

70-1 A
2

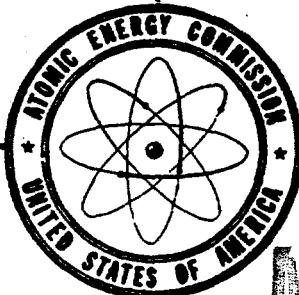
Mason & Flanger-
Silas Mason Co., Inc.

ENGINEERS AND CONTRACTORS

SINCE 1827

Pantex Plant

DISCLAIMER


This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PHYSICAL PROPERTIES OF EXPLOSIVES
MECHANICAL PROPERTIES

SANL 712-001

A. L. Wilson

January, February, March 1970

DEVELOPMENT DIVISION

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

8

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

PHYSICAL PROPERTIES OF EXPLOSIVES

MECHANICAL PROPERTIES

A. L. Wilson

January, February, March 1970
SANL 712-001

ABSTRACT

Further testing of lots SR-94-14 and 15 of LX-04-1 has confirmed that these two lots are more "resilient" than a typical LX-04-1.

Results for a number of miscellaneous HE lots are presented.

DISCUSSION

Since the mechanical behavior of two lots of LX-04-1 (SR-92-14 and -15) was different from others, additional testing was done at the request of LRL. Objectives were to determine if and how these two lots differed from other lots of LX-04-1, and to determine if any noticeable change had occurred since they were first tested 1½ years ago. Three specimens per group were tested as follows:

Group 1. Creep at 75 psi at 120°F.

Group 2. Creep at 200 psi at 70°F.

Group 3. Tensile at -35°F at 0.005 inch/min.

All normal precautions were observed; the test results are listed in Tables I and II.

In order to visualize the results and compare with other lots of LX-04-1, Figs. 1 and 2 have been prepared with the failure envelope drawn representing all lots of LX-04-1, but omitting the mass of test data that was previously published with these curves. The failure envelope is drawn as a series of contours indicating the proportion of specimens that have not failed at the given stress and strain.

In both figures, the older tests of these two lots are plotted as squares and the latest data as circles. At stresses below approximately 250 psi, the two lots group themselves at (or beyond) the 25% contour indicating they are more resilient than the usual LX-04-1, especially in the vicinity of the "knee" of the failure envelope. Above 250 psi they appear to be undistinguishable from others. The tests show them to be still at least as resilient as when first tested since the circles tend to be located well to the right of the data field.

Table I

PC #	T°F	Stress psi	Min.		Min.		90% