taur 27-1031 CONF-97/00§ - -1¢

~Approved for public release;
distribution is unlimited

Title: The DANTE Boltzmann Transport Solve: An
Unstructured Mesh, 3-D, Spherical Harmonics Algorithm
Compatible with Parallel Computer Architectures

Author(s): John M. McGhee
Randy M. Roberts
Jim E. Morel

Submitted to: Joint International Conference on Mathematical Methods
and Supercomputing for Nuclear Applications

Saratoga Springs, New York

October 5~10, 1997 '

Los Alamos

National Laboratory

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the
U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S.
Govermnment retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow
others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article

as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness.

Form 836 {10/96)

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

The DANTE Boltzmann Transport Solver:
An Unstructured Mesh,
3-D, Spherical Harmonics Algorithm
Compatible with Parallel Computer Architectures

J. M. McGhee, R. M. Roberts, and J.E. Morel

Principal Author: J. M. McGhee
Scientific Computing Group, CIC-19
MS B265, Los Alamos National Laboratory
Los Alamos, New Mexico 87545
Phone: 505-667-9552
Fax: 505-665-5220
E-mail: mcghee@lanl.gov

Submitted to:
Joint International Conference on Mathematical Methods
-and Supercomputing for Nuclear Applications
Saratoga Springs, New York, October 5-10, 1997

Session:
Methods for Parallelization of Transport
and Diffusion Calculations
(Invited Paper)

March 14, 1997

The DANTE Boltzmann Transport Solver:
An Unstructured Mesh,
3-D, Spherical Harmonics Algorithm
Compatible with Parallel Computer Architectures

J. M. McGhee, R. M. Roberts, and J.E. Morel
Radiation Transport Team '
Scientific Computing Group
-Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Abstract

A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer
architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite
element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing
a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient
algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical
harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces,
in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based precon-
ditioner for scattering dominated problems. Algorithmic efficiency is demonstrated for a massively parallel SIMD
architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.

I. INTRODUCTION

The Boltzmann Transport Equation describes the transport of particles (neutrons, photons, electrons, ions, etc.)
through space and matter. The numerical solution of this important equation is an essential modeling tool in a
wide variety of fields. Among these are nuclear reactor design and analysis, inertial confinement fusion, criticality
safety, medical therapy and imaging, nuclear weapons safety, and oil well logging. All existing methods for solving
the transport equation can be broadly characterized as either stochastic or deterministic. Stochastic or Monte Carlo
methods are easily applied in complex 3D geometries, but statistical errors can result in excessive run times for many
classes of problems. Deterministic methods do not suffer from statistical error but rather from discretization error.
The most popular deterministic method in use today is the discrete ordinates or S,, method. This method has proven
to be extremely useful for nuclear reactor analysis, but for a certain class of problems it exhibits a serious lack of
rotational invariance commonly known as ray effects. Thus, even though the S, method is widely used in neutron
transport it is unsuitable for many other applications. The only deterministic transport method which rigorously
preserves the rotational invariance of the transport operator is the spherical harmonics or P, method. This is one
of the oldest methods for solving the transport equation. However, P, methods have historically suffered a lack of
attention relative to S,, methods, primarily because the S,, equations were much easier to solve on the serial machines
of earlier years. However, the advent of efficient Krylov space solvers, ever more powerful microprocessors, and parallel
computer architectures promises a vastly increased solution efficiency. With these facts in mind, development of a
new P, algorithm designed specifically for compatibility with parallel computer architectures was undertaken at Los
Alamos National Laboratory. :

LA. The DANTE Research and Development Code

DANTE is a deterministic Boltzmann transport solver developed by the Los Alamos National Laboratory (LANL)
Scientific Computing Group (CIC-19). Work on the project began in 1994, as part of a continuing research and
development effort in 3D parallel particle transport algorithms. The initial versions of the code were written in CM-
Fortran for the massively parallel CM-5 computer vended by Thinking Machines Corporation. The code presently
consists of approximately 50,000 lines of Fortran 90. Communication is effected through a MPI based communications
library provided by a third party vendor. DANTE solves the transport equation in a self-adjoint, second order form.
The code utilizes a multi-group energy treatment, and is capable of time-dependent and steady state calculations
for both neutrons and photons. The method of solution is standard source iteration. Fully compatible acceleration
techniques are provided for the acceleration of scattering and emission/fission sources. Other significant features of
the code include:

o Spatial differencing is accomplished on an arbitrarily connected mesh using a Galerkin finite element techniques.
Options are provided for lumped (i.e. single point) source and removal terms for stability in thick problems.
Options are available for a variety of finite elements in one, two and three dimensions. Additional elements can
be added with a minimum of effort, if desired.

¢ Options exist for discrete-ordinates (S, simplified spherical harmonics (SP,), and spherical harmonics (P,)
angular discretization. Options are also available for even-parity, odd-parity, or simultaneous even-parity
and odd-parity solution modes. The P,, and SP,, angular differencing methods provide rotationally invariant
solutions free of the "ray effects” sometimes associated with discrete ordinates codes.

o For the S,, and SP,, modes, a standard within group source iteration technique is used to implement arbitrary
order anisotropic scatter. A fully compatible diffusion synthetic accelerator (DSA) is included. No within-
group scattering source iteration is required in the P, angular differencing mode, as arbitrary order anisotropic
scatter is provided through direct inclusion of the scattering terms in the transport operator.

e For the P, method, the constants appearing in the spatially-continuous spherical harmonics equations are
efficiently generated in-line via an exact quadrature integration of products of the spherical harmonics functions.

o For the P, method, an efficient Marshak boundary condition treatment is provided through an exact numerical -
quadrature integration procedure. This treatment can be applied on arbitrarily oriented boundary faces.

¢ Solution of the transport operator is effected by a preconditioned conjugate gradient a,lgorithm3. Options
are provided for both a simple point Jacobi preconditioner, and a more sophisticated, diffusion based, block
diagonal preconditioner that is particularly effective for optically thick, scattering dominated problems.

o An in-line matrix construction option is provided that greatly reduces the memory required to store the P,
transport operator, at the cost of a moderate (50%) increase in run-time.

o Fission, emission, and down-scatter sources are provided. Fission and emission sources are included using a
standard source iteration procedure. A fully compatible, diffusion based accelerator is provided for both fission
and emission sources.

» Operator construction and solution techniques are tailored for parallel machine architectures. Data layout is
designed to take advantage of mesh partitioning algorithms, which can greatly reduce inter-processor commu-
nication costs, thus improving run time performance.

I.B. Paper Organization

Although DANTE has options for S,, and and SP,, angular differencing, it was designed primarily as a P, code.
This article will focus on the parallel implementation of the 3D, even-parity P, angular differencing technigue in
DANTE. The remainder of this article is organized as follows. A Parallelization Principals section discusses the
general philosophies of parallelization behind the DANTE algorithm. A Numerical Implementation section discusses
the application of these principals to the DANTE code and develops a computational model. Finally, a Computational
Results section presents results of the implementation on the CM-5 parallel computer.

II. PARALLELIZATION PRINCIPALS

Today’s computing environment is vastly different from the environment of even 10 years ago. Rapid improve-
ments in workstation and networking capabilities have produced desktop machines that rival the capabilities of
vesterday’s mainframe supercomputers. Massive parallelization via a networked collection of “off the shelf” desktop
computers is now widely believed to be a pathway to ultra high performance. This philosophy is reflected in recent
computer purchases at both Lawrence Livermore National Laboratory (LLNL) and LANL for the US Department of
Energy Advanced Super-computing Initiative program (ASCI). These architectures (and their anticipated follow ons)
can be characterized as distributed memory massively parallel processors (MPP’s) with peak network bandwidths
on the order of 80 MBytes/s-node or more and powerful processing nodes capable of 250 Mflops/node. The LANL
Scientific Computing Group is tasked with performing transport calculations on these machines. A typical problem
might consist of order one hundred thousand spatial cells, expected to run efficiently on a configuration with hundreds
of processing nodes. An efficient parallel algorithm design is expected to distribute arithmetic work evenly among
all available processors, and also to minimize interprocessor communication. In general terms then, our objective is
to develop efficient parallel algorithms that are also portable, easily maintained and debugged, and easily modified.
In support of this objective we have adopted several general principals which are discussed below.

