunter's lower bound" (Refs. 5, €). Hunter's upper bound is
developed as follows:

The T cut sets of a fault tree are treated as nodes of a graph with cut
set intersections as arcs. Any T-1 (i,j) pairs of ares that form a spanning
tree, will guarantee that (3) wili form an upper bound to P(S). In order for
the bound to be minimum, the cut set arcs are selected fo maximize the second
sum in the formula cover all spanning trees. Algorithms are in use (for
example, see Ref. 12) that can find the maximal spanning tree using computer
times that increase as Tz. This time does not include the time required to
zalculate the cut set intersection probabilities, {P(C(1) N C{i))}.

We can now see that the miniﬁizing requirement for either of Hunter's
bounds includes the probability calculation of ail possible palr-wlse
combinations of the cut set intersections, (C(1) M C(j)}, of which there are
T(T-1)/2. Each of these cut set ares are new sets farmed by the basic events

from two original cut sets,



2.2. EXACT METHODS

The two best known methods of geneprating a "computable" set of Boolean

products from a problem set are:

1) the inclusion-exclusion method, and

2) the disjointing method.

Gf these two, the only viable method is the disjointing method. We
include a discussion of the inclusion-exclusion method here because it is so
well known (see Ref. 4), and because it 13 of interest to identify scme of the

complexities involved in trying to use it to compute P(S) accurately.

2.2.1, The Inclusion-Exclusion Method

The fact that set probabilities of the well known inclusion-exclusion
method converge to P(S) (Ref. U):
i T T
P(S) = ¥ PCGN - I I PlC@) ncy@n+...
1=1 1=t j=1
where T is the number of minimum cut sets, has made it a tempting algorithm to
run on a high speed computer.
Our discussion of probabilistic problems at the end of Section 1.3 makes
it clear that this series cannot be computed for even small problem sets where
basic events are statistically dependent, since it requires the generation and

evaluation of larger and larger product sets. 1In fact, in Section 3.2.2



below, we show that Hunter's bounds, which involve calculations that are
equivalent to only the first two sum terms of this series, is effectively
eliminated when basic event dependencies exist.

A fact that is alsc becoming better known Is that, cven for medium
problem sets, and with all independent basic events, converging to an acourate
value of P(8) with this series of product sums is still bevond our fastest
computers today. The problem is that the cumulative sum has a tendency to
oscillate wildly between large positive and negative values for too many sum

terms before it beglins to converge.

2.2.2, The Disjointing Method - Some More Problems

The disjointing method converts the problem sef, {C(j)}, into an
equivalent set of disjoint sets, {D(3)}, expressed as another Boolean sum of
Boolean products of basic events. The fact that the new sets are disjolnt
means that, if the new set probabilities can be calculated, accuracy is
assured because the disjoint set probabilities add up to P(S), i.e.:

T

P(s) = p(uL c(j)) = P(S p(4)) =
3=1 =1 3

r(n(5))

1

e ko

where V is the number of disjoint sets generated.

However, there are some problems with the disjointing method:

1) The new set of disgioint sets, {D(j)), tends to be much larger than

the original problem set, {C(j)}. The first set gencrated will have

=10~
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2}

3)

4

only a few basic events, but as new sets, D(j), are generated, they
tend to increase in slze in a pyramidal fashion. Also, V, the
number of new sets, tends to increase conalderably over T, the

nimber in the original problem set.

Available disjolnting algorithms are designed to generate all of the
¥ disjoint sets, and to compute P({S) from their probabilities "to
machine accuracy.” In the literature, this type of method is

referred to as an "exact" method.

From the previous discussion of provabilistic problems, we can see
that basic event dependencies can prevent the probability
calculation for many of the disjoint sets. 1If only the evaluated

set probabilities are added, the result is a lower bound to P(S}.

A steopping rule applied to a disjointing method could rzsuvlt in
signifigant reductions in computer running times. If all basic
avents are independent, it is possible to caleulate probabilities
for all V disjoint sets that the computer can generate with the
given disjointing algorithm. But usually two or three decimal
places 18 all of the accuracy that is required. Since the first
disjoint sets are the shortest, and the shortest tend to contain the
largest probability values, only a relatively few of the first cnes
generated willl contain enough of the required probability value to
give the accwracy that is normally needed. Fortunately, the

shortest sets are alaoc the easiest ones to evaluate.

-11-
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It is noteworthy that, thus far, rnc exact methods have been used to aid

in the evaluation of risks associated with large nuclear reactor and safety

systems.

2.2.3. Leading Disjointing Methods

By 1981, the following three leading methods were available:

1)  Nakazawa's Method (1977, Ref, 8), |
2)  Abraham’s Mechod {1579, Ref. 1), and |

3)  The STuf Methoed (1981, Ref. 2).

A complexity analysis, reporied In Chapter U4 of Ref. 3, indicates that,
in the worst case, STOP requires computer time thai is weakly exponential in a
funetion of N, the number of basic events in the set. A weakly exponential
functicn of N is defined as:

eK'N . where K < 1 .

b

In fact, K*N is equal to C(min), the size of the shortest cut set, This
places STOP on the borderline with polynomial complexity beczause K is normally

very small, l.e.:

K = C{min)/N .

_12—



the ratio of the shortest cut set to the full set dimension. For exampie, if
¢(min) is three basic events, and N is 100 basic events, then K = 0,03.

An examination of the algorithms used by Abraham and Nakazawa indicates
that their complexities are "strongly exponential™ (K > 1.0).

These findings are consistent with performance_tesh results presented in
Section 3.3.

The efficiency of the STOP algorithm i3 due, in essence, to the parallel
fashion in which it manipulates the given problem set. The first step is to
decompose the problem set into disjoint and simpler problem sets along a
carefully chosen coordinate. Then, each new set is similarly decomposed.
This process continues until, in the 1imit, a collection of mutually disjoint
aimple sets 1s obtained.

This contrasts with the sequential operations i{n the Abraham method which
does not view the cut sets as a whole. Instead, each new set is added to the
unjion of previously processed sets, an operation that is strongly exponential
in complexity.

The Nakazawa disjointing method shares a technique in common with STOP
which retains "prominent" coordinates at a crucial step in the disjointing
process. This technique makes Nakazawa's method a little fasier than

Abraham's.

1981 Technology Surmpary

We summarize the fault tree technology available in 1981:

-9 3..



1 Fault tree analysis programs {e.g., FTAP) were avzilable to generate
problem sets from fault trees.
2) Disjointing algorithms were available to convert problem sets into

sets of disjoint sets, whose probabilities add up to P(S).

Disjointing algorithms are a technical solution to the algebrale and
probabilistic problems deseribed in Section 1.3. However, problems with the
digji-inting method, described in Section 2.2.2 and in thia section, still
needed to be resolved.

The single most significant technical development since 1981 that
justified the eresation of the SIGMA PI method is the DECOMP algsorithm. As
described below, DECOMP works with STOP to perform disjointing of most problem
sets of interest in computer time that is still borderline exponential in N
for smaller problem sets, but approaches linear complexity as N gets large.

The dramatic improvement in disjolinting speed due to the use of DECOMP is

demonstrated by results of performance tests reported in Section 3.3.

2.2.4. The SIGMA PI Method

SIMMA PT consists of two methods, SIGMA and PI. SIGMA computes P(S) by
summing {}) disjoint set probabilities. The PI method prepares independent
basic events for multiplying [H] their probabilities. By a careful merging of
several analytic techniques in SIGMA with the PI method, SIGMA PI addresses
all of the major problems that impact upon a successful evaluation of P(3).
Thus, SIGMA PI is the first method to be dedicated to the rapid and accurate

calculation of P(S) for large systems.

-14-
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The SIGMA Method:

SIGMA i3 an effielent method of developing a sufficient number of
diajoint sets, {D(j)}, from a given problem set, {C(j}}, to nermit the
calculation of P(8) to a desired prespecified accuracy. P(S) is

calculated as the sum of the probabilities of the disjoint products:

P8y = P(U c()) = © P(D(I) .
J J

The efficiency of SIGMA is due to several techniques that it employs:

1) STOP
The STCP algorithm was developed in 1981 at the LLNL
(Ref. 2). STOP is a very fast method of generating a complete
set of disjolnt sets from a given problem set, and then
cumputing P(S) from them. When operating alene, STOP
caleulates P(S) to "within machine accuracy,” i.e., STOP 13 an

"exact" method.

