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STATUS OF ELECTRON TRANSPORT IN MCNP™

H. Grady Hughes

Group X-TM, MS B226

Los Alamos National Laboratory
Los Alamos, NM 87545
(505)667-5957

I. INTRODUCTION

The latest version of MCNP", the Los Alamos Monte Carlo transport code, has now been officially
released. MCNP4B has been sent to the Radiation Safety Information Computational Center (RSICC), in
Oak Ridge, Tennessee, which is responsible for the further distribution of the code within the United
States. International distribution of MCNP is done by the Nuclear Energy Agency (OECD/NEA), in
Paris, France. Readers with access to the World-Wide-Web should consult the MCNP distribution site
http:/fwww-xdiv.lanl.gov/XTM/mcnp/about.html for specific information about contacting RSICC and
OECD/NEA.

A variety of new features are available in MCNP4B. Among these are differential operator perturba-
tions, cross-section plotting capabilities, enhanced diagnostics for transport in repeated structures and lat-
tices, improved efficiency in distributed-memory multiprocessing, corrected particle lifetime and lifespan
estimators, and expanded software quality assurance procedures and testing, including testing of the mul-
tigroup Boltzmann-Fokker-Planck capability. New and improved cross section sets in the form of ENDF/
B-VI evaluations have also been recently released and can be used in MCNP4B. Perhaps most significant
for the interests of this special session, the electron transport algorithm has been improved, especially in
the collisional energy-loss straggling and the angular-deflection treatments. In this paper, I shall concen-
trate on a fairly complete documentation of the current status of the electron transport methods in MCNP.

II. ELECTRON TRANSPORT

Because of the long-range nature of the Coulomb force, and the resulting large numbers of small
interactions experienced by charged particles, a single-collision Monte Carlo approach to electron trans-
port is infeasible for many situations of practical interest. Therefore, electron and other charged-particle
Monte Carlo codes rely on a variety of analytic and semi-analytic multiple-scattering theories to describe
the transport of charged particles. These theories attempt to use the fundamental cross sections and the
statistical nature of the transport process to predict probability distributions for significant quantities,
such as energy loss and angular deflection. The most important of these theories for the algorithms in

MCNP are the Bethe-Bloch theoryl"3 for mean energy loss, the Goudsmit-Saunderson® theory for angu-

* MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory.
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lar deflections, the Landau® theory of energy-loss fluctuations, and the Blunck—Lc:isegang6 enhancements
of the Landau theory. These theories rely on a variety of approximations that restrict their applicability, so
that they cannot solve the entire transport problem. In particular, it is assumed that the energy loss is
small compared to the kinetic energy of the electron.

In order to follow an electron through a significant energy loss, it is necessary to break the electron’s
path into many steps. These steps are chosen to be long enough to encompass many collisions (so that
multiple-scattering theories are valid) but short enough that the mean energy loss in any one step is small
(so that the approximations necessary for the multiple-scattering theories are satisfied). The energy loss
and angular defiection of the electron during each of the steps can then be sampled from probability dis-
tributions based on the appropriate multiple-scattering theories. This subsumption of the effects of many
individual collisions into single steps that are sampled probabilistically constitutes the “condensed his-
tory” Monte Carlo method.

The most influential reference for the condensed history method is the 1963 paper by Martin J.
Berger.7 Based on the techniques described in that work, Berger and Stephen M. Seltzer developed the

ETRAN series of electron/photon transport codes.® These codes have been maintained and enhanced for
many years at the National Bureau of Standards (now the National Institute of Standards and Technol-

ogy). The ETRAN codes are also the basis for the Integrated TIGER Series,” a system of general-pur-
pose, application-oriented electron/photon transport codes developed and maintained by John A. Halbleib
and his collaborators at Sandia National Laboratories in Albuquerque, New Mexico. The electron physics
in MCNP is similar to that of the Integrated TIGER Series.

Electron Steps and Substeps

The condensed random walk for an electron can be considered in terms of a sequence of consecutive
path lengths {s,} and a monotonically decreasing energy grid {E,}. On the average, the energy and

path length are related by
Sy d
E
En—l—EII:_'l.d—sds 5 (1)
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where -dE/ds is the total stopping power in energy per unit length. This quantity depends on energy and
on the material in which the electron is moving. ETRAN-based codes customarily choose the sequence of

path lengths {s,} such that, for a constant k,
E, =kE, ;. (2)

The most commonly used value is k = 2-1/8  which results in an average energy loss per step of 8.3%.