Parallelize primarily over the spatial axis. Typical transport problems of interest at LANL represent a phase
space characterized by order 10® spatial cells, 10? angles, and 10' energy groups. For these problems, we find
that dividing the number of spatial cells evenly among all the processing nodes usually provides more than enough
computational work to keep all nodes busy, even for modest problems sizes. Moreover, we anticipate future growth
in both the number of processors available, and the number of spatial cells in problems of interest. We therefore elect
to use a fine grained parallelization over the spatial axis as our primary means of parallelization. This strategy is
compatible with current machine/problem configurations, and maintains parallel scalability with anticipated future
machine configurations and problem sizes. Other coarse grained parallelizations, i.e. over angle and/or energy can
provide valuable parallelization opportunities, and their importance should not be discounted; however, for our
purposes we feel that they should remain secondary to spatial parallelization. Moreover, if the processors are already
saturated, additional parallelization over that provided in the spatial axis is of no benefit and may complicate the
code unnecessarily.

Minimize inter-processor communication via an efficient distribution of data among processors. Interprocessor
communication represents an additional work load for parallel machines that is not present on a serial machine. In
addition, the cost of communication is, in general, relatively expensive time-wise compared to an on-chip arithmetic
computation. As a result, parallel efficiency demands that interprocessor communication be kept to a minimum.

{dentify repeated communication patterns, perform a setup for these patterns once, and amortize the cost of this
setup over many communication calls. The cost of a communication operation can be divided into two parts or
phases. One, the creation of a communication “pattern” that is independent of the data being transmitted, and
two, the actual transmission of the data. In the case of an algorithm that repeatedly reuses the same “pattern”,
the setup phase can be performed once, the results stored, and the setup cost amortized over the subsequent data

- transmissions. This can result in significant overall savings in communication time.

Isolate communication operations from computation operations for mazrimum efficiency of both. Optimizing
compliers generally require large code blocks for maximum efficiency. The presence of calls to communication
primitives in a code block can severely inhibit automatic compiler optimizations. In addition, there is usually a
latency or minimum cost per call associated with a communication operation. In order to minimize these effects, we
attempt to isolate communication operations and arithmetic operations into large independent blocks. This strategy
facilitates the construction of large messages, which minimize network latency effects, and presents the compiler with
relatively large code blocks that are more easily optimized for arithmetic efficiency.

Minimize computational workload by utilizing an arbitrary mesh capable of accurately modeling complez geome-
tries with a minimum number of spatial cells. Real world problems often have complicated geometries that can be
very expensive to accurately represent with structured grids. Since the required computational work is proportional
to the number of computational cells in a problem, there is a strong incentive to minimize the number of cells required
for an accurate solution. We elect to use an unstructured computational mesh in order to achieve this goal. Using -
an unstructured approach, we can add resolution as required in any area of the problem without affecting the mesh
elsewhere. This results in considerable savings in total cells required verses a structured mesh approach.

Enhance portability by using a standard programming language and by isolating communication functions in a
separate library which can be replaced or upgraded with o minimum of impact on the rest of the code. We attempt to
maximize portability by using standard language features wherever possible. However, interprocessor communication
routines require functionality which are not provided by modern programming languages. As a result, interprocessor
communication often seems to be the stumbling block in terms of portability, and often has a strong impact on
performance as well. By isolating all communication primitives in their own subroutines/library, it is possible to
port a code by simply porting the communication library. If more than one code is utilizing the same library, the cost
of porting the library can be amortized over all the users. Likewise, if a substitution of communication subroutines
appropriate to the machine at hand is required, then this is most easily accomplished if the communication routines
are isolated in their own library. This approach also facilitates the rapid evaluation of multiple communication
libraries.

We find these principles to be useful in a general sense in that they can be utilized in the design and optimization
of any parallel algorithm. We now describe their application to the development of the DANTE transport code.

-1II. NUMERICAL IMPLEMENTATION

This section provides a brief discussion of some of the more significant details of the actual numerical implemen-
tation of the DANTE algorithm.

II.A. Fundamental Operations

We begin by identifying the fundamental operations contained in-the DANTE algorithm. As previously men-
tioned, DANTE uses a conjugate gradient algorithm to effect a solution of the transport equation. The majority of
the computational work in a conjugate gradient algorithm consists of a matrix-vector multiplication, and therefore
we focus on this operation for purposes of solver optimization. An additional consideration arises due to the large
size of the P, matrix. In order to conserve memory we elect to generate this matrix piecewise during the course of
each matrix-vector multiply. For large problems, we find that these two operations account for over 90% of the total
solution time. Optimization of the DANTE solution algorithm can therefore be considered to be the optimization of
two proeess: in-line matrix generation, and a matrix vector multiply. Both of these processes exhibit a great deal of
data parallelism, and we utilize this fact in the design of our algorithm.

III.B. Data Layout and Mesh Partition

For a typical data array in DANTE we distribute information across the available processors in one of two ways:
cell-wise or node-wise. The majority of communication that occurs in DANTE is thus between cells and nodes. By
placing cells and nodes that are closely positioned in space on the same processor, the amount of data that must
be moved between processors is minimized. There are many readily available mesh partitioners that can efficiently
accomplish this ordering. On the CM-5 we utilize the spectral-bisection partitioner available in the CMSSLZ. On
other machines we have found the METIS pa.rtitioner4, available from University of Minnesota, to be extremely
efficient. Since the majority of communication operations are based on a cell to node, or node to cell pattern, a single
reordering optimizes communication for all important operations in the generation and solution of the transport
matrix.

I1.C. Matrix Generation

DANTE uses a standard finite element Galerkin procedure for spatial discretization. This procedure places the

primary unknowns (the moments of the angular flux) on the mesh nodes, and produces a large, sparse, SPD matrix.

" If the unknowns are arranged into a vector which varies most rapidly in the spatial index, then the complete transport

matrix can be viewed as a (n x n) block matrix where n is the number of moments in the P, expansion. Each block

has an identical non-zero pattern. For example, the even parity, 3D, P3 matrix has 6 even moments on each node,

and the P3 matrix can be viewed as a 6x6 block matrix where each block has the same non-zero pattern. In order
to conserve memory, we construct this matrix one block at a time.

The data required to construct a block of the transport matrix consist of cell geometric characteristics, cell
material properties, and moment-to-moment coupling constants. By storing all the data associated with a particular

cell as a unit, and then distributing these units over the processor space, the cell by cell contributions to the
transport matrix can be generated without communication, and the arithmetic workload of matrix generation is
distributed evenly among the processors. Complete in-line matrix construction from scratch using standard finite
element integration rules was found to be too expensive for our purposes. As a compromise, the construction of the
Hessian matrix required by the finite element treatment is carried out once at setup time, and stored for future use.
The Hessian matrix is dependent only on the cell geometry and is the same for each block in the system. The ready
availability of the Hessian matrix reduces the amount of work required to generate the matrix elements to, what we
consider to be, a more reasonable level. Using this approach, matrix generation on large problems typically accounts
for about 50% of the total solution time.

At this point a conventional approach would require the assembly of the cell-by-cell contributions to the transport
matrix into a final compact matrix form. However, this step entails interprocessor communication, and we elect to
avoid this communication by leaving the matrix in its unassembled form. The trade off is, that as a result, there
is more communication and math to perform during the matrix vector multiply. Whether or not this is a winning
strategy depends on the relative cost of computation verses communication, which is platform dependent. We plan
future experiments to investigate this issue on a variety of platforms. While there is considerable room for “fine-
tuning” in this area, we do not expect the resolution of this question to seriously impact the overall utility of the
method.

III.D. Matrix Vector Multiply

Having completed our discussion of matrix construction, we turn now to the actual matrix-vector multiply. This
is accomplished as a five stage procedure. First, a vector gather is performed that copies the complete moment
vector from each mesh node to its corresponding cell vertex. This node-to-cell gather is followed by the construction
of a single block of the transport matrix, as described in the previous section. Third, the matrix construction is
followed by a (nvrtx x nvrtx) matrix vector multiply on each cell, where nvrtx is the number of vertexes on a cell.
The construction and multiplication steps are then repeated for each block in the transport matrix. (36 blocks for
P3). Fourth, the results of the construction-multiplication step are scattered-with-add from the cell vertexes to the
mesh nodes. Finally, to complete the matrix vector multiply, boundary conditions accommodated in a follow on
procedure similar to the previous four steps. Memory usage is minimized, as storage is required for only one block
of the transport matrix at any given time.

III.E. Computational Model

We have constructed a computational model to predict the performance of the DANTE solver. Analysis based
on this model is useful in predicting, understanding, and optimizing the solution algorithm. The model is somewhat
crude, but can still provide useful information. We begin the description of our computational model with the
following definitions:

ncells = number of cells in the problem

¢ p = number of prdéessors

e nvrtx = numbef of vertexes on a cell

e nvrpf = number of vertexes on a cell face

e tmath = time to perform a floating point operation (s/flop)

e tcomm = time to perform an interprocessor tcomm = (tdata nwords) + tlat (s)
e nwords = number of words in a interprocessor message

¢ tdata = interprocessor data transfer coefficient (s/word)

e tlat = interprocessor communication latency (s)

e nblocks = number of blocks in the transport matrix

n 13 5 7 9 11 13 15
nblocks | 1 136 | 175 | 434 | 813 | 1312 | 1931 | 2570

Table I: Number of moment-to-moment coupling blocks in a 3D even-parity P, matrix

e n = P, order
e nevmo = number of even moments

¢ ncgiter = number of conjugate gradient iterations

The number of even moments for a P, calculation is given by the following formula:
nevmo = n{n +1)/2 (1)

The total number of blocks in the P, matrix increases rapidly with increasing P, order, approaching (30 nevmo)
for large n. The actual number of blocks for odd values of n less than 15 is presented in Table I. The time required
to perform the math in a single matrix construction varies somewhat from one P, order to another, but can be
approximated as:

tmatrix = nblocks tmath ncells 5 (nvrtx?)/p 2)

The time required for a single interprocessor gather and scatter operations can be estimated as:
tgather = tscatter = nmom (tdata 3 nvrpf (ncells/p)*/® + tlat) 3)
The time required for the math in a single matrix-vector multiply is:

tmvm_math = nblocks tmath 2 ncells (nvrtx®)/p (4)

and the total time for solution is estimated as:

t = ncgiter (tmatrix + tgather + tscatter + tmvm_math) (5)

IV. COMPUTATIONAL RESULTS

In order to investigate the parallel performance of the DANTE transport algorithm, we constructed a benchmark
test suite consisting of a series of computational timing studies. Timing data was obtained for a simple one-group,
steady state problem while varying both the number of spatial cells-and the number of processing nodes.

In this section we describe results from this series of test problems. We begin with a brief description of the
platforms used in the benchmark.

IV.A. CM-5 Description

As a representative distributed memory parallel platform, we selected the CM-5, vended by Thinking Machines
Corporation (TMC). Qur team has ready access to such a machine at Los Alamos National Laboratory. The Los
Alamos National Laboratory CM-5 consists of 1024 processing nodes, each having a maximum memory of 32 Mbytes.
Each processing node is comprised of a SPARC CPU and four vector processors. The nodes are connected by a “fat
tree” data network with a maximum bandwidth of 5 MBytes/s for general communication. Users access the machine
via one of several “partition managers” which provide access to 32, 64, 128, 256, or 512 node partitions. A more
complete description of the CM-5 is available in the CM-5 Technical Summaryl. For this benchmark, we operate
the CM-5 in the data parallel SIMD mode, and utilize the “partition_vector_gather/scatter” utilities from the TMC
supplied CMSSLZ for interprocessor communication.

Table II: Test Mesh Descriptions. A single material cube 100 cm on edge. ”a

edge length.

Mesh ID | Points | Tets | a (cm) | a (mfp)
con_test(71 192 35.35 2.000
con_testl | 429 1536 | 17.68 1.000
con-test2 | 2969 | 12228 | 8.85 0.500
con.testd | 22065 | 98304 | 4.42 0.250

N LN

is defined as the mesh average tet

Mesh ID | IBM 590, 1 node | CM-5, 32 nodes | CM-5, 64 nodes | CM-5, 128 nodes | CM-5, 256 nodes
con_test0 0.08 “0.75 1.03 1.16 -
con_testl 1.08 1.11 1.24 1.39 -
con_test2 17.31 2.70 2.55 2.58 2.72
con_test3 271.62 20.06 12.47 8.33 6.73

Table III: Benchmark Problem Timing Results (s)

IV.B. IBM Description

For purposes of comparison with the CM-5, we selected a IBM 590/RS6000 workstation as a representative
serial machine. The IBM 590 is a modern, cache based super-scalar workstation with a SPEC{p92 flop rate of
approximately 250 Mflops. Additional information on the IBM 590 system architecture can be found in the IBM 590
user documentationS. The machine used in our benchmark was equipped with 512 Mbytes of memory, which was
sufficient to prevent any significant swapping for the benchmark problem.

IV.C. Test Problem Description

The benchmark problem consisted of a single material cube 100 cm on edge with a uniform isotropic distributed
source and vacuum boundary conditions. The source strength was set to 1.0 (p/em3 —s). The total cross section was
set at 5.657 x 10™2 em~1. Scattering was isotropic, with a value of 2.8285 x 10~2 em™!. These opacities resulted in a
problem mean free path of approximately 17.7 cm making the problem approximately 5.66 mfp on edge.The problem
was discretized using four meshes, as shown in Table IL. The meshes were essentially identical in all respects other
than tetrahedra dimensions. All tetrahedra were uniform and well shaped. Testing was performed using a early,
one-group version of DANTE limited to linear tetrahedral finite element meshes. The DANTE code was compiled
on both the IBM 590 and the CM-5 with compiler optimization switches activated. Run times were measured on
the four meshes for four different machine sizes: 32, 64, 128, and 256 processing nodes. All runs were made in the
even-parity mode with P, order set to three (P3). Timing results were obtained using the “cmf_timer” utility on the
CM-5 and the “etime” utility on the IBM. Wall clock times were also recorded as an additional reference. Although
neither machine was “dry” (free from other users) during the testing, this was not believed to significantly affect the
results, as wall clock and CPU times were observed to be nearly identical.

IV.D. Results

Results from our timing runs are presented in Table III. A plot of the relative performance of the IBM 590
verses the 32 node CM-5 is presented in Figure 1. This figure dramatically demonstrates the startling reduction in
run time that can be achieved through parallel algorithms.

Based on the timing data, we estimate the following effective parameters for the CM-5, per processing node:

e tlat = 5000 us
¢ tdat = 1.8 us/8-byte-word (approximately 4.6 Mbytes/s, 90% peak)
o tmath = 0.021 pus/flop (approximately 48 Mflops, 38% peak)

300
IBM 590, 1 node, Model —— .
250 CM-5, 32 nodes, Model -—--- 4
IBM 590, 1 node, Observed <
CM-5, 32 nodes, Observed
- 200
°
£
=
= 150
.2
E
3
100
50
0
10000

Number of Cells

Figure 1: CM-5 Solution Time verses IBM 590 Solution Time.

