SANDIA REPORT

SAND97-2076 e UC-706 EECEIVE@
Unlimited Release SEP 2 3 1997
Printed August 1997 sq‘

Final Report: An Enabling Architecture for
Information Driven Manufacturing

J. Michael Griesmeyer

Prepared by

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Govern-
ment, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Prices available fr{om (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: AO7
Microfiche copy: A0l

An Enabling Architecture for Information Driven Manufacturing

SAND 97-2076 Distribution
Unlimited Release Category UC-706
Printed Auigust 1997

Final Report: An Enabling Architecture for
Information Driven Manufacturing

J. Michael Griesmeyer
Advanced Engineering and Manufacturing Software Development
Intelligent Systems and Robotics Center

Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1010

Abstract
This document is the final report for the LDRD: An Enabling Architecture for Information
Driven Manufacturing. The project was motivated by the need to bring quality products to
market quickly and to remain efficient and profitable with small lot sizes, intermittent pro-
duction and short product life cycles. The emphasis is on integration of the product realiza-
tion process and the information required to drive it. Enterprise level information was not
addressed except in so far as the enterprise must provide appropriate information to the pro-
duction equipment to specify what to produce, and the equipment must return enough in-
formation to record what was produced. A production script approach was developed in
which the production script specifies all of the information required to produce a quality
product. A task sequencer that decomposes the script into process steps which are dis-
patched to capable Standard Manufacturing Modules. The plug and play interface to these
modules allows rapid introduction of new modules into the production system and speeds
up the product realization cycle. The results of applying this approach to the Agile Manu-
facturing Prototyping System are described.

An Enabling Architecture for Information Driven Manufacturing

This page intentionally left blank

il

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

An Enabling Architecture for Information Driven Manufacturing:

Contents

1 INEPOAUCTION ..ottt e eee et eet s e e s s 1
2 Background ...ttt s 2
3 ProOQUCTION SCIIPLS .ccoieiiieeieiiteeeieeeeeeeteteeteessas e e s res st e seceaenaeeseaesaeesrersnessmresaneone 3
4 Standard Manufacturing MOdUIEScocecvvriecrencirniirieeeereeecetnee e seeresaeaeans 6
4.1 Standard INTETTACESccveie ettt re s seb s sbe st ease s sassamss st sana e sa e bnanens 6

4.1.1 Behavior State Models «co oot ereseseteseenee s eeseasssnee e re e essaea st asnasn 7

4.1.2 Interaction State MOeIS.......c.cooieeeereeirirnrerirscremeiinccssesisscsevs s essse s aesnns 8

4.2 SMM Control Architecture to Support Virtual Manufacturingcccuvcemccmcemmiraveniannns 10

Task Sequence CONIOl ...ttt sse s me s 10

6 Application to Agile Manufacturing Prototyping Systemcccoeceeecevccmneerieiccnune 12
6.1 AMPS Assembly SMM SOftWare......cooviiiriiicccceeec et e s nse s messsoneesssssons 12

6.1.1 Assembly SMM ltems and WOrkpointsc.occeeecevceerneraereescremsereresrervcesenss 13

6.1.2 Assembly SMM Operationscccccerererreeriescereeeeernenessesoresesssrmssesesersseseescraes 13

6.2 AMPS ApPlication RESUILSccveeeteeitrirretrieeesreesesrtrssesenersesarnesseenssssassoresereronesenes sessenenc 14

6.2.1 Workpoint and Tool Algorithm Specification.........coeeueirercniemrcciccseeiriennens 14

7 FOHOW O WOTK et eeeereeeesee et sssnnssesesesesneananaesnesassmnans 15

R O I S oot e v s e e e s eam e ee e eean e e e easaeaesanaeaeaeesrasonnes 16

August 25, 1997 ii

An Enabling Architecture for Information Driven Manufacturing

List of Figures

FIGURE 1-1 Production Script Approach to Information Driven Manufacturing 1
FIGURE 3-1 Hierarchical script decomposition: a) Top Level, b) Decomposition of

Fab Parts, ¢) Decomposition of Fab Part 1cc.coceeerveveineieeeceerereeeeeeeen, 5
FIGURE 4-1 Use of plug and play SMMS ..occooiiroiiicrererneeenieeececeereeaeceeaesrecessneesanes 6
FIGURE 4-2 Harel State Chart SYmMbOIS.....coeieeeirieieieeeceeeeerereee e e ee e e ever e eeeaeveeaas 8
FIGURE 4-3 Processing State CRartcceeeeeiiieieieieeeeteteiteeeneereseesssessensesseesenseesenns 9
FIGURE 4-4 State Chart for the Item Receipt Interactionccovueeeveeceeeeeecennensecenenas 10
FIGURE 4-5 SMM architecture to allow virtual manufacturingc..coecceeereeruerveecrennens 11
FIGURE 6-1 AMPS Assembly Cell.....cccoiiiiiiiiiiieeeeecrrteeeereetr e cereneee e 13
FIGURE 6-2 Parameterized algorithm for pick with anvil gripper...c.ccccoevevveerccennnenas 14
FIGURE 7-1 Graphical communications layout with new System Composer 16

August 25, 1997 iv

An Enabling Axchitecture for Information Driven Manufacturing

Final Report: An Enabling Architecture for
Information Driven Manufacturing

1 Introduction

This document is the final report for the LDRD: An Enabling Architecture for Information
Driven Manufacturing. The project was motivated by the need to bring quality products to
market quickly and to remain efficient and profitable with small lot sizes, intermittent pro-
duction and short product life cycles. The empbhasis is on integration of the product realiza-
tion process and the information required to drive it. Enterprise level information was not
addressed except in that the enterprise must provide appropriate information to the produc-
tion equipment to specify what to produce, and that the equipment must return enough in-
formation to record what was produced.

We envisioned an information driven agile product realization process. The design starts
with specifications of functionality, manufacturability, assembly requirements and life
cycle constraints. Integrated Product and Process Development is used to concurrently
engineer both the product an the processes required to produce it. Virtual prototyping is
used to test the design. Virtual manufacturing validation is used to test the production sys-
tem, and to monitor the actual production and verify product quality. The production sys-
tem uses product and process specifications to produce the product right the first time.

We developed a Production Script Approach to Information Driven Manufacturing to
address this vision. The main features of the approach are shown in Figure 1-1. The pro-

(" intograted Product)
and Process Design =~

Production Script

Feedback

Design of Fabrication
Processes

FIGURE 1-1 Production Script Approach to Information
Driven Manufacturing

duction script is a hierarchical sequence of manufacturing process steps that is the output

August 21, 1997 1

An Enabling Architecture for Information Driven Manufacturing

of the product and process design efforts. A task sequencer dispatches the individual pro-
duction process steps to modular components of the production system which can also be
hierarchical. The production script can be used to drive both the real production system
and simulated production system thus allowing virtual prototyping of production.

The basic elements of the approach are:

¢ a production script which contains all of the information required to produce a quality
product and specifies what must be recorded to verify the quality of the product.

¢ descriptions of production system modules that indicate their capabilities.

¢ standardized interfaces through which production modules interact with other system
components.

o task sequencing based upon match subsystem capabilities to the requirements of the
manufacturing process steps.

¢ support of production system simulation.

The document provides a summary of these basic elements, their application to the Agile
Manufacturing Prototyping System (AMPS)[1], and follow on work. Appendices provide
detailed definitions of the generic interface to modular production subsystems called Stan-
dard Manufacturing Modules (SMMs), the production script grammar and the SMM
description grammar. The appendices are working documents of intermediate results that
illustrate the status of the specifications at the end of the project. '

During the first two years of the project, the information models for the production script,
equipment description and equipment interface were developed together with the associ-
ated grammars. A preliminary task sequencer driven by a simplified script was developed
to test the basic concepts and apply them to AMPS. The last year was used to refine the
task sequencer to use the complete script grammar, provide subsystem intelligence
required to allow the SMMs to execute larger script components, and develop ideas for
follow on work.

The next section provides some background information for the project.

2 Background

Years of experience developing prototype robotic systems in the Intelligent Systems and
Robotic Center (ISRC) at Sandia National Laboratories lead to the development of the
‘Generic Intelligent Systems Control (GISC) approach to system development[2]. The
Robotic Technology Development Program (RTDP) of the U.S. Department of Energy
adopted the GISC approach for the development of robot control system software in Sep-
tember, 1990, to stimulate rapid prototyping of robot systems and facilitate multi-labora-
tory teaming.

A basic premise of the GISC approach is that sophisticated robot system performance can
be obtained by coordinating the operation of a collection of subsystems, each with comple-
mentary capabilities. This approach is analogous to the functioning of a team of highly

August 21, 1997 2

An Enabling Architecture for Information Driven Manufacturing

skilled individuals. Each team member has particular skills which, under the supervision of
a team leader, integrates with the skills of the other team members to provide a highly ef-

fective group with problem solving abilities beyond those of the individual members of the
team. As problems change, the team may be modified by the addition or substitution of spe-
cific members to add needed skills, but the basic structure remains intact as' well as many

of the original team members.

Key elements of the GISC approach are: delegation of responsibility to appropriate sub-
systems, well defined interfaces between the subsystems, orchestration of subsystem oper-
ations to perform complex tasks, and reusable subsystems. The collected software tools
that were used in many of the RTDP projects became known as GISC-Kit.

Many of the GISC applications were for relatively unstructured environments leading to a
large variety of interfaces between subsystems. However, for more structured environ-
ment such as the automated chemistry laboratories developed in the Contaminant Analysis
Automation (CAA) program of RTDP[3], standardized interfaces for generic subsystems
and standardized supervisory control seemed promising.

At about the same time as the initiation of the CAA project, the interest in agile product
realization was starting at Sandia National Laboratories. Manufacturing process centered
tools started to be developed. These tools were intended to provide the process developer
for a product with manufacturing process specific advisors to assist in the design of the
production process. The first of these tools were developed in the FASTCAST[4] and
SMARTWELDI[5] projects.

The output of the process design is a certified production process specification. If the
specification could be standardized to permit automated interpretation, it was hoped that
standardized interfaces to production equipment and standardized supervisory control
would permit automation of much of the production system in a “plug and play” fashion.
Further, if the production system could run in both virtual and real modes, considerable
improvement in the product realization process should result. This LDRD project was
intended to explore these possibilities.

3 Production Scripts

The first task in developing the production scripts was to enumerate the types of informa-
tion required to completely specify the production process in order to obtain the desired
quality. Grammars could then be developed to express the information. The grammars
could be textual or graphical in nature. Textual grammars allow platform neutral represen-
tations of the scripts but are difficult to develop and the text programs using the grammar
are hard to write.

The following types of information are required in the production script:

Task Sequencing
Must specify the sequence of tasks/operations.

August 21, 1997 3

An Enabling Architecture for Information Driven Manufacturing

Step Specification Hierarchy/Script Decomposition

Must allow hierarchical representations to permit multiple levels of detail. This is
required for both visualization of processes and assignment to modular production sys-
tem components (or agents) for execution. Decomposition is illustrated in Figure 3-1.

Step Specification and Control

Must specify the operation to be performed at each step in the manufacturing process
together with the information required to control the process.

Temporal Constraints

Must specify any temporal constraints such as timing between processes. For example,
the allowable minimum and maximum time between application of adhesive and mat-
ing of parts to be joined may be required.

Agent Constraints/Certification

Must specify the constraints on the selection of agent to perform the step. Constraints
may be the training required for an operator of a piece of equipment or standards with
which the equipment itself must be in compliance.

Environmental Constraints

Must specify any environmental constraints such as temperature and humidity that may
effect desired quality.

Material Stream
Must specify the physical inputs and outputs of the process step.
Script Tuning

As the script is decomposed, constraints at the higher levels may need to be mapped to
specification and control of steps at lower levels in the decomposition.

Step Setup

Must specify any setup requirements for a step. Upon decomposition of a step into
smaller steps, the setup requirements may be resolved into separate step.

Step Records
Must specify what needs to be recorded in order to verify step execution.
Equipment Program Description

Must specify enough information about a program to be downloaded to a piece of
equipment to allow comparison against equipment capabilities. This is required to per-
mit capability based dispatching of process step.

A simplified script grammar was constructed to test the basic approach to task sequencing
and dispatching of process steps to plug and play equipment according to equipment capa-
bilities. The approach to plug and play equipment is described in Section 4.

An extended grammar for the production scripts was developed that attempted to address

each of the kinds of information described above. A compiler was developed for the gram-
mar using lex and yacc[6]. The technical description of the grammar is given in Appendix
C.

August 21, 1997 4

An Enabling Architecture for Information Driven Manufacturing

a) Top Level
Fab Assemble

Start Node Parts Parts

Braze

Assembly ———» Disassemble ——®» Inspect End Node

b) Fab Parts

——— Fab Part 1

Start Node e Fab Part 2 End Node

] Fab Part 3

¢) Fab Part 1

Cast Near Mill Spec

Start Node Net Shape Shape

Deburr " Annodize End Node

FIGURE 3-1 Hierarchical script decomposition: a) Top Level, b) Decomposition
of Fab Parts, ¢) Decomposition of Fab Part 1

August 21, 1997 5

An Enabling Architecture for Information Driven Manufacturing
The application of the production script to the AMPS facility is described in Section 6.

4 Standard Manufacturing Modules

Key to the production script approach to information driven manufacturing is modular
subsystems that have standardized interfaces. Basic features of subsystems that allow
them to be easily integrated into automated systems are given in [7]. This section summa-
rizes the work to develop the interface and the description grammar for a Standard Manu-
facturing Modules (SMM). The intent for the use of the SMM interface and description is
illustrated in Figure 4-1. The manufacturing cell can rapidly be configured from available

FIGURE 4-1 Use of plug and play SMMs

SMMs because of the plug and play interface. This section also describes the control
architecture of the SMM that facilitates the development of manufacturing simulations.

4.1 Standard Interfaces

A general equipment interface was developed to allow remote control of production
equipment. It utilizes much of the work by the semiconductor industry to develop their
generic equipment model[8]. The complete definition is given in Appendix A. The basic
features and motivation are given below.

The interface definition specifies remote control interface functionality that allows plug
and play of manufacturing equipment. The intent is to define the interface in terms of stan-
dard equipment description information, and the standard message exchanges between the
equipment and a supervisory control system during the interactions required to get the
equipment to perform its tasks. The message content is specified independent of any par-
ticular communication link or specific equipment. The supervisory control system selects
the equipment (or agent) to perform a task based upon capabilities and uses the standard
interface interactions to get the task done on that equipment. The supervisor only needs to
know that the equipment can perform the task within the desired specifications. Further-
more, the information provided in the equipment description together with the generic

August 21, 1997 6

An Enabling Architecture for Information Driven Manufacturing

interface is intended to allow simulation of equipment operation at the level detail
required by a supervisory controller.

The interface definition covers the standard interactions required to set up and operate
production equipment to perform the process steps of which it is capable. The interactions
are described in terms of the function to be accomplished and the high level message pro-
tocol (sequence of messages) between the equipment and the supervisory control system
for the cell of which the equipment is a part. The interaction protocol are intended to be
independent of any particular communication link.

Process specific and equipment specific details are expressed in the characteristics
description of the equipment or agent. Equipment descriptions and the data exchanged
during the interactions are intended to provide a information driven interface to the equip-
ment. When both the supervisor and the equipment adhere to the interface, a driver for the
specific communication link (such as RS-232, TCP/IP, or GPIB) is all that will be
required to do the software part of integrating the equipment into the whole system. The
supervisory cell controller uses the equipment descriptions to determine whether the
equipment can perform the desired process step, and to provide parameters that qualify
and quantify the interactions required to get the step performed on the equipment.

The emphasis here is upon discrete manufacturing and material handoff between compo-
nents in the system. The models and approach used here could most likely be generalized
to accommodate continuous manufacturing equipment but such equipment has not been
directly addressed.

4.1.1 Behavior State Models

State models are used to describe the expected behavior of both the equipment and the
supervisory controller during operation of the equipment. The detailed internal states of
the equipment are not addressed here if they do not effect the interactions between the
equipment and the supervisor. State transitions occur due to events detected internally by
the equipment or due to commands from the supervisor. Multiple state models deal with
different aspects of the equipment behavior as seen by the supervisor and indicate which
interactions are permitted at a particular time. In addition, for interactions with extended
message exchange protocols, a separate state model of the interaction is defined. The state
models ensure that both the supervisor and the equipment remain synchronized during
interactions. Following the SEMI Generic Equipment Model[8], the Harel notation for
state diagrams is used[9]. Those features of the notation used in Appendix A are briefly
described below.

A state model consists of a state chart, a description of the states, and a transition table.
Figure 4-2 illustrates the Harel state chart symbols. The Harel notation allows for hierar-
chical states and default initial substates when entering an encompassing parent state.
Selectors can indicate which substate of a parent is to be entered. The history selector indi-
cates that the system is to return to the substate that was active at the last transition out of
the parent state. Transitions themselves are unidirectional but separate transitions can be
used to toggle between states. Concurrent states are independent and do not directly cause

August 21, 1997 7

An Enabling Architecture for Information Driven Manufacturing

transitions in each other, but they do share common context. They can be thought of as
weakly interacting subsystems. The use of concurrent states allows modularity of the
model and greatly simplifies the individual state models.

State Q . Selector

States

@ History
Selector

@ Concurrent

______>

o——1Ph

* Deep
o History
Transition @ Selector
Default @ Conditional
Entry Selector
Point

FIGURE 4-2 Harel State Chart

The main behavior of the equipment follows generic state models that address communi-
cations, local versus remote control, process states and alarm states. These state models
provide the context for interactions that define the interface between the equipment and
the supervisory controller.

The main processing state model in Appendix A for the generic equipment is shown in
Figure 4-3. The complete set of behavioral state charts for the SMMs are:
e Processing State Chart

o Communications State Chart

Remote Control State Chart

Event Spooling State Chart
Generic Alarm State Chart

The state charts are fully discussed in Appendix A.

4.1.2 Interaction State Models

Standardized state models are used to model the interactions of the supervisor with the
process equipment. The main models cover communication states, remote versus local
control, processing state and alarms. Interactions with the equipment assume that these
main models are followed. Furthermore, each interaction follows an associated state
model from initiation to termination. The interactions are defined by their function and the
sequence of messages required to accomplish the function. The functions of the interac-
tions fall into the following categories:

e Communications and control management

e Operations management

August 21, 1997 8

An Enabling Architecture for Information Driven Manufacturing

tPowering Up
1
Idle
V2
" Processing + Pausing)
1
Configuring E /
10 3 '
. Off
[Paused 1\11 ¢ '
Normal .
12 Operation 6,7 l 8,9
u
Alarm 15 Clearing .
Stopped ! 1314 :
- 2 J

FIGURE 4-3 Processing State Chart

e Alarm management

Material management

Settings, queries and monitoring

¢ Logging management

Appendix A describes the interactions interface and the content of the characteristics
information required to describe the equipment to a supervisory controller.

One of the more complex interaction state diagrams from Appendix A is shown in
Figure 4-4. It illustrates the need for state models to provide for recovery from off normal
conditions back to a state that is known by both partners in the interaction.

Characteristics description information is defined that allows the cell controller or super-
visor to determine whether the equipment can perform the process steps. The description
of the equipment also provides the information required during the interactions associated
with getting the equipment to perform desired tasks. A grammar was developed to
describe the equipment. It is also based upon lex and yacc[6].

August 21, 1997 9

An Enabling Architecture for Information Driven Manufacturing

Fixing Can’t
Lock

oo
cﬁ
iE
1]
>]
TN

iz

Inserting
Item

10

Accepting

Item Find Item

1 Fixing Can’t
7 ixing Can j

* 13
Item Unlockin 6 .
Accepted Port g Terminated

FIGURE 4-4 State Chart for the Item Receipt Interaction

4.2 SMM Control Architecture to Support Virtual Manufacturing

The control architecture for the SMMs is illustrated in Figure 4-5. Using the interface
described above, the SMMs can be easily integrated into the supervisory control system
for a cell. The display and record drivers are all that have to be adjusted to make the SMM
run in a new manufacturing environment. The key to allowing cell simulation for virtual
manufacturing is the use of both real and virtual drivers for the SMMs.The real mode of
SMM execution uses the real driver while the simulation mode uses the virtual driver. The
generic interface to the supervisor and the record and display drivers need not know
whether the virtual or real drivers are being used. Thus, all interface and application code
is executed in exactly the same manner for both the real and virtual modes. This control
architecture is described in [11]. The use of identical software to run both real and virtual
modes increases the confidence in the resulting simulations and allows complete valida-
tion of the code before hardware is run.

S Task Sequence Control

A Task Sequence Controller (TSC) was developed to supervise the execution of the pro-
duction scripts. It must decompose the scripts into production steps that can be performed
by the SMMs under its control, dispatch the step to a selected SMM, route the required
material to the SMM, ensure that results are recorded, and determine the next step to be
executed.

August 21, 1997

An Enabling Architecture for Information Driven Manufacturing

e lnterface to Supervisor

SMM
Application Code

Real Virtual | Record | Display
~ Driver_ -| Driver | Driver | Driver
Real Process
Device Data |
Simulated Display
Data System

FIGURE 4-5 SMM architecture to allow virtual manufacturing

The main types of software modules that make up the TSC are:

Process State Machines

Process Managers

Resource Manager

User Interface

e Executive

The executive is a simple loop that gives each of the managers and the user interface a
chance to do their work during each cycle. The processes that have to be managed are:

Job
A job is a work order that requires one or more production scripts to be executed.
Script

A production script is a sequence of manufacturing operation steps. A top level script is
associated with a job. Other scripts are decompositions of the step in a higher level
script.

August 21, 1997 11

An Enabling Architecture for Information Driven Manufacturing

Operation

An operation is an individual manufacturing step that is part of the decomposition of a
script. The operation may be further decomposed into a lower level script.

Transport

A transport is a required movement of material from one SMM to another. Transports
are required whenever a SMM needs material for an operation that is not already in its
possession.

Interaction

An interaction is one of the interaction between the TSC and one of its SMM as
described above.

Each process type follows a state machine through its life. At anytime, the TSC can sup-
port multiple instances of the each of the above processes. The manager for the process is
responsible for ensuring that each instance of its managed type moves through its state
machine in an orderly fashion. The managers negotiate among themselves to request ser-
vices from each other and resolve resource contentions.

Each process instance is represented by a token that contains all of the information for the
instance. To record desired information, the TSC can make a persistent copy of any data
associated with any token.

A preliminary TSC was developed to test the basic features of the production script
approach. This was applied to the AMPS cell as described in Section 6. Lessons learned in
that application where used to refine the requirements and specifications for the TSC. At
the end of this project, the refined TSC, as described above, was just coming on-line and
going through initial testing.

6 Application to Agile Manufacturing Prototyping System

The Agile Manufacturing Prototyping System (AMPS), as described in [1], is a set of four
modular robotic workcells that can be used to rapidly prototype automation concepts for
manufacturing processes with an initial emphasis on assembly. AMPS was used as testbed
for the concepts developed in this LDRD project. The application was to assemble a small
weapon component that consisted of a stack of small parts into a fixture for brazing. Only
one of the AMPS cells was required for this application. The layout of the call is shown in
Figure 6-1.

6.1 AMPS Assembly SMM Software

The AMPS Assembly Cell was controlled using the software architecture described above
and shown in Figure 4-5. The application code needed to track the items in the cell and be
able to perform the assembly operations. The drivers and interface software also had to be
provided.

August 21, 1997 12

An Enabling Architecture for Information Driven Manufacturing

Assembly Parts paliet
Transpor
Input Port
Tools Parts Transport
Output Port

Assembly pallet

FIGURE 6-1 AMPS Assembly Cell

6.1.1 Assembly SMM Items and Workpoints

The items in the cells consisted of the tools, the storage stations for the tools, the pallets
that held the parts, and the parts themselves.

Workpoints are points expressed with respect to the origin of the item. They are the points
at which other items in the cell interact with the item. For example, the point where a tool
is applied is a workpoint, as is the point where another item touches it. Items can be held
by one other item but may themselves hold multiple other items. A configuration file is
used to initialize the workpoint and attachment information for the cell. Tracking of item
location is accomplished by updating attachment information after each operation.

6.1.2 Assembly SMM Operations

Each operation that an SMM can perform is parameterized so that it can be invoked by the
TSC with the proper context supplied at runtime for the script information. The parametri-
zation is done with respect to reference workpoints such as a tool grab point for the item
allowing some of the parameters to be defaulted as standard offsets from the reference
point. The parameterized algorithm for the pick operation using the anvil gripper in the
AMPS Assembly Cell is shown in Figure 6-2.

August 21, 1997) i3

An Enabling Architecture for Information Driven Manufacturing

Step 1 i

openwidth& ir——affl T overlift offset
I Ak entry vertical offset

!

grab poin

entry horizontal offset Step 5

T <& close width

Step 2
1

T« lower vertical offset

Step 6

Step 3

depart vertical
:[4 offset

FIGURE 6-2 Parameterized algorithm for pick with anvil gripper

6.2 AMPS Application Results

The information for the configuration and scripts were generated by hand from the engi-
neering drawing of the parts to be assembled, the input pallets, and the assembly pallets.
Vision was used to locate the input palettes given their nominal location in the input ports
of the cell. However, the robot was not taught the workpoints with the teach pendant, since
all workpoints were based upon configuration information updated through the vision sys-
tem and the item tracking system.

The system was used to demonstrate the concurrent execution of multiple scripts, serial
execution of scripts, dispatch of operation steps according to SMM capability and avail-
ability, item tracking, and execution optimization through movement of the input pallets
closer to the assembly pallet without changing of the script. Although the there was only
one assembly SMM, simulation was used to investigate the allocation of the assembly
execution across multiple cells. Thus, the feasibility of the production script approach has
“been verified.

6.2.1 Workpoint and Tool Algorithm Specification

The next part of the AMPS application was to use computer based geometry information
to generate the configuration files used by the assembly SMM. The main sources of infor-
mation are:

August 21, 1997 14

An Enabling Architecture for Information Driven Manufacturing

e item geometry and assembly information from CAD files

e presentation fixture information for items that are input to the cell for an assembly
¢ assembly fixturing information

¢ tool selection and workpoint information

¢ assembly sequence information

¢ approach direction information

A package was generated that took the above information and generated the configuration
and script files for the AMPS assembly system. Generation of the inputs to the script and
configuration file generator was more complicated than expected. For example,
Archimedes[12] generates assembly sequence and approach information with respect to
the origin of the assembly, but the input pallet and attached item workpoint information
used different coordinate systems that those used by Archimedes. The symmetry of the
parts made it impossible without experimentation, to determine a consistent set of work-
point information. Similarly, tool grab point information was difficult to develop because
of the multiple coordinate systems used by the various CAD tools used to generate the ini-
tial information.

