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ABSTRACT

The linear Boltzmann equation for the transport of neutral particles is investigated with the objective of generating a
benchmark-quality calculation for the three-dimensional searchlight problem in a semi-infinite medium. The derivation
assumes stationarity, one energy group, and isotropic scattering. The surface and interior scalar fluxes are the quantities of
interest. The source considered is a pencil-beam incident at a point on the surface of a semi-infinite medium. The scalar flux
will have two-dimensional variation only if the beam is normal; otherwise it is three-dimensional. The solutions are obtained
by using Fourier and Laplace transforms and standard numerical techniques. Comparisons of these numerical solutions to
results from the probabilistic code MCNP are also provided.

I. INTRODUCTION

The scientific community continues to develop more complicated and comprehensive codes to model physical systems.
These developmental codes require benchmark results with which to compare computed results to confirm that the codes are
operating properly. The benchmarks generally consist of numerical results to simplified problems that a comprehensive code
must be able to solve. Mathematical and numerical techniques are applied to obtain numerical results that are accurate within
a desired error. Such benchmarks are called “analytical benchmarks” because they consist of numerical evaluations of
analytical mathematical representations.

As the production-level codes become more comprehensive, so must the benchmarks become more comprehensive.
Successively comprehensive benchmarks generally evolve from consideration of very simple problems to those that are more
complex. For example, a suite of benchmarks in homogeneous isotropically scattering infinite media is established by
consideration of one-dimensional problems, such as the isotropic point or isotropic plane sources, and then progresses to
more complicated problems, such as anisotropic point or plane sources. The complexity may then be increased by
considering semi-infinite media or slab geometries. In this paper, the development of useful benchmarks is furthered by
examining a homogeneous, isotropically scattering, source-free semi-infinite medium.

One of the basic transport problems for semi-infinite media is the searchlight problem originally posed by
Chandrasekhar! in the radiative transfer context. In the searchlight problem, radiation impinges on the free surface of a semi-
infinite medium, and the resultant particle distributions are to be determined. To date, only one-group problems have been
considered for a homogeneous isotropically scattering medium. The searchlight problem has been shown to be a variant of a
one-dimensional pseudo problem that facilitates its solution.?? Numerical analyses of the searchlight problem have been
considered by Siewert and Dunn,*>6 where the Fy method was applied to determine the flux from a normal beam incident on
a finite slab. Elliott? considered an isotropic point source at the surface of a half-space, but, as would be expected from a
paper of that era (1955), no numerical results were presented because of the lack of computational power. Recently,




numerical results for the searchlight problem for a half-space have been provided by Ganapol and Nigg® and Ganapol, er al.’
for the case of a normal beam. When the beam is directed normal to the surface, the scalar flux is two-dimensional, resulting
in a significant numerical advantage. However, if the beam is canted, the scalar flux is three-dimensional. This generalized
case will be considered here. The analytical expressions, while complicated, will be shown to be amenable to numerical
evaluation. A benchmark-type comparison between the numerical results and the production code MCNP!® will be provided.

II. DERIVATION OF THE TRANSFORMED SCALAR FLUX
The derivation of the equations that describe the scalar flux in a semi-infinite medium for several types of surface

illumination has been performed previously;? therefore, only a brief description of the derivation will be presented here. The
simplified form of the transport equation in cylindrical coordinates is
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where the surface condition for a general source S(p) is
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Schematic drawings of the coordinate systems and physical geometry are provided in Figures 1 and 2, respectively.

Fig. 1. Searchlight problem spatial and angular coordinate systems.

The source is normalized such that | dp S(p) = 1. The solution method begins by taking a two-dimensional Fourier transform
of the transport equation in the transverse (p) plane, then progresses to the formation of integral expressions by following
along particle trajectories. These integral expressions for the transform angular flux are then integrated over angle to produce
the transformed scalar flux, given by

W(z:k) = Stk) 4o 92- j dz' K(lz - 2:k)¥(z"k) (2a)
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where we can show the kernel K(z:k) to be?