Electron steps with (energy-dependent) path lengths s = s, —s,,_, determined by Equations 1-2 are

called major steps or energy steps. The condensed random walk for electrons is structured in terms of
these energy steps. For example, all precalculated and tabulated data for electrons are stored on an energy
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grid whose consecutive energy values obey the ratio in Equation 2. In addition, the Landau and Blunck-
Leisegang theories for energy straggling are applied once per energy step. For a single step, the angular
scattering could also be calculated with satisfactory accuracy, since the Goudsmit-Saunderson theory is
valid for arbitrary angular deflections. However, the representation of the electron’s trajectory as the
result of many small steps will be more accurate if the angular deflections are also required to be small.
Therefore, the ETRAN codes and MCNP further break the electron steps into smaller substeps. A major
step of path length s is divided into m substeps, each of path length s/m. Angular deflections and the pro-
duction of secondary particles are sampled at the level of these substeps. The integer m depends only on
material (average atomic number Z). Appropriate values for m have been determined empirically, and
range from m = 2 for Z < 6 to m = 15 for Z > 91. When appropriate (for example for transport in very
small material regions), MCNP allows m to be increased for a given material.

Condensed Random Walk

In the initiation phase of a transport calculation involving electrons, all relevant data are either precal-
culated or read from the electron data file and processed. These data include the electron energy grid,
stopping powers, electron ranges, energy step lengths, substep lengths, and probability distributions for
angular deflections and for the production of secondary particles. Although the energy grid and electron
steps are selected according to Equations 1-2, energy straggling, the analog production of bremsstrahl-
ung, and the intervention of geometric boundaries and the problem time cutoff will cause the electron’s

energy to depart from a simple sequence { E, } satisfying Equation 2. Therefore, the necessary parame-
ters for sampling the random walk will be interpolated from the points on the energy grid.

At the beginning of each major step, the collisional energy loss rate is sampled. In the absence of
energy straggling, this will be a simple average value based on the nonradiative stopping power described
in the next section. In general, however, fluctuations in the energy loss rate will occur. The number of
substeps m per energy step will have been preset, either from the empirically-determined default values,
or by the user, based on geometric considerations. At most m substeps will be taken in the current major
step, i.e. with the current value for the energy loss rate. The number of substeps may be reduced if the
electron’s energy falls below the boundary of the current major step, or if the electron reaches a geometric
boundary. In these circumstances, or upon the completion of m substeps, a new major step is begun, and
the energy loss rate is resampled.

Except for the energy loss and straggling calculation, the detailed simulation of the electron history

takes place in the sampling of the substeps. The Goudsmit-Saunderson* theory is used to sample from the
distribution of angular deflections, so that the direction of the electron can change at the end of each sub-
step. Based on the current energy loss rate and the substep length, the projected energy for the electron at
the end of the substep is calculated. Finally, appropriate probability distributions are sampled for the pro-
duction of secondary particles. These include electron-induced fluorescent X-rays, “knock-on” electrons
(from electron-impact ionization), and bremsstrahlung photons.

The length of the substep ultimately derives from the total stopping power used in Equation 1, but the
projected energy loss for the substep is based on the nonradiative stopping power. The reason for this dif-
ference is that the sampling of bremsstrahlung photons is treated as an essentially analog process. When a
bremsstrahlung photon is generated during a substep, the photon energy is subtracted from the projected
electron energy at the end of the substep. Thus the radiative energy loss is explicitly taken into account, in



contrast to the collisional (nonradiative) energy loss, which is treated probabilistically and is not corre-
lated with the energetics of the substep. Two biasing techniques are available to modify the sampling of
bremsstrahlung photons for subsequent transport. These biasing methods, however, do not alter the link-
age between the analog bremsstrahlung energy and the energetics of the substep.