Script execution at the TSC level was inefficient for the test assembly that was investi-
gated. Since all of the assembly steps were done in the same SMM, there was no need to
decompose the script at the TSC level. Rather the whole assembly script could be passed
to the SMM which could perform the script autonomously. The SMM application code in
Figure 4-5 was extended to process complete scripts that could be performed completely
by one SMM.

7 Follow on Work

In order for the production script approach to be more useful, SMMs for various manufac-
turing processes have to be available. Developing the specifications for the SMMs
requires process specific knowledge and information about the intended product applica-
tion. Once the required process SMMs are identified, they have to be laid out and their
operations orchestrated to perform the manufacturing steps.

The System Composer Project is a follow on effort to develop system integration tools
based upon the key ideas and results of this LDRD research. The System Composer pro-
vides for the incremental development of the requirements and specification of manufac-
turing systems. System Composer will be used to manage information about:

o parts and assemblies that are to be processed by the system

manufacturing operations that the system must be able to perform

production scripts that the system must execute

batching information

e system components and SMMs

August 21, 1997 15

An Enabling Architecture for Information Driven Manufacturing

e system layout

System composer will assist in the management of the requirements and specifications
development and will marshal the use of advisors to help in the development of the next
level of information given current information. For example, a tool and workpoint editor
has been developed to facilitate the development of workpoint and tool algorithm infor-
mation that was so problematic in the AMPS application as discussed in Section 6.2.1.

System Composer uses a less formal but graphical script than described above for the pre-
liminary development of sequence information. As details are refined, the sequence infor-
mation eventually contains all of the information specified in Section 3.

System Composer will provide graphic layout of the plug and play SMMs. A conceptual
illustrated of the layout tool is shown in Figure 7-1.

FIGURE 7-1 Graphical communications layout with new System Composer

8 References

1 Garcia, P., Woods, R.O., Rebeil, J.P., Jones, .J .F., Griesmeyer, J.M., Agile
Manufacturing Prototyping System (AMPS).

2 Griesmeyer, J.M., McDonald, M.J., Harrigan, R.W., Butler, P.L., Rigdon, B,
Generic Intelligent System Control (GISC),SAN D92-2159,September, 1992.

3 Griesmeyer, J.M., Urenda, T.D., Pacetti, R.M, Ferguson, J.J., “A Standard Control
System for Modular Automation of Chemistry”, Laboratory Robotics and

August 21, 1997 16

An Enabling Architecture for Information Driven Manufacturing

Automation, 6 (1994) 79-84.

4 FASTCAST

5 SMARTWELD

6 Mason, T., Brown, D., lex & yacc, O’Reilly & Associates, Inc., Sesastopol, CA,
1990.

7 Salit, M.L., Griesmeyer, J.M., “System Ready Behaviors for Integration”,
Laboratory Robotics and Automation, 9 (1997) to appear.

8 Semiconductor and Equipment International, SEMI International Standards 1994:
Equipment Automation/Software Vol. 2, Mountain View, CA, 1994.

9 Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Science of
Computer Programming, 8 (1987) 231-274.

10 Salit, M., Guenther, F.R., Kramer, G.W., Griesmeyer, J.M., “Integrating Automated
Systems With Modular Architecture”, Analytical Chemistry, 66 (1994) 361-367.

11 Griesmeyer, J.M., Oppel, F.J., “Process Subsystem Architecture for Virtual
Manufacturing”, 1996 IEEE International Conference on Robotics and Automation,
(1996) 2371-2376.

12 Kaufman, S.G.,Wilson, R.H., Jones, R.E., Caltom, T.L., Ames, A.L.,
“ARCHIMEDES 2 Mechanical Assembly Planning System”,/996 IEEE
International Conference on Robotics and Automation, (1996) 3361-3368.

August 21, 1997 17

An Enabling Architecture for Information Driven Manufacturing

This page intentionally left blank.

August 21, 1997 18

Appendix A:

General Equipment Interface Definition

J. Michael Griesmeyer

Sandia National Laboratories!

1. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Matrin Company, for
the United States Department of Energy under Contract DC-ACO04-94A1.85000.

Appendix A August 12, 1997

Appendix A:

Contents

LISt OF TADIES weciirieriiecniee ittt ettt se et tsane s e st e e sess e satsusons st annassassesstansscesensesnen \%
LSt Of FIGUIES ettt te ettt e e eems et e e s gme s e smenmbasese s s e senaneeseennas vii
1 INtrOAUCHION . e e tietee ettt et e ere s s tee s et e r e ssae s s seeesaneen et sessmmeee s snnessesnaeneanns 1
1.1 Purpose.....ccccveuenee rtrrreene e ee e e e ra s sne e amaes 1

1.2 S0P ettt e ra e st s s s s e e emran creerereneesaraes 1

1.3 OVEIVIEW ..cecceemeneteseeeeeseme s s te s aeeseensscss sasa ssseac st st e sate sotsassas it e st s e sessnan s asaacesaseesoe 2

2 DEFIMIIONS 1..voevvecerescreecsese e escaeerstessesessaessssesasessesssssessesssnresssssssssasasssssssssasassssessesnen 3
GeneTal DESCTIPHION c.uveerrieirierriceieeeetreceseeeteeetteesatestesesaeesae st asanessnnseessassssasesntossas 4

3.1 Some Communication ASSUMPLIONS.....ccccerseecreereresvsseresasrens 5

32 State MOdelsc.cocerreeceenerrnccracensrnninnene 5

33 Interaction State MOGEIScccoveremerriremreersiereereeccecenrreantrns 6

34 Communications Maintenance and Control Interactions........ccvevecereeeeecene 7

3.5 Processing Interactions 7

3.6 Alarm Management Interactions 7

3.7 Material Movement Interactions 7

3.8 Settings, Queries, Symbol Access and LOZZINGoceeeecrererseerisirecsenerrcncrsasncseracesenasoneses 8

3.9 Characteristics Description ' 8

4 Communication Maintenance and Locus of Control Interactions........c.cceeceevueeuenne 9
4.1 Overview..........c.... 9

42 Establishing and Maintaining Communications 9

4.2.1 Description of Communication States 10

422 Requirements 11

423 Establishing Communication .. 11

424 Setting Communication Loss Pause On .11

425 Setting Communication Loss Pause Offcc.c.... 12

4.3 Local and Remote Control.... 12

4.3.1 Description of Control States .12
4.3.2 Requirements .13

4.3.3 Transferring to Remote Control 13

434 Transferring to Local Control .13

4.4 Event Spool Management .14

44.1 Description of Spooling States .14

442 Requirements 16

44.3 Informing the Supervisor of the Event Spool State eeeareneeerenaenasr e saeenen 16

4.4.4 Transmitting Event Spool....... 17

4.4.5 Purging Event Spool.... 18

\ 446 Setting Full Spool Pause On 18

44.7 Setting Full Spool Pause Off .. 18

5 Operation INtEractionsS.ccceiererieeecterectreeese et e eeseeee st eesseeeseoeneessnsamessnnesesssssses 18
5.1 OVEIVIEW .c.iiitcinceccescc s ceeeon e r e sanesennss 18

5.2 Processing State Model 19

52.1 Description of Processing States 20

53 Informing the Supervisor of the Processing State 22

5.4 Configuration and Normal Processing Interactions 22

Appendix A August 14, 1957 ii

Appendix A:

54.1 Configuring the EQUIPMENT ...c..iioiriiienientie et reeerrnsseeaesane e et st seneennan 23

5.4.2 Clearing the EQUIPINENI....ccociiiiiieiiieietrei st doesmses s e soeasessssenas 23

5.5 OPeration IMITIAtION ..coceeee et ecc et et ereeere st e re s se e aesstee st e ne e e cnss st seensncsaronensnesansase 23

5.6 Operation COmMPIEtION..........ooimrreerertceeeee e e s snns eeerenvarnnieneais 24

57 Off-Normal Processing INTETACTIONS co...overeceerceremmeeeereerirescereiersrennesesssessassssessassssssnasassresare 24

5.8 ALBIIIN SLAIES ..ottt e se st st et e e e e s st e besn e s e sen 25

59 Process Program Management........cceceeeeeereereteeamestenersseeaesssteesnscsnresnassaseesaeassnssseenseneen 27

6 Material Movement INTETACHOMNScccrevererertrreereceetetectee et eereneerasesceessrsresaesansas 28
6.1 OVETVIBW ..ot crenere et sv e et ot st e asnme e m e sess e es et somentsasass s e e naeanesbesentssnereranes 28

6.2 Permit and Deny Input fOr OPErationcocceiireeeiecenrccsiessscesernreresseeresecsssnsnensossssssase 28

6.3 Input Item Receipt oo eeee e eeseesseees et rreebiens ettt tr s e s b s e e s nenen 28

6.4 Product Available NOtICATION ..ccoiaiieiriecreeee et ce oottt e e s enessesenanane 30

6.5 Product and Item Removal e eteses bt et et sas s ae b hoesasmsenm e enasaeass 30

6.6 Supply RePIENISHMENT «..c.e ettt tesscnsee s e s s ser st sasosoass 32

6.7 WASEE REMIOVAL ...ttt ettt e resrcsssne s e s e et sansensssssrtesasnssestsissesseneneass 34

6.8 Input From Reservoir ereeeeereit ettt r e et oo a e saesrerenaens 36

6.9 OULPUL TO RESEIVOIT «..nneceraceecenieeererenerereserarasesessssmercrasenesasesssesssarassessassamanessassanseseesasssmsssre 37

6.10 Continuous Material Service Initiation and Terminationcccceeecsevcvereecercsvssienans 38

7 Settings, Queries, and MODITOTING «cccocovevercrrrererrrrceeraeeeereesrereeareseseseneereasnsesanas 41
7.1 OIVEIVIEW ..c.neiimieereieeceeseeem e e aeamseesssssasnssoceseeasaas s e asacssesatesshea st eb e an s es st easensbeamesnenmn s sanarete 41

7.2 Standard Variable ACCESS eeeeceeireeererreecearacs e seanteseteeseameesossaer s asase sanemsssens 41

73 Equipment Specific VAriabIescccooiieierircreerecr et secestceesnnescentesee e sesesesansesenasenes 43

7.3.1 Getting SYMDbO] VAIUES ..cnooeeiiicrrccerrrscirecstense s resseecstes e seorss s comsaneossssnssesss 43

7.3.2 Setting Symbol Values eetreerasesseaeaneseesans e s asesirenaneas 43

7.4 Variable MONITOIIIEZ c.uee e ceeeeicreeeececreeneeresseaeeaeressemonaceesreasessmarasenssessnceesansrosearasarassaess 44

7.4.1 Threshold Monitoring eetrecerranesnraneas 44

7.42 Custom Variable Change and Read Monitoring 47

7.5 Control of Event Notificarion and Customized Reportscoceveeccvvreecanss eeesoetenanneeeeass 48

7.6 Equipment INformation REGUESTSc.cemeercvereemeniriirentennee e esarssseesesscorssessssssnsssscsasscess 50

8 LOZZING INTETACIIONSeeureeeeeeeeieeeereeerenreessresensaeereseessscsesssearasssessssessesssssessaesssanenns 50
8.1 OVETVIEW .o eecceemesccereesrracssarscent s aeesaassnsennonas b besrearteesnaensaroresnstenssasnsseasnraronseasmessensnnrse 50

9 CharacteristiCs DESCTIPHON oo vreeeeeeeererraeerernaseraesastessnaeaeaestesssassesessseasansresessnaesseas 50
9.1 Overview....... rreneeaseenaee e ne s enrenen 50

9.2 OPETAtION TADIE ...ttt st rsste s e roresears e e e s e nesstsonsansnsanseres 51

9.3 Configuration Table ... esseeeesesese e e sessanenas 51

94 SUPPLY TADIE . ettt s as s ses e resass e e anen 52

9.5 WSTE TADIE ...ttt ecc s s s st s e nesee e se e e sseme s ennens 52

96 TOOL Table ..ot reeressarssessssessmeameceesessnemaencns - .52

9.7 Material POTt Tableccureieeceieeereececenerentecrectertesseernesaesesacn e sane et ssnessssssessassonsares 52

9.8 Shared Reservoir Requirements Table .. ceeerenresennrente 53

9.9 Continuous Fluid Requirements Table 53

9.10 AL TABIE e eerssnscrcsnenee s eressaesbeas s sene 53

9.11 Standard State Variable Initialization Table 53

9.12 Equipment Specific Data Variables - 53

9.13 Equipment Specific Setting Varijables 54

9.14 Equipment Specific Event Tableocccveceevcenenncneccncnce 54

Appendix A August 14, 1997 ifi

Appendix A:

10 R BT EIICES ettt e e eeeeeeesaeaessesseeesssseassas s essseessesassesasaaes 54

Appendix A August 14, 1997 iv

Appendix A

List of Tables
TABLE 4-1. Communications State Transitionscecceeeeeeerieeieeeeieceteeeeeeeeeeseeveensenes 10
TABLE 4-2. Interaction for Setting Communication Loss Pause On.....ccccceveeecrmnnnen. 11
TABLE 4-3. Interaction for Setting Communication Loss Pause Off cvveocueeeeceereeereenns 12
TABLE 4-4. Remote Control State TransitionsS......cceoieivceerieeieieiieceeeeeeeeeceeesseeceeeens 13
TABLE 4-5. Interaction for Transferring to Remote Control......ccooveevierecieevieenceecereeee. 13
TABLE 4-6. Interaction for Supervisor Initiated Transfer to Local Control.................. 13
TABLE 4-7. Interaction for Local Operator Initiated Transfer to Local Control........... 14
TABLE 4-8. Event Spooling State Transitions......ccccceeeeerveerreeeierniecereeeeeeeeseeeesseeesenseens 15
TABLE 4-9. Interaction for Event Spool State Change......ccccvceeiiiierieccinnerercenreneenees 17
TABLE 4-10. Interaction for Transmitting the Event Spoolc..ccccoiiviieimniieceercenieens 17
TABLE 4-11. Interaction for Purging the Spool.....ccoeeiiriirieiee e, 18
TABLE 4-12. Interaction for Setting Full Spool Pause On.....cccceieviemeeeccneececeeeeene 18
TABLE 4-13. Interaction for Setting Full Spool Pause Off ..o, 18
TABLE 5-1. Processing State TranSitionsco.ceeceeeereesireeerscrserseeestensnessessnnesseessessasssenas 21
TABLE 5-2. Interaction for Processing State Change.......ccccvvrvieiieniieeencnesseeeseesnnaenns 22
TABLE 5-3. Interaction for Configuring EQUIPIMENTtceoiviiiiiiieriiiniceeeceecrecesceeneenne 23
TABLE 5-4. Interaction for Clearing EQUIPIMIENT ...cccoeiiriiiiniiincectince e reeereeneneeens 23
TABLE 5-5. Interaction for Operation Initiationcocccevveeeeeeericeriieere e neeeeee e eeeeeeenes 23
TABLE 5-6. Interaction for Operation COmpletion........ccceoceeeveerrerieeeceeeeeeeeeeeseeeanesnes 24
TABLE 5-7. Interaction for Command Pausing the Equipment......cc.ccccoovveveercereenennne 24
TABLE 5-8. Interaction for Command Alarm Stopping the Equipment.........cccecuvunee. 24
TABLE 5-9. Interaction for Resuming ProCessing......coceeeeceeeueecereenviceeeseeeseessseeasserees 25
TABLE 5-10. Interaction for Aborting Processing.....cc.cceceemeueurinierecscsinnnie i resssenenas 25
TABLE 5-11. Alarm State TranSItions -.uccciceeeceerieeertrereierreeeesseersaeessssaeessasasessasassenssnns 26
TABLE 5-12. Interaction for Notification of Alarm Condition On........cccceriieereceiccenene 26
TABLE 5-13. Interaction for Notification of Alarm Condition Offccocooireriinnnnnce. 26
TABLE 5-14. Interaction for Checking an Alarm Conditionccoceeicieeieeecinresecreerieneneres 26
TABLE 6-1. Interaction for Permitting Input for Specified Operations......ccceeceeeveeeeruee 28
TABLE 6-2. Interaction for Denying Input for Specified Operations.....cccccceeeeveerveeenernee 28
TABLE 6-3. Interaction for Item ReCeIDt ..ot cnecsscneennans 29
TABLE 6-4. Interaction for Product Available Notficationccooeeeieeceeecrrrecceesrcenerne 30
TABLE 6-5. Interaction for Product or Item Removal ... 31
TABLE 6-6. Interaction for Supply Replenishment ..o 33
TABLE 6-7. Interaction for Waste Removalccooiiiiiiiiiiiiticeernceeeeeeeaeenene 34
TABLE 6-8. Interaction for Inputting From ReSeIVOIT.....ccccivciiiirnirciirecencnreennenanenne 36
TABLE 6-9. Interaction for Qutputting 10 RESEIVOITcoiiviieriiiiiereectteeeeecceeeseeeeenne 37
TABLE 6-10. Bulk Material Service Transitionscccceceeeeeeerceicesenercesmeeeececereeraassnaens 38
TABLE 6-11. Interaction for Bulk Material Service Initiationcccccceceeveeeeceecereieceene. 39
TABLE 6-12. Interaction for Termination of Material Service........ccoveeveeeerceeesrecvrenene. 40
Appendix A Auvgust 12, 1997 v

Appendix A

TABLE 6-13. Interaction for Handling A Material Service Fault.......cccocovevveveiereneervenene 40
TABLE 7-1. Standard Query INteractions ..cooeccoiieveeeceereeeeeeeeeeeeeseeseneeesseeevaeeeeaseennns 41
TABLE 7-2. Interaction for Getting a Symbol Value.........ccocorveeriernccnenennenrecerncene 43
TABLE 7-3. Interaction for Getting a List of Symbol Values.......cccoccereeniinirniccrcnncnne 43
TABLE 7-4. Interaction for Setting a Symbol Valuec.cccoevevnciiinnniniicicceenee 43
TABLE 7-5. Interaction for Setting a List of Symbol Valuesccccevvirvcreuiecennnnenne 44
TABLE 7-6. Interaction for Setting Variable Changeccccceeceevevevnceniinriiccncnnnnnenne. 44
TABLE 7-7. Transitions for Data Variable Value Zone State Chart........co.cceveeveecnnnnnns 46
TABLE 7-8. Interaction for Variable Zone Changeccoeeeeeeeverrceniiccccereneensennncerennes 46
TABLE 7-9. Interaction for Query of Variable Zone Limitc.cccceevcecmneercerrcenerrencne 47
TABLE 7-10. Interaction for Query of Variable Zone Limit Settingscccceevceeveeerueeece. 47
TABLE 7-11. Interaction for Setting Variable Deadzone Limits......cc.coccveervceirvercccnnnene 47
TABLE 7-12. Interaction for Getting a Change Monitor Parametercooeevueercecennnnn. 48
TABLE 7-13. Interaction for Getting a Read Monitor Parameter..........ccocvueeveireeunnee. 48
TABLE 7-14. Interaction for Setting a Change Monitor Parameter......c..cooueveveevvucrecnne. 48
TABLE 7-15. Interaction for Setting a Read Monitor Parameter........ccoceeveveererneerererennn. 48
TABLE 7-16. Interaction for Enabling Event Report.....cccceeveeeverierecircccrcccccereeraneercnans 48
TABLE 7-17. Interaction for Disabling Event Report........cccccocmvnivnenieniencniinsicncnne 49
TABLE 7-18. Interaction for Defining Custom RepOrt......ccccoveveerrieesieninrenseiuinrncesenens 49
TABLE 7-19. Interaction for Deleting Custom Reportcocceeeeeiuiecininincciccnrnceccennns 49
TABLE 7-20. Interaction for Linking Custom Report to Event.........ocoveivvcmnecrcenennene 49
TABLE 7-21. Interaction for Unlinking Custom Report t0 Eventc.cocecviviieiricennens 50
TABLE 7-22. Interaction for Enabling Custom Report.......cccoceeenvevinirmncnenviccnevecerens 50
TABLE 7-23. Interaction for Disabling Custom RepOTIt.......cceceeerieeriemncrscsrissirensseneene 50
Appendix A August 12, 1997 vi

Appendix A

List of Figures

FIGURE 3-1 Harel State Chart SYmMbOIS...ccccuiieviieeieiieeccee et ceeeceeeve e eesnessnesesenes 6
FIGURE 3-2 State Chart for Interactions with Single Message Exchange.......c.ccccene..ee. 6
FIGURE 4-1 Communications State CATtc..cuureussrrerssmencemsssseressssssssessssasessessnne 10
FIGURE 4-2 Remote Control State Chart.........ccceecvereceeerrneieecneneeerneereceesseeeesaesessansen 12
FIGURE 4-3 Event Spooling State Chart......cc.oocoiiieicciececcerrecereerec e eeeeenne 15
FIGURE 4-4 State Chart for Event Spool Transmission Interactioncceeecceeeucevuennec. 17
FIGURE 5-1 Processing State Chartccccceeeivirceeeirieceeereereceiesereseseseesesssesnsesssrssesnses 20
FIGURE 5-2 Generic Alarm State Chart.......cccoeeecveeenecvennes eeereeeeasetteerasnraneseaseenstararnns 25
FIGURE 6-1 State Chart for the Item Receipt Interactioncecceveceeeveeecceecenereccenennnes 29
FIGURE 6-2 State Chart for Product or Item Removal Interaction........cccceeeeeveecnnnnes 31
FIGURE 6-3 State Chart for Supply Replenishment Interactionc..cceeveevveeeuecnennnen. 32
FIGURE 6-4 State Chart For Waste Removal Interactioncocceeeueeeeeereccvercvveecveeninees 34
FIGURE 6-5 State Chart for Input From Reservoir Interactioncceccceeveemreeereceesrennenn. 36
FIGURE 6-6 State Chart for Output to Reservoir Interaction.......ccceeeuveeeeeveerereneeennnnee. 37
FIGURE 6-7 Bulk Material Service State Chartc.cccceecceeveereenienesieecseaecrereeeeeceeensenns 38
FIGURE 6-8 State Chart For Material Service Initiation Interactioncc.cceceveveeveennn. 39
FIGURE 6-9 State Chart For Material Service Termination Interactionceeveeeuee.. 39
FIGURE 6-10 State Chart for Material Service Fault Interaction......cccceeeveeecreeceevecnnnnen. 40
FIGURE 7-1 Zones and Threshold Monitoring LImitscceeeeeevenieeseerscnreeereesenresnenaaen. 45

FIGURE 7-2 General Variable Value Zone State Chart

Appendix A August 12, 1997 vii

Appendix A

General Equipment Interface Definition

J. Michael Griesmeyer1

1 Introduction

1.1 Purpose

The document specifies software remote control interface functionality that allows plug
and play of manufacturing equipment. The intent is to define the interface in terms of stan-
dard equipment description information and the standard message exchanges between the
equipment and a supervisory control system during the interactions required to get the
equipment to perform its tasks. The message content is specified independently of any
particular communication link or specific equipment. This allows the dispatching of tasks
to the particular equipment based upon capabilities. The goal is to facilitate modular agent
based control of manufacturing processes, and thereby significantly reduce system inte-
gration costs and the time required to introduce new products. The supervisory control
system selects equipment (or agent) to perform a task based upon capabilities and uses the
standard interface interactions to get the task done on that equipment. The supervisor need
not know how the equipment performs the task. It only needs to know that the equipment
can perform the task within the desired specifications. Furthermore, the information pro-
vided in the equipment description together with the generic interface is intended to allow
simulation of equipment operation at the level detail required by a supervisory controller.

1.2 Scope

This document covers the standard interactions required to set up and operate production
equipment to perform the process steps of which it is capable. The interactions are
described in terms of the function to be accomplished and the high level message protocol
(sequence of messages) between the equipment and the supervisory control system for the
cell of which the equipment is a part. While examples may be in terms of particular com-
munication links, the interaction protocol are intended to be independent of any particular
communication link. Similarly, examples of particular process equipment may be used to
illustrate some points of the interface.

The description of the plug and play interface for the process equipment is intended to be
independent of both specific equipment to perform a process and even the process itself.
Process specific and equipment specific details are expressed in the characteristics
description of the equipment or agent. Equipment descriptions and the data exchanged

1.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Matrin Com-
pany, for the United States Department of Energy under Contract DC-AC04-94A1.85000.

Appendix A August 19, 1997 1

Appendix A

during the interactions are intended to provide a completely information driven interface
to the equipment. When both the supervisor and the equipment adhere to the interface, a
driver for the specific communication link (such as RS-232, TCP/IP, or GPIB) is all that
will be required to do the software part of integrating the equipment into the whole sys-
tem. The supervisory cell controller uses the equipment descriptions to determine whether
the equipment can perform the desired process step, and to provide parameters that qualify
and quantify the interactions required to get the step performed on the equipment.

The emphasis here is upon discrete manufacturing and material handoff between compo-
nents in the system. The models and approach used here could most likely can be general-
ized to accommodate continuous manufacturing equipment but such equipment has not
been directly addressed.

1.3 Overview

Standardized state models are used to model the interactions of the supervisor with the
process equipment. The main models cover communication states, remote versus local
control, processing state and alarms. Interactions with the equipment assume that these
main models are followed. Furthermore, each interaction follows an associated state
model from initiation to termination. The interactions are defined by their function and the
sequence of messages required to accomplish the function. The functions of the interac-
tions fall into the following categories:

e Communications and control management

Operations management

e Alarm management

Material management

Settings, queries and monitoring

¢ Logging management

Characteristics description information is defined that allows the cell controller or super-

visor to determine whether the equipment can perform the process steps. The description

of the equipment also provides the information required during the interactions associated
with getting the equipment to perform desired tasks.

This document describes the interactions interface and the content of the characteristics
information required to describe the equipment to a supervisory controller.

Appendix A August 19, 1997

Appendix A

2 Definitions

Agent Based Control

An approach to control in which agents are responsible for performing contracted tasks
without detailed supervision. While agents may have varying degrees of autonomy in
carrying out their tasks, the supervisor need not know the details of how the tasks are
executed as long as the tasks are performed according to contract.

Supervisory Control

The control regime that addresses orchestration of tasks by assignment to agents and
arbitration of material movement to and from the agents selected for particular tasks.

Equipment Control

The control regime that addresses the internal control of the equipment to carry out
contracted tasks.

Interface Interaction
One of the interactions that define the interface between two systems.
Equipment State Model

A model of the equipment in which the behavior of the equipment depends upon a set
of state variables. Transitions between states are events. The Equipment State Model
provides the context for the interactions between the supervisor and the equipment.

State Variable

A variable that can take only discrete values which indicates some characteristic behav-
ior regime of the equipment.

Data Variable

A variable that indicates some aspect of the equipment environment, or progress of
operations.

Setting Variable
A variable that controls the manner in which the equipment operates or is controlled.
Characteristics Description

A description of the equipment that can be used by the supervisor to determine the
equipment capabilities and the data required to execute the interface interactions.

Equipment Capabilities
The set of process operations that can be performed by the equipment together with a
specification of the achievable quality and performance characteristics.

Event

An occurrence detected by a system component that requires a response by the system,
or that is of interest to other system components

Alarm

An event that requires priority response to protect personnel, equipment or product.

Appendix A August 13, 1997 3

Appendix A

Command Transaction

A synchronized exchange of messages between the supervisor and the equipment that
is initiated by a command message from the supervisor. During the transaction data can
be exchanged between the supervisor and equipment.

Event Report

A single message from the equipment to the supervisor reporting the occurrence and
details of an event that has been detected by the equipment.

Interface Interaction Protocol

The sequence of message exchanges that are required between two systems to execute
an interaction. The message exchanges in the protocol are either command transactions
or event reports.

Interface Interaction State Model

A state model that tracks interface interactions through the message exchanges cause
transitions between states of the interaction.

Process Description Language

A process specific language used to describe the manufacturing steps to be performed.
Each class of process may have a unique process description language that can be inter-
preted by any equipment that performs production steps for that class of process.

SEMI

Semiconductor Equipment and Materials International.
Generic Equipment Model

The SEMI generic model of processing equipment for effective factory automation.[4]
Standard Laboratory Module

A device that performs chemistry analysis steps in the approach to the modular automa-
tion of chemical analyses being developed under the U.S. Department of Energy
Robotics Technology Development Program.

3 General Description

The main behavior of the equipment follows generic state models that address communi-
cations, local versus remote control, process states and alarm states. These state models
provide the context for interactions that define the interface between the equipment and
the supervisory controller.

Standard interactions based upon the generic state models are used to define the interface
to generic equipment. The function of each interaction is defined together with a message
exchange protocol that keeps both sides of the interaction synchronized. The interactions
can be initiated by commands from the supervisor to the equipment or by event reports
from the equipment to the supervisor. The rest of the message exchange protocol for the
interaction serves to pass information and keep both sides aware of the state of the other.

Appendix A August 13, 1997 4

Appendix A

3.1 Some Communication Assumptions

The interface described here is independent of the communication link. However, some
basic assumptions are made regarding message passing over the communication link.
Every message must be acknowledged by the recipient before a second message can be
sent to it. This prevents queueing of messages and the associated synchronization prob-
lems. Both the supervisor and the equipment must be able to detect when the communica-
tion link is lost and take appropriate action to restore communications. The
communication link cannot be blocked while the equipment performs a task. For the pur-
poses of the document message exchanges are modeled as instantaneous. If the equipment
or the supervisor would normally require extended time to respond to a message, the
response is considered as a separate message exchange.

Communications initiated by the supervisor are synchronized command transactions in
which data messages can flow in either direction depending on the transaction type. Since
the communications initiated by event reports from the equipment are asynchronous to the
main thread of the supervisor, message exchanges initiated by the equipment consist of a
single message. The supervisor response must be a separately initiated transaction. Fur-
thermore, each event report from the equipment to the supervisor must contain a times-
tamp. However, timestamp associated with event reports will not be indicated in the
description of the message exchanges described herein.

3.2 State Models

State models are used to describe the expected behavior of both the equipment and the
supervisory controller during operation of the equipment. The detailed internal states of
the equipment are not addressed here if they do not effect the interactions between the
equipment and the supervisor. State transitions occur due to events detected internally by
the equipment or due to commands from the supervisor. Multiple state models deal with
different aspects of the equipment behavior as seen by the supervisor and indicate which
interactions are permitted at a particular time. In addition, for interactions with extended
message exchange protocols, a separate state model of the interaction is defined. The state
models ensure that both the supervisor and the equipment remain synchronized during
interactions. Following the SEMI Generic Equipment Modei[4], the Harel notation for
state diagrams is used[5]. Those features of the notation used in this document are briefly
described below.

A state model consists of a state chart, a description of the states, and a transition table.
Figure 3-1 illustrates the Harel state chart symbols. The Harel notation allows for hierar-
chical states and default initial substates when entering an encompassing parent state.
Selectors can indicate which substate of a parent is to be entered. The history selector indi-
cates that the system is to return to the substate that was active at the last transition out of
the parent state. Transitions themselves are unidirectional but separate transitions can be
used to toggle between states. Concurrent states are independent and do not directly cause
transitions in each other, but they do share common context. They can be thought of as
weakly interacting subsystems. The use of concurrent states allows modularity of the
model and greatly simplifies the individual state models.

Appendix A August 13, 1997 5

Appendix A

D State O Selector
@ History
Selector
@ Concurrent
States @ N Deep
. History
—_— Transition Selector
o——p Default @ Conditional
En’gry Selector
Point

FIGURE 3-1 Harel State Chart

3.3 Interaction State Models

Each interaction that makes up the interface between the equipment and the supervisor
follows a state model. The transitions in the interaction state models result from exchanges
of messages. Many of the interactions involve a single exchange of messages and, thus,
the initiating message exchange is also the terminating exchange. The state chart is shown
in Figure 3-2 for interactions where the initial message exchange terminates the interac-
tion. In the following sections that describe the interface interactions, separate interaction
state models will not be given for interactions involving a single message exchange. How-
ever, the message content of all defined exchanges for an interaction will always be given.

—» Initial Message Exchange

Terminated

FIGURE 3-2 State Chart for Interactions
with Single Message Exchange

In the tables describing interaction message exchanges, the => symbol indicates that the
supervisor initiates the message exchange with the named command, while <= indicates
that the equipment initiates the message exchange with the named event report. For both
command transactions and event reports, arguments are indicated by (argl, arg?2,...) fol-
lowing the name of the command or event. In command transactions, download of data
from the supervisor to the equipment is indicated by ->, and upload of data from the
equipment to the supervisor is indicated by <-.

Any command transaction that cannot be fully executed by the equipment must be termi-
nated gracefully by the equipment with a message to the supervisor containing an error
code and a text explanation of the problem. When this occurs, the message exchange of
the command transaction is terminated and the interaction of which it was a part is left in
the state that it was before the aborted command transaction was initiated. This type of
message exchange problem therefore will leave the equipment and the associated interac-

Appendix A August 13, 1997 6

Appendix A

tion in a known state. Abnormal termination of interactions themselves is addressed in the
state models of the interactions.

3.4 Communications Maintenance and Control Interactions

A simple state model is used to describe the communication state of the equipment. The
details of communication initiation will be dependent on communication link used. How-
ever, the function of the interactions will be described independent of communication
link. When communication is lost, the equipment must ensure that important event mes-
sages are spooled for later upload once communication is restored. The interactions and
requirements associated with spooling are specified in this document. Finally, integration
of the equipment into an automated facility requires that the equipment be remotely con-
trolled by a supervisory control system. Interactions for negotiated handoffs between local
and remote control are specified.

3.5 Processing Interactions

The mission of the equipment is to process product at the bidding of the supervisor. In
order to perform the desired operations on product, the equipment must be configured or
setup properly. While some equipment may require a setup step before processing each
batch of product, other equipment may be able to perform operations on several batches
without additional setup or reconfiguration. A general processing state model that accom-
modates both types of equipment is used to define the interactions required to get the
equipment configured properly and to perform operations on product. The model also
addresses interactions required for the handling of process interruptions caused by com-
mands from the supervisor or alarms.

3.6 Alarm Management Interactions

The equipment must be able to detect various anomalous conditions and inform the super-
visor so that they can be addressed. Interactions based upon a state model are defined to
manage alarms. The actual handling of particular alarm conditions will be specific to the
equipment and the alarm. Only the communication of alarm status is addressed here.

3.7 Material Movement Interactions

Material movement interactions are required to manage the following:
¢ product movement into and out of the processing equipment

¢ supply replenishment and waste removal

e access to common material resources

The interactions and their message exchange protocols are described using state models of
the interactions where appropriate.

Appendix A August 13, 1997 7

Appendix A

3.8 Settings, Queries, Symbol Access and Logging

The equipment must allow the supervisor to have access to all information that effects the
interactions between them. Query capabilities are defined for standard equipment state
variables. Symbol table capabilities are defined to provide a generic way for the supervi-
sor to have access to equipment specific data and variables. Symbol monitoring features
allow the supervisor set the thresholds at which it is informed when a symbol value
changes. Generic logging features for record keeping and trouble shooting are discussed.

3.9 Characteristics Description

The Equipment Characteristics Description provides all of the equipment specific infor-
mation required for the supervisor to interact with the equipment. This includes tables of
operations, configurations, material input and output ports, support services, initial state
variable values, and equipment specific symbols. Only the information content is dis-
cussed here. The actual media by which the supervisor has access to the Equipment Char-
acteristics Description can be through a data file or some upload from the equipment. The
generic requirement is that the information be made available to the supervisory control
system. The characteristic description consists of the following tables:

Operation Table. A table of the process operations that can be performed by the equip-
ment. For each operation, all information required to describe process step capability
quality, duration, material flows and configuration needs is provided.

Configuration Table. A table of the allowable configurations of the equipment. For each
configuration, parameters, and equipment settings are specified.

Supply Table. A table of the supply types that are required by the equipment to perform
its operations. For each supply type, the storage capacity, units and material port
through which the supply inters and exits the equipment are listed.

Waste Table. A table of the waste types that are generated by the equipment. For each
waste type, the waste capacity, units and material port through which the waste exits
the equipment are listed.

Tool Table. A table of the tools that are used by the equipment to perform its operations.
For each tool, the tool class and entry/exit ports for the tool are listed

Material Port Table. A table of the material ports through which product, supplies and
waste enter and leave the equipment. For each material port, the classes of material that
enter and exit through the port are listed along with the physical characteristics of the
port such as dimensions and location.

Shared Reservoir Table. A table of the material reservoirs (usually for fluids) that are
required by the equipment as an intermittent source or sink of material. For each reser-
voir, the class of material and method of transport are listed.

Appendix A August 13, 1997 8

Appendix A

Continuous Fluid Requirements Table. A table of the continuously delivered fluids that
are required to service the equipment. For each fluid, the class of material and method
of transport are listed along with normal flow requirements.

Alarm Table. A table of the alarms that can occur on the equipment. For each alarm, a
category and severity must be specified together with a description of the condition.

Standard Variable Initialization. A table of the initialization values for standard equip-
ment state and setting variables.

Equipment Specific Data Variable Table. A table of the equipment specific process
variables. For each variable, a description, units and range are g1ven together with
monitoring specification and parameters.

Equipment Specific Setting Variable Table. A table of the equipment specific setting
variables. For each variable, a description, initial values and valid range are specified.

Equipment Specific Event Table. A table of the equipment specific events that can arise
during the course of its operation. For each event, a description, category, and argument
list are given.

4 Communication Maintenance and Locus of Control
Interactions

4.1 Overview

The interactions for the establishment and maintenance of communications and supervi-
sory control are described here. Although the exact set of messages required for establish-
ment of communications will be dependent on the communications link employed, the
required function of the interaction will be described. In order for the supervisor to use the
equipment, the handoff from local to remote control must be accomplished. The interac-
tions for that handoff are described. Upon loss of communications the equipment must
spool event messages until communication has been restored. At that time, the supervisor
can have them uploaded or purged. The interactions for spooling management are
described.

4.2 Establishing and Maintaining Communications

It is the responsibility of the equipment to allow communications with the remote supervi-
sor at all times after power up initializations are complete. The details of preparing for and
initializing communications are dependent upon the physical communication link and low
level message passing protocol. Here only an outline of the required behavior is given.
Figure 4-1 shows the Communications State Chart. Table 4-1 describes the transitions in
the Communications State Model. Communication Loss Pause is a flag state indicating
whether the equipment is to pause upon loss of communication with the supervisor.

Appendix A Avgust 13, 1997

Appendix A

Communication
Loss
Pause

‘ Not
Communicating
3
Gommunicaﬁng}j

FIGURE 4-1 Communications State Chart

é

4.2.1 Description of Communication States
Not Communicating

The equipment is not communicating with the supervisory controller either because
communications have not yet been established or they have been lost. Not Communi-
cating is the entry state upon powering up.

Communicating

Communications are established and proceeding normally.
Communication Loss Pause On

The equipment will pause upon loss of communication.
Communication Loss Pause Off

The equipment will not pause upon loss of communication.

The initial value of the Communication Loss Pause flag must be specified in the equip-
ment description. '

TABLE 4-1. Communications State Transitions

Old State Transition Event New State Comments

1 Not Communi- Successful establishment Communicating | At start-up the equip-
cating of communication ment performs the
steps required to
establish communica-
tion

2 Communicating | Termination of communi- | Not Communi- | After initial connec-
cation by fault cating tion, communication
is not normally termi-
nated except at shut-
down. The
equipment should
perform the steps
required to re-estab-
lish communications

Appendix A August 13, 1997

10

Appendix A

TABLE 4-1. Communications State Transitions

Old State Transition Event New State Comments
3 Communicating | Any message Communicating
4 Communication | Command to turn Commu- | Communication

Loss Pause Off | nication Loss Pause On Loss Pause On
Received
5 Communication | Command to turn Commu- | Communication
Loss Pause On nication Loss Pause Off Loss Pause Off
Received

4.2.2 Requirements

e The equipment must allow communication with the supervisor at all times after power
up initialization.

¢ Upon loss of communication with the supervisor, the equipment must perform the
required steps to allow communication to be re-established.

¢ Even when under local control, the equipment must keep the supervisor informed of its
state through the reporting of relevant events and response to queries.

e The equipment must have clearly defined behavior at loss of communication with the
supervisor, and that behavior must be addressed in the equipment description.

4.2.3 Establishing Communication

The interaction for establishing communication is communication link specific and not
specified here.

4.2.4 Setting Communication Loss Pause On

The interaction to turn communication loss pause on consists of a single command: Com-
mlLossPauseOn as shown in Table 4-2.

TABLE 4-2. Interaction for Setting Communication Loss Pause On

OId Inter. New Inter.
Message Exchange State State Comment
1 =>CommlLossPauseOn None Terminated

4.2.5 Setting Communication Loss Pause Off

The interaction to turn communication loss pause off consists of a single command: Com-
mLossPauseOff as shown in Table 4-3.

TABLE 4-3. Interaction for Setting Communication Loss Pause Off

Old Inter. New Inter.
Message Exchange State State Comment
1 =>CommULossPauseOff | None Terminated
Appendix A August 13, 1997 11

Appendix A

4.3 Local and Remote Control

The equipment must be in remote control for the supervisory control system to use it in an
automated fashion. The control state at power up can be either local or remote, but the
supervisor must be informed of the initial state. The value of this parameter must be pro-
vided in the equipment description data as described in Section 9.11, “Standard State
Variable Initialization Table,” on page 53. For safety considerations, the local operator
and the supervisory control system must negotiate for control. Neither can take control
from the other. However, both may at anytime cause an alarm stop. Figure 4-2 shows the
Remote Control State Chart. The Remote Control State transitions are described in

Table 4-4.

2

FIGURE 4-2 Remote Control State Chart

4.3.1 Description of Control States
Local

The local console operator has control of equipment operation. The supervisory control
system can always query for the value of particular state variables and receives event
reports that keep it aware of the equipment state. However, under local control the
supervisory control system can not set equipment parameters or issue commands that
change the state of the equipment.

Remote
The supervisory control system has access to all standard equipment control functions.

The initial value of the Remote Control State must be specified in the equipment descrip-
tion.

4.3.2 Requirements

e The equipment must allow all control functions for processing of product to be per-
formed through remote control.

¢ The handoffs between local and remote control must be based on give rather than take.

Appendix A August 13, 1997 12

Appendix A

TABLE 4-4. Remote Control State Transitions

Old New
State Transition Event State Comments
1 Local Request for remote control Remote | Handoff between local and remote con-
received from supervisor and trol is negotiated. Neither side may take
accepted control from the other

2 Remote | Command to return to local Local The local operator can request local
control received control and the supervisor can grant
control through the command to return
to local control. The supervisor can
give control to the local operator event
if it is not requested.

4.3.3 Transferring to Remote Control

Transferring to remote control consists of a single message exchange in which the super-
visor requests remote control and the local operator grants or rejects the request. The inter-
action is shown in Table 4-5

TABLE 4-5, Interaction for Transferring to Remote Control

Old Inter. New Inter.
Message Exchange State State Comment
1 =>RequestRemoteControl None Terminated

<-RemoteControlGranted
or

<-RemoteControlDenied

4.3.4 Transferring to Local Control

Transfer from local to remote control can be initiated by either the supervisor or the local
operator. The message exchange when initiated by the supervisor consists of a single mes-
sage as show in Table 4-6.

TABLE 4-6. Interaction for Supervisor Initiated Transfer to Local Control

Old Inter. New Inter.
Message Exchange State State Comment
1 =>LocalControlGranted None Terminated

Appendix A August 13, 1997 13

Appendix A

When initiated by request from the local operator, the supervisor can reject or accept the
request. The corresponding message exchange is shown in Table 4-7

TABLE 4-7. Interaction for Local Operator Initiated Transfer to Local Control

Message Exchange Old Inter. State New Inter. State Comment
1 <=RequestLocalControl | None LocalControlRequested
2 =>LocalControlGranted | LocalControlRequested | Terminated

or

=>LocalControlDenied

4.4 Event Spool Management

The equipment should ensure that essential information can be communicated to the
supervisory control system even when communication link is lost for a period of time. The
equipment must therefore spool event messages upon loss of communication so that they
can be transmitted to the supervisor once communication has been restored. The size of
the required spool area will be equipment dependent. Normally, the spool buffer should be
large eniough to allow the equipment to spool all event messages that would occur during a
normal operation cycle, or at least until the next point in the operation from which the
operation can be safely paused for restart at resumption of communications with the
supervisor.

The event message spooling state model addresses these issues. It also covers the overflow
of the buffer with communications still not restored. In that case, the first messages can be
overwritten or the equipment can be paused before buffer overflow to preserve all mes-
sages relevant to normal operation. The Event Spooling State Chart is shown in Figure 4-3
and its transitions are described in Table 4-8.

4.4.1 Description of Spooling States
Spool Inactive

The Communication state is Communicating and the spool buffer is empty. This is the
initial spooling state.

Spool Active

The Communication state is Not Communicating or the spool buffer is not empty.
Spool Not Full

The spool is not full. This is the initial spool loading substate.
Spool Full

The spool is full and additional event messages overwrite the oldest event massages.
Spool Not Unloading

The spool is not unloading. This is the initial spool unloading substate because commu-
nication has been lost.

Appendix A August 13, 1997 14

Appendix A

- ™\ =

Spool Active " Full Spool

Spool . Pause
Not Full x
S| .
Ay v2 |1
™~ a
Spoel :
. Full .
Spool Loading :
Inactive YRENmREEEREREmanEsENes .
Unloading '
6,7

Not .
Unloading .
5 .
Transmitting :
Spool .
\ J e

FIGURE 4-3 Event Spooling State Chart

Transmitting Spool. The spool is being transmitted to the supervisor because the com-
mand to transmit the spool has been received by the equipment.

Full Spool Pause Off
The equipment will not pause before the event spool is full.
Full Spool Pause On

The equipment will pause before the event spool is full.

TABLE 4-8. Event Spooling State Transitions

Old State Transition Event New State Comments

1 Spool Inactive | Loss of communication | Spool Active Entry at Spool Not Full and Not
Unloading

2 Spool Not Full | Event spool buffer full | Spool Full If Full Spool Pause is On, the

equipment should be paused by
the time the spool buffer is full.
Otherwise, additional events are
written over the oldest events in

the spool
3 Spool Full Some but not all of the | Spool Not Full | This occurs only after communi-
event reports are cations have been restored

uploaded to the super-
visor

4 Not Unloading | Command to transmit Transmitting Communication have been
spool received Spool restored

Appendix A August 13, 1997 15

Appendix A

TABLE 4-8. Event Spooling State Transitions

Ol1d State Transition Event New State Comments
5 Transmitting Communications lost Not Unloading
Spool during spool transmis-
sion
6 Spool Active/ | Command to purge Spool Inactive | It is assumed that purge of spool
Not Unloading | spool received is instantaneous
7 Spool Active/ | Transmission of spool Spool Inactive
Transmitting complete with commu-
Spool nications still estab-
lished
8 Full Spool Command to turn Full Full Spool
Pause On Spool Pause Off Pause Off
received
9 Full Spool Command to turn Full Full Spool The equipment must ensure that
Pause Off Spool Pause On Pause On it has paused before the event
received spool has overflowed. Normally
this will require setting Pausing
to On (see Table 5-1 on page 21)
at some time before the spool is
full.

4.4.2 Requirements

¢ The equipment must ensure that short losses of communications with the supervisor do
not cause loss of product or important processing information.

e The equipment must provide enough event spool buffer capacity to hold all the event

messages expected during an operation cycle (which may be considered the event mes-
sages between resumable points in its operation cycle).

e The default setting of the Full Spool Pause flag must be specified in the equipment
description.

¢ Spooled event reports must be uploaded by order of their timestamps.

4.4.3 Informing the Supervisor of the Event Spool State

The equipment must keep the supervisor informed of the spool state even though most of
the state changes will only be communicated when the spool is transmitted to the supervi-
sor after communication is restored. Timestamps on the spooled event reports will assist
the supervisor during the transmission of the spooled reports. The spool state transitions
that must be reported to the supervisor are transitions 1, 2, and 7 from Table 4-8 above.

Appendix A August 13, 1997 16

Appendix A

The interaction to inform the supervisor of an Event Spool state change is shown in
Table 4-9.

TABLE 4-9. Interaction for Event Spool State Change

Old Inter. New Inter.
Message Exchange State State Comment
1 <=SpoolStateChange None Terminated
(Old Spool State, New
Spool State)

4.4.4 Transmitting Event Spool

The state chart of the interaction for transmitting the event spool is shown in Figure 4-4
and the message exchanges for the interaction are shown in Table 4-10.

1

3

Terminated

2

FIGURE 4-4 State Chart for Event Spool
Transmission Interaction

TABLE 4-10. Interaction for Transmitting the Event Spool

Old Inter. New Inter.

Message Exchange State State Comment
1 =>TransmitSpool None Transmitting | During the transmission of
<-Current Length the spool additional event
reports may have to be
spooled.

2 <=Next event report Transmitting | Transmitting | The original event reports
are transmitted in the order
in which they where placed
on the spool.

3 <=SpoolTransmitted | Transmitting | Terminated The spool also becomes
inactive and the supervisor
must be informed accord-
ing to the spool state change
interaction of Table 4-9.

Appendix A August 13, 1997

17

Appendix A

4.4.5 Purging Event Spool

The interaction to purge the spool consists of a single command: PurgeSpool as shown in
Table 4-11.

TABLE 4-11. Interaction for Purging the Spool

Old Inter. New Inter.
Message Exchange State State Comment
1 =>PurgeSpool None Terminated

4.4.6 Setting Full Spool Pause On

The interaction to turn full spool pause on consists of a single command: FullSpoolPau-
seOn as shown in Table 4-12.

TABLE 4-12. Interaction for Setting Full Spool Pause On

Old Inter. New Inter.
Message Exchange State State Comment
=>FullSpoolPauseOn None Terminated

4.4.7 Setting Full Spool Pause Off

The interaction to turn full spool pause off consists of a single command: FullSpoolPau-
seOff as shown in Table 4-13.

TABLE 4-13. Interaction for Setting Full Spool Pause Off

Old Inter. New Inter.
Message Exchange State State Comment
1 =>FullSpoolPauseOff None Terminated

S Operation Interactions

5.1 Overview

This section describes the interactions required to

e prepare the equipment to process product

e process product

e deal with off normal conditions

The goal is to setup and configure the equipment for the desired operations, have the
equipment perform operations on product, and deal with off-normal conditions that arise.

Other than movement of material into and out of the equipment, it is assumed that the
equipment is autonomous in the performance of its contracted operations. Interactions

Appendix A August 13, 1997 ' 18

Appendix A

required for movement of material are discussed in Section 6. The supervisor must be able
to set equipment process variables and query the equipment about its state. Interactions for
setting process variables, querying and monitoring equipment states are described in
Section 7. Here, the standard interactions required to orchestrate the equipment through its
processing states are presented. Internal states of the equipment are not of interest if they
do not effect the interactions with the supervisor that are required to process product.

The standard processing interactions must accommodate wide variety of equipment. Some
equipment processes one item at a time while some equipment handles batches of product.
Some equipment performs single operations at a time while other equipment may perform
operations in a streaming mode with each batch at a different stage in the process. Further-
more, some equipment can upload and download programs while other equipment can
only perform preprogrammed operations.

A processing state model is used to provide context for the interactions with the supervisor
that are required to process product.

5.2 Processing State Model

The Processing State Model is shown in Figure 5-1. The labeled transitions in the figure
are described in Table 5-1. The equipment must perform the steps required to initiate com-
munications during powering up. Thereafter, transitions from communicating to not com-
municating and back are concurrent with the processing state model.

The equipment remains in Idle until it receives a command to configure. After configuring
is complete the equipment is ready to process product. In the Normal Operation state the
equipment accepts input to operations, performs operations, and generates product. Under
normal conditions, it cycles through these operations until it is commanded by the supervi-
sor to clear itself and go back to the Idle state.

While processing, the equipment can transition to the Pausing state by a command from
the supervisor, or detection of a condition by the equipment that requires the equipment to
pause. While in the pausing state, the equipment will continue operate normally until it
comes to an internal state from which it can pause and resume without aborting the current
operation or loosing product. At that time, it will pause until it receives a command from
the supervisor to resume or abort.

Appendix A August 13, 1997 19

Appendix A

[Powering Ua

1

(Y
L I(ille }—

V2

(Processing

Pausing)

6,7 l 8,9

[Configuring

10 3
L Paused F 11 ¢

Normal
Operatlon

12
16
Alarm 15 { Clearing }"
Stopped 13,14

FIGURE 5-1 Processing State Chart

The equipment can also detect conditions that require it to alarm stop, or it can receive an
alarm stop command from the supervisor. When either occurs, the equipment will imme-
diately stop processing. Since there is no attempt to pause gracefully, the capability to
resume from the Alarm Stopped state cannot be assured. The equipment remains in the
Alarm Stopped state until it receives a command to resume or abort from the supervisor.