2) PROB
Under the SIGMA PI mode, each time STOP develops a new
level of disjoint seta, a routine called PROB computes firm
upper and lower oounds to P(S), which it use: as the basis for
a stopping rule. These bounds converge rapldly at first and

then more sioWly as the disjointing proceeds. When these

w]h=-



bounds agree to Wwithin the accuracy speeified by the user, PROB
terminates the calculation. Experience shcws that, for medium
size problems with about 30 basic events, usuzlly less than
five percent of STOP's complete disjointing effort (which gives
P(S) to machine accuracy) is sufficient to obtaln three place
accuracy in P(S}). This percentage decreases as the number of

basic events is increased.

3) DECOMP

The DECOMP algorithm examines a glven problem set and
finds any blocks among them. A block is a speclal subset, C!,
of the original set of cut sets, C, defined as follows: Let B
be the set of basiec events in the problem set, C. Then C' is a
block if two conditions hold: 1) for the subset, C', 2 subset,
B', of B are all don't cares; 2) for the rest of the cut seis,
C" = C - C', the set of baslie events, B" = B - B', are all
don't cares. A more cowplete descriptlon of blocks is given in

Chapter 3 of Ref. 3,

Under normal circumstances, the original problem set will have come from
a singlie fault tree, and mosat often will consist of only a single block, Bu.
STOP will pivot on the optimal coordinate for disjeinting the problem into two
disjoint problem sets. Some of the new problem sets generated by repeated
pivoting will be blocks. Whenever PROB determines that more disjointing by

STOP i3 required, control is released to DECOMFP which starts a new eycle by
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rinding any blocks which STOP may have generated during tﬁe previous cycle.
DECQOMP cont. ola the feeding of blocks back to STOP for separate and,
therefore, efficlient disjeinting.

The complexity analysis of the SIGMA method, reported in Ref, 3, assumes
the normal circumstances described above. The "expected” complexity obtained
for large problem sets approaches linearity due to the ability of DECOMP to
exploit the many block structures that are normally expected in large problem
sets. By contrast, the Abrzham and Nakazawa complexities are still strongly
exponentlal under normal circumstances because they are insensitive to block

structure,

The PI Method:

The probabilistic problems described in Section 1.3 above provide a
strong motivation for avolding, where possible, dependencies among basic
events, Such an opportunity presents 1ltself whenever dependencies among
some basic events are due to a mutuwal correlatlon with a "common-cause
event.," It is for this commonly occurring opportunity that the PI method
was developed formally. Chapter 2 of Ref. 3 presents a detailed
deacription of the PI method.

Briefly, PI is a method of examining input failure distributlons for
common-cause dependencies, making sultable choices of common-cause randcm
variables, and conditioning on them appropriately. These steps are
performed by the user as he prepares the problem set for input to the
SIGMA computer program. Performance of the PI method results in the

conversion of a set of dependent baslc events into multiple sets of
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conditionally independent basic eventa, SICGMA now must compute multiple
probabilities for the same set, D(J). Section 1.3 above explains why the
time required to compute P(D(J)) only once with dependent basic events
can be orders of magnitude greater.

Figure 1 illustrates the merger of i“:e three major technigues in

SIGMA with the PI method into the SIGMA PI method.

3. COMPARING SIGMA PI WITH OTHER METHODS

3.1, INTRODUCTION

SIME PI is the First method wnich addresses all of the msjor problems
that have prevented effective evaluation of P{S) in the past. At this level
of problem dedication, SIGMA PI is unique, i.e., no alternative methods have
been designed to compete with SIGMA PI. The leading avallable alternative
methods of evaluating P(S) are either exact methods or bounding methods.

Strictly speaking, SIGMA PI should not be classified as an exact method
because 1t can control accuracy, and exact methods are designed to calculate

P(5) to machine accuracy every time. Since 1t can also compute P(S) exactly,

we shall call SIGMA PI a Mcontrolled exact method.”