1 —z(1+k2u®) %y
d
Kehy= | Fo—a0g; . >0, @b)
7 (1 + K’ )
0




fa

_
M(QO’k)

s (2c)

w( k) =1- ik(l - uz)l/zcos(qb— v) . @d)

Semi-Infinite
Medium

Free Surface
~

Pencil-Beam

Fig. 2. Searchlight problem schematic drawing.
The solution to the transformed transport equation is accomplished by considering a corresponding one-dimensional
pseudo transport equation.>3 The solution to the half-space pseudo problem is obtained by following the methods established

by Busbridge!! and detailed in Ref. 9. This solution and correspondence to the direct problem yields the following expression
for the transformed scalar flux at the surface

YO0sk) = S(k)H(Ugk) 3)

where the H-function is given by the nonlinear integral equation
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with &(u) = ,u/(1+kzuz)”2 When & = 0, Eq. (4) reduces to the standard H-function as derived by Chandrasekhar.!? The

Busbridge solution method also produces an expression for the interior pseudo scalar flux in terms of a Laplace transform.
The Laplace transform, denoted by £.{+}, of the interior transformed scalar flux is expressed as a function of the transformed

surface scalar flux as®
W(zk) = S(k) U H(Ugik) Yoph { T [1/s:k] } (5)

III. THE DIRECT SCALAR FLUX

The direct scalar flux is obtained by inverting the double Fourier transform, which is explicitly written as
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Upon substitution of the transformed surface and interior scalar fluxes, we have
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A significant simplification occurs if the anisotropic source impinges normal to the surface. In this case, yy = 1, which

implies that Uy = 1, and S(k) is a function of the magnitude of k only. The entire dependence on y in the kernels in the
above formulations is lost except for the complex exponential; the integral over dy then becomes the zeroth order Bessel
function. Clearly if py = 1 the scalar flux is two-dimensional. These cases have been previously treated numerically.® In
general, however, 1o # 1 and the scalar flux is three-dimensional.

IV. NUMERICAL METHODS

As is evident in Egs. (7), the numerical solution for the scalar flux involves many procedures including H-function
evaluation, a Laplace transform inversion, and a double Fourier transform inversion. Each numerical procedure will be
discussed separately.

IV.A. Numerical Evaluation of the H-Function

The numerical evaluation of the H-function is essential to determining the scalar fluxes. The nonlinear integral equation
to be solved is rearranged to give
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A moment relation for the generalized A-function can also be derived as
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The evaluation of the H-function is made simpler because the range of integration and the argument of the A-function
inside the integrals are real. Thus, we use an iteration scheme to evaluate the real H-function in the range of integration, and
then this “converged” H-function is used to generate the value of the general H-function for any & which may be complex.
The iteration scheme uses Gauss-Legendre quadrature of order L,, to evaluate the integrals; thus, an iteration is performed for

each H(&,,;k). The iteration process and the algebra of real and imaginary H-functions are detailed in Ref. 13.

IV.B. The Laplace Transform Inversion

Like the Fourier transform pair, the Laplace transform pair is composed of integrals in the complex plane. If the direct
function, f(#), is known to be real, then the inversion may be expressed as

2e” =
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Physical quantities, such as a scalar flux, must be mathematically real to be of physical significance. However, a real
integral does not imply that its integrand must also be real. For an integral to be real, either the integrand itself must be real
or the imaginary part of the integrand must integrate to zero. The integrand for the interior scalar flux [Eq. (7b)] contains a
Laplace transform inversion; however, this Laplace transform inversion is multiplied by a complex exponential and other
complex quantities such as Uy and H(Uy;k). If the scalar flux is determined as shown in Eq. (7b), the result of the Laplace

transform inversion (the direct function) will be complex, and therefore Eq. (10) may not be used for the Laplace transform
inversion. If the integral over dy is performed inside the Laplace transform inversion as
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then Eq. (10) can be used for the Laplace transform inversion. For the interior scalar flux as given by Eq. (11) to be real for
all z and p, the integrand (i.e. the Laplace transform inversion) must also real.

IV.C. The Double Fourier Transform Inversion and the Scalar Flux

The double Fourier transform inversion is common to the surface and interior scalar fluxes. The inversion has the form

o 2x .
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Fortunately, all H-functions in the integrands of the Fourier inversions are parameterized in £ only. To examine the
implications of this simplification, we consider the function H(Uy;k). A converged H-function can be determined for a given

k. Uy is a function of y, but the same set of converged H-functions can be used for each y in the evaluation of H(Uy:k). The
iteration to determine the converged H-function may then be performed outside the integral over dy with only the
interpolation of the H-function to give H(Upy;k) required inside the integral over dy.