MCNP uses identical physics for the transport of electrons and positrons, but distinguishes between
them for tallying purposes, and for terminal processing. Electron and positron tracks are subject to the
usual collection of terminal conditions, including escape (entering a region of zero importance), loss to
time cutoff, loss to a variety of variance-reduction processes, and loss to energy cutoff. The case of
energy cutoff requires special processing for positrons, which will annihilate at rest to produce two pho-

tons, each with energy mc? = 0.511008 MeV.
Collisional Stopping Power

Berger7 gives the restricted electron collisional stopping power, i.e. the energy loss per unit path
length to collisions resulting in fractional energy transfers € less than an arbitrary maximum value €, , in

the form
4 2
_C_i“_f)e = Nz@’:; ){1 g2 (;I* 2y f e, - 5} 3)
282 27+1 1
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Here € and ¢, represent energy transfers as fractions of the electron kinetic energy E; I is the mean ion-

ization potential in the same units as E; m, e, and v are the rest mass, charge, and speed of the electron,
respectively; B is v/c; T is the electron kinetic energy in units of the electron rest mass; 9 is the density

effect correction (related to the polarization of the medium); Z is the average atomic number of the

medium; and N is the atom density of the medium in cm’3,

The ETRAN codes and MCNP do not make use of restricted stopping powers, but rather treat all col-
lisional events in an uncorrelated, probabilistic way. Thus, only the total energy loss to collisions is

needed, and Equations 3—4 can be evaluated for the special value €, = 1/2. The reason for the 1/2 is
the indistinguishability of the two outgoing electrons. The electron with the larger energy is, by defini-
tion, the primary. Therefore, only the range € < 1/2 is of interest. With €, = 1/2, Equation 4 becomes

_(d_E) _ 10%02h2%62Z
ds 2nmc?f?

{log[’cz(’c +2)]-log(2I2) + 1 -log2 - P2 + (% + 1og2XHL1)2- 8} NG)
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where o is the fine structure constant. This expression is integrated over each energy step, and the result-
ing mean energy loss rates are used during transport for electrons anywhere within the appropriate energy
step.

Energy Straggling

Because an energy step represents the cumulative effect of many individual random collisions, fluctu-
ations in the energy loss rate will occur. Thus the energy loss will not be a simple average A; rather there

will be a probability distribution f(s, A)dA from which the energy loss A for the step of length s can be
sampled. Landau? studied this situation under the simplifying assumptions that the mean energy loss for a

step is small compared with the electron’s energy, that the energy parameter & defined below is large com-
pared with the mean excitation energy of the medium, that the energy loss can be adequately computed

from the Rutherford!® cross section, and that the formal upper limit of energy loss can be extended to
infinity. With these simplifications, Landau found that the energy loss distribution can be expressed as

f(s, A)dA = ¢(A)dh

in terms of ¢(A), a universal function of a single scaled variable

A [ 2Emv? 2_
x_& log[(1—52)12]+8+B 1+y. (6)

Here m and v are the mass and speed of the electron, d is the density effect correction, B is v/c, I is the
mean excitation energy of the medium, and vy is Euler’s constant (y = 0.5772157...). The parameter & is
defined by

2me*NZ
2
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where e is the charge of the electron and NZ is the number density of atomic electrons. The universal
function is

1 + foo
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where x is a positive real number specifying the line of integration.

For purposes of sampling, $(A) is negligible for A < —4, so that this range is ignored. Borsch-Supan' l

originally tabulated ¢(A) in the range —4 <A < 100, and derived for the range A > 100 the asymptotic
form

1
oA = i N
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in terms of the auxiliary variable w, where A = w + logw+vy-3/2 .

Recent extensions!2 of Borsch-Supan’s tabulation have provided a representation of ¢(A) in the range

-4 <A <100 in the form of five thousand equally probable bins in A. In MCNP, the boundaries of these
bins are saved in the array eqlm(mlam), where the parameter mlam = 5001. Sampling from this tabular
distribution accounts for approximately 98.96% of the cumulative probability for ¢(A). For the remaining

large-A tail of the distribution, MCNP uses the approximate form ¢(A) = w2, which is easier to sample
than Equation 7, but is still quite accurate for A > 100.

Blunck and Leisegang6 have extended Landau’s result to include the second moment of the expansion
of the cross section. Their result can be expressed as a convolution of Landau’s distribution with a Gauss-
ian distribution:

.o oo T A=AV
£, B) = Jﬁcf; f(s,A)exp[ — ]dA.