Neither can SIGMA PI be classified as a bounding method in the usual
sense because the upper and lower bounds which it computes are firm, and will
converge to the Mexact" value eventuallv, if processing is allowed to
continue, By ~ontrast, bounding methot¢ formulas that are still in use to

evaluate large systems are not expected to be c¢orrect even when the given

1ormula is calculated "exactly."
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Due to this wniqueness in the SIGMA PI method, i1t is desirable to begin
our tests by comparing individual featuwes of SIGMA PI with alternative
methods that perform the same funétion. We do thia in our performance
conparisona below by first stripping away some of the techniques that SIGMA PI
uses for full performance.

Our most basic assumption is that each comparison alternative method
applies the PI method to the‘original basic events equally. We need this
assumption for comparing with SIGMA because it provides a common basis for
fair compariscns, i.e., it assumes that all methods deal with the same basic
event dependencies in the tests. This assumption was invoked in all of the
performance tests reported below by running them with statistically
independent basic events.

This independence assumption ignores the difficulties incurred in
computing set probabilities when basic events are dependent; a difficulty that
is common to all comparison methods, The approaches taken by the alternative
nethods €o deal with these difficulties are compared qualitatively in

Section 3.4,

3.2. BOUNDING METHODS

3.2.1. SUM and MINIMUM CUT

Failure probabilities, P(S), for five nuclear reactor subsyatems
subjected to a heavy earthquake, were computed by wpper bounding methods (1)
and (2), as defined in Section 2.1 above. These values were compared with

accurate values of P(S) cosputed by the SIGMA PI method. The results are

displayed in Table 1.
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Table 1. P{S) Probabilities for Five Nuclear Power Plant Systems

Upper Bownd
No. of No. of Fornula SICAA PI

System Basie cut ' 8SUM MIN CUT P(3) Camputer
Number Events  Seta  JP(C(j)) 1-H(1-P(C(}})) Probability ¥Time = Cray

1 48 234 0,0095 0.00939 0, 00886 0. 625

2 137 129 3.53 0. 942 0. 942 2.48

3 199 295 2.0H 0.989 0.989 6.87

[ 72 64 3.59 0. 99 0,99 0.59

5 122 309 4,64 0. 989 0.939 1.6

% Seconds
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Aa predicted, SUM 1s a cloae upper bound to SIGMA PI's accurate value of
. P(8) for the low probability system (P(S) = 0.00886); and obtains impractical
bounds (excezding unity) for the other fowr systems, in which the true failure
probabllities exceed 0,93. ‘

The fact that the MINIMUM CUT upper bound (2) attained close agreement
with SIGMA's accurate values for ?11 five systems would not have been
predicted, because it was known that many of the cut sets were statistically
dependent., However, two conditions could have existed that would still

explain thla unexpected result. The MINIMUM CUT formula would be accuwrate {f:

1) The total value of MINIMUM CUT was determined by only a subset of
the cut sets, and
2) The cut sets in this dominant subset were nearly mutually

independent, staristically.

We present some arguments below in support of the possibility that these
two conditions existed, based on the fact that these systems had unusual
algebralc and probabilistic structures.

When these five systems were evaluated for Table 1, the PI method was
applied to the common-cause earthquake in a manner outlined in a prior
section, This provided independent basie events for this problem., However, a
fairly large number of basic events were observed to be repeated often in many
of the cut sets, so on the surface, many of the cut sets would have a high
degree of statistical dependence among them. Under this conditlon, the close
agreement with SIMGMA PI‘'s acgurate values uwhich we obtained would not have

been predicted,
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Two other wnusual conditions exlisted among these five problem sets,

hoWever:

1)  Most of the cut sets had only one or two baalc events, so that the
average cut set size over the five problem sets was 2.1 basic
events, From Table 1, we can see that there were over half as many
basiec events as there were cut sets, It follows that if encugh
basic events were repeated quite often, then probably there was a
fairly large subset of cut sets that had no basic events in common,

i.e,, they would be mutually independent among themselves.