The integral over dk in Eq. (12) is evaluated by converting the semi-infinite integral into an infinite series of finite
integrals as

Fi dkka, 13
(p)= (2)ZJ (k) (13)

where the a; are points at which the integral over dk is partitioned. For a normal beam, the function F (k) contains a zeroth
order Bessel function, and the a; points are conveniently set to the zeros of Jy(k); however, in general, a zero finding scheme,

‘such as the bisection method, is used to determine the zeros of F (k) and these zeros are used as the points a;. This produces a
purely oscillating series that is amenable to Euler-Knopp'# acceleration. The integrals over dy are most efficiently performed
using Chebyshev integration.

The only source considered in this study of the searchlight problem is a pencil-beam that impinges on the surface of the

half-space at the origin. Thus, S(p) = &p)/(27p) and S(k) = 1. Extracting the particles that come directly from the source [by
subtracting 1 from H(Upy;k)] is convenient and gives for a general source variation on the surface:

> 2T ikpcos(y—a)
#0,p) = S(p)+a dkk | dy e ecosv=a) ey ey 1 (14)
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If the complex H-function is separated into real and imaginary parts and the complex algebra performed for the integrand in
Eq. (14b), the surface scalar flux can be shown to be real, as it must be, and is given by
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where g = kpcos(y — ) and H, and H, are the real and imaginary parts of the H-function, respectively. When the beam is
normal, Uy = 1, H, = 0, and the cosine term integrates to a zeroth order Bessel function to give the expected two-dimensional
result.

Some simplifications in the expressions for the interior scalar flux can also be made by noting that the final result must
be real. When the integral over dy is performed inside the Laplace transform inversion, as in Eq. (11), the result of the
inversion must be real for the scalar flux to be real. The interior scalar flux can be shown to be real by expressing complex
factors in terms of their real and imaginary parts, collection the entire expression into real and imaginary parts, and showing
the imaginary part to be zero. If the beam is normal to the surface, U, is 1, the integral of the complex exponential in Eq.
(11) becomes Jy(kp), and the two-dimensional form for the interior flux is recovered.

V. NUMERICAL RESULTS

V.A. The Scalar Flux at the Surface

The numerical evaluation of the surface scalar flux is obtained by using standard numerical techniques such as iterative
Gauss-Legendre quadrature, Chebyshev integration, transformation of a semi-infinite integral into an infinite series, Euler-
Knopp acceleration, and double inversions in Cartesian coordinates. The surface scalar flux is given by Eq. (7a). The required
inversion contains a double integral, of which the outer integral is over the k variable and the inner integral is over y. With
the converged values of the H-function calculated for each &, only one interpolative evaluation of the H-function at the
particular y values associated with Uy must be performed inside the integral over dy. As usual, the integral over dk, which
has a semi-infinite range, is converted into an infinite series of integrals. The range of integration for these integrals may be
the zeros of the zeroth order Bessel function or the zeros of the integrated function. In general, use of Gauss-Legendre
quadrature or Romberg integration for the outer integrals and Chebyshev integration for the inner integrals is most efficient.

Some numerical results for the surface scalar flux are presented in Table I in the form of an error convergence analysis.
The results were generated with a scattering coefficient of ¢ = 0.9, an incident angle yy = 0.7, ¢g = O (hereafter, unless
otherwise noted, the incident azimuthal angle is 0), and at y = 0.1. The numerical integration parameters include outer
integration using variable Gauss-Legendre quadrature (where the integral is evaluated at successively higher quadrature orders
until a prescribed number of consecutive integral evaluations are within a specified tolerance) with an initial quadrature of 10
and increment 2 (with iterative H-function evaluation), and an inner Chebyshev integration with initial quadrature 20 and
increment of 20. The zeros of Jy(k) are the endpoints of the finite outer integrals. The numerical values of the scalar flux
agree with each other to the required number of significant digits based on the convergence criteria. Furthermore, the values
of the scalar flux are greater at positive values of x than at negative values of x because of the canted beam introducing
particles into the region of positive x.