Blunck and Westphal!3 provided a simple form for the variance of this Gaussian:
ofw = 10eV-Z43A .

Subsequently, Chechin and Ermiloval# investigated the Landau/Blunck—Leisegaﬁg theory, and derived an
estimate for the relative error

(T

due to the neglect of higher-order moments. Based on this work, Seltzer!” describes and recommends a
correction to the Blunck-Westphal variance:

Opw
1 +3eqg

This value for the variance of the Gaussian is used in MCNP.

Examination of Equations 6-7 shows that unrestricted sampling of A will not result in a finite mean
energy loss. Therefore, a material- and energy-dependent cutoff A, is imposed on the sampling of A. In
the initiation phase of an MCNP calculation, the code makes use of two preset arrays, flam(mlanc) and
avim(mlanc), with mlanc = 1591. The array flam contains candidate values for A, in the range
-4 < A, < 50000 ; the array avlm contains the corresponding expected mean values for the sampling of A.

For each material and electron energy, the code uses the known mean collisional energy loss A, interpo-
lating in this tabular function to select a suitable value for A, which is then stored in the dynamically-
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allocated array flc. During the transport phase of the calculation, the value of flc applicable to the current
material and electron energy is used as an upper limit, and any sampled value of A greater than the limit is
rejected. In this way, the correct mean energy loss is preserved.

Angular Deflections

The ETRAN codes and MCNP rely on the Goudsmit-Saunderson* theory for the probability distribu-
tion of angular deflections. The angular deflection of the electron is sampled once per substep according
to the distribution

Fw = 3 (4 pxecsGPw .
=0

J

where s is the length of the substep, L = cos© is the angular deflection from the direction at the begin-
ning of the substep, P (1) is the jth Legendre polynomial, and G; is

I do
G; = 2nN[ =a1-Pwldy,

in terms of the microscopic cross section do/dS2, and the atom density N of the medium.

For electrons with energies below 0.256 MeV, the microscopic cross section is taken from numerical
tabulations developed from the work of Riley.16 For higher-energy electrons, the microscopic cross sec-
tion is approximated as a combination of the Mott!7 and Rutherford!? cross sections, with a screening
correction. Seltzer® presents this “factored cross section” in the form

do _ 7202 [ (do/dQ)pon }
dQ  p2v2(1-p+2n)2d0/dQ)rymerforal

where e, p, and v are the charge, momentum, and speed of the electron, respectively. The screening cor-
rection 1} was originally given by Molizre!® as

_ L ome Yoo (0‘2)2
n _4(0'88510)2 [1.13+3.76 ; ] ,

where o is the fine structure constant, m is the rest mass of the electron, and = v/c. MCNP now follows

the recommendation of Seltzer,® and the implementation in the Integrated TIGER Series, by using the
slightly modified form

_1{ amc V.u3 (OLZZ T
n = 4(0.8851))2 [1.13+3.76 F) - 1] ,
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where 7 is the electron energy in units of electron rest mass. The multiplicative factor in the final term is
an empirical correction which improves the agreement at low energies between the factored cross section
and the more accurate partial-wave cross sections of Riley.

Before the transport phase, MCNP calculates energy-dependent values of F(s, i) for the predeter-
mined substep lengths s in each material. The results are stored as a histogram giving the probabilities for
33 standard angular bins used to sample the angular deflection. Because of the highly forward-peaked
nature of the electron scattering, a better approximation of the angular distribution is obtained if a sepa-
rate delta function component representing zero angular deflection is included. Therefore, MCNP also
accounts for the probability of zero scattering before electing to sample from the angular distribution.
This aspect of the angular distribution becomes more important when the number of substeps per energy
step is increased, or when many partial substeps must be taken. The latter case occurs when the electron
substep is frequently interrupted by geometric boundaries, by the problem time cutoff, or by the sampling
of secondary particles.