2) Many basic event probabllities were "tiny," 1.e., in the 1072
range, while mogt of the balance of the basic event probabilities

were "ajgnificant,” i.e., between 0.0001 and 0.5,

This dichotomy extends to the cut sets; l.e., thase that have no tiny
basi¢ events are the only ones that could have any significant influence on
the true value of P(S). Therefore, if most of the repeated basic events were
the tiny ones, then the subset of mutuwally independent cut asets would tend to
be the ones that have signiflcant probability values. These are the
conditions under whieh MINIMUM CUT becomes an accurate estimator of P(S).

) In general, we can say that whenever a dichotomy of basic event
probabilities exists, as was observed for these five problem sets, the
accuracy of the MINIMIM CUT formula tends to lncrease, as the number of

repeated basic events that are significant decreases.
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Caleulation Times:

By usirg the PI method to obtain conditionally independent basic events,
the time requirements to calculate the cut set probauvilities, P{C(j)), for the
two upper bounding formulas (1) and (2) became negligible.

The times shown for the S1GMA metnod were measwed under difficuit test
conditions, and include éonsiderable input/output time for processing data
files. It is believed that the true times consumed by SIGMA were less than

half of the v. lues shown.

MINIMUM CUT Coneclusions:

We have just demonstrated that the MINIMUM CUT foramula can give an
accurate estimate of P{S) when conditions are "right" among the problem set
and the basic event probabilities. We also know that MINIMUM CUT is an
inacgurate estimator of P(S) wunder most problem set conditlons. Perhaps the
selective use of MINIMIM CUT to save computer time could be Justifiegd if an
efficient method were available for detecting when "right" conditions exist
that would guarantee a given level of accuracy in the computed value of P(3).

The modest added cost of using SIGMA PI to calculate P(S) is justified by

the accuracy guarantee that if gives on all problem sets which it evaluates.

3.2.2. Hunter's Bound
In Section 2.1, we saw that elther of Hunter's bounds (upper or lower)
requires the probability calculation of all possible pair-wise combinations of

the cut set intersections, (C(i) M C(3))), of which there are T(T-1)/2, and
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that each combination _s a new set formed by the basic events from twWo
original cut sets.

If the basic events are mutually independent, the set probabilities can
be computed as prdducts of thelr basic event probabilities. Even 3o, this
calculation requires a signifiecant computatlonal effort for merely an upper
bound (polynomial in T).

If many of the basic events are statistlcally dependent, no computer
today has the capability of calculating Hunter'a bound, unless each cut set is
iimited to a maximum of two dependent basic events. This effectively
eliminates the use of Hunter's bound for even small systems with dependent
basiec events,

The following example displays the enormous complexities caused by

dependent basic evenis even when all cut sets are limited to two.

Example: Comparison of Dependent vs. Independent Basic Events,

The largest ayatem in Table 1 above has 309 cut sets, Assume each
cut set has two basic events. Ve shall compare the nusber of ESVNIs
(Equivaient Single Variate Normal Integrals) required to compute Huntert's

bound:

1)  When all bzsle events are independent, vs.

2) When all basic¢ events are dependent.

For the first term in Hunter's bound, we must calculate 309 cut set

probablilities, each of which has two basic events. For the second term,
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we must compute (309 * 308)/2 = 47,586 set probabillties, most of which

has four basic events,

1}  Independent Basic Event Calculations
309 C,S, ¥ 2 B.E./C.S, =
47,586 Sets * 4 B,E./Set =

TOTAL

2} Dependent Basic Event Czalculations
From the Appendix of Ref, 10, We get:

* Each two-varlate normal integral requ

ESVNIs

618
190,344
190,962

ires

14 ESVNIs,

* Each four-variate normal integral requires 2,642 ESV¥NIs.

ESVNIs
309 C.S. * 14 ESVNIs/C.S. a 4,326
47,596 Sets ¥ 2,642 ESVNIs/C.S., = 125,748,632

TOTAL 125,752,958

Craclusion:

Even when each of the 309 cut sets is restricted to two basie events

per cut set, Hunter's bound requires:

181 thousand ESYNIs for independent basic events, and

126 million ESVNIs for dependent basic events.
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This problem set requires nearly 660 times as much computer effort for

dependent basic events as for Independent basic events.

This ratio escalates when larger cut sets are used in the problem set.