Table I. Error Convergence Analysis for the Surface Scalar Flux

X err=107 err=10" err=10" err=10" err=10"° |
-2 4.424424E-3 4.425169E-3 4.425259E-3 4.425270E-3 4.425272E-3
I -15 8.720801E-3 8.721863E-3 8.721989E-3 8.722005E-3 8.722007E-3
. 1.965904E-2 1.967439E-2 1.967635E-2 1.967637E-2 1.967637E-2
05 6.050579E-2 6.054166E-2 6.054566E-2 6.054619E-2 6.054618E-2
0 6.873938E-1 6.872902E-1 6.872764E-1 6.872741E-1 6.872742E-1
0.5 2.047136E-1 2.047531E-1 2.047594E-1 2.047592E-1 2.047591E-1
1 7.202231E-2 7.204633E-2 7.204537E-2 7.204524E-2 7.204522E-2
1.5 3.322871E-2 3.322389E-2 3.322325E-2 3.322315E-2 3.322315E-2
2 1.730579E-2 1.730218E-2 1.730159E-2 1.730162E-2 1.730162E-2




The surface scalar flux is primarily a function of two spatial variables (x,y) or (p,&), and one source parameter, y;. We
now examine the scalar flux on the surface as a function of the spatial angle and source inclination. Such a plot is displayed
in Figure 3. Figure 3 was generated at ¢ = 0.9 and the scalar flux is converged to 107, The scalar flux is shown as a
function of aand yy at p = 1. When g = 1 (a normal beam) the scalar flux is independent of angle, as expected. When the
incident beam is exactly grazing (uo = 0), the scalar flux is zero, and as u, approaches zero the scalar flux does likewise. At
small spatial angles, the scalar flux begins to increase as y, decreases, peaks, and then decreases to zero. As the beam is
canted, more particles are scattered into the areas that have small spatial angular coordinates, but eventually the beam is so
canted that the effect of scattering more particles into the region with small spatial angular coordinates is overcome by the
loss of particles through the surface. At large angles (o near 180°), when the beam is canted, it shines particles in a direction
that is increasingly farther from the spatial point and therefore the scalar flux continuously decreases.

TN RNeOS
scalar flux

Fig. 3. The surface scalar flux as a function of positional angle () and beam incident angle (1) at p = 1 with ¢ =0.9.

V.B. The Interior Scalar Flux

As with the scalar flux at the surface of the half-space, evaluation of the interior scalar flux requires evaluation of the H-
function. However, the evaluation is further complicated by the need for a Laplace transform inversion inside the double
Fourier inversion. With three embedded integrals to compute, along with an H-function iteration, efficient calculations are
obtained when few or no iterations are performed. Without the confidence in the answer that comes from a solution that has
used the iterative processes, some measure must be found to provide confidence in the numerical results of the calculation.
This confidence is obtained primarily by testing the. results at various quadrature orders, and by occasionally allowing the
algorithm to iterate. When this testing is performed, the outer integral over dk is evaluated accurately by means of Gauss-
Legendre quadrature at orders of 10 or 20. The inner integrals over dy generally require Chebyshev quadrature orders of 50 for
most problems; however, when ¢ is small, higher quadrature orders are required.

One drawback to setting the quadrature orders and not allowing iteration is that the results are limited in their accuracy.
The lowest relative error that can be achieved for most results (with any degree of confidence) is 107, First, the time required
to obtain this error is quite long, and second, the algorithm often becomes unstable if stricter errors are requested. The
instability arises because the quadrature order of the inner integrals is set, and for large &, as required for evaluations at low
relative errors, the quadrature order is not sufficient to provide an accurate determination of the function being integrated.




An error analysis of the results from calculating the interior scalar flux is provided in Table II. The physical and spatial
parameters are p = 1, a=30° ¢ =0.9, g4y = 0.9. Generally, the inner integral over dy uses a fixed Chebyshev quadrature order
of 50. The average calculation time per point on a DEC alpha 3000 workstation with 64 MB of internal memory is listed at
the bottom of the table. As usual, the results agree with each other to the required number of digits. The final column, listed
also as being converged to a 107 error (with an asterisk) was allowed to iterate on both inner and outer integrals. The CPU
time required to obtain results (180 min/point) reflects the computational effort required when additional inner iterations are
allowed.