When an electron makes only a partial substep, it is also necessary to approximate the Goudsmit-
Saunderson distribution for a pathlength shorter than the pre-selected substep length. MCNP handles this
situation by first considering the zero-deflection probability, and then interpolating the angular distribu-

tion. Specifically, if P,(1) is the probability of zero deflection for a full substep, and if fis the fraction of

a substep to be taken, then the power law P,(f) = [P,(1)]/ gives the probability of zero deflection for

the partial substep. When zero deflection is not selected, then the full-substep Goudsmit-Saunderson dis-
tribution is sampled for a deflection cosine [t. Then the actual deflection for the partial substep is obtained

by linear interpolation in the cosine: p' = 1- f(1-p).
Bremsstrahlung

For the sampling of bremsstrahlung photons, MCNP relies primarily on the Bethe-Heitler!® Born-

approximation results that have been used until rather recently20 in ETRAN. A comprehensive review of
bremsstrahlung formulas and approximations relevant to the present level of the theory in MCNP can be

found in the paper of Koch and Motz.2! Particular prescriptions appropriate to Monte Carlo calculations

have been developed by Berger and Seltzer.?? For the ETRAN-based codes, this body of data has been
converted to tables including bremsstrahlung production probabilities, photon energy distributions, and
photon angular distributions.

MCNP addresses the sampling of bremsstrahlung photons at each electron substep. The tables of
production probabilities are used to determine whether a bremsstrahlung photon will be created. If so,
the new photon energy is sampled from the energy distribution tables. By default, the angular deflection
of the photon from the direction of the electron is also sampled from the tabular data. The direction of the
electron is unaffected by the generation of the photon, because the angular deflection of the electron is
controlled by the multiple scattering theory. In contrast, the energy of the electron at the end of the sub-
step is reduced by the energy of the sampled photon, because the treatment of electron energy loss, with
or without straggling, is based only on nonradiative processes.




There is an alternative to the use of tabular data for the angular distribution of bremsstrahlung pho-
tons. If the fourth entry on the PHYS:E card is 1, then the simple, material-independent probability distri-
bution

=B 4
f(”)”_z(l-—ﬁuﬁ”’ (8)

where L = cos6 and B = v/c, will be used to sample for the angle of the photon relative to the direction
of the electron. This sampling method is of interest only in the context of detectors and DXTRAN
spheres. A set of source contribution probabilities p(lt) reflecting the tabular data is not available. There-
fore, detector and DXTRAN source contributions are made using Equation 8. An option exists to specify
that the generation of bremsstrahlung photons rely on Equation 8 as well, thus forcing the actual transport
to be consistent with the source contributions to detectors and DXTRAN. This option, however, is prima-
rily of interest to code developers.

Knock-On Electrons

The M@ ller cross section?> for the scattering of an electron by an electron is

4 2
do _ 2met[1 1 +('r)_21:+1 L] ©
de ~ mv2E|e?2 (1-g)2 \t+1) (t+1)2e(1-¢)

where €, 1, E, m, v, and e have the same meanings as in Equations 3—4. When calculating stopping pow-
ers, one is interested in all possible energy transfers. For the sampling of transportable secondary parti-
cles, however, one wants the probability of energy transfers greater than some €, representing an energy

cutoff, below which secondary particles will not be followed. This probability can be written

The reason for the upper limit of 1/2 is the same as in the discussion of Equation 5. Explicit integration of
Equation 9 leads to

oy = 2metll_ 1 +( T )2(1_8)_ 2t+1, 1-8
“  mv2E|e, l-g, \t+1/\2 ¢ (1:+1)2gsc )

Then the normalized probability distribution for the generation of secondary electrons with €>¢_ is

given by

L do
o(e,)de

g(e,e)de = (10)
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At each electron substep, MCNP uses o(g,) to determine randomly whether knock-on electrons will

be generated. If so, the distribution of Equation 10 is used to sample the energy of each secondary elec-
tron. Once an energy has been sampled, the angle between the primary direction and the direction of the
newly generated secondary particle is determined by momentum conservation. This angular deflection is
used for the subsequent transport of the secondary electron. Neither the energy nor the direction of the
primary electron, however, is altered by the sampling of the secondary particle. On the average, both the
energy loss and the angular deflection of the primary electron have been taken into account by the multi-
ple scattering theories.

REFERENCES

. H. A. Bethe, “Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie,” Ann. Phys. 5 (1930) 325.

. H. A. Bethe, “Scattering of Electrons,” Z. Physik 76 (1932) 203.