5.2.1 Description of Processing States
Powering Up

The equipment is performing power up initializations.
Idle

The equipment has performed power up initializations and is waiting for a command to
configure for operations.

Configuring
The equipment is configuring for operation based on the configure command form the
supervisor. This processing state may require material movement interactions.
Normal Operation

The equipment is configured and in normal operation state. In this state, the equipment
can accept product for processing, perform operations on it, and provide output prod-
ucts. The equipment cycles through operations on product until it is command to clear

Appendix A August 13, 1997 20

Appendix A

itself, receives an alarm stop, or reaches a resumable intermediate state with Pausing
On. All material movement interactions (See “Material Movement Interactions” on
page 28.) can occur in this state.

Clearing

The equipment is performing any activities required to clear itself and return to the idle
state. This state may require material movement interaction especially if it was entered
from the Paused or Alarm Stopped states upon receipt of an abort command.

Pausing Off
The equipment is not scheduled to pause.
Pausing On

The equipment will enter the Paused state at the next point in its processing from which
it can resume.

Paused

The equipment is in a paused state in which processing has stopped but can be resumed
from where it left off. '

Alarm Stopped

The equipment has performed an alarm stop from which there is no assurance that nor-
mal processing can be resumed.

TABLE 5-1. Processing State Transitions

Old State Transition Event New State Comments
1 Powering Up Initialization complete Idle .
2 Idle Command to configure Processing The Processing
received substate is Config-
uring and Pausing
is Off
3 Configuring Configuration complete Normal Operation
Normal Operat- | Command to clear received Clearing
ing
5 Clearing Clearing completed Idle
Pausing Off Command to pause received Pausing On
7 Pausing Off Internal condition detected that | Pausing On

requires the equipment to
pause for handling

8 Pausing On Command to resume process- | Pausing Off
ing received

9 Pausing On Command to abort processing | Pausing Off
received
10 | Processing A resumable internal condition | Paused

reached with Pausing On

11 | Paused Command to abort processing | Clearing
received

Appendix A August 13, 1997 21

Appendix A

TABLE 5-1. Processing State Transitions

Old State Transition Event New State Comments
12 | Paused Command to resume process- | Previous internal
ing received processing state
from which the
Pause state was
entered
13 | Processing Command to Alarm Stop Alarm Stopped
received
14 | Processing Internal condition detected that | Alarm Stopped
requires the equipment to
alarm stop for handling
15 | Alarm Stopped | Command to abort processing | Clearing
received
16 | Alarm Stopped | Command to resume process- | Previous internal
ing received processing state
from which the
Alarm Stopped
state was entered

5.3 Informing the Supervisor of the Processing State

The equipment must keep the supervisor informed of its processing state. Transitions 1, 3,
5,7, 10, 14 shown in Table 5-1 are internal equipment events that should be reported to
the supervisor using the ProcessingStateChange event report as shown in Table 5-2. All
other transitions in the table are due to commands from the supervisor and acceptance of
the command implies the occurrence of the transition. Reporting of those events using the
ProcessingStateChange event report is optional.

TABLE 5-2. Interaction for Processing State Change

Old Inter. New Inter.
Message Exchange State State Comment
<=ProcessingStateChange (Old | None Terminated

Processing State, New Process-
ing State)

5.4 Configuration and Normal Processing Interactions

The normal path through the Processing State Chart takes the equipment all the way from
start-up to its normal operating state where it can process product. It also provides a path
for leaving the normal operating state to allow reconfiguration if needed for particular
operations. The transition to Idle at the completion of powering up procedures is reported
to the supervisor using the ProcessingStateChange event report.

Appendix A August 13, 1997 22

Appendix A

5.4.1 Configuring the Equipment

The equipment stays in Idle until it receives the Configure command shown in Table 5-3.
During configuration, the equipment may require material that it obtains through the mate-
rial movement interaction described in Section 6. At the completion of configuring, the
equipment transitions to the Normal Operation state.

TABLE 5-3. Interaction for Configuring Equipment

O1d Inter. New Inter.
Message Exchange State State Comment
=>Configure(configura- None Terminated The parameters of the
tionld, (Parameter list)) configuration will be

equipment specific and
must be described in the
equipment configuration
table. See Section 9.3.

5.4.2 Clearing the Equipment

Under normal conditions the equipment stays in the Normal Operation state and processes
product until it is commanded to clear by the supervisor. This occurs when shutting down
the equipment or when the equipment needs to be reconfigured. The interaction for clear-
ing the equipment is described in Table 5-4.

TABLE 5-4. Interaction for Clearing Equipment

OI1d Inter. New Inter.
Message Exchange State State Comment
=>Clear None Terminated

5.5 Operation Initiation

In the Normal Operation state, the equipment receives product items to process and pro-
duces product. Once the equipment has received all of the input items for an operation, it
is commanded to start the operation with the StartltemOperation command. After any
required initialization, the equipment informs the supervisor that the operation has started.
The interaction for Operation Initiation shown in Section 5-5.

TABLE 5-5. Interaction for Operation Initiation

Old Inter. New Inter.
Message Exchange State State Comment
=>StartltemOpera- None StartingOpera- The assigned operation
tion(Operation Name, tion token allows unambigu-
(Item ID list), (Parameter ous reference to the par-
List), Operation Token) ticular execution of the

operation.

<=ItemOperation- StartingOpera- | Terminated
Start(Operation Token) tion

Appendix A

August 13, 1997

23

Appendix A

5.6 Operation Completion

When an operation is complete, the equipment must inform the supervisor. The event
report must indicate the operation that was completed, and its completion code. Negative
completion codes indicate that there was a problem. In particular, when the equipment is
commanded to abort, all current operations of the equipment must complete with a nega-
tive completion code. The possible completion codes for an operation are included in def-
inition of the operation in the operation table for the equipment as discussed in

Section 9.2. The equipment informs the supervisor of operation completion through the
ItemOperationComplete event report as shown in Table 5-6.

TABLE 5-6. Interaction for Operation Completion

Old Inter. New Inter.
Message Exchange State State Comment
1 <=ItemOperationComplete | None Terminated The operation token is that

(operation token, comple-
tion code)

given by the supervisor in
the StartltemOperation com-
mand for the operation.

5.7 Off-Normal Processing Interactions

During the Processing state various off normal conditions can occur either at the equip-
ment itself or elsewhere in the system that require processing to be interrupted. Those con-
ditions detected by the equipment move it into the Pausing state or to Alarm Stopped
depending upon the severity of the condition. These state transitions (7 and 14 in Table 5-
1, “Processing State Transitions,” on page 21) must be communicated to the supervisor
through the ProcessingStateChange event report. When the off-normal condition is
detected elsewhere in the system the supervisor can command the equipment to Pause or
Alarm Stop. These commands are shown in Table 5-7 and Table 5-8 respectively.

TABLE 5-7. Interaction for Command Pausing the Equipment

Old Inter. New Inter.
Message Exchange State State Comment
1 =>Pause None Terminated

TABLE 5-8. Interaction for Command Alarm Stopping the Equipment

Old Inter. New Inter.
Message Exchange State State Comment
1 =>AlarmStop None Terminated

After the supervisor deals with the pause or alarm stop condition, it can command the
equipment to either Resume or Abort processing. The Resume command causes the equip-

Appendix A August 13, 1997 24

Appendix A

ment to continue from where it left off. The Abort command causes the equipment to go
into the Clearing state. These commands are shown in Table 5-9 and Table 5-10.

TABLE 5-9. Interaction for Resuming Processing

Old Inter. New Inter.
Message Exchange State State Comment
1 =>Resume None Terminated

TABLE 5-10. Interaction for Aborting Processing

Old Inter. New Inter.
Message Exchange State State Comment
=>Abort None Terminated

5.8 Alarm States

The alarm state of the equipment is a composite of the states of all of the alarm conditions
that can be detected by the equipment. Each detectable alarm condition has a unique iden-
tification, Alarmld, by which it is referenced. The standard state chart for each alarm con-
dition is shown in Figure 5-2. The initial state of all alarms conditions is off. It is the
responsibility of the equipment to detect all alarm conditions that can have an adverse
impact on the safety of personnel or the quality of product, or that can damage equipment.
The definition of the alarm state transitions are given in Table 5-11.

Alarm Off

Alarm On

FIGURE 5-2 Generic Alarm
State Chart

Appendix A August 13, 1997 25

Appendix A

TABLE 5-11. Alarm State Transitions

Oid State Transition Event New State | Comments

i Alarm Off Alarm condition is Alarm On The equipment has a set of
detected by the equipment alarms that it can detect.

2 Alarm On Alarm condition is no Alarm Off | The equipment may periodically
longer detected by the check to determine if the alarm
equipment condition still exits. It also must

check for the condition when
asked by the supervisor to check
for the alarm condition.

The interaction to inform the supervisor when an alarm condition is detected is shown in
Table 5-12, while the interaction to inform the supervisor that an alarm condition has been
cleared is shown in Table 5-13.

TABLE 5-12. Interaction for Notification of Alarm Condition On

Old Inter. New Inter.
Message Exchange State State Comment
<=AlarmOn (4larmld) None Terminated

TABLE 5-13. Interaction for Notification of Alarm Condition Off

Old Inter. New Inter.
Message Exchange State State Comment
1 <=AlarmOff (4larmld) None Terminated

‘When an alarm condition is on, the equipment must allow the supervisor to perform the
necessary actions to handle the alarm. This may require that it set its Pausing State to On
and inform the supervisor according to the interaction shown in Table 5-2. The supervisor
will inform the equipment when it is through handling the alarm by commanding it to
check the alarm condition according to the interaction shown in Table 5-14

TABLE 5-14. Interaction for Checking an Alarm Condition

Message Old Inter. New Inter.

Exchange State State Comment

1 =>CheckAlarm | None Terminated This interaction ensures that the equip-
(Alarmld) ment will check for the condition when

the supervisor thinks that the alarm has
been cleared. Some equipment may not be
checking unless told to check, while other
equipment may periodically check the
condition on its own. If upon checking the
alarm state has changed, the equipment
will issue the AlarmOn or AlarmOff noti-
fication.

Appendix A August 13, 1997 26

Appendix A

5.9 Process Program Management

Manufacturing equipment can have many degrees of complexity, programmability, and
autonomy. Some equipment will not be programmable except through the parameters that
are passed to it with the StartltemOperation command shown in Table 5-5. Other equip-
ment will be fully programmable in terms of the Process Description Language of the
associated manufacturing process. In the latter case, there must be standard interactions
for uploading and downloading equipment programs, and for selecting programs to be
executed for desired products. Parameters of the StartltemOperation command may select
the program to be run, or configuration specifications associated with the product produc-
tion specifications may be used by the supervisor to setup the proper program. These inter-
actions will be covered in latter versions of this document.

Appendix A August 13, 1997 27

Appendix A

6 Material Movement Interactions

6.1 Overview

This section describes the material movement interactions for getting product and material
into and out of the equipment, replenishing supplies, and removing waste. These interac-
tions are intended to be process independent and thus are the same for a machining, weld-
ing or a chemical processing cell. For the complex interactions several off-normal states
are modeled. Although the supervisor may not handle the off-normal interaction states in a
automated fashion, the message exchanges are standardized to keep both the supervisor
and the equipment informed of the state of the interaction.

6.2 Permit and Deny Input for Operation

The equipment must inform the supervisor when it can or cannot accept input for particu-
lar operations. For example, certain configurations may only be appropriate for selected
operations or the equipment may only be able to process specified amounts of product at a
time. When the equipment is configured, it must inform the supervisor of which opera-
tions it can perform. Similarly, when the input capacity for a particular operation is full,
the equipment must inform the supervisor. The interactions for permitting and denying
input for specified operations are shown in Table 6-1 and Table 6-2.

TABLE 6-1. Interaction for Permitting Input for Specified Operations

Message Exchange Old Inter. State New Inter. State Comment
1 <= PemmitInputForOpera- | None Terminated
tion (OperationldList)

TABLE 6-2. Interaction for Denying Input for Specified Operations

Message Exchange Old Inter. State New Inter. State Comment
1 <= DenyInputForOpera- None Terminated
tion(OperationldList)

6.3 Input Item Receipt

The interaction for entering an item into the equipment for processing starts when the
supervisor tells the equipment to take an item for input to an operation. The equipment
responds by indicating the port and location within the port in which to place the item. The
port must be locked before the supervisor can interact with it. After the port is locked, the
supervisor inserts the item and asks the equipment to confirm receipt. The port can then be
unlocked and the interaction terminated. The state chart for the item receipt interaction is
shown in Figure 6-1. The off-normal states of the interaction, Fixing Can’t Lock and Fix-
ing Can’t Find Item, are shown as well as the normal states of the interaction. The mes-
sage exchanges for the interaction are shown in Table 6-3.

Appendix A August 15, 1997 28

Inserting 10
Item

Appendix A

\ 7
Locking 8 Fixing Can’t
Port Lock

2

Accepting
Item

+ 13
Item) Unlocking
Accepted Port

Fixing Can’t
Find Item

—i{ Terminated]

FIGURE 6-1 State Chart for the Item Receipt Interaction

TABLE 6-3. Interaction for Item Receipt

Message Exchange Old Inter. State New Inter. State | Comment
1 => Takeltem (itemClass, ele- | None Locking Port
mentalOperation, inputNum-
ber)
<~(portld, portindex)
2 <= PortLocked (portld) Locking Port Inserting Item
3 =>Acceptltem (itemld, Inserting Item Accepting Item
portld, portindex)
4 <=[temAcepted (itemld) Accepting Item Item Accepted
5 =>UnlockPort (portld) Item Accepted Unlocking Port
6 <=PortUnlocked (portld) Unlocking Port Terminated
7 <=PortCantLock- Locking Port Fixing Can’t The supervisor will
Fault(portld) Lock attempt recovery
=>ResumePortLock (portld) | Fixing Can’t Lock Locking Port
=>AbortTakeltem (portld) Fixing Can’t Lock Terminated The supervisor
gives up
10 | =>UnlockAndAbort- Inserting Item Unlock Port
Takeltem(portld)

Appendix A

August 15, 1997

Appendix A

TABLE 6-3. Interaction for Item Receipt

Message Exchange Old Inter. State New Inter. State | Comment

11 | <=CantFindltem (itemld, Accepting Item Fixing Can’t The supervisor will
portld, portindex) Find Item attempt recovery

12 | =>Acceptltem (itemld, Fixing Can’t Find Accepting Item
portld, portindex) Item

13 | =>UnlockAndAbort- Fixing Can’t Find Unlock Port The supervisor
Takeltem(portld) Ttem gives up

6.4 Product Available Notification

When the operation is completed normally, all outputs are assumed to be available. For
some operations, various outputs of the operation may become available before the opera-
tion completes. If an operation completes with an error completion code, not all of the
intended products may be produced. A separate interaction to inform the supervisor of
product availability is specified for these situations. The interaction for indicating product
availability is shown in Table 6-4.

TABLE 6-4. Interaction for Product Available Notification

Message Exchange Old Inter. State New Inter. State Comment

1 <= ProductAvailable (opTo- | None Terminated
ken, outputNumber)

6.5 Product and Item Removal

Normally, only product is removed from the equipment. However, when the supervisor
aborts an operation, some of the input items for the operation may have to be removed. A
single interaction is defined for product or item removal. Product removal is initiated by
the GiveProduct command and item removal is initiated by the Giveltem command. The
state chart for the product or item removal interaction is shown in Figure 6-2. The mes-
sage exchanges for the interaction are shown in Table 6-5. The off-normal variations as
well as the normal path through the interaction are shown.

Appendix A August 15, 1997 30

Appendix A

Conﬁximing 1
Removal
Relﬂoval 5
Confirmed

Fixing Can’t
Lock

Can’t Confirm
Removal

Unlocking
Port

6
‘—-’[Terminated]

FIGURE 6-2 State Chart for Product or Item Removal Interaction

TABLE 6-5. Interaction for Product or Item Removal

Message Exchange Old Inter. State New Inter. State Comment

=>GiveProduct(opTo- None Locking Port

ken,outputNumber)

<~(portld portindex,item-

Class)

or

=>QGiveltem (itemld)

<-(portld,portIndex,item-

Class)

<=PortLocked(portid) Locking Port Removing Item

=>ConfirmRemoval Removing Item Confirming

(portld, PortIndex) Removal

<=RemovalConfirmed Confirming Removal Con-

(portld, Portlndex) Removal firmed

=>UnlockPort(portid) Removal Con- Unlocking Port

firmed

<=PortUnlocked(portld) | Unlocking Port Terminated

<=PortCantLock- Locking Port Fixing Can’t Lock | The supervisor will

Fault(portld) attempt recovery
Appendix A August 15, 1997 31

Appendix A

TABLE 6-5. Interaction for Product or Item Removal

Message Exchange Old Inter. State New Inter. State Comment

8 =>ResumePort- Fixing Can’t Lock | Locking Port
Lock(portid)

9 =>AbortGiveProduct Fixing Can’t Lock | Terminated The supervisor gives
(portld) up

10 | =>UnlockAndAbortGive- | Removing Item Unlock Port
Product (portld)

11 | <=CantConfrimRemoval | Confirming Can’t Confirm The supervisor will
(portld, portIndex) Removal Removal attempt recovery

12 | =>ConfirmRemoval Can’t Confirm Confirming
(portld, portIndex) Removal Removal

13 | =>UnlockAndAbortGive- | Can’ t Confirm Unlock Port The supervisor gives
Product (portid) Removal up

6.6 Supply Replenishment

The equipment can require consumable supplies of various types. The replenishment of
supplies is an interaction in which the equipment requests that the supervisor load a partic-
ular port with the specified supply type and amount. The supply replenishment interaction
is similar to the Item Receipt interaction. It is shown in Figure 6-3. The message
exchanges for the interaction are shown in Table 6-6.

Supply
Requested

Inserting
Supplies

Accepting
Supplies

Fixing Can’t TFemirintiteg]
Find Supplies []

Supplies
Accepted

FIGURE 6-3 State Chart for Supply Replenishment Interaction

Appendix A August 15, 1997 32

Appendix A

TABLE 6-6. Interaction for Supply Replenishment

Message Exchange Old Inter. State New Inter. State Comment

1 <=SupplyReplenish- None Supply Requested
mentRequest (supplyld,
portld, portindex, quan-
tity)

2 =>LockPort(portld) Supply Requested Locking Port

3 <= PortLocked (portld) | LockingPort Inserting Supplies

4 =>AcceptSupplies Inserting Supplies Accepting Supplies
(itemld, portld, portin-
dex)

5 <=SuppliesAccepted Accepting Supplies | Supplies Accepted
(itemld)
=>UnlockPort (portld) | Supplies Accepted | Unlocking Port
<=PortUnlocked Unlocking Port Terminated
(portld)

8 <=PortCantLock- Locking Port Fixing Can’t Lock The supervisor will
Fault(portid) attempt recovery

9 =>ResumePortLock Fixing Can’t Lock | Locking Port
(portld)

10 | =>AbortReplenishment | Fixing Can’t Lock | Terminated The supervisor gives
(portld) up

11 | <=CantFindSupplies Accepting Supplies | Fixing Can’t Find The supervisor will
(itemld, portld, portin- Supplies attempt recovery
dex) _

12 | =>AcceptSup- Fixing Can’t Find Accepting Supplies
plies(itemld, portld, Supplies
portIndex)

13 | =UnlockAndAbortRe- | Inserting Supplies Unlocking Port
plenishment (portld) v

14 | =>UnlockAndAbortRe- | Fixing Can’t Find Unlocking Port The supervisor gives
plenishment (portid) Supplies up

15 | <=AbortReplenishmen- | Supply Requested Terminated The equipment
tRequest (portld, port- rescinds the replenish-
Index) ment request

16 | <=AbortReplenishmen- | Locking Port Terminated The equipment
tRequest (portld, port- rescinds the replenish-
Index) ment request

Appendix A August 15, 1997 33

Appendix A

6.7 Waste Removal

The equipment can generate waste of various types. The waste removal interaction is initi-
ated by the equipment through a request to unload a specified amount of a type of waste
from a particular port. The state chart for the waste removal interaction is shown in

Figure 6-4 and the message exchanges are shown in Table 6-7. This interaction is similar
to the Product and Item removal interaction.

\ 1
Removal 12
Requested)

&2

38

Locking
Port

9 Fixing Can’t
Lock
3

Removing
Waste

4
. 10 -
Confirming Fixing Can’t
Waste Confirm
Removal
5

Waste
Removal
Confirmed

Unlocking
Port

Terminated

FIGURE 6-4 State Chart For Waste Removal Interaction

TABLE 6-7. Interaction for Waste Removal

Message Exchange Old Inter. State New Inter. State Comment

1 <=WasteRemovalRe- | None Removal Requested
quest(portld portin- ’
dex, wasteld)

2 =>1ockPort(portld) Removal Requested Locking Port

3 <= PortLocked Locking Port Removing Waste

(portld)

4 <=ConfirmWasteRe-
moval (portld, portln-
dex)

Removing Waste Confirming Waste

Removal

Appendix A

August 15, 1997 34

Appendix A

TABLE 6-7. Interaction for Waste Removal

Message Exchange Old Inter. State New Inter. State Comment

5 <=ConfirmWasteRe- Confirming Waste Waste Removal Con-
moval (portld, portln- | Removal firmed
dex)

6 =>UnlockPort Waste Removal Con- Unlocking Port
(portld) firmed

7 <=PortUnlocked Unlocking Port Terminated
(portid)

8 <=PortCantLock- Unlocking Port Fixing Can’t Lock The supervisor
Fault(portld) will attempt

recovery

9 =>ResumePortLock Fixing Can’t Lock Locking Port
(portld)

10 | =CantConfiimWast- | Confirming Waste Can’t Confirm The supervisor
eRemoval- Removal will attempt
Fault(portid portindex recovery
)

11 | =>ConfirmWasteRe- Can’t Confirm Confirming Waste
moval (portld, portln- Removal
dex)

12 | <=AbortRemovalRe- | Removal Requested Terminated The equipment
quest (portld, portin- rescinds the
dex) replenishment

request

13 | =AbortWasteRe- Fixing Can’t Lock Terminated The supervisor
moval (portld, portin- gives up
dex)

14 | <=AbortRemovalRe- | Locking Port Terminated The equipment
quest (portld, portin- rescinds the
dex) replenishment

request

15 | =>UnlockAndAbor- Can’t Confirm Unlocking Port The supervisor
tRemoval (portld) gives up

Appendix A August 15, 1997 35

Appendix A

6.8 Input From Reservoir

Equipment can require input of material from reservoirs that are shared by other equip-
ment in the cell. In this case, the supervisor must arbitrate the use of the shared reservoirs.
The equipment requests to input from the reservoir. Then the supervisor grants or denies
the request. If the request is granted, the equipment takes from the reservoir the requested
amount and informs the supervisor when it is done.The state chart for the input form reser-
voir is shown in Figure 6-5 and the messages exchanges are shown in Table 6-8

\ .
~ 3
Input From
eservoir
Requested

Inputting
rom Terminated
Reservoir

FIGURE 6-5 State Chart for Input From Reservoir Interaction

TABLE 6-8. Interaction for Inputting From Reservoir

Message Exchange Old Inter. State New Inter. State Comment
<= InputFromReservoir- | None Input From Reservoir
Request(reser- Requested
voirld amount)
=> GrantInputFromRes- | Input From reservoir Inputting From Reser-
ervoirRequest(reser- Requested voir
voirld)
=> InputFromReserv- Input From reservoir Terminated
oirDenied(reservoirld) Requested
<= InputFromReservoir- | Inputting From Reser- Terminated
RequestClear(reser- voir
voirld)
Appendix A August 15, 1997 36

Appendix A

6.9 Output To Reservoir

Equipment may need to output material to reservoirs that are shared by other equipment in
the cell. In this case, the supervisor must arbitrate the use of the shared reservoirs. The
equipment requests to output the reservoir. Then the supervisor grants or denies the
request. If the request is granted, the equipment outputs to the reservoir the requested
amount and informs the supervisor when it is done.The state chart for the output to reser-
voir is shown in Figure 6-6 and the messages exchanges are shown in Table 6-9

| 1
[Qutput To 3

Reservoir
Requested

! 2

Outputting 4 ‘
o Terminated
Reservoir

FIGURE 6-6 State Chart for Output to Reservoir Interaction

TABLE 6-9. Interaction for Outputting to Reservoir

Message Exchange Old Inter. State New Inter. State Comment

1 <= QutputToReser- None Output To reservoir
voirRequest(reser- Requested
voirld amount)

2 => GrantOutput- Output To reservoir Outputting To Reser-
ToReservoirRe- Requested voir
quest(reservoirld)

3 => QutputToReserv- Output To reservoir Terminated
oirDenied(reservoirld) | Requested
<= QutputToReser- Outputting To Reservoir | Terminated
voirRequeastClear
(reservoirld)

Appendix A

August 15, 1997

37

Appendix A

6.10 Continuous Material Service Initiation and Termination

Many types of equipment require continuous supply of bulk material. For example, some
equipment continuous supply of hydraulic fluid pressure, or a continuous source of clean-
ing fluid or solvent. In this case, the supervisor must initiate the service when requested by
the equipment (typically at power up), and terminate the service when requested (typically
at shut down). The bulk material service state chart is shown in Figure 6-7 and transitions
are described in Table 6-10.

Service 5

Off
y 24
Service 4 Service
On Faulted
3

FIGURE 6-7 Bulk Material Service State Chart

TABLE 6-10. Bulk Material Service Transitions

Old State Transition Event New State Comments
1 Service Off Service is turned on by the Service On
supervisor at the request of the
equipment
2 Service On Service is turned off by the Service Off
supervisor at the request of the
equipment
3 Service On Service problems detected by Service Faulted | The supervisor will
the equipment try to recover service
4 Service Faulted | The supervisor is able to Service On
restore service
5 Service Faulted | The supervisor is unable to Service Off
restore service

Three interactions between the supervisor and the equipment deal with bulk material ser-
vice: Material Service Initiation, Material Service Termination and Material Service Fault
Handling. The state chart for the material service initiation interaction is shown in

Figure 6-8 and the message exchanges is shown in Table 6-11. The state chart for material
service termination is shown in Figure 6-9 and the message exchanges are shown in
Table 6-12.