Table II. Error Convergence Analysis for the Interior Scalar Flux

b4 err=107 err=10" err=107" err=107"
0.5 1.0828E-1 1.0823E-1 1.0825E-1 1.0825E-1
1 1.2466E-1 1.2446E-1 1.2445E-1 1.2449E-1
1.5 1.1289E-1 1.1281E-1 1.1282E-1 1.1281E-1
2 8.3406E-2 8.3359E-2 8.3361E-2 8.3347E-2
2.5 5.3373E-2 5.3358E-2 5.3352E-2 5.3355E-2
3 3.2717E-2 3.2738E-2 3.2741E-2 3.2742E-2
3.5 2.0357E-2 2.0337E-2 2.0338E-2 2.0339E-2
4 1.2961E-2 1.2953E-2 1.2952E-2 1.2952E-2
4.5 8.4463E-3 8.4454E-3 8.4452E-3 8.4451E-3
5 5.6201E-3 5.6172E-3 5.6167E-3 5.6166E-3
216 sec. 444 sec. 939 sec. 10,800 sec.

Perhaps the most useful means of viewing the scalar flux comes as a contour plot in two spatial dimensions. A slice of
the medium is taken parallel to the z-axis at a particular position y so that the canted nature of the beam is clearly visible.
The variation in z begins at the free surface and extends to some point in the medium. Figure 4 displays a contour plot of the
scalar flux versus x and z at y = 0.5. The spatial variable x ranges from [-2, 2] and z ranges from [0,5]. The beam impinges
on the free surface of a ¢ = 0.9 medium at an angle 6 = 25.8° (i = 0.9). When the edit grid is near the source, the directed
nature of the source is clearly visible as is the buildup peak inside the surface. As the edit grid moves farther from the source,
the buildup peak moves into the medium and the directed nature of the source becomes less evident.

VI. COMPARISON WITH MCNP

Los Alamos National Laboratory has developed the MCNP!0 production-scale code for transport calculations. This code
uses standard probabilistic Monte Carlo methods to follow particles throughout a specified geometry. A comparison of
results from MCNP and the analytic solution is provided for an analysis of the canting angle of the incident beam. Figure 5
displays the effects of changing . Three spatial points are fixed [the points are (x,y,z) = (1,0.5,1), (2,0.5,1), and (3,0.5,1)]
and the number of secondaries per collision is described by ¢ =0.9. As on the surface, the scalar flux rises from zero for a
grazing beam (u, = 0), peaks at some g, where the beam emits into a direction that passes near to the specified spatial point,
and then decreases again as the beam direction moves away from the spatial point until it emits along the z-axis (1o = 1). The
individual points displayed are the results of MCNP calculations using point detectors at the locations shown (error bars
- indicate +/- two standard deviations). One million particles were followed throughout a 60 x 60 % 30 (x, y, z) mean-free-path
medium. The medium consists of 90% purely scattering isotopes and 10% purely absorbing isotopes with a total cross
section of 1.0. The standard deviations associated with the MCNP calculations ranged between 1 and 2%, with an
approximate calculation time of 15 minutes on a Sparc 10 workstation with 64 MB of internal memory. Excellent agreement
between the analytic solution and the established production-scale code is obtained; 51% and 90% of the MCNP data points in
Figure 5 are within one and two standard deviations of the analytical values, respectively.
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Fig. 4. Contour mapping of the interior scalar flux as a function of x and z for ¢ = 0.9, yy=0.9, and y = 0.5.
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Fig. 5. Interior scalar flux as a function of y, for three values of x at z =1, y = 0.5, and ¢ = 0.9. Displayed points are
values obtained using MCNP.

VII. CONCLUSIONS AND RECOMMENDATIONS

The calculation of the scalar flux resulting from a canted beam impinging on the surface of a half-space, which involves
integrals related to three inversions, requires a great deal of computational power and time to produce results. Results can be
generated to an accuracy of 10~ in a reasonable time for problems that are not highly absorbing and for beams that are not
severely canted. However, given the nature of the inversions these calculations would have been impossible without the
improved speed of computers that are now available in desktop workstations and personal computers. Ultimately, the future
of analytical benchmarking lies in the use of parallel processing. The formulations are such that a minimal amount of
parallel programming would allow individual processors to be devoted to separate evaluations of the integral expressions based
on spatial or source parameters. Accomplishment of these tasks should be a part of a subsequent and consistent effort to
provide more complex and realistic benchmarks for the nuclear, medical, astrophysical, and the earth sciences communities.
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