3.3. EXACT METHODS

For the Tirst performance tests PROB and DECOMP are atripped away from
SIGMA, leaving STOP, the exact method, to be compared with two leading
alternative exact methods. The results verify that STOP is a good disjointing
algorithm to use in the SIGMA method.

Further performance tests demonstrate that increasingly larger systems
can be evaluated as SIGMA features are added, successively, back to STGP.

Performance comparison data presented in this section was taken from
experiments that were reported previously in Ref. 3. The Abraham method and
the Nakezawa method are leading exact methods of computing P(S) from minimum
cut secg, which we compare below with various levels of SIGMA. As another
exact method, STOP, when operating alone, computes the same value for P(S) as
these other two methods. In the performance tests below, we are interested in
comparing the computer times required to compute this value.

For these tests, we adhere to a strict interpretation of the capabilities
of these two alternative disjointing methods, as presented in their references
given above.

Two comparative experiments were conducted,
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3.3.1. Experiment #1 - Comparing SIGMA Without PROB

For experiment 1, each algorithm was run on the same set of randem
problems, with N, the number of components ranging betweer 30 and 50. T, the
number of cut seta was fixed at 20, and the proportion of don't care values
fixed at 0.B. We compared the computer time required to compute P(S) to
machine accuracy, i.e., 16 decimal places for the machine used. The results
are presented in Table 2, and in graphic form in Fig. 2,

The first three lines of Table 2 show the results of solving random
coherent provlems with singile bloek structure by Abranam, Nakazawa, and oy
STOP alone, (no DECOMP). These are the worst case complexity functions for
3TOP because random problem sets have lesa structure than those from regular
fault tree problems. It is interesting to note that for the three tree sizes
tested, the relative speed of STQP alone increased from approximately five to
eight times as fast as Nakazawa, and from about eleven to fourteen times as
fast as Abraham, as N increacnd from 30 to 45. For trees with over 45
components, It was not feasible to run the computer on Abraham's and
Nakazawa's methods long encugh to calculate P(S).

Although STOP ia significantly faster than Abraham and Nakazawa in the
worst case, the advantage 1s not as significant as when DECOMP is used
together with STOP on some of the same problem sets. The results of this
comparison are shown on line A of Table 2. We see that, far a fault tree of
aize 45 components, STOP alone reduced computation time from Abraham's B00s to
308, and DECOMP and STOP together further reduced this time to ten secends.

SIGMA (STOP plus DECOMP) reguired far less time when problems with block

structure were tested, As shown on lines A, B, and C for 50 component fault

2=




Table 2. Performance Comparisons of Exact Methods

Times in Seconds to Compute P(S) - Cray Computer

Test Fault Tree

Exact Method (Number of Components, T)
{16 decimal places) 30 49 45 50

ABRAHAM 1.0 107.0 hoc.0 -
NAKAZ AWA ‘5.0 63.0 228.0 -
STOP ALONE 1.0 10.0 29.5 64,2
STOP + DECOMP: ‘

A Single Block - 5.0 10.0 29.5

B Two Blocks - - - 0.6

C Four Blocks -- - -- 0.12

0 Flve percent of line A ~-- 0.25 0.50 1.48

1 (3 place accuracy)
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trees with block structure, the 29.53 for a single block is reduced to 0.6s
with two blocks, and, with four blocks, to 0.128. This can be compared to
Abraham and Nakazawa, whose times would have far exceeded 400s, had they been
allowed to complete their calculations,

for completeness, we note that these performance teats were all run on a
CRAY computer, which has some optimizing features for performing certain
Boolean operations, These features were used to give added speed to SIGMA
algorithms where they could use them. Because of differences in techniaues
used by Abranam and Nakazawa, similar advantages could not be taken fully for
these methods on the CRAY.

The overall results presented here are unchanged by the use of these
features, because at most, they could have caused a minor shift in the SIGMA
results a bit to the right on the graph of Fig. 2. The shape of each graph

would remain the same if these optimlzing featwres had not been employed,

3.3.2, Experiment #2 - Comparing the Full SIGMA Method

The second experiment demonstrates the computer effort that can be saved
when PROB ia used to control accuracy. We accomplished this by running SIGMA
on a single problem with 30 basic events and 100 cut sets, Although of medium
size, this is a challenging problem set for SIGMA in that it consists of a
aingle block, and the basie event probabilities range uniformly between 0.1
and 0.9. By conirast, convergence tends to be considerably faster when event
fallure probabilities are between 0.0 and 0.1.