Appendix A August 15, 1997 38

Appendix A

Service
Requested

2 3

Terminated

FIGURE 6-8 State Chart For Material Service Initiation Interaction

TABLE 6-11. Interaction for Bulk Material Service Initiation

Message Exchange Old Inter. State New Inter. State Comment
1 <= MaterialServiceRe- | None Service Requested
quest(materialld)
2 => MaterialServiceOn | Service Requested Terminated
(materialld)
3 => MaterialServiceDe- | Service Requested Terminated
nied (materialld)

Requested
2 3

Terminated

FIGURE 6-9 State Chart For Material Service Termination Interaction

Appendix A August 15, 1997 39

Appendix A

TABLE 6-12. Interaction for Termination of Material Service

Message Exchange Old Inter. State New Inter. State Comment
1 <= MaterialServiceOffRe- | None Service Off Requested
quest (materialld)
2 =>MaterialServiceOff Service Off Requested | Terminated
(materialld)
3 =>MaterialServiceOffDe- | Service Off Requested | Terminated
nied (materialld)

During processing, the equipment may detect problems with one of the material services
that it requires. The state chart for the interaction to handle material service problems is
shown in Table 6-10 and the message exchanges are shown in Table 6-13.

1

Fixing
Material
Fault

2y 3y
[Terminate(ﬂ

FIGURE 6-10 State Chart for Material Service Fault Interaction

TABLE 6-13. Interaction for Handling A Material Service Fault

Message Exchange Old Inter. State New Inter. State Comment

1 <= MaterialService- None Fixing fault The supervisor will
Fault(materialld) attempt recovery

2 => MaterialServi- Fixing fault Terminated Supervisor thinks ser-
ceOn (materialld) vice problem has been

fixed

3 => HaltMaterialSer- Fixing fault Terminated Supervisor gives up

vice (materialld)

Appendix A August 15, 1997

40

Appendix A

7 Settings, Queries, and Monitoring

7.1 Overview

The equipment must give the supervisor access to all relevant information about the
equipment itself and the work in progress. This should be done though event reports as
variables change, and through response to queries. This interface specification document
has defined a set of standard state and equipment variables. Special queries are specified
below for these variables. The description of the equipment will include any additional
non-standard equipment setting and data variables to which the supervisor should have
access through the equipment symbol tables. A set of generic symbol commands that
access the symbols by name are defined here. Generic equipment capability to monitor its
data variables is specified. The monitors can detect crossing of threshold values such as
high temperature, low cooling fluid pressure, or other alarm and warning conditions. The
supervisor can set some of the monitoring conditions for the data variables.

7.2 Standard Variable Access

The equipment must support queries for the current value of all the standard equipment
variables. The queries take the form of single commands from the supervisor in which the
equipment returns the value of the variable. The standard state variables are: Remote Con-
trol State, Communication Loss Pause, Event Spooling State, Full Spool Pause, Process
State, Pausing State, Alarm States, and Port States.

The equipment must also respond to queries for current working variables including:
Work in Progress, Status of Operation, Available Products, Port Contents, Supply Inven-
tory, Waste Inventory, Pending Load Requests, Pending Unload Requests, Pending
Alarms, Active Input From Reservoir Requests, and Active Output To Reservoir
Requests. The standard queries with required arguments, if any, are listed in Table 7-1
along with a description of the expected response. As before, => indicates a command
from the supervisor to the equipment and <- indicates the response returned by the equip-
ment as part of the query command transaction.

TABLE 7-1. Standard Query Interactions

Query Response Comment

=>ReturnRemoteControlState <-RemoteControlState Local or Remote

=>ReturnCommunicationLoss- <-CommunicationLoss- On or Off

Pause Pause

=>ReturnEventSpoolingState <-EventSpoolingState Active or Inactive

=>ReturnFullSpoolPause <-FullSpoolPause On or Off

=>ReturnSpoolL.oadingState <-SpoolLoadingState SpoolFull or SpooINotFull

=>ReturnSpoolUnloadingState | <-SpoolUnloadingState NotUnloading, TransmittingSpool or
PurgingSpool :

=>ReturnProcessState <-ProcessState One of states described in
Section 5.2.1

Appendix A August 14, 1997 41

Appendix A

TABLE 7-1. Standard Query Interactions

phyType)

Query Response Comment
=>ReturnPausingState <-PausingState On or Off
=>ReturnAlarmState(4larmid) <-AlarmState On or Off
=>ReturnPortState(Portld) <-PortState Locked or Unlocked
=>ReturnWorkInProgress <~(Operation Token List) List of operation tokens which either
have not yet completed or have out-
put that has not yet been removed
from the equipment. The operation
token is assigned to the operation in
the StartltemOperation Command
given in Table 5-5.
=>RetumnStatusOfOperation <-(Status, Completion- The status is one of Starting, Execut-
(OperationToken) Code, CompletionTime) ing or Completed. If the operation is
\ not yet complete, the completion
code is 0 and the completion time is
estimated.
=>ReturnAvailableProducts <-(List of (OperationTo-
ken, Qutput#) pairs)
=>ReturnPortContents (Portld) | <-(List of (PortIndex, The item is one of ltemld or (Opera-
Item) pairs) tionToken, Output#). The ltemld
refers to the item accepted in a Take
Item interaction described in
Section 6.3 above.
=>ReturnSupplylnventory (Sup- | <-SupplyQuantity The supply types are listed in the

supply table for the equipment
described in Section 9.4 and along
with the units for the quantity.

=>ReturmmWasteInventory <-WasteQuantity The waste types are listed in the
(WasteType) waste table for the equipment
described in Section 9.5 and along
with the units for the quantity.
=>RetumPendingPortLoa- <~(List of (Portld, Portln- | The item class is a supply type.
dRequests dex, ItemClass, Quantity))
=>ReturnPendingPortUnload <~(List of (Portld, PortIn- | The item class is a supply type,
Requests dex, ItemClass, Quantity)) | waste type or product type.
=>ReturnPendingAlarms <~(4larmld List) The Alarm Ids are listed in the
Alarm Table for the equipment
described in Section 9.10.
=>ReturnActiveInputFromRes- | <-(List of (Reservoirld, The Reservoir Ids and the units for
ervoirRequests Quantity) pairs) quantity are listed in the Shared Res-
ervoir Table for the equipment
described in Section 9.8.
=>ReturnActiveQutputToReser- | <-(List of (Reservoirld, The Reservoir Ids and the units for
voirRequests Quantity) pairs) quantity are listed in the Shared Res-
ervoir Table for the equipment
described in Section 9.8.
Appendix A August 14, 1997 42

Appendix A

7.3 Equipment Specific Variables

Access to the equipment data variables consists of query commands that specify the
names of the variables whose values are to be returned. Access to equipment setting vari-
ables consists of the same query commands together with commands that set the values of
variables specified by name. The definitions of the equipment data and setting variables
are part of the equipment description tables as discussed in Section 9.12 and Section 9.13.

7.3.1 Getting Symbol Values

There are two query interactions by which the supervisor can obtain values of equipment
variables. The first query is for a single variable value and the other is for a group of val-
ues. Each query involves a single message exchange. These are shown in Table 7-2 and
Table 7-3.

TABLE 7-2. Interaction for Getting a Symbol Value

Old Inter. New Inter.
Message Exchange State State Comment

=>QGetSymbolValue (Name) None Terminated

<-Value

TABLE 7-3. Interaction for Getting a List of Symbol Values

Old Inter. New Inter.
Message Exchange State State Comment

=>GetSymbolValueList (Name None Terminated
List)

<-(List of (Name, Value) pairs)

7.3.2 Setting Symbol Values

There are two interactions by which the supervisor can set equipment setting variables.
The first is for setting a single value and the other is for setting a list of values. Each of
these consists of a single message exchange. These are shown in Table 7-4 and Table 7-5.

TABLE 7-4. Interaction for Setting 2 Symbol Value

Old Inter. New Inter.
Message Exchange State State Comment

=>SetSymbolValue (Name, None Terminated
Value)

Appendix A August 14, 1997

Appendix A

TABLE 7-5. Interaction for Setting a List of Symbol Values

Old Inter. New Inter.
Message Exchange State State Comment
1 =>SetSymbolValueList (List of | None Terminated

(Name, Value) pairs)

7.4 Variable Monitoring

The supervisor must be able to monitor all of the state, setting and data variables of the
equipment. The supervisor is informed of changes in state variable values according to
interactions described in Section 4 and Section 5. The setting variables can be changed by
the local operator when the equipment is under local control and by the supervisor when
the equipment is under remote control. In order to have a consistent mechanism for the
supervisor to record and handle equipment setting changes, the equipment must inform the
supervisor of setting changes through the interaction shown in Table 7-6.

Monitoring capabilities must be provided for the supervisor to be able to ensure quality of
product and service of the equipment. Generic threshold monitoring functionality is speci-
fied together with a means to provide the supervisor with control over custom monitoring
functionality that the equipment might have. ‘

TABLE 7-6. Interaction for Setting Variable Change

Old Inter. New Inter.
Message Exchange State State Comment
1 <=SettingChange (Name, Value) None Terminated

7.4.1 Threshold Monitoring

The monitoring of many data variables can be mapped on to a variation of the threshold
monitor functionality described in the SEMI GEM Model. The value of a data variable can
be in one of three zones: High, Normal or Low as shown in Figure 7-1. The boundaries
between zones are thresholds. To prevent chatter in the reporting of transitions from one
zone to another, deadzones are defined by the overlap of boundaries between zones. Tran-
sitions occur only when the variable value crosses the far boundary of the deadzone from
its current zone. Thus, to transition from Normal to High the variable value must become
_greater than the High DeadZone Upper Limit, and to transition from High to Normal the

Appendix A August 14, 1997

Appendix A

value must become lower than the High DeadZone Lower Limit. If chatter is not a con-
cern, the upper and lower limits of the deadzones can be the same.

High Alarm Limit (HAL)
High | 1oh Deadzone Upper Limit (HDUL)
High Deadzone Lower Limit (HDLL)
Normal
Low Deadzone Upper Limit (LDUL)
Low Low Deadzone Lower Limit (LDLL

Low Alarm Limit (LAL)
FIGURE 7-1 Zones and Threshold Monitoring Limits

Three types of data variables are identified based upon the required response of the super-
visor to a zone transition. For consumable supply inventory variables, the usual concern is
the replenishment of supplies that are consumed. For waste inventory variables, the usual
concern is waste removal. Finally, for process variables that are important to the quality of
the product, the concern is to keep the variable value within the normal range. Typically,
the supervisor will need to set the boundaries of the normal range for all three types of
data variables. However, the alarm limits are values that are characteristic of the equip-
ment and serve to protect the equipment and surrounding objects (other equipment and
personnel). These limits are not setable by the supervisor.

The equipment must maintain a zone state model for each of the data variables with
threshold monitors. The general state chart for threshold monitored data variables is
shown in Figure 7-2. Upon start-up, the equipment must determine whether the data vari-
able 1s within the Normal zone and generate a zone transition event report if it is not. This
is equivalent to having the initial zone state be Normal and treating the value at start-up as
anew value.

FIGURE 7-2 General Variable Value Zone State Chart

Appendix A August 14, 1997 45

Appendix A

The monitor must be able to detect transitions shown in the state chart and described in

Table 7-7. The interaction to inform the supervisor of a zone change for a data variable is
shown in Table 7-8.

TABLE 7-7. Transitions for Data Variable Value Zone State Chart

Old State Transition Event New State Comments

1 Normal New value > High High
Deadzone Upper Limit

2 Normal New value < Low Low
Deadzone Lower Limit

3 High New value < High Normal
Deadzone Lower Limit
and

New value > Low
Deadzone Lower Limit

4 Low New value > Low Normal
Deadzone Upper Limit

and

New vaiue < High
Deadzone Upper Limit

5 High New value < Low Low
Deadzone Lower Limit

6 Low New value > High High
Deadzone Upper Limit

TABLE 7-8. Interaction for Variable Zone Change

Old Inter. New Inter.
Message Exchange State State Comment
<=DataZoneChange (Variable- None Terminated

Name, Old Zone, New Zone)

All defined alarm limits for data variables should have unique AlarmId’s. The monitor
must detect when the variable value goes beyond the high or low alarm limits. When
detected, these alarms should be communicated to the supervisor with the proper 4larmld
using the interactions described in Section 5.8, “Alarm States,” on page 25.

Appendix A August 14, 1997 46

Appendix A

Two interactions are defined to allow the supervisor to query for the limit parameter val-
ues for data variables. The first query is by limit name. The other asks for the whole set of
zone limits. These interactions are shown in Table 7-9 and Table 7-10.

TABLE 7-9. Interaction for Query of Variable Zone Limit

OIld Inter. New Inter.
Message Exchange State State Comment

=>ReturnVariableZoneLimit None Terminated LimitName is one of
(VariableName, LimitName) HAL, UDUL,
<-LimitValue UDLL, LDUL,
LDLL, or LAL

TABLE 7-10. Interaction for Query of Variable Zone Limit Settings

Old Inter. New Inter.
Message Exchange State State Comment

<=ReturnVariableZoneLimitSet- | None Terminated
tings (VariableName)

<-(HAL, UDUL, UDLL, LDUL,
LDLL, LAL)

The supervisor can set the limit values for the deadzones. This is accomplished with the
interaction shown in Table 7-11.

TABLE 7-11. Interaction for Setting Variable Deadzone Limits

Old Inter. New Inter.
Message Exchange State State Comment

=>SetVariableDeadzoneLimit None Terminated | LimitName is one of
(VariableName, LimitName, Lim- UDUL, UDLL, LDUL,
itValue) or LDLL.

The supervisor does not
have write access to the
alarm limits, HAL and
LAL.

7.4.2 Custom Variable Change and Read Monitoring

The equipment may have custom monitoring capabilities that employ parameters that can
be modified by the supervisor. Although the function of the custom monitor is equipment
specific, the interactions for querying and setting the monitor parameters can be generic.

- Two types of custom variable monitors are accommodated: monitors invoked whenever
the value changes and monitors invoked whenever the value is read. The supervisor
should be able to query values of monitor parameters, and set the values of monitor
parameters for which it has write permission. The data variable description table for the
equipment as discussed in Section 9.12 provides a list of the custom monitor parameters.

Appendix A August 14, 1997

Appendix A

The interactions for querying the current values of the custom monitor parameters are
shown in Table 7-12 and Table 7-13. The interactions for setting custom monitor parame-
ters are shown in Table 7-14 and Table 7-15.

TABLE 7-12. Interaction for Getting a Change Monitor Parameter

Old Inter. New Inter.
Message Exchange State State Comment
=>ReturnChangeMonitorParm | None Terminated
(VariableName, ParmName)
<-ParmValue
TABLE 7-13. Interaction for Getting a Read Monitor Parameter
Old Inter. New Inter.
Message Exchange State State Comment
=>ReturnReadMonitorParm None Terminated
(VariabieName, ParmName)
<-ParmValue
TABLE 7-14. Interaction for Setting a Change Monitor Parameter
Old Inter. New Inter.
Message Exchange State State Comment
=>SetChangeMonitorParm None Terminated
(VariableName, ParmName,
ParmValue)
TABLE 7-15. Interaction for Setting a Read Monitor Parameter
01d Inter. New Inter.
Message Exchange State State Comment
=>SetReadMonitorParm (Vari- | None Terminated
ableName, ParmName, Parm-
Value)

7.5 Control of Event Notification and Customized Reports

Some equipment specific events such as intermediate steps in an operation or events
intended for logging during trouble shooting may not normally be of interest to the super-
visor. The interactions shown in Table 7-16 and Table 7-17 provide a means for enabling
and disabling the reporting of particular events to the supervisor.

TABLE 7-16. Interaction for Enabling Event Report

Old Inter. New Inter.
Message Exchange State State Comment
=>EnableEventReport (Ever- | None Terminated

t1d)

Appendix A

August 14, 1997

Appendix A

TABLE 7-17. Interaction for Disabling Event Report

Old Inter. New Inter.
Message Exchange State State Comment
1 =>DisableEventReport (Ever- | None Terminated
tld)

The supervisor may require information to be transmitted with the event report beyond
that contained in the event arguments. For example, record of assembly and QA/QC may
require the values of equipment settings and data variables at the start and completion of
certain operations. The following interactions provide a means for managing custom
reports to be transmitted with the standard event reports. The custom report is defined by a
report name with list of equipment variables whose values are to be included in custom
report. The interactions for defining a report and deleting a report are shown in Table 7-18
and Table 7-19

TABLE 7-18. Interaction for Defining Custom Report

Old Inter. New Inter.
Message Exchange State State Comment
1 =>DefineCustomReport None Terminated
(Reportld, VariableName List)
TABLE 7-19. Interaction for Deleting Custom Report
O1d Inter. New Inter.
Message Exchange State State Comment
1 =>DeleteCustomReport None Terminated
(Reportld)

The interactions for linking and unlinking a custom report to an event are shown in
Table 7-20 and Table 7-21. Finally, the interactions for enabling and disabling are shown
in Table 7-22 and Table 7-23.

TABLE 7-20. Interaction for Linking Custom Report to Event

(Reportld, Eventld)

Old Inter. New Inter.
Message Exchange State State Comment
1 =>LinkCustomReportToEvent | None Terminated

Appendix A

August 14, 1997

Appendix A

TABLE 7-21. Interaction for Unlinking Custom Report to Event

Old Inter. New Inter.
Message Exchange State State Comment
=>UnlinkCustomReportToEv- | None Terminated
ent (Reportld, Eventld)
TABLE 7-22. Interaction for Enabling Custom Report
Old Inter. New Inter.
Message Exchange State State Comment
1 =>EnableCustomReport None Terminated
(Reportld)
TABLE 7-23. Interaction for Disabling Custom Report
Old Inter. New Inter.
Message Exchange State State Comment
1 =>DisableCustomReport None Terminated
(Reportld)

7.6 Equipment Information Requests

Machine Contents at Start-Up.

8 Logging Interactions

8.1 Overview

The equipment must support logging capabilities to ensure keeping of proper records of
execution and provide diagnostic records for trouble shooting. These have not yet been

defined.

9 Characteristics Description

9.1 Overview

The characteristics description of the equipment must describe the equipment to the super-
visory control system with enough detail for the determination of whether the equipment
can perform a desired process step with acceptable quality and schedule. Furthermore, the
description must provide the information required for the interactions to configure the

Appendix A

August 14, 1997 50

Appendix A

equipment, to move material into the equipment prior to the performing the operation step,
and to move material out of the equipment once the process step is completed. The broad
areas of information covered are operation capabilities, configurations, material move-
ment (See Section 6, “Material Movement Interactions,” on page 28.), equipment vari-
ables and settings. The characteristics description consists of a set of tables.

9.2 Operation Table

The operation table lists the process operations that can be performed by the equipment.
For each operation, all information required to describe process step capability quality,
duration, material flows and configuration needs is provided. Some equipment may pro-
cess products individually while other equipment may process product in streams. These
characteristics must be described in the operation table.

operation table entry. operation Id, class, verb, parameter list, input list, output list, sup-
ply list, waste list, setup duration information, execution duration information, required
configuration Id, configuration parameter specification, maximum batch size, maximum
work in progress.

input. item class, quantity, entry port

output. item class, quantity, exit port

parameter . name, description, type, range information
supply. supply class, quantity

waste. waste class, quantity

9.3 Configuration Table

Some classes of equipment must be properly configured to perform specific operations on
particular types of objects. The configuration table for the equipment allows the supervi-
sor to get the equipment into the proper configuration for desired operations. A table of the
allowable configurations of the equipment. For each configuration, parameters, and equip-
ment settings are specified.

configuration table entry. configuration Id, description, parameter list, tool requirements
parameter. name, description, type, range information

tool. tool Id, entry/exit port

Appendix A August 14, 1997

Appendix A

9.4 Supply Table

The supply table lists the supply types that are required by the equipment to perform its
operations. For each supply type, the storage capacity, units and material port through
which the supply inters and exits the equipment are listed.

Supply table entry. supply 1d (data variable name), supply class, units, entry/exit port,
capacity

9.5 Waste Table

The waste table lists the waste types that are generated by the equipment. For each waste

type, the waste capacity, units and material port through which the waste exits the equip-
ment are listed.

Waste table entry. waste Id (data variable name), waste class, units, entry/exit port,
capacity

9.6 Tool Table

Tools cycle though the equipment. Some are generic and are used for many products.
While others are specific to particular products. The specification of tool may be through
class of operation to be performed or may be called out through the Process Description
Language Program to be executed for an operation.

tool table entry. tool Id (data variable name), tool class, entry/exit port

9.7 Material Port Table

The material port table lists the material ports through which product, supplies and waste
enter and leave the equipment. For each material port, the classes of material that enter
and exit through the port are listed along with the physical characteristics of the port such
as dimensions and location.

material port table entry. port Id, port location and geometry, port index list

port location and geometry. Describes the location of the port relative to some fiducial
on the equipment; gives geometry information required to plan paths into and out of the
port with the classes of material that can be handled by the port.

port index entry. index Id, location and geometry relative to port, material classes

Appendix A August 14, 1997 52

Appendix A

9.8 Shared Reservoir Requirements Table

The shared reservoir table lists the material reservoirs (usually for fluids) that are required
by the equipment as an intermittent source or sink of material. For each reservoir, the class
of material and method of transport are listed.

shared reservoir table entry. reservoir Id, class of material, units, type (input from, out-
put to)

9.9 Continuous Fluid Requirements Table

The continuous fluid table lists the continuously delivered fluids that are required to ser-
vice the equipment. For each fluid, the class of material and method of transport are listed
along with normal flow requirements.

continuous fluid table entry. fluid Id, class of material, method of transport, flow units,
normal flow requirements

9.10 Alarm Table

The alarm table lists the alarms that can occur on the equipment. For each alarm, a cate-
gory and severity must be specified together with a description of the condition.

alarm table entry. alarm Id, severity, category, description of alarm condition, list of
handling requirements

9.11 Standard State Variable Initialization Table

The standard variable initialization table lists the initialization values for standard equip-
ment state variables. The standard state variables and their possible initial values are:

Remote Control State . Local or Remote.
Communication Loss Pause . On or Off

Full Spool Pause. On or Off

9.12 Equipment Specific Data Variables

The equipment specific data variable table lists the equipment specific data variables. For
each variable, a description, units and range are given, together with monitoring specifica-
tion and parameters.

data variable table entry. data Id, description, type, units, range, zone monitoring flag,
initial zone limit values (HAL, UDUL, UDLL, LDUL, LDLL, LAL), custom change

Appendix A August 14, 1997 53

Appendix A

monitor flag, change monitor parameter list, custom read monitor, read monitor parameter
list.

monitor parameter. parameter Id, description, type, range, initial value, external write
flag

9.13 Equipment Specific Setting Variables

The equipment specific setting variable table lists the equipment specific setting variables.
For each variable, a description, initial values and valid range are specified

setting variable table entry. setting Id, description, type, units, range, initial value, cus-
tom change monitor flag, change monitor parameter list, custom read monitor, read moni-
tor parameter list.

monitor parameter. Parameter Id, description, type, range, initial value, external write
flag

9.14 Equipment Specific Event Table

The equipment may generate events in addition to the events associated with the standard
interaction. For example, events may be defined for indicating completion of intermediate
process steps or for tracing operations during troubleshooting. The Equipment Specific
Event Table describes these events.

equipment specific event table entry. eventld, category, argument list, description, ini-
tial report enable flag.

argument. argName, type, range

10 References

1 Griesmeyer, J. M., Urenda, T. D., Pacetti, R. M, Ferguson, J. J., “A Standard Control
System for Modular Automation of Chemistry”, Laboratory Robotics and
Automation, 6 (1994) 79-84.

2 Salit, M., Guenther, F. R., Kramer, G. W., Griesmeyer, J. M., “Integrating
Automated Systems With Modular Architecture”, Analytical Chemistry, 66 (1994)
361-367.

3 Urenda, T. D., Griesmeyer, J. M., Contaminant Analysis Automation SLM INterface
Requirements Specification, SAND-XXX, Draft 1994.

4 Semiconductor and Equipment International, SEMI International Standards 1994:
Equipment Automation/Software Vol. 2, Mountain View, CA, 1994.

-5 Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Science of

Computer Programming, 8 (1987) 231-274.

Appendix A August 14, 1997

Appendix B: Equipment Description Grammar

Equipment Description Grammar

J. Michael Griesmeyer!

1. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Matrin Company, for
the United States Department of Energy under Contract DC-AC04-94A1.85000.