. F. Bloch, “Stopping Power of Atoms with Several Electrons,” Z. Physik 81 (1933) 363.

. S. Goudsmit and J. L. Saunderson, “Multiple Scattering of Electrons,” Phys. Rev. 57 (1940) 24.

. L. Landau, “On the Energy Loss of Fast Particles by Ionization,” J. Phys. USSR 8 (1944) 201.

. O. Blunck and S. Leisegang, “Zum Energieverlust schneller Elektronen in diinnen Schichten,” Z. Physik 128 (1950) 500.

. M. 1. Berger, “Monte Carlo Calculation of the Penetration and Diffusion of Fast Charged Particles,” in Methods in Compu-
tational Physics, Vol. 1, edited by B. Alder, S. Fernbach, and M. Rotenberg, (Academic Press, New York, 1963) 135.

8. Stephen M. Seltzer, “An Overview of ETRAN Monte Carlo Methods,” in Monte Carlo Transport of Electrons and Photons,
edited by Theodore M. Jenkins, Walter R. Nelson, and Alessandro Rindi, (Plenum Press, New York, 1988) 153.

9. J. Halbleib, “Structure and Operation of the ITS Code System,” in Monte Carlo Transport of Electrons and Photons, edited
by Theodore M. Jenkins, Walter R. Nelson, and Alessandro Rindi, (Plenum Press, New York, 1988) 249.

10. E. Rutherford, “The Scattering of O/ and B Particles by Matter and the Structure of the Atom,” Philos. Mag. 21 (1911)

SN AN A WD~

669. 1 + joo
11. W. Bérsch-Supan, “On the Evaluation of the Function ~ ¢(A) = i eMlogit + Mgy for Real Values of A,
J. Res. National Bureau of Standards 65B (1961) 245. Tt x~ieo

12. J. A. Halbleib, R. P. Kensek, T. A. Mehlhorn, G. D. Valdez, S. M. Seltzer, and M. J. Berger, “ITS Version 3.0: The Inte-
grated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes,” Sandia National Laboratories report
SAND91-1634 (March 1992).

13. O. Blunck and K. Westphal, “Zum Energieverlust energiereicher Elektronen in diinnen Schichten,” Z. Physik 130 (1951)
641.

14. V. A. Chechin and V. C. Ermilova, “The Ionization-Loss Distribution at Very Small Absorber Thickness,” Nucl. Insir.
Meth. 136 (1976) 551.

15. Stephen M. Seltzer, “Electron-Photon Monte Carlo Calculations: The ETRAN Code,” Appl. Radiat. Isot. Vol. 42, No. 10
(1991) pp. 917-941.

16. M. E. Riley, C. J. MacCallum, and F. Biggs, “Theoretical Electron-Atom Elastic Scattering Cross Sections. Selected Ele-
ments, 1 keV to 256 keV,” Atom. Data and Nucl. Data Tables 15 (1975) 443.

17. N. E Mott, “The Scattering of Fast Electrons by Atomic Nuclei,” Proc. Roy. Soc. (London) A124 (1929) 425.

18. G. Moliére, “Theorie der Streuung schneller geladener Teilchen II: Mehrfach- und Vielfachstreuung,” Z. Naturforsch. 3a
(1948) 78.

19. H. A. Bethe and W. Heitler, “On Stopping of Fast Particles and on the Creation of Positive Electrons,” Proc. Roy. Soc.
(London) A146 (1934) 83.

20. Stephen M. Seltzer, “Cross Sections for Bremsstrahlung Production and Electron Impact Ionization,” in Monte Carlo
Transport of Electrons and Photons, edited by Theodore M. Jenkins, Walter R. Nelson, and Alessandro Rindi, (Plenum Press,
New York, 1988) 81.

21. H. W. Koch and J. W. Motz, “Bremsstrahlung Cross-Section Formulas and Related Data,” Rev. Mod. Phys. 31 (1959) 920.
22, Martin J. Berger and Stephen M. Seltzer, “Bremsstrahlung and Photoneutrons from Thick Tungsten and Tantalum Tar-
gets,” Phys. Rev. C2 (1970) 621.

23. C. M@ ller, “Zur Theorie des Durchgang schneller Elektronen durch Materie,” Ann. Physik. 14 (1932) 568.

Hughes to