Figure 3 displays the computation aceuracy attained by SIGMA as a

function of computation time for the first 15 seconds. The left hand ordinate
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measures upper (U) and lower (L) probabllity limits computed by SIMMA, which
converged rapidly'to attain three decimal place accuracy in about 1.5
seconds. The right hand ordipate indicatzs the computation accuracy in terma
nf alpha {a)}, the number of declmal places, {.e., U ~ L = 10°%, We can see
that 1t took 11 seconds to attain about seven place accuracy, Not shown is
the final accuracy attained: {2 place accuracy in 20 seconds.

This experlment demonstrates the general case in which convergence of the
upper and lower bounds is very rapid at first, then tapers off for a while as
intermediat2 accuracy levels are reached, and then speeds up again before the
haxaot” solution s computed.

The times shoun in Fig. 3 are consistent with general experience with
varipus problem sets of this approximate size, which has shown that SIGMA
usually reaches three place accuracy within five percent of the time required
for machine accuracy (16 decimal places). For larger problem set sizes, time
requirements for three place accuracy tend to diminish below “lve percent,

We can now estimate the overall performance of the SIGMA method over that
of STOP alone for general prob. :m set slzes used in experiments 1 and 2. Line
# of Table 2 represents times reguired by STOP + DECOMP for tyree tests. To
estimate the time required by the full SIMA method to attain three place
accuracy (STOP » DECOMP + PROB), we multipliesd the vree values on this line
by G.05. The three reaults are displayed on line D of Table z. Based on
these results, we estimate that STOP alone took from 30 to 70 times as long as

SIMA would have taken to attaln three place accuraoy,
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3.4, COMPARISONS WHEN BASIC EVENTS ARE DEPENDENT

The performance tests in the previous sections compare the relative
speeds and accuracies between SIMMA PI and the five alternative methods when
the calculation of set probabilities 1s no real problem. As explained in
Section 3.1, this condition was pﬁrposely invoked by running all performance
teats with statistically independent basic events.

But, a3 explained in Section 1.3, serious computational difficulties can
arise when too many dependenéies among baslc events remain after all attempts
to remove them, such as an application of the PI method, have been made. We
can show that even though all evaluation methods will have similar
difficulties in computing the set probabllities, P(D{j)), the SIRA method
alone can still produce useful results when the results from alternatives are
meaningless.

Suppose many cut sets contain more dependent basic events than any of the
methcds can evaluate, say, over Tive dependencies per set. (See Probabllistic
Problems in Seection 1.3 above.) .

In the ca: of exact evaluation alternatives, all possible disjoint sets
can be generated, but only those with five or less dependent basic events can
be evaluated. 1If only these probabilities are added, only a lower bound to
P(8) is produced. Similarly, in the case of an upper bounding method, only a
lower bound to the upper bound is computable, so the result isn't even known
to be an upper bound. In either cage, an estimated value of P{S) can be
glven, but the user will end up with little indication of its accuwracy.

In the ¢ase of SIGMA PI, either:
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n

2)

The accuracy required for P{S) will be attained and reported as

such; or,

SIMA will run out of disjoint sets that 1t can evaluate before the
required accuracy 1s reached, In this case, SIGMA will report an

estimated value for P(S) and give firm upper and lower bounds to its

value.
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PI is not programmed for computer operation. Instead, the user

appliea the PI method to the given problem set as he prepares

it for input to the SIMA program.

In this report, we present results from the application of the SIGMA PI
method on a single problem of medium size. In this experiment, accuracy in
P(S) as a function of computer time expended 1s plotted. From this
experiment, we estimate that the full SIGMA algorithm would compute P{S) to
three place accuracy 40 to T0 timea as fast as the speed attained by STOP
alone. The relative speed of SIGMA over STOP in attaining three place

accuracy tends to inecrease as fault tree slze ing¢reases.
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