August 20, 1997 Appendix B-i

Appendix B: Equipment Description Grammar

Contents

1 Characteristics PrelimMinariesc..ccevervrruerieereercecreeceenrirenereeureessessesssneesnssssesaossans 1
1.1 DECIATALIONSeovvininrirecesrreeneecarrtescesceserse st esacsnssesnsssssassseesesonsnseaesoteneestasstensesossacsesssssoresn 1

111 Aeclaration-list........cceemreecurrienenenit s eaeeeccneses e siesraescsetseenenenen s seseesenssssssssase 1

1.1.2 key-value-declaration=list..........cceceeterreereerermeroresearereraseenessesesnensensnescaseneesesereess 2

1.1.3 parameter-declaration-list........ccoceviiceiiniiinnicceninnse e e 2

1.1.4 Declaration details.........cccceeceereeineeertenrneseesncetmnneseneessesesssssesessessesssessesessnsssenssses 2

12 Declaration QUAlIfIETSottt se et et etes s et era st esesr e s e se st sne s sernan 3

1.3 EVAIUALIONS. ..ottt et st st s st s s e et sa st et eaesn e aeesee e soane 5

L1301 TOIMS ittt steres e eeee e e et s se s mesac oo st e s et see et eme e eame s e saas s e asbesanabane 5

1.3.2 Qualified IAntifIers....ooeeoeeerecereceereteieint e tenteseerrenererasensstesesee s sessessensassnsnensrran 6

2 Domain Declarationscceeueeceerierercerniernreesneseesesseessesiasseeseessessssssseseesseesscessenees 8
2.1 The PrOCeSS ClIaSS .ecuerreeriveieeeerireriecenireercescesrnesresenreserste s esesnsasestensesenseseantrasesssnssnnssesscsins 8

22 The AGENE ClASS ..o rneiririiieeecece st ereseneetteseserere et senesesarstesresessssesessesesessonsasesesensensesarerararen 9

23 The WOTKPIECE ClaSSuereieniireieneeeienierrreeerteessetsneseerrasesrne et satesessssensesensonesesasesensasees 9

24 The Agent OPeration PrOtOLYPEcoeiceceneeerersearererrereressnerssssssesesssserescaesessossssnssssinsaos 10

2.5 The AZEnt OPETALIONoveencreerrercisierisieisiostssistesssstne et st sessssessssssssessesissmsnessssnnssenss 11

26 The AZENt PDL ... ereteveesnee s ne e s se e eeeseee s assnasanasase st s e e e e sesemasenaranseesuesose 11

2.7 The Agent Material POrt......c.coociicrccnncntimeesetrentereesttcesan s sesestetsaceneses et ossosssnssssnes 12

2.8 The Agent CORfIGUTATIONceceerrmrceeriiereereniecetriestsssssestrnesnesrtosessestesessesssesssmsesserssssns 12

29 The Agent ConsUmMADIEcoo.cirieeririerereneccecrerc et creeset e s et e e D renesessennsssesasases 13

2.10 The AZENE WASKE ...cceeieierevireicirnreeseeerenestrsnseseesesasassesseasantaseessesssassessasessaesmnssnsasasesmesersacess 13

2.11 The AZENt AN ..ot cceeeereresest e stseessatese seassroeseenesesessteseneesenesrossasansn 13

212 The AZENt EVENL ..ot cmsste e s e sr s se s o assecaesensaseresessbssasrassesss 13

2.13 The ANt TOOL......ooiiiircteeereererereresereeeereneseenseeaesetstsassusssansssesesassasassesessesasseseranene 13

2.14 The Agent Shared ReSEIVOIr.....cccoierieeiieriiceereeenerisiasintaneeseneesesesesesessssmsssenssesmssssnsssasns 14

2.15 The Agent CONtNUOUS FIUI......ov..ovoooeereseeeseseeseeesesssessseeeseosssasssoessessssnsssssacsnsesssasssenns 14
Appendix 1List 0f Declarations..........ccceeevevieetireriieeseesereeneeeesereteesereeesessesessassssesssssssensens 14

August 20, 1997 Appendix B-ii

Appendix B: Equipment Description Grammar

Equipment Description Grammar

J. Michael Griesmeyer1

1 Characteristics Preliminaries

This is intended for input into lex and yacc to parse out the grammar. We start with some
production rules lifted primarily from C to allow declaration and possible initialization of
various quantities that are needed by the grammar.

1.1 Declarations

There are three types of declaration lists. The plain declaration list can declare global or
scoped entities that are used by other objects and it can be used to forward declare com-
plex objects. The key value declaration list is used to declare variables that are used as set-
ting or data variables in the headers for complex objects. The values can by accessed by
naming the associated keyword. Finally, there is the parameter list which is used to
declare the order dependent list of arguments for an operation. The identifiers in the decla-
ration of key values and parameters cannot be scoped because they are aiways used to
define the symbol table for the object being defined. When referencing the parameter or
keyword to extract the value, scoping is allowed to indicate the intended object from
which the key value is to be obtained. Similarly, scoping can be used to specify the key for
which a value is to be set.

1.1.1 declaration-list

For simplicity, lets only declare one thing for each declaration specifier.
declaration:

declaration-specifier qualified-declarator-list ;

declaration-specifier init-declarator (declaration-qualifier-list)
declaration-list: ’

declaration

declaration-list declaration
declaration-qualifier-list:

declaration-qualifier

declaration-list, declaration-qualifier

1. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Matrin Company, for
the United States Department of Energy under Contract DC-AC04-94A1.85000.

August 20, 1997 Appendix B-1

Appendix B: Equipment Description Grammar

1.1.2 key-value-declaration-list

Key value declarations in object headers build tables of context keyword for the objects.
Access to the keyword values is through qualified identifiers described below. The key
value declaration allows for sub-keywords to be defined in a recursive manner.

key-value-declaration:
superKey(?7?? in grammar) identifier (key-value-declaration-list)
declaration-specifier indexed-identifier (declaration-qualifier-list)
declaration-specifier indexed-identifier = initializer (declaration-qualifier-list)
key-value-declaration-list:
key-value-declaration
key-value-declaration-list, key-value-declaration

The qualified identifier described in Section 1.3.2 can be used to reference any keyword or
sub-keyword of an object.

1.1.3 parameter-declaration-list

The declarator for a parameter must be an unscoped identifier. If it is indexed, the index
term indicates the size of the array.

parameter-declaration-list:

parameter-declaration

parameter-declaration-list, parameter-declaration
parameter-declaration:

declaration-specifier indexed-identifier declaration-qualifier-list

1.1.4 Declaration details

For now we will assume that storage class need not be specified. Automatic storage is
used for all invocation items. Static storage is used for all definitions and other declara-
tions.

declaration-specifier:
type-specifier
type-specifier: one of
integer real string workpieceClass processClass agent agentOperation agentMateri-
alPort agentConfiguration agentConsumable agentAlarm agentEvent typedef-name
Maybe later we will allow pointers.

declarator:
scoped-identifier

August 20, 1997 Appendix B-2

Appendix B: Equipment Description Grammar

scoped-identifier:
scope-indicator indexed-identifier
scope-indicator scope-specifier indexed-identifier

The identifier in a scope-specifier should reference a script, a process or the problem
scope. The indexed identifier must be declared before it can be referenced and may refer
to any quantity associated with the scope of the qualified identifier. For example, the iden-
tifier could be one of the declared parameters or setting variables of the operation invoked
by a script step.
scope-indicator
/* Problem scope */

up-scope-indicator
up-scope-indicator

\\

The term for the indexed identifier must return an integer.

indexed-identifier:

identifier

indexed-identifier [term]
initializer:

term

{ initializer-list }
initialize-list:

initializer

mitializer-list, initializer

1.2 Declaration Qualifiers

The declaration qualifier is used to provide range and access information for header and
parameter declarations. Calling arguments are always writable by the caller and therefore
the write access need not be specified for parameters unless the execution can change the
value for the parameter as supplied by the calling argument. The qualified declarations in
a header must specify one of callerWrite, executionWrite or callerAndExecutionWrite.

declaration-qualifier-list:
declaration-qualifier
declaration-qualifier-list declaration-qualifier
declaration-qualifier:
range-specification
zone-model-specification
write-access

August 20, 1997 Appendix B-3

Appendix B: Equipment Description Grammar

unit-specification
range-specification-list:

range-specification

range-specification-list, range-specification
range-specification:

number-range

number-range-choices

string-choices

{ range-specification-list }
number-range:

range-begin term range-end

range-begin term term range-end
range-begin:

(

[
range-end:

)

]

number-range-list:
number-range
number-range-list, number-range
number-range-choices:
(number-ré.nge—list)
string-choices:
(term-list)
unit-specification:
string-constant

A zone model specification can only be supplied for qualified declarations that can be
written during execution, that is those with write access of either executionWrite or calle-
rAndExecutionWrite. The limit declarations in the zone model specification give default
values and write access information for each model limit in the following order:

HighAlarmLimit
HighDeadzoneUpperLimit
HighDeadzoneLowerLimit
LowDeadzoneUpperLimit
LowDeadzoneLowerLimit

August 20, 1997 Appendix B-4

Appendix B: Equipment Description Grammar

LowAlarmLimit
zone-model-specification:

zoneModel limit-declaration limit-declaration limit-declaration limit-declaration limit-
declaration limit-declaration

limit-declaration:
term write-access

write-access:
callerWrite
callerWriteRequired
executionWrite
callerAndExecutionWrite
callerRequired AndExecutionWrite

1.3 Evaluations

The production script provides means to specify variable whose values that must be deter-
mined based upon available information. Some bindings can be done at the time the script
is read. Other bindings occur during script execution based upon context. Scripts are
described as invocations of operations. The script grammar needs a means of referencing
the information specified to control the operations and the data generated by the execution
of the operations. The production script grammar is not intended to provide means to eval-
uate arbitrary expressions. Rather, terms are evaluated in context to access available infor-
mation. Complex calculations, if required, are performed by the operations themselves or
user supplied functions. Expression evaluations in the script are restricted to boolean
expressions and comparison of term values required for decision making within the script.
Terms and qualified identifiers are described here. The expressions using them are
described later where they are needed. '

1.3.1 Terms

The term is used to access information associated with objects. Implementations of script
processors may evaluate as much of the term as possible at the time the script is read in.
Generally, however, the complete evaluation of the term depends upon the context at the
time it is used during execution of the script.

term-list:
term
term-list, term
term:
qualified-identifier
constant

August 20, 1997 Appendix B-5

Appendix B: Equipment Description Grammar

constant:
integer-constant
string-constant
real-constant

A literal constant is anything between parentheses. Its evaluation does not occur at the
time the script is read in, but rather at the time of operation invocation. It thus, provides
context dependence. More will be worked out on the use of literals later.

literal-constant:

“(.)
1.3.2 Qualified Identifiers

The qualified identifier allows access to fields in the objects that are declared and defined
such as operations, scripts, agents and process classes. The key value declarations together
with the qualified identifiers permit runtime definition of objects and access to their sym-
bol tables (i.e. object data by reference to keywords). Identifiers without scope imply use
of current scope. The qualified identifier is evaluated left to right. Standard fields are
defined for some types and the user may define others for selected types. The terms for the
indexed qualified identifier and the indexed identifier must be of integer type.

qualified-identifier:
scoped-idicator qualified-identifier-chain
query ****277? not in grammar
context-keyword ****??9? pot in grammar
qualified-identifier-chain:
qualified-identifier-link
qualified-identifier-link.qualified-identifier-link
qualified-identifier-link:
key-identifier
{ additive-expression }
contextFunction-invocation
contextFunction-invocation:
scoped-identifier (initializer-list)
initializer-list:
initializer
initializer-list, initializer
initializer:

additive-expression

August 20, 1997 Appendix B-6

Appendix B: Equipment Description Grammar

{ initializer-list }

Querys have not yet been defined but probably will look like SQL in terms of terms. To be
used in a qualified identifier chain, the query must return an identifier. The terms which
are used to build a query can be qualified identifiers themselves.

Context keywords retrieve information about the object referenced by the qualified identi-
fier to which they are appended. For example, if the qualified identifier refers to an script
step, the agent keyword refers to the agent selected to perform the invoked operation. Sim-
ilarly, the operation keyword would refer to the operation invoked by the script step.
Obviously, each context keyword is valid only in selected contexts. Eventually, for each
type specifier there will be a set of context keywords. Those context keywords that return
an object identifier can be followed by additional context keywords or indexed identifiers
to extend the qualified identifier. Keywords that refer to object variables are defined in the
headers for the object using a key-value-declaration-list. The parameter, input workpiece,
and output workpiece lists are also added to the keyword table of operations.

The following are examples of extended qualified identifiers.

machining::makePocket.width refers to the “width” argument for an invocation of the
makePocket operation in the machining process class.

makePocket. width.valueRange refers to the acceptable range for the width argument in
the makePocket operation of the current process.

script.script refers to the superscript of the script to which the current operation belongs.
script.agent refers to the agent of the script to which the current operation belongs.

agent.makePocket.width.valueRange refers to the acceptable range for the width argument
in the makePocket operation of the agent selected for the current operation.

Mill532).makePocket.width.valueRange refers to the acceptable range for the width argu-
ment in the makePocket operation of the agent, Mill532J.

The context keywords have not all been defined. A partial list is given in the following
rule.

context-keyword:
operation
valueRange
defaultValue
HighAlarmI imit
HighDeadzoneUpperLimit
HighDeadzoneL.owerLimit
LowDeadzoneUpperLimit

August 20, 1997 Appendix B-7

Appendix B: Equipment Description Grammar

LowDeadzoneLowerLimit
LowAlarmlLimit

2 Domain Declarations

The domain declaration list is the start of the parser.

domain-declaration:
processClass-declaration
agentClass-definition
agentOperation-definition
agentPDL-definition
agentMaterialPort-definition
agentConfiguration-definition
agentConsumable-definition
agentWaste-definition
agentAlarm-definition
agentEvent-definition
workpieceClass-definition
declaration

domain-declaration-list:
domain-declaration

domain-declaration-list, domain-declaration

2.1 The Process Class

The process classes for which the agent can preform operations must be declared.

processClass-definition:

processClass identifier (process-header) { processClass-initializer-list }

process-header:
/* A null process header is acceptable */
superProcess identifier

superProcess identifier, key-value-declaration-list

key-value-declaration-list
processClass-initializer-list:

/* A null processClass-initializer-list is acceptable */

domain-declaration-list

August 20, 1997

Appendix B: Equipment Description Grammar

2.2 The Agent Class

The agent class definition need not be complete because the definitions in the agent intial-
izers can be incrementally added using scoped identified

agentClass-definition:

agentClass identifier (agent-header)

agentClass identifier (agent-header), { agentClass-initializer-list }
agent-header:

/* A null process header is acceptable */

agentSuperclass identifier

agentSuperclass identifier key-value-declaration-list

key-value-declaration-list
agentClass-initializer-list:

agentClass-initializer

agentClass-initializer-list, agentClass-initializer
agentClass-initializer:

agentPDL-definition

agentOperation-definition

agentMaterialPort-definition

agentConfiguration-definition

agentConsumable-definition

agentWaste-definition

agentAlarm-definition

agentEvent-definition

The identifier for an agent declaration must not be scoped.

agent-declaration:
agentClass-definition indexed-identifier
scoped-identifier indexed-identifier /* Agent class previously defined */

. 2.3 The Workpiece Class

Only workpiece class names must be known by the script interpreter. The actual character-
istics of the workpieces must be available at script execution through the workpiece class
identifier and the workpiece identifier. We do not yet have a real definition for a work-
piece class, but reserve the right to develop one later. In the meantime, the workpiece class
definition below is just a declaration. The workpiece class identifier can be scoped to a
particular process class or script.

August 20, 1997 Appendix B-9

Appendix B: Equipment Description Grammar

workpieceClass-definition:
workpieceClass scoped-identifier (workpieceClass-header)
workpieceClass-header:
super WorkpieceClass scoped-identifier, key-value-declaration-list
super WorkpieceClass scoped-identifier
key-value-declaration-list
workpiece-declaration-list:
workpiece-declaration

workpiece-declaration-list, workpiece-declaration

The identifier for a workpiece declaration must not be scoped. The scope will always be
that of the calling operation invocation and the workpiece identifier must be unique within
the workpiece declaration list. However, for an operation invocation, an identifier in the
workpiece input declaration can be the same as an identifier in the output declaration if the
associatedworkpiece is not transformed by the operation. For example, a special fixture
may be used for an operation but not be modified by the operation. In this case the work-
piece is part of the facility and its identifier in the invocation can be scoped accordingly.

workpiece-declaration:
workpieceClass-definition indexed-identifier

scoped-identifier indexed-identifier /* Workpiece class previously defined */

2.4 The Agent Operation Prototype

The operation header declares the variables available to the execution of the operation.
The parameter list declares the calling arguments of the operation. The declarators for the
header variables, parameters, inputs and outputs are in the same scope and must be unique.
That is, a header variable and a parameter cannot have the same name. Furthermore,
except for the special case of unmodified workpieces as mentioned above, scope must not
be supplied because the scope to be used is that of the invocation. In addition, the declara-
tors for parameters, inputs and outputs must be simple identifiers without initializers
because the invocation requires their specification. Defaults are not allowed. The first
workpiece class list declares the classes of the expected input workpieces for the opera-
tion. The second workpiece class list declares the classes of the expected outputs of the
operation. The calling setting variables, arguments, inputs and outputs of the operation
invocation must be related to the declared header variables, parameters, inputs and outputs
in the agent operation prototype. The agent workpiece declaration list must contain all of
the workpiece input and output declarations that are declared for the process operation
which it implements. It may have additional inputs and outputs that are peculiar to the
manner in which it implements the operation.

- operation-prototype:

(operation-header) (parameter-declaration-list) (workpieceClass-spec-list) (work-
pieceClass-spec-list)

August 20, 1997 Appendix B-10

Appendix B: Equipment Description Grammar

operation-header:
/* A null operation header is acceptable */
key-value-declaration-list

2.5 The Agent Operation

The scoped identifier for the elemental operation indicates the agent and name of the oper-
ation. This identifier must be unique for the agent. The next scoped identifier indicates the
process class and operation which the agent operation corresponds. The agent may have
more than one operation that implements a particular process operation but with different
acceptable ranges for the header and call argument variables. The configuration specifica-
tion indicates how the agent must be configured to perform the operation.

agentOperation-definition:

agentOperation scoped-identifier scoped-identifier operation-prototype (operation-
qualification-list)

operation-qualification-list:
operation-qualification
operation-qualification-list, operation-qualification
operation-qualification:
configuration-spec
duration-spec
consumption-spec
waste-generation-spec
configuration-spec:

configuration parameter-specification-list

2.6 The Agent PDL

The definition of a PDL supported by the agent lists the features and the acceptable ranges
for variables associated with each feature.

PDL-definition:

PDL identifier, (PDL-header) ;
PDL-header:

processClass identifier (PDL-feature-declaration-list)
PDL-feature-declaration:

identifier (key-value-declaration-list)
PDL-feature-declaration-list:

PDL-feature-declaration

PDL-feature-declaration-list, PDL-feature-declaration

August 20, 1997 Appendix B-11

Appendix B: Equipment Description Grammar

2.7 The Agent Material Port

The material port defines a physical port on the equipment that material (part, waste, sup-
ply, etc.) can enter or leave the equipment by. Defined are the classes of material along
with the physical characteristics of the port such as dimensions and location. The location
of the port if relative to some fiducial on the equipment and the geometry is that which
will be required to plan paths into and out of the port. Geometry will be defined at a later
date and is currently a place holder.

agentMaterial-definition:

agentMaterial port—identiﬁer1 , { port-location), { port-geometry), (port-index-list);
port-location:

X, ¥, X, I, P, W
port-geometry:

TBA
port-index-list:

port-index-declaration

port-index-list, port-index-declaration
port-index-declaration:

(index-identifier>, (port-location), (port-geometry), (material-classes))
material-classes:

material-class!

material-classes, material-class

2.8 The Agent Configuration

The agent configuration defines a particular configuration that the equipment can be con-
figured to. Agent operations refer to these configurations to identify the configuration or
configurations that the equipment can be in and perform the operation.

agentConfiguration-definition:

agentConfiguration configuration-identifier!, description!, (parameter-declaration-list
), (tool-requirements-list);
tool-requirements-list:
tool-identifier!
tool-requirements-list, tool-identifier

1. aString
2. Real
3. Integer

August 20, 1997 Appendix B-12

Appendix B: Equipment Description Grammar

2.9 The Agent Consumable

The ...

agentConsumable-definition:

agentConsumable consumable-identifier!, supply-class!, capacity?, entry-port-identi-
fier, exit-port-identifier;

2.10 The Agent Waste
The ...

agentWaste-definition:

agentWaste port-identifier waste-identifier!, waste-class!, capacity?, entry-port-identi-
fier, exit-port-identifier;

2.11 The Agent Alarm

The ...
agentAlarm-definition:
agentAlarm alarm-identifier!, severity!, categoryl, description, (handling-require-
ments-list);
handling-requirements-list:
handling-requirement
handling-requirements-list, handling-requirement
handling-requirement:

descriptionl

2.12 The Agent Event

The ...
agentEvent-definition:

agentEvent event-identifier!, category!, description!, initial-report-enable-flag!, (
parameter-declaration-list);

2.13 The Agent Tool
The ...

August 20, 1997 Appendix B-13

Appendix B: Equipment Description Grammar

agentTooldefinition:

agentTool tool-identifier!, entry-port-identifier, exit-port-identifier;

2.14 The Agent Shared Reservoir

The ...

agentSharedReservoir-definition:

agentSharedReservoir shared-identifier!, material-class', units, type;

type:
input | output

2.15 The Agent Continuous Fluid
The ...

agentContinuousFluid-definition:

agentContinuousFluid waste-identifier!, material-class!, method-of-transport 7?72,
flow-units!, flow-requirements;

Appendix 1 List of Declarations

declaration: 1

declaration-specifier qualified-declarator-list ; 1

declaration-specifier init-declarator (declaration-qualifier-list) 1
declaration-list: 1

declaration 1

declaration-list declaration 1
declaration-qualifier-list: 1

declaration-qualifier 1

declaration-list, declaration-qualifier 1
key-value-declaration: 2

superKey(???? in grammar) identifier (key-value-declaration-list) 2

declaration-specifier indexed-identifier (declaration-qualifier-list) 2

declaration-specifier indexed-identifier = initializer (declaration-qualifier-list) 2
key-value-declaration-list: 2

key-value-declaration 2

key-value-declaration-list, key-value-declaration 2
parameter-declaration-list: 2

parameter-declaration 2

parameter-declaration-list, parameter-declaration 2
parameter-declaration: 2

1. aString

August 20, 1997 Appendix B-14

Appendix B: Equipment Description Grammar

declaration-specifier indexed-identifier declaration-qualifier-list 2
declaration-specifier: 2

type-specifier 2
type-specifier: one of 2

integer real string workpieceClass processClass agent agentOperation agentMateri-

alPort agentConfiguration agentConsumable agentAlarm agentEvent typedef-name 2
declarator: 2

scoped-identifier 2
scoped-identifier: 3

scope-indicator indexed-identifier 3

scope-indicator scope-specifier indexed-identifier 3
scope-indicator 3

/* Problem scope */ 3

up-scope-indicator 3
up-scope-indicator 3

\3
indexed-identifier: 3

identifier 3

indexed-identifier [term] 3
initializer: 3

term 3

{ initializer-list } 3
initialize-list: 3

initializer 3

initializer-list, initializer 3
declaration-qualifier-list: 3

declaration-qualifier 3

declaration-qualifier-list declaration-qualifier 3
declaration-qualifier: 3

range-specification 3

zone-model-specification 3

Wwrite-access 3

unit-specification 4
range-specification-list: 4

range-specification 4

range-specification-list, range-specification 4
range-specification: 4

number-range 4

number-range-choices 4

string-choices 4

{ range-specification-list } 4
number-range: 4

range-begin ferm range-end 4

range-begin term term range-end 4
range-begin: 4

(4

[4

August 20, 1997 Appendix B-15

Appendix B: Equipment Description Grammar

range-end: 4
)4
14
number-range-list: 4
number-range 4
number-range-list, number-range 4
number-range-choices: 4
(number-range-list) 4
string-choices: 4
(term-list) 4
unit-specification: 4
string-constant 4
HighAlarmLimit 4
HighDeadzoneUpperLimit 4
HighDeadzoneLowerLimit 4
LowDeadzoneUpperLimit 4
LowDeadzoneLowerLimit 4
LowAlarmLimit 5
zone-model-specification: 5

zoneModel limit-declaration limit-declaration limit-declaration limit-declaration im-

it-declaration limit-declaration 5
limit-declaration: 5
term write-access 5
write-access: 5
callerWrite 5
callerWriteRequired 5
executionWrite 5
callerAndExecutionWrite 5
callerRequiredAndExecutionWrite 5
term-list: 5
term 5
term-list, term 5
term: 5
qualified-identifier 5
constant 5
constant: 6
integer-constant 6
string-constant 6
real-constant 6

literal-constant: 6
“(..)6
qualified-identifier: 6
scoped-idicator qualified-identifier-chain 6
query ****7297? not in grammar 6
context-keyword ****???? not in grammar 6
qualified-identifier-chain: 6

August 20, 1997

Appendix B-16

Appendix B: Equipment Description Grammar

qualified-identifier-link 6

qualified-identifier-link.qualified-identifier-link 6
qualified-identifier-link: 6

key-identifier 6

{ additive-expression } 6

contextFunction-invocation 6
contextFunction-invocation: 6

scoped-identifier (initializer-list) 6
initializer-list: 6

initializer 6

initializer-list, initializer 6
initializer: 6

additive-expression 6

{ initializer-list } 7
context-keyword: 7

operation 7

valueRange 7

defaultValue 7

HighAlarmLimit 7

HighDeadzoneUpperLimit 7

HighDeadzoneLowerLimit 7

LowDeadzoneUpperLimit 7

LowDeadzoneLowerLimit 8

LowAlarmLimit 8

domain-declaration: 8

processClass-declaration 8
agentClass-definition 8
agentOperation-definition 8
agentPDL-definition 8
agentMaterialPort-definition 8
agentConfiguration-definition 8
agentConsumable-definition 8
agentWaste-definition 8
agentAlarm-definition 8
agentEvent-definition 8
workpieceClass-definition 8
declaration 8
domain-declaration-list: 8
domain-declaration 8
domain-declaration-list, domain-declaration 8
processClass-definition: 8

processClass identifier (process-header) { processClass-initializer-list } 8

process-header: 8
/* A null process header is acceptable */ 8
superProcess identifier 8
superProcess identifier, key-value-declaration-list 8
key-value-declaration-list 8

August 20, 1997

Appendix B-17

Appendix B: Equipment Description Grammar

processClass-initializer-list: 8
/* A null processClass-initializer-list is acceptable */ 8
domain-declaration-list 8
agentClass-definition: 9
agentClass identifier (agent-header) 9
agentClass identifier (agent-header), { agentClass-initializer-list } 9
agent-header: 9
/* A null process header is acceptable */ 9
agentSuperclass identifier 9
agentSuperclass identifier key-value-declaration-list 9
key-value-declaration-list 9
agentClass-initializer-list: 9
agentClass-initializer 9
agentClass-initializer-list, agentClass-initializer 9
agentClass-initializer: 9
agentPDL-definition 9
agentOperation-definition 9
agentMaterialPort-definition 9
agentConfiguration-definition 9
agentConsumable-definition 9
agentWaste-definition 9
agentAlarm-definition 9
agentEvent-definition 9
9
agent-declaration: 9
agentClass-definition indexed-identifier 9
scoped-identifier indexed-identifier /* Agent class previously defined */ 9
workpieceClass-definition: 10
workpieceClass scoped-identifier (workpieceClass-header) 10
workpieceClass-header: 10
superWorkpieceClass scoped-identifier, key-value-declaration-list 10
superWorkpieceClass scoped-identifier 10
key-value-declaration-list 10
workpiece-declaration-list: 10
workpiece-declaration 10
workpiece-declaration-list, workpiece-declaration 10
workpiece-declaration: 10
workpieceClass-definition indexed-identifier 10
scoped-identifier indexed-identifier /* Workpiece class previously defined */ 10
operation-prototype: 10
(operation-header) (parameter-declaration-list) (workpieceClass-spec-list) (
workpieceClass-spec-list) 10
operation-header: 11
/* A null operation header is acceptable */ 11
key-value-declaration-list 11
agentOperation-definition: 11
agentOperation scoped-identifier scoped-identifier operation-prototype (operation-

August 20, 1997 Appendix B-18

Appendix B: Equipment Description Grammar

qualification-list) 11
operation-qualification-list: 11
operation-qualification 11
operation-qualification-list, operation-qualification 11
operation-qualification: 11
configuration-spec 11
duration-spec 11
consumption-spec 11
waste-generation-spec 11
configuration-spec: 11
configuration parameter-specification-list 11
PDL-definition: 11
PDL identifier, (PDL-header) ; 11
PDL-header: 11
processClass identifier (PDL-feature-declaration-list) 11
PDL-feature-declaration: 11
identifier (key-value-declaration-list) 11
PDL-feature-declaration-list: 11
PDL-feature-declaration 11
PDL -feature-declaration-list, PDL-feature-declaration 11
agentMaterial-definition: 12
agentMaterial port-identifier, (port-location), (port-geometry), (port-index-list); 12
port-location: 12
X, ¥, X, I,p, w12
port-geometry: 12
TBA 12
port-index-list: 12
port-index-declaration 12
port-index-list, port-index-declaration 12
port-index-declaration: 12
(index-identifier, (port-location), (port-geometry), (material-classes)) 12
material-classes: 12
material-class] 12
material-classes, material-class 12
agentConfiguration-definition: 12
agentConfiguration configuration-identifierl, descriptionl, (parameter-declaration-
list), (tool-requirements-list); 12
tool-requirements-list: 12
tool-identifierl 12
tool-requirements-list, tool-identifier 12
agentConsumable-definition: 13
agentConsumable consumable-identifier, supply-classl, capacity, entry-port-identi-
fier, exit-port-identifier; 13
agentWaste-definition: 13
agentWaste port-identifier waste-identifierl, waste-classl, capacity2, entry-port-
identifier, exit-port-identifier; 13 :
agentAlarm-definition: 13

August 20, 1997 Appendix B-19

Appendix B: Equipment Description Grammar

agentAlarm alarm-identifier], severityl, categoryl, description, (handling-require-
ments-list); 13
handling-requirements-list: 13
handling-requirement 13
handling-requirements-list, handling-requirement 13
handling-requirement: 13
descriptionl 13
agentEvent-definition: 13
agentEvent event-identifierl, categoryl, descriptionl, initial-report-enable-flag], (
parameter-declaration-list); 13
agentTooldefinition: 14
agentTool tool-identifier, entry-port-identifier, exit-port-identifier; 14
agentSharedReservoir-definition: 14
agentSharedReservoir shared-identifier1, material-class1, unitsl, type; 14
type: 14
input | output 14
agentContinuousFluid-definition: 14
agentContinuousFluid waste-identifierl, material-class1, method-of-transport 7???,
flow-units1, flow-requirements; 14

August 20, 1997 Appendix B-20

Appendix C: Production Script Grammar

Production Script Grammar

J. Michael Griesmeyer!

1. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Matrin Company, for
the United States Department of Energy under Contract DC-ACO4-94AL85000.