We also observe an additional “unidentified serial time” of 0.08 seconds per conjugate gradient call. This time
does not seem to be a strong function of either the problem size or the number of processors, but depends only on the
number of conjugate gradient iterations. We account for this time in our model by adding a factor of (+0.08 ncgiters)
to the total time predicted for a CM-5 calculation. This time is insignificant for large problems.

Using the above parameters, we plot, in Figure 2, the performance predicted by our model against the observed
timings. Considering the crudeness of the computational model, we find the agreement between model and experiment
to be very reasonable.

Figure 3 displays the relative importance of the different components of our computational model to the total
solution time. For large problems the computational time is dominated by the generation of the transport matrix.

A plot of the relative parallel speedup predicted by our model is presented in Figuré 4. The serial reference time
used was the predicted DANTE solution time for a single CM-5 processing node, without communication. A speed up
of 1.0 would represent perfect parallel efficiency, a speed up equal to the number of processors. The efficiency of the
CM-5 is reduced for small problems sizes, primarily as a result of the previously mentioned additional “unidentified
serial time”. For comparison, we also present the predicted performance of our algorithm on a IBM 590/SP2 cluster.
Parallel efficiency on this network is predicted to be much higher. For the IBM 590/SP2 combination, the following
values are considered to be representative and were used in the model:

e tlat = 75. us

e tdat = 0.33 us/8-byte-word (approximately 24 Mbytes/s, 30% peak)

e tmath = 0.013 us/flop (approxirhately 80 Mflops, 30% peak)

As a point of comparison with a conventional first order code, we compare DANTE on the IBM 590 with our
unstructured tet mesh code ATTILA” in Figure 5. This comparison indicates that, for the benchmark problems, P,

solutions can be obtained for costs similar to that of standard S,, solutions . We note however that the solution time
for the P, algorithm is a function of the cell optical thickness.

10000 ¢ !
IBM 590, 1 node, Model ——
CM-5, 32 nodes, Model -——--
L CM-5, 64 nodes, Model -
1000 CM-5, 128 nodes, Model -~
r CM-5, 256 nodes, Model --—--
[IBM 590, 1 node, Observed <
| CM-5, 32 nodes, Observed +
CM-5, 64 nodes, Observed @
100 | CM-5, 128 nodes, Observed
L CM-5, 256 nodes, Observed 2

10

Solution Time - s

0. l e 1 A L. i
1000 10000 100000 1e+06
Number of Cells

Figure 2: Comparison of CM-5 computational model predictions with numerical results.

22
20r : Total — d
Matrix Generation ------
18 r : MVM Math -
MVM Gather and Scatter -~
16 | Other --—-

Total, Observed

14
12
10

Task Time - s

Number of Cells

Figure 3: CM-5 computational model predictions of fraction of total solution time spent in each computational task.
32 nodes.

Fraction of Perfect Speedup

"/ 590/SP2, 32 nodes ——

" 590/SP2, 64 nodes ------
590/SP2, 128 nodes ----- .
590/SP2, 256 nodes
CM-5, 32 nodes -——-~ i

" CM-5, 64 nodes ----
CM-5, 128 nodes ----
CM-5, 256 nodes -

100 1000 10000 100000

le+06 1e+07 1e+08

Number of Cells

10

Figure 4: Speedups predicted by CM-5 and IBM 590/SP2 computational models. A “perfect speedup of 1.0 means
that a parallel calculation with n processors would require time t/n where t is the time to perform the calculation

on one processor.

300

DANTE, Model (P3)
DANTE, Observed (P3)
250 ATTILA, Observed (S4, 7 inners)

200

150

Solution Time - s

100

50

100000

Number of Cells

Figure 5: Comparison of serial solution times for a first order S,, code (ATTILA) and a second order self-adjoint P,

code (DANTE). Benchmark problem of section IV.C.

P, Order | nblocks Memory (MBytes)
Compute In-Line | Store Full Matrix
1 1 7.196 9.30
3 36 11.98 38.10
5 175 21.30 155.90
7 434 36.60 360"
9 813 59.56 670!

Estimated, insufficient memory to store full matrix.

11

Table IV: Memory usage of in-line and full matrix storage schemes, con_test2 mesh, (Mbytes) IBM 590, vNo‘te 1.

The observed memory usage on the IBM 590 is presented in Table IV for a variety of P,, orders. Memory usage

was determined using the AIX

“ps” utility during the actual operation of the DANTE program. Memory requirments

are observed to be reduced by as much as a factor of 10 for the higher P, orders. The price of this reduction is the

time spent in matrix generation, which was between 50 and 60 % of the total solution time for all P, orders.

IV.E. Discussion

Our experince with the DANTE algorithm is limited to date, but we are able to make some general observations.

Some of the advantages of our approach include:

e The second order self-adjoint formulation is easy to accelerate.

e We find it relatively easy to try new communication libraries, and port to new platforms.

Good parallel efficiency is theoretically possible.

The efficiency of the conjugate gradient solver is excellent for time dependent problems, as these problems
include a large “time-absorption” term on the matrix diagonal, and have an excellent initial guess for the

solution from the previous time cycle.

There is a large community of researchers working on SPD solvers. Significant developments in this field should

apply directly to DANTE.

The P, or SP,, solution modes are rotationally invariant.

Some of the disadvantages that we have noted are:

¢ The conjugate gradient solver iteration count is problem dependent. Problems with a large number of cells, or
optically thin cells can require many CG iterations. Problem scattering ratio can also affect iteration count.

e No sophisticated parallel preconditioners for the conjugate gradient solver are presently in hand.

o Storage of the Hessian matrix and one block of the transport matrix, even though greatly reduced over the full
P, matrix, still represents a significant memory requirement for large problems.

¢ Vacuum cells are problematic, as the second order self-adjoint form of the transport equation includes 1/¢

terms.

V. FUTURE WORK

Our research and development efforts continue. Investigations are currently underway or planned for a variety

of improvements, modifications, and extensions of the current algorithm. Among these are:

o Investigate/optimize performance on the LLNL and LANL ASCI MPP clusters.

e Investigation of performance of alternate communication libraries.

¢ Investigation of alternative parallel solvers, i.e. algebraic multi-grid solver, et. al.

VI. CONCLUSION

A spherical harmonics based transport algorithm has been developed for parallel computer architectures. Good
parallel performance has been demonstrated on the CM-5 massively parallel computer operating in a SIMD mode.
As good or better performance is expected on MPP clusters.

ACKNOWLEDGEMENTS

This work was performed with funding provided by the LANL LDRD and ASCI programs, and was performed in
part using resources located at the Advanced Computing Laboratory of Los Alamos National Laboratory. Harold
Trease (LANL) provided the tetrahedral mesh generation software used to create the computational meshes for all
benchmark problems.

REFERENCES

1. Thinking Machines Corporation, CM-5 Technical Summary, Nov 1993.
Thinking Machines Corporation, Connection Machine Scientific Subroutine Library, 1994.

Golub and Van Loan, “Matrix Computations”, John Hopkins University Press, Baltimore, 1989.

Lol

Karypis and Kumar,” Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs”, Technical Report,
Department of Computer Science, University of Minnesota, 1996.

Zienkiewicz and Taylor, “The Finite Element Method”, McGraw-Hill, London, 1994.

o

6. IBM Corporation, “AIX Version 3.2 for RISC System/6000, Optimization and Tuning Guide for Fortran, C,
and C++, Chap 4. RISC System /6000 Architecture”, Armonk NY, 1993

7. Wareing, T. \A., J. M. McGhee, and J. E. Morel, 7 ATTILA: A Three-Dimensional Unstructured Tetrahedral
Mesh Discrete-Ordinates Transport Code”, Vol. 75, p.146, Trans. Amer. Nucl. Soc., American Nuclear Society
Annual Winter Meeting, Washington, D.C.; 10-14 Nov 1996.