August 20, 1997 Appendix C-i

Appendix C: Production Script Grammar

Contents

1 Production Script Preliminariescceeeeerveeeeeienieeiinriereeseeseeeseestessaessssecsseesssesens 1
1.1 DIECHATALIONS .vecreeeeereniecrienensesterienreteeneseresssesstsasssestamssessnenaenencsresessssassssessassansascsssnessessssssass 1

L11 deClaration ..occoeceeceeceecereresseeneeeceeseenmesseeate s ee s s esscssenasssmesse s sasanssassaneensnamessanneneen 1

1.1.2 key-value-declaration-list..........ccccoourieeerrienrareeneenenereteeeeeneneeeensesensnnesessnsnans 2

1.1.3 parameter-declaration-liSt............coeceeecererereriornrmrreeseraresesceseseresusssnsssesseneneesesensnans 2

1.1.4 Declaration detailsccoovrericerrercrereineenratnnresteseeersersesesssssasnsesessesossessessssnsons 3

i.2 Declaration QUAlIfIErS.....ccceveuecirierereriereererreieretenssesenessesescessasssarensasssssnsesssnsensassasassosesnns 4

L.2.1 WL ACCESS cuerrenreurrernenrertreesesesaseersnsasssseencasssaasasessasassssssssssssssesnnsssansasssssassnssnnses 4

1.2.2 Range SpecifiCatiOnSccccvvereetrrecrerccerreenensnenaastrererarsseseeserscssesassssssesosseenssassnass 5

123 ZONE MOGEL ..ot eee st a e see s s se et e e sae e e nsmeansn e e e nanen 6

13 EVAIULIONS ...c.venreerereneeerreeneneentrietretnesesesssssessrasesensanssseasensisesesseesersssnsssesnsssnssenresessenressosessas 7

D301 ToIMIS et seectse e seeesene s e e resra e sassesveastesanesemesasesaesaan sannsnasemessnsessnsase 7

1.3.2 CONteXt TUNCLIONS «..evovveecrecrreciceeenienrineuestee et seeeaseesesaesse s e ssssessesnassesasasssnessansansans 8

1.3.3 Qualified IAentifIers.....cc.ccercerceererrnieceecreee s ereeereesees s e ressesesenss senssssasssnsssensnsenns 8

2 Domain Declarationscccceeoreeiiieeiieiiiceeerreeirerriaeesresesesssnteeessaesssssssssesssssesasnes 10
2.1 The ProCess CIASSceceeereeereicrienrersiernereesecsseesreessarssassseesssassessoerossesestosasssesasaseseresesssensaes 11

22 The WOTKPIECE ClaSS ..uuieiiiinniiecieecerienetereteeet sttt stcectnasse s st s sseanee e sesnssassnassasenens 12

23 The Process Description Language.cocviveerreeiencniariecirereccrsemenceccesenesesesenc s sesssesane 13

24 The Operation PrOtOTYPE.c.cccevereririreemieersreseresssssersressinsmssesenesssssencasesssessssmssentrestonsassssases 13

25 The Elemental Operation ..ottt sesssesasssrsressenssasnss 14

2.6 The Process PIOGIAIc.coveoiiieiiiieecrecie et snscerenrnesessesnensesnsasensssnans senassssesesnssssseens 15

2.7 TRE SCIIPL.. ettt rscon e sasesse s sesesassrnesesesssssserarensassssaseasanseseresnsemsaranss 16

270 SCTIPE SIEPS.cieevitircrercrertsseneressriseeceameeraceseseessasestsossacantassansasssensesesaseesossnesesasns 17

2,72 SCIIPE NOGES «eeemrrerrtrerrie et rerencereesetsare et sasaseesseesssssessssassesanasasassassssessnenseses 17

2.8 The Operation INVOCALIONcovvureireerrreeerereneeresaessienissscnsisssaesessssesssussnsassasasnsesessssssasasas 18

2.8.1 SetfiNg ValUES...coeceieieerirereeceeeenceee e este e renesessee st sesesnessssmsssasssaessssesnsssnessananns 19

2.82 Argument SPECIfICALIONSccc.veervenertrierioresireretraceseecenreetseenresssnessssssassssssensasanes 19

2.8.3 Input and Output SPeCifiCation........ccvceiuecrererierriscereeenreeseesesee e e e seesesaenens 20

2.8.4 Records SPeCifiCatiOn........cccecreerveerreritreenerstrenteessceseseesasssessensasssnssnesesssssssesanases 21

2.8.5 Agent SPECIfICALION .. .ovueerieie et eeecttet e et sees e st e e e st sanene e nas 22

List Of DECIATAtIONScoouieecieciieeiercerteereeecreeetee e st ee st e e sre s s eraaessseeseeermaeesnnesssessssansssssasssenas 23

August 20, 1997 Appendix C-ii

Appendix C: Production Script Grammar

Production Script Grammar

J. Michael Griesmeyer1

1 Production Script Preliminaries

This is intended for input into lex and yacc to parse out the grammar. We start with some
production rules lifted primarily from C to allow declaration and possible initialization of
various quantities that are needed by the grammar.

1.1 Declarations

There are three types of declaration lists. The plain declaration can declare global or
scoped entities that are used by other objects, and it can be used to forward declare com-
plex objects. The key value declaration list is used to declare variables that are used as set-
ting or data variables in the headers for complex objects. The values can by accessed by
naming the associated keyword. Finally, there is the parameter list which is used to
declare the order dependent list of arguments for an operation. The identifiers in the decla-
ration of key values and parameters cannot be scoped because they are always used to
define the namespace for the object being defined. When referencing the parameter or
keyword to extract the value, scoping is allowed to indicate the intended object from
which the key value is to be obtained. Similarly, scoping can be used to specify the key for
which a value is to be set.

1.1.1 declaration
declaration:

declaration-specifier quailfied-declarator-list ;
qualified-declarator:

init-declarator

init-declarator (declaration-qualifier-list)
quailfied-declarator-list:

qualified-declarator
- qualified-declarator-list , qualified-declarator
init-declarator:

declarator

1. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Matrin Company, for
the United States Department of Energy under Contract DC-AC0O4-94AL85000.

August 20, 1997 Appendix C-1

Appendix C: Production Script Grammar

declarator = initializer

The following are examples of declarations. More complex examples are given when
some of the details of declarations are discussed.

I/l Declare some integers and a real. The allowable range for ‘midval’ is specified.
int bigval, midval (30 100), lowval;

real power;

1l Declare a script in the scope of the welding manufacturing process.

script welding::simpleWeldScript;

1.1.2 key-value-declaration-list

Key value declarations in object headers build tables of context keyword for the objects.
Access to the keyword values is through qualified identifiers described below. The key
value declaration allows for sub-keywords to be defined in a recursive manner by using
superkey as the declaration specifier.

key-value-declaration:

superkey identifier (key-value-declaration-list)

declaration-specifier identifier (declaration-qualifier-list)

declaration-specifier identifier = initializer (declaration-qualifier-list)
key-value-declaration-list:

/* Null is OK */

key-value-declaration

key-value-declaration-list , key-value-declaration

The qualifed identifier described in Section 1.3.3 can be used to reference any keyword or
sub-keyword of an object. The following are examples of key value declaration lists.

/I Key value declarations can must specify write access and can specify range

Il information through the declaration qualifier list. The key value declaration can

/I also supply initial/default values.

real realVal (executionWrite), real upperThreshold = 50.67 (callerWrite, [15.9, 200.0))

/] The key can be a super keyword with nesting of sub-keywords
superkey qualitySettings (real surfaceFinish (callerWrite, [15.9, 200.0)), real normalToler-
ance = .005 (callerWrite, [.001, .20)))

1.1.3 parameter-declaration-list

The declarator for a parameter must be an unscoped identifier. If it is indexed, the index
term indicates the size of the array.

parameter-declaration:
declaration-specifier indexed-identifier
declaration-specifier indexed-identifier (declaration-qualifier-list)

August 20, 1997 Appendix C-2

Appendix C: Production Script Grammar

parameter-declaration-list:
/* Null is OK */
parameter-declaration
parameter-declaration-list , parameter-declaration

The following is an example of a parameter declaration list.

Il Defaults are not allowed for parameters which must be supplied by the caller in order
I/ Write access need not be specified if only the caller can write to the parameter.

real bigVal ((300.0 400.0], (550.0 700.0)), real smallVal ((3.0 4.0}, (5.5 7.0)),

string yesNo (“y”, ”Y”, ”N” ,”n”)

1.1.4 Declaration details

For now we will assume that storage class need not be specified. Automatic storage is
used for all invocation items. Static storage is used for all definitions and other declara-
tions.

declaration-specifier:
type-specifier
type-specifier: one of

integer real string script scriptStep scriptNode scriptGenerator elementalOperation pro-
cessProgram invocationGenerator workpieceClass processClass PDL contextFunc-
tion typedef-name

Maybe later we will allow pointers.

declarator:
scoped-identifier
scoped-identifier:
indexed-identifier
scope-specifier indexed-identifier
scoped-identifier-list
scoped-identifier

scoped-identifier-list, scoped-identifier

The identifier in a scope specifier should reference a script, a process or the problem
scope. The indexed identifier must be declared before it can be referenced and may refer
to any quantity associated with the scope of the qualified identifier. For example, the iden-
tifier could be one of the declared parameters or setting variables of the operation invoked
by a script step.
scope-specifier:

/* Problem scope */

indexed-identifier ::

August 20, 1997 Appendix C-3

Appendix C: Production Script Grammar

The term for the indexed identifier must return an integer.
indexed-identifier:
identifier
indexed-identifier [term]
initializer:
term
{ initializer-list }
initialize-list:
/* Null is OK */
initializer

initializer-list , initializer
1.2 Declaration Qualifiers

The declaration qualifier is used to provide range and access information for header and
parameter declarations. Calling arguments are always writable by the caller and therefore
the write access need not be specified for parameters unless the execution can change the
value for the parameter as supplied by the calling argument. The qualifed declarations in a
header must specify the write access for the variable.

declaration-qualifier:
unit-specification
write-access
range-specification
zone-model-specification

declaration-qualifier-list:
declaration-qualifier

declaration-qualifier-list , declaration-qualifier

1.2.1 Write Access

Each variable in a keyword or or parameter list must indicate who can write to it. The call-
ing parameters for an operation are defaulted to callerWrite access; meaning that the invo-
cation of an operation can (and must) supply values for the parameters. However, if the
execution can change the value of a variable associated with a calling parameter, the
parameter must be declared as allowing execution write. The following rule indicates the
valid write access specifications that can be supplied in the declaration qualification list.

write-access:
callerWrite
callerWriteRequired

August 20, 1997 Appendix C4

Appendix C: Production Script Grammar

executionWrite
callerAndExecutionWrite
callerRequired AndExecutionWrite

1.2.2 Range Specifications

Valid ranges can be specified in the declaration qualifiers for variables in headers and
parameter lists.

range-specification:
number-range
number-range-choices
string-choices
{ range-specification-list }
range-specification-list:
range-specification
range-specification-list , range-specification
number-range:
[term]
[term term]
[term term)
(term term]
(term term)
number-range-list:
number-range
number-range-list, number-range
number-range-choices:

(number-range-list)

The following are examples of range specifications.
{/l Single value range
[50]

/I Bounded ranges
(59]
[45.0 46.0]

/I Bounded range choices
([45.0 70.0], [250 300], [1000 1200])
string-choices:

(term-list)

August 20, 1997 Appendix C-5

Appendix C: Production Script Grammar

The terms in the term list must resolve to srings. The following is an example of string
choices.

Il Acceptable values of a yes or no string
(“y”,”Y”,”yes”,”Yes”,”n”,”N”,”no”,”NO”)

1.2.3 Zone Model

A zone model can be used for the value of a data variable. A value can be in one of three
zones: High, Normal or Low as shown in Figure 1-1. The boundaries between zones are
thresholds. To prevent chatter in the reporting of transitions from one zone to another,
deadzones are defined by the overlap of boundaries between zones. Transitions occur only
when the variable value crosses the far boundary of the deadzone from its current zone.
Thus, to transition from Normal to High the variable value must become greater than the
High DeadZone Upper Limit, and to transition from High to Normal the value must
become lower than the High DeadZone Lower Limit. If chatter is not a concern, the upper
and lower limits of the deadzones can be the same.

High Alarm Limit (HAL)
High High Deadzone Upper Limit (HDUL)
High Deadzone Lower Limit (HDLL)
Normal
Low Deadzone Upper Limit (LDUL)
Low Low Deadzone Lower Limit (LDLL

Low Alarm Limit (LAL)
FIGURE 1-1 Zones and Threshold Monitoring Limits

Typically, an operation invocation will need to set the boundaries of the normal range for
data variables. However, the alarm limits can be characteristic of equipment or operations
and serve to protect the equipment and surrounding objects (other equipment and person-
nel). These limits would normally not be set by the operation invocation.

A zone model specification can only be supplied for qualified declarations that can be
written during execution, that is those with write access of executionWrite, callerAndExe-
cutionWrite, or callerRequiredAndExecutionWrite. The limit declarations in the zone
model specification give default values and write access information for each model limit
in the following order:

HighAlarm[Limit

HighDeadzoneUpperLimit
HighDeadzoneLowerLimit
LowDeadzoneUpperLimit
LowDeadzoneLowerLimit

August 20, 1997 Appendix C-6

Appendix C: Production Script Grammar

LowAlarmLimit
zone-model-specification:

zoneModel limit-declaration limit-declaration limit-declaration limit-declaration limit-
declaration limit-declaration

limit-declaration:

term write-access

The following is an example of a zone model specification in which the caller can set the
deadzone limits but not the alarm limits for the variable.

zoneModel 45.0 executionWrite 40.0 callerWrite 39.0 callerWrite 10.0 callerWrite 9.0 caller-
Write 2.0 executionWrite

1.3 Evaluations

The production script provides means to specify variables whose values must be deter-
mined based upon available information. Some bindings can be done at the time the script
is read. Other bindings occur during script execution based upon context. Scripts are
described as invocations of operations. The script grammar needs a means of referencing
the information specified to control the operations and the data generated by the execution
of the operations. The production script grammar is not intended to provide means to eval-
uate arbitrary expressions. Rather, terms are evaluated in context to access available infor-
mation. Complex calcualtions, if required, are performed by the operations themselves or
user supplied functions. Expression evaluations in the script are restricted to boolean
expressions and comparison of term values required for decision making within the script.
Terms and qualified identifiers are described here. The expressions using them are
described later where they are needed.

1.3.1 Terms

The term is used to access information associated with objects. Implementations of script
processors may evaluate as much of the term as possible at the time the script is read in.
Generally, however, the complete evaluation of the term depends upon the context at the
time it is used during execution of the script.

term:
qualified-identifier
constant

term-list
term
term-list, term

constant:
integer-constant
string-constant

August 20, 1997 Appendix C-7

Appendix C: Production Script Grammar

real-constant
literal-constant

A literal constant is anything between parentheses. Its evaluation does not occur at the
time the script is read in, but rather at the time of operation invocation. It thus, provides
context dependence. More will be worked out on the use of literals later.

literal-constant:

“(...)
1.3.2 Context functions

Context functions retrieve information about an object. Context fucntions are declared by

specifying the return type, the object type to which they are associated, and any required
calling parameters.

contextFunction-declaration:
contextFunction scoped-identifier (type-specifier , type-specifier , parameter-declara-
tion-list) ;

The first type-specifier is the return type of the function and the second type-specifier is
the object type for the function.

The invocation of the context function only suppiles the required parameters because the
object for the function is determined from the context of the invocation which is always
within a qualified identifier.

context-function-invocation:

scoped-identiﬁer (initializer-list)

1.3.3 Qualified Identifiers

The qualified identifier allows access to fields in the objects that are declared and defined
such as operations, scripts, agents and process classes. The key value declarations together
with the qualified identifiers permit runtime definition of objects and access to their sym-
bol tables (i.e. object data by refererence to keywords). Identifiers without scope imply
use of current scope. The qualified identifer is evaluated left to right. Standard namespace
keywords are defined for some types and the user may define others for selected types.
The terms for the index of an indexed identifier must be of integer type.
qualified-identifier:

scoped-identifier

query

context-function-invocation

qualified-identifier . indexed-identifier

qualified-identifier . context-function-invocation

August 20, 1997 Appendix C-8

Appendix C: Production Script Grammar

qualified-identifier . (term-expression)

Querys have not yet been defined but probably will look like SQL in terms of terms. To be
used in a qualified identifier chain, the query must return an identifier. The terms which
are used to bulid a query can be qualified identifiers themselves.

The indexed identifiers in a qualified identifier are keywords in the namespace of the
object refered to by the qualified identifier to which it is appended. For example, if the
qualified identifier refers to a script step, the agent keyowrd refers to the agent selected to
perform the invoked operation. Similarly, the operation keyword would refer to the oper-
ation invoked by the script step. Context functions retrieve information about the object
referenced by the qualified identifer to which they are appended. Obviously, each context
function or keyword is valid only in selected contexts. Eventually, for each type specifier
there will be a set of context functions and standard namespace keywords. Those context
functions or keywords that return an object identifier can be followed by additional con-
text functions or indexed identifiers to extend the qualified identifier. Keywords refer to
object variables that are defined in the headers for the object using a key-value-declara-
tion-list. The parameter, input workpiece, and output workpiece lists are also added to the
keyword table for operations with parm, input and output as the respective superkeys.

The following are examples of extended qualified identifers.
machining::makePocket.width

refers to the “width” argument for an invocation of the makePocket operation in the
machining process class.

makePocket.width.valueRange

refers to the acceptable range for the width argument in the makePocket operation of the

current process.

script.script

refers to the superscript of the script to which the current operation belongs.

script.agent

refers to the agent of the script to which the current operation belongs.

agent.makePocket.width.valueRange

refers to the acceptable range for the width argument in the makePocket operation of the
agent selected for the current operation.

Mill532J.makePocket.width.valueRange

refers to the acceptable range for the width argument in the makePocket operation of the
agent, Mill532]J.

The standard namespace keywords have not all been defined. A partial list follows.

operation

August 20, 1997 Appendix C-9

Appendix C: Production Script Grammar

script

agent

input

output

parm

valueRange
HighAlarmLimit
HighDeadzoneUpperLimit
HighDeadzoneLowerLimit
LowDeadzoneUpperLimit
LowDeadzoneLowerLimit
LowAlarmLimit

2 Domain Declarations

The domain declaration is the starting rule for the parser. Process Classes must be
declared. Elemental Operations must be declared and defined. Scripts must be declared
and defined. Process Description Language programs must be declared and defined. For-
ward declarations are allowed for each fype-specifier that requires definition. Thus, just
like in C, the declaration may include a definition, but a definition is not required. Only
one definition, whether complete or not, may be supplied for a scoped identifier. Multiple
declarations for a scoped identifier (a definiton followed by a declaration, or more than a
single forward declaration and a single definition) will result in a warning. The declarator
for a forward declaration should normally be a scoped-identifier. Many of the definitions
can be incremental in that, once a partial definition has been provided, additional compo-
nents can be added through scoping of the associated identifiers. For example, elemental-
Operations can be added to a processClass after it has been initally defined by scoping the
elementalOperation identifier to indicate the process class to which it belongs. While for-
ward declarations are allowed, the definition must be supplied before any information
other than the identifier of the object is used.

Each domain declaration, whether a definition or a simple declaration, is terminated by a
semi-colon.

domain-declaration:
processClass-definition
elementalOperation-definition
processProgram-definition
script-definition
scriptStep-definition
scriptNode-definition

August 20, 1997 Appendix C-10

Appendix C: Production Script Grammar

workpieceClass-definition
PDL-definition
contextFunction-declaration:
declaration
domain-declaration-list:
domain-declaration
domain-declaration-list domain-declaration

2.1 The Process Class

Process Class definitions provide manufacturing process domains for scoping of process
information associated with a particular process class. For now, the process class identifier
must not be scoped and therefore must be unique. The superprocess keyword in the pro-
cess header is used to indicate that the process class is a subprocess of the named process.
The declarations in the process header can be used to hold setting varaiables that control
the environment of the process. These must give the caller write access. The subprocess
inherits the declarations in the header of the its superclass. They can, however, be overrid-
den by declarations in the subprocess header with the same identifiers as those for the
superprocess. The same inheritance approach is used for scripts and elemental operations
scoped to a particular process class. The process class initializer list need not be specified
with the definition of the process class because the scripts, elemental operations, and pro-
cess programs are scoped when they are defined. That scoping has the effect of adding
them to the appropriate process script, elemental operation, or process program lists.

processClass-definition:
processClass identifier (process-header) { processClass-initializer;list Y
process-header:
/* A null process header is acceptabie */
superProcess identifier
superProcess identifier , key-value-declaration-list
key-value-declaration-list
processClass-initializer-list:
/* Null is OK */
domain-declaration-list

The following are examples of process class definitions.

processClass manufacturing (){};

processClass machining (superProcess manufacturing) {;

processClass fixturing (superProcess machining) {};

processClass turning (superProcess machiningj {};

processClass milling (superProcess machining) {};

processClass weldning (superProcess manufacturing) { processClass GTAweldning (
superProcess welding)};

August 20, 1997 Appendix C-11

Appendix C: Production Script Grammar

2.2 The Workpiece Class

Workpiece class names must be known by the script interpreter. The actual charateristics
of the workpieces must be available at script execution through the workpiece class identi-
fier and the workpiece identifier. We do not yet have a real definition for a workpiece
class, but reserve the right to develop one later. In the meantime, the workpiece class defi-
nition below just indicates that header information might be supplied to help define the
workpiece. The workpiece class identifier can be scoped to a particular process class or
script. The workpiece description should point to the data that describes geometry, materi-
als, composition, etc. This could be an PDES/STERP file, a ProEngineer file, or some other
product description.

workpieceClass-definition:
workpieceClass scoped-identifier (workpieceClass-header) ;
workpieceClass-header:
/* Null header is OK */
super WorkpieceClass identifier
super WorkpieceClass identifier , key-value-declaration-list
key-value-declaration-list

The following are examples of workpiece class definitions.

workpieceClass artifact (string geometryFile (callerWrite), real{6][] workpointList (caller-
Write),string productionScript (callerWrite));

workpieceClass assembly (superWorkpieceClass artifact, string compositionFile (caller-
Write));

workpieceClass fixture (superWorkpieceClass artifact, string fixtureMethod (callerWrite),
string machineMountMethod (callerWrite));

workpieceClass rawStock (string geometryFile (callerWrite), string materialSpec (caller-
Write));

workpieceClass casting (superWorkpieceClass artifact, string materialSpec (callerWrite));

A workpiece that is introduced to a facility rather than being an output of an operation
must be declared before it can be used in an operation invocation. The declaration gives
the class, workpiece name, and possibly values for some of the keyword variables

workpiece-declaration:

scoped-identifier indexed-identifier (setting-list);

The identifier for a workpiece declaration must not be scoped. The scope will always be
that of the calling operation invocation and the workpeice identifier must be unique within
the workpiece declaration list. However, for an operation invocation, an identifier in the
workpiece input specification can be the same as an identifier in the output declaration if
the associatedworkpiece is not transformed by the operation. For example, a special fix-
ture may be used for an operation but not be modified by the operation. In this case the
workpiece is part of the facility and its identifier in the invocation can be scoped accord-
ingly.

August 20, 1997 Appendix C-12

Appendix C: Production Script Grammar

The following are examples of workpiece declarations.

assembly assembly1 (compositionFile = “assembly1_composition.cmp”)
casting casting1 (geometryFile = “casting1.geo”, materialSpec = “316ss”)

The input and output workpiece declarations in operation prototypes must indicate the
workpiece class and its name.

io-workpiece-declaration-list:
/* Null is OK */
scoped-identifier identifier

10-workpiece-declaration-list, scoped-identifier identifier

2.3 The Process Description Language

A Process Description Language (PDL) can be defined for a manufacturing process. The
definition of the PDL lists the features that can be invoked in a program written in the
PDL. The feature declaration lists feature variables. These features are named in the
description of a PDL program so that they can be compared against the features supported
by agents that might be selected to perform the program.

PDL-definition:

PDL identifier , (PDL-header) ;
PDL-header:

processClass identifier PDL-feature-declaration-list
PDL-feature-declaration:

identifier (key-value-declaration-list)
PDL-feature-declaration-list:

/* Null is OK */

PDL-feature-declaration

PDL-feature-declaration-list , PDL-feature-declaration

The following is an example of a PDL definition.
PDL StdMachiningl.anguageA, (processClass machining);

2.4 The Operation Prototype

The operation header declares the variables avaiable to the execution of the operation.
Some are setting variables that can be set by name in the operation invocation. These must
give the caller access. Furthermore, those with caller required write access must be sup-
plied in an operation invocation either directly or through default. Other varables hold data
for the execution of the operation and can be specified in the record list of an operation
invocation. These must have execution write access. The parameter list declares the call-
ing arguments of the operation. The declarators for the header variables, parameters,

August 20, 1997 Appendix C-13

Appendix C: Production Script Grammar

inputs and outputs are in the same scope and must be unique. That is, a header variable
and a parameter cannot have the same name. Furthermore, scope must not be supplied
because the scope to be used is that of the invocation. In addition, the declarators for
parameters, inputs and outputs must be simple identifiers without initializers because the
invocation requires their specification. Defaults are not allowed. The first workpiece class
list declares the classes of the expected input workpieces for the operation. The second
workpiece class list declares the classes of the expected outputs of the operation. Any pre-
processing required for an operation is considered just another operation and therefore is
called out in a preceeding script step. The calling setting variables, arguments, inputs and
outputs of the operation invocation must be related to the declared header variables,
parameters, inputs and outputs in the operation prototype.

operation-prototype:

(operation-header) , (parameter-declaration-list), (io-workpiece-declaration-list), (
io-workpiece-declaration-list)

operation-header:
key-value-declaration-list

The workpieceClass specifications in the prototype of elemental operations normally will
not include classes with complete descriptions. For example, the makePocket operation
for machining can be executed on many different workpiece geometries and materials.
The invocation of the makePocket operation supplies parameters that locates the feature
relative to the origin of the workpiece and provides details of the workpiece geometry.

2.5 The Elemental Operation

The scoped identifier for the elemental operation indicates the process class to which the
elemental operation belongs. The identifier must be unique within the process class.

elementalOperation-definition:
elementalOperation scoped-identifier , operation-prototype ;

The following are examples of elemental operation definitions.

Il scoped operation name
elementalOperation welding:spotWeld,
/Operation prototype
il operation header
(real[6] pointTolerance (callerWrite) , energyTolerance (callerWrite),
powerTolerance (callerWrite), real energyDeposition (executionWrite),
real peakPower {executionWrite), real[6] theWeldedPoint (executionWrite)),
{l operation parameter list
(real[6] weldPoint, real weldArea, real flangeThickness, real energy, real power),
{l input list
(assembly assemblyToWeld),
- Il output list
(assembly weldedAssembly);

/] Mount Fixture

August 20, 1997 Appendix C-14

Appendix C: Production Script Grammar

elementalOperation fixturing::mountFixture,
{IOperation prototype
I/l operation header
(real[6] pointTolerance (callerWrite), real[6] locationError (executionWrite)),
!/l operation parameter list
(real[6] machineMountPoint, real[6] fixtureMountPoint,
real[3] matingAxis, real[3] approachOffset),
i input list
(fixture fixtureToMount),
Il output list
(fixture mountedFixture);

2.6 The Process Program

Process programs written in the PDL can be invoked by an operation invocation. The
scoped identifer provides the unique name of the process program. The PDL specification
names the PDL in which the program is written and provides a description of the program.
The description is a list of the PDL features that are invoked. The features are listed by
name and the values for the feature variables are given. If a feature is invoked by the pro-
gram more than once with different values for the variables, the feature should be listed
more than once in the program description. Any tools required by the program should be
included in the input and output specifications of the operation prototype. If the process
program requires a special setup, the setup is specified by the invocation of an operation to
perform the setup.

processProgram-definition:

processProgram scoped-identifier , operation-prototype , PDLSpec ;
PDLSpec:

identifier { program-description-list }

identifier { program-description-list } , setup operation-invocation
PDL-feature-spec:

identifier (setting-list)
program-description-list:

/* Null is OK */

PDL-feature-spec

program-description-list , PDL-feature-spec

The folowing are examples of process program definitions.

Il Define a process program
processProgram makeBulkShapeA,
/IOperation prototype
Il operation header

(real surfaceFinish (callerWrite)),
I/l operation parameter list

{real[3] scale),

August 20, 1997 Appendix C-15

Appendix C: Production Script Grammar

I input list
{rawStock inputStock),

{/ output list
(artifact bulkShape),

{{ PDLSpec
StdMachiningLanguageA {};

2.7 The Script

script-definition:
script scoped-identifier , operation-prototype , script-ends , { script-definer-list } ;
script scoped-identifier , operation-prototype , scriptGenerator scoped-identifier ;

The scoped identifier for the script indicates the process class to which the script belongs.
If the script involves more than one process, problem scope should be specified. This is
done by using the scope specifier without an identifier (i.e. the first production rule for
scope-specifier). The identifier must be unique within the indicated scope.

The script header is intended to declare and intitialize variables that are local to the script.
These can be used for settings or results in the scope of the script. The scoped-identifiers

in script settings should refer to variables declared in the header for the script or an associ-
ated process.

The identifiers in the script-ends refer to the Script Starting Decision Node and the Script
Terminating Decision Node. The identifiers must refer to script nodes that are defined in
the script definer list. ‘

scriptEnds:
(identifier identifier) /* Starting Node and Terminating Node */

Because of the cross linking between steps and nodes, the short forms for many of the pro-
ductions can be used. Other productions generate the required cross-linking. Care should
be taken to only give a definition once for each scoped-identifier.

script-definer-list:
/* Null is OK */
domain-declaration-list

The script definer list must include the starting and ending script nodes as well as at least
one script step.

The scripts that are defined with a script generator are filled in at the time the script is
invoked. The script generator identifier is the name of a function that is supplied to the
script processor. It takes as arguments the resolved information supplied in an operation
invocation of the script and returns the name of a file that contains the script step and node
definitions to be used for this invocation of the script. This allows for online generation of
scripts decompositions by whatever means the user chooses to employ.

August 20, 1997 Appendix C-16

Appendix C: Production Script Grammar

Scope of the identifers for domain declarations in the script definer list can be omitted if
script scope is desired because the scope for the script being define is implied. Scopes can
be nested since scripts can be defined in the definer list of other scripts. Identifiers not
found in the scope of the current script are looked for in the scope of the encompassing
script. Scoped identifiers must of course return the proper type. All steps and nodes of a
script are scoped to the script. Errors will be returned if the specified scopes and names are
not consistent.

2.7.1 Script Steps
scriptStep-definition:

scriptStep scoped-identifier , operationlnvocation , previous-node-spec , next-node-
spec ;

previous-node-spec:
node-spec
next-node-spec:
node-spec
node-spec:
scoped-identifier /* previous/next script step */
scoped-identifier integer-constant /* previous/next node and exit/entry set number */

2.7.2 Script Nodes
scriptNode-definition:
scriptNode scoped-identifier { entrance-set-list } { exit-set-list } ;
entrance-set-list:
/* Null is OK */
(scoped-identifier-list)
entrance-set-list, (scoped-identifier-list)
exit-set-list:
/* Null is OK */
selection-criterion (scoped-identifier-list)
exit-set-list , selection-criterion (scoped-identifier-list)

The selection criterion for an exit step set of a script node is a boolean term, a boolean
result of comparing two terms, or the boolean result of logical combination of two criteria.
The comparison operators are defined for strings, integers, and doubles. The types to be
compared must be comparable. Thus, strings cannot be compared to numbers. If either
term is a double, the comparison is evaluated for doubles after any required conversion of
the other term from integer to double. Terms that return names are compared as strings.

selection-criterion:

or-criterion

August 20, 1997 Appendix C-17

Appendix C: Production Script Grammar

or-criterion:

and-criterion

or-criterion || and-criterion
and-criterion:

compare-criterion

and-criterion && compare-criterion
compare-criterion:

primary-criterion

term compare-operator term
primary-criterion:

term

(selection-criterion)

compare-operator:

Finally, a special script node class needs to be defined that has the effect of providing the
script executor options on how to perform a step. In this case, the decision criteria must be
structured so that the script executor can select only one of the options (i.e. only one exit
step set).

2.8 The Operation Invocation
operationlnvocation:

scoped-identifier , (setting-list) , (initializer-list) , (input-spec-list) , (output-spec-
list), (record-spec-list) , (agent-spec)

scoped-identifier , invocationGenerator scoped-identifier

For operations invoked with an invocationGenerator, the named invocation generator is a
function that takes as input arguments the parent script name, the resolved invocation
information for the parent script, the script step name and operation name. It returns the
setting, argument, input specification, output specification and record specification lists,
and the agent specification for the invocation of the operation. This allows the user to pro-
vide a function to map between the calling information of the parent script and the calling
information for the steps of which it is composed.

The scoped identifier in the operationInvocation must refer to an elemental operation, a
process program, or a script. The settings must refer to identifiers declared in the header

August 20, 1997 Appendix C-18

Appendix C: Production Script Grammar

list for the operation or in the header lists for the associated processes. Identifiers without
scope refer to variables declared in the operation header. The calling argument values are
supplied as an initializer list. All of the values for settings, arguments, inputs and outputs
are in the scope of the invocation. The values go out of scope (i.e. are no longer available)
when the script invocation to which the operation invocation belongs is complete. Thus,
they are available to other operation invocations in the same script level.

The compiler or interpreter of the script must check type and number of arguments, input
specification and output specification lists. It must also check the types of these values.

The following is an example of an operation invocation. The forms for settings, argu-
ments, input and output specifications, record specifications and agent specifications are
discussed in subsequent sections.

/] Operation name
welding::spotWeld ,
/] Setting list
(pointTolerance = {.2,.2,.1,.1,.1,.1} , energyTolerance = .20),
/I Argument list
(assembly1.wrkpt1, .35, .65, 1500., 1500.),
/I Input specification list
{ assemblyStep1 output.theAssembly) ,
Il Output deposition list
(assemblyStep2 input.part1),
Il Record specification list
(energyDeposition (end), peakPower {end), theWeldedPoint (end)),
I Agent specification
{ agentClass welding::spotwelder && certificationCriterion ANSI12Ba
&& maintenance maintenance_methodA (byCycle 10000)
&& calibration calibr_methodB (byOperationTime 5000))

2.8.1 Setting Values

The settings must refer to a key value declared in the header for the object associated with
the qualified identifier. Normally, the setting is for one of the key values of the current
operation. In which case, the qualified indentifier is just the identifer for the key value as
declared in the header of the operation prototype.

setting-list:
/* Null is OK */
setting
setting-list , setting
setting:

qualified-identifier = initailizer

2.8.2 Argument Specifications

The arguments for the formal parameters for the invoked operation are supplied as an
intializer list.

August 20, 1997 Appendix C-19

Appendix C: Production Script Grammar

2.8.3 Input and Output Specification

The inputs must refer to a new workpiece, an output of a previous operation invocation,
or an input to the script of which the invocation is a part.

input-spec-list:
/* Null is OK */
input-spec
input-spec-list , input-spec
input-spec:
scoped-identifier ~ /* Previously declared workpiece */
(workpiece-declaration) /* New workpiece */

identifier . output . identifier /* Direct output of the script step refered to by first iden-
tifier */

input . identifier /* Input to the parent script */

The output depositions must refer to a termination stream, the input to a subsequent oper-
ation invocation in the script, or an output of the script. The primary parent of an operation
output is used to reflect a persistent object that is transformed by an operation. For exam-
ple, when machinning a feature into an exiting workpiece, it is convenient to refer to the
resulting workpiece by the same name. This is done by indicating the primary parent of
the operation output. The primary parent of an operation output is one of the inputs to the
operation or the primary parent of one of the inputs. The latter case uses the qualified iden-
tifier composed of the identifer for the input and the parent context keyword. For example,
inputOne refers to “inputOne” of the current operation invocation, and inputOne.parent
refers to the parent of “inputOne” of the current operation invocation..

output-spec-list:
/* Null is OK */
output-spec
output-spec-list , output-spec
output-spec:
output-deposition
output-deposition output-parent
output-deposition:
workpiece-termination-spec /* Terminate the workpiece */
identifier . input . identifier /* Direct input of script step refered to by first identifier */
output . identifier /* Output of the parent script */
output-parent:
qualified-identifier /* Indication of the workpiece that was the direct parent */

The workpiece termination specification is probably not going to be fleshed out soon.

August 20, 1997 Appendix C-20

Appendix C: Production Script Grammar

workpiece-termination-spec:
literal-constant

2.8.4 Records Specification

The records specification list indicates what must be recorded to verify that the operation
was performed according to specifications, and to provide data for process improvement.
The record specification consists of an identifier from the header declaration or parameter
list and specifications of when to record its value. Note that the calling arguments may be
modified during the performance of an operation.

The zone specification assumes three regions: High, Normal and Low with high and low
alarms and boundaries with deadzones between the three zones. Six terms are required to
specify the parameters of the zone model. The zone specification results in the recording
of the initial zone for the identifier and any crossings of zone boundaries. See General
Equipment Interface Definition for a discussion of the zone model.

This record specification is not complete but it handles lots of what we need.
record-spec-list:
/¥ Null is OK */
record-spec
record-spec-list , record-spec
record-spec:
key-identifier (sampling-spec-list)
sampling-spec-list:
sampling-spec
sampling-spec-list , sampling-spec

Obviously, the units of the terms below cannot be ignored but we will for now.
sampling-spec:

start

end

onChange

samplingRate term

zoneSpecification (zone-limit-spec-list)
The zone specification can only be given for those operation variables for which a zone

model has been declared. Furthermore, limits may be changed from the defaults onty for
those limits to which the caller has been given write access.

zone-limit-spec
HighAlarmLimit term

August 20, 1997 Appendix C-21

Appendix C: Production Script Grammar

HighDeadzoneUpperLimit term

HighDeadzoneLowerLimit term

LowDeadzoneUpperLimit term

LowDeadzonel.owerLimit term

LowAlarmLimit term
zone-limit-spec-list:

/* Null is OK */

zone-limit-spec

zone-limit-spec-list , zone-limit-spec

2.8.5 Agent Specification

Generally, the agent specification will give criteria for determining whether an agent is
certified to perform the operation, or it will reference an agent that has previously been
selected either for the parent script or a previous script step. The agent specification allows
designation of the agent assigned to the current script by use of a qualified identifier com-
posed of the context keyword combination, script.agent. The agent of a previous script
step can be specified using a qualified identifier that ends with the context keyword,
agent. For example, the the agent of the step named “firstPass” in the current script is
specified by script.firstPass.agent

The actual agent constriants have yet to be defined. At minimum, the agent must be able
to accept the operation with the calling information in the operation invocation. Calibra-
tion and maintenance invocation protocols indicate when the methods should be per-
formed. The bySPC protocol assumes a zone model for the specified identifier which
should refer to an operation variable for past executions of the operation on the candidate
agent. The method should be invoked whenever the value leaves the normal zone. The
values for the zone specification would presummably be based upon statistical quality
control data. The agent certification criterion references the standards by which the agent
and or the operators of the agent should be certified. For example, a welding operation
should be performed by a certified weld engineer and with equipment certified to perform
the operation.

Other standard constriants will be dreamed up later. The rules provided here allow for the
logical combination of constriants.

agent-spec:
/* Null is OK */
qualified-identifier
agent-constraint
agent-constaint:
or-constraint

August 20, 1997 Appendix C-22

Appendix C: Production Script Grammar

or-constraint:
and-constraint
or-constraint || and-constraint
and-constraint:
primary-constraint
and-constraint && primary-constraint
primary-constraint:
agentClass identifier
maintenance identifier (invocation-protocol-list)
calibration identifier (invocation-protocol-list)
certificationCriterion term
literal-constant
(agent-constraint)
invocation-protocol-list:
invocation-protocol
invocation-protocol-list , invocation-protocol
invocation-protocol:
byCycle term
byOperationTime term
byTotalTime term
bySPC qualified-identifier (zone-limit-spec-list)

Appendix 1 List of Declarations

declaration:

declaration-specifier quailfied-declarator-list ;
qualified-declarator:

init-declarator

init-declarator (declaration-qualifier-list)
quailfied-declarator-list:

qualified-declarator

qualified-declarator-list , qualified-declarator
init-declarator:

declarator

declarator = initializer
key-value-declaration:

superkey identifier (key-value-declaration-list)

declaration-specifier identifier (declaration-qualifier-list)

declaration-specifier identifier = initializer (declaration-qualifier-list)
key-value-declaration-list:

August 20, 1997

Appendix C-23

Appendix C: Production Script Grammar

/* Null is OK */

key-value-declaration

key-value-declaration-list , key-value-declaration
parameter-declaration:

declaration-specifier indexed-identifier

declaration-specifier indexed-identifier (declaration-qualifier-list)
parameter-declaration-list:

/* Null is OK */

parameter-declaration

parameter-declaration-list , parameter-declaration
declaration-specifier:

type-specifier
type-specifier: one of

integer real string script scriptStep scriptNode scriptGenerator elementalOperation

processProgram invocationGenerator workpieceClass processClass PDL context-

Function typedef-name
declarator:

scoped-identifier
scoped-identifier:

indexed-identifier

scope-specifier indexed-identifier
scoped-identifier-list

scoped-identifier

scoped-identifier-list, scoped-identifier
scope-specifier:

/* Problem scope */

indexed-identifier ::
indexed-identifier:

identifier

indexed-identifier [term]
initializer:

term

{ initializer-list }
initialize-list:

/* Null is OK */

initializer

initializer-list , initializer
declaration-qualifier:

unit-specification

write-access

range-specification

zone-model-specification
declaration-qualifier-list:

declaration-qualifier

declaration-qualifier-list , declaration-qualifier
write-access:

callerWrite

August 20, 1997 Appendix C-24

Appendix C: Production Script Grammar

callerWriteRequired
executionWrite
callerAndExecutionWrite
callerRequiredAndExecutionWrite
range-specification:
number-range
number-range-choices
string-choices
{ range-specification-list }
range-specification-list:
range-specification
range-specification-list , range-specification
number-range:
[term]
[term term]
[term term)
(term term]
(term term)
number-range-list:
number-range
number-range-list, number-range
number-range-choices:
(number-range-list)
string-choices:
(term-list)
HighAlarmLimit
HighDeadzoneUpperLimit
HighDeadzoneLowerLimit
LowDeadzoneUpperLimit
LowDeadzoneLowerLimit
LowAlarmLimit
zone-model-specification:
zoneModel limit-declaration limit-declaration limit-declaration limit-declaration lim-
it-declaration limit-declaration
limit-declaration:
term write-access
term:
qualified-identifier
constant
~ term-list
term
term-list, term
constant:
integer-constant
string-constant
real-constant
literal-constant

August 20, 1997 Appendix C-25

Appendix C: Production Script Grammar

literal-constant:
“(.)
contextFunction-declaration:
contextFunction scoped-identifier (type-specifier , type-specifier , parameter-decla-
ration-list) ;
context-function-invocation:
scoped-identifier (initializer-list)
qualified-identifier:
scoped-identifier
query
context-function-invocation
qualified-identifier . indexed-identifier
qualified-identifier . context-function-invocation
qualified-identifier . (term-expression)
operation
script
agent
input
output
parm
valueRange
HighAlarmLimit
HighDeadzoneUpperLimit
HighDeadzonel.owerLimit
LowDeadzoneUpperLimit
LowDeadzoneLowerLimit
LowAlarmLimit
domain-declaration:
processClass-definition
elementalOperation-definition
processProgram-definition
script-definition
scriptStep-definition
scriptNode-definition
workpieceClass-definition
PDL-definition
contextFunction-declaration:
declaration
domain-declaration-list:
domain-declaration
domain-declaration-list domain-declaration
processClass-definition:
processClass identifier (process-header) { processClass-initializer-list } ;
- process-header:
/* A null process header is acceptable */
superProcess identifier
superProcess identifier , key-value-declaration-list

August 20, 1997 Appendix C-26

Appendix C: Production Script Grammar

key-value-declaration-list
processClass-initializer-list:

/* Null is OK */

domain-declaration-list
workpieceClass-definition:

workpieceClass scoped-identifier (workpieceClass-header) ;
workpieceClass-header:

/* Null header is OK */

superWorkpieceClass identifier

superWorkpieceClass identifier , key-value-declaration-list

key-value-declaration-list
workpiece-declaration:

scoped-identifier indexed-identifier (setting-list);
io-workpiece-declaration-list:

/* Null is OK */

scoped-identifier identifier

io-workpiece-declaration-list, scoped-identifier identifier
PDL-definition:

PDL identifier , (PDL-header) ;
PDL-header:

processClass identifier PDL-feature-declaration-list
PDL-feature-declaration:

identifier (key-value-declaration-list)
PDL-feature-declaration-list:

/* Null is OK */

PDL-feature-declaration

PDL-feature-declaration-list , PDL-feature-declaration
operation-prototype:

(operation-header) , (parameter-declaration-list), (io-workpiece-declaration-list)

, (io-workpiece-declaration-list)
operation-header:

key-value-declaration-list
elementalOperation-definition:

elementalOperation scoped-identifier , operation-prototype ;
processProgram-definition:

processProgram scoped-identifier , operation-prototype , PDLSpec ;
PDLSpec:

identifier { program-description-list }

identifier { program-description-list } , setup operation-invocation
PDL-feature-spec:

identifier (setting-list)
program-description-list:

/* Null is OK */

PDL-feature-spec

program-description-list , PDL-feature-spec
script-definition:

script scoped-identifier , operation-prototype , script-ends, { script-definer-list } ;

August 20, 1997 Appendix C-27

Appendix C: Production Script Grammar

script scoped-identifier , operation-prototype , scriptGenerator scoped-identifier ;
scriptEnds:
(identifier identifier) /* Starting Node and Terminating Node */
script-definer-list:
/* Null is OK */
domain-declaration-list
scriptStep-definition:
scriptStep scoped-identifier , operationInvocation , previous-node-spec , next-node-
spec ;
previous-node-spec:
node-spec
next-node-spec:
node-spec
node-spec:
scoped-identifier /* previous/next script step */
scoped-identifier integer-constant /* previous/next node and exit/entry set number */
scriptNode-definition:
scriptNode scoped-identifier { entrance-set-list } { exit-set-list } ;
entrance-set-list:
/* Null is OK */
(scoped-identifier-list)
entrance-set-list, (scoped-identifier-list)
exit-set-list:
/* Null is OK */
selection-criterion (scoped-identifier-list)
exit-set-list , selection-criterion (scoped-identifier-list)
selection-criterion:
or-criterion
or-criterion.
and-criterion
or-criterion || and-criterion
and-criterion:
compare-criterion
and-criterion && compare-criterion
compare-criterion:
primary-criterion
term compare-operator term
primary-criterion:
term
(selection-criterion)
compare-operator:

August 20, 1997 Appendix C-28

Appendix C: Production Script Grammar

operationlnvocation:
scoped-identifier, (setting-list), (initializer-list), (input-spec-list) , (output-spec-
list) , (record-spec-list) , (agent-spec)
scoped-identifier , invocationGenerator scoped-identifier
setting-list:
/* Null is OK */
setting
setting-list , setting
setting:
qualified-identifier = initailizer
input-spec-list:
/* Null is OK */
input-spec
input-spec-list , input-spec
input-spec:
scoped-identifier /* Previously declared workpiece */
(workpiece-declaration) /* New workpiece */
identifier . output . identifier /* Direct output of the script step refered to by first iden-
tifier */
input . identifier /* Input to the parent script */
output-spec-list:
/* Null is OK */
output-spec
output-spec-list , output-spec
output-spec:
output-deposition
output-deposition output-parent
output-deposition:
workpiece-termination-spec /¥ Terminate the workpiece */
identifier . input . identifier /* Direct input of script step refered to by first identifier */
output . identifier /* Output of the parent script */
output-parent:.
qualified-identifier /* Indication of the workpiece that was the direct parent */
workpiece-termination-spec:
literal-constant
record-spec-list:
/* Null is OK */
record-spec
record-spec-list , record-spec
record-spec:
key-identifier (sampling-spec-list)
sampling-spec-list:
sampling-spec
sampling-spec-list , sampling-spec
sampling-spec:
start
end

August 20, 1997 Appendix C-29

Appendix C: Production Script Grammar

onChange

samplingRate term

zoneSpecification (zone-limit-spec-list)
zone-limit-spec

HighAlarmLimit term

HighDeadzoneUpperLimit term

HighDeadzoneLowerLimit term

LowDeadzoneUpperLimit term

LowDeadzoneLowerLimit term

LowAlarmLimit term
zone-limit-spec-list:

/* Null is OK */

zone-limit-spec

zone-limit-spec-list , zone-limit-spec
agent-spec:

/* Null is OK */

qualified-identifier

agent-constraint
agent-constaint:

or-constraint
or-constraint:

and-constraint

or-constraint | and-constraint
and-constraint:

primary-constraint

and-constraint && primary-constraint
primary-constraint:

agentClass identifier

maintenance identifier (invocation-protocol-list)

calibration identifier (invocation-protocol-list)

certificationCriterion term

literal-constant

(agent-constraint)
invocation-protocol-list:

invocation-protocol

invocation-protocol-list , invocation-protocol
invocation-protocol:

byCycle term

byOperationTime term

byTotalTime term

bySPC qualified-identifier (zone-limit-spec-list)

August 20, 1997

Appendix C-30

Distribution

Internal Distribution:

10

N W — =

MS 1002
MS 1010

MS 1010

MS 0188

MS 9018

MS 0899

MS 0619

MS 0161

P. J. Eicker, 9600
M. E. Olson, 9622

J. M. Griesmeyer, 9622

LDRD Office, 4523

Central Technical File, 8940-2
Technical Library, 4961

Review & Approval Desk, 12690
for DOE/OSTI

Patentand Licensing Office, 11500

RMSEL Library

Dist-1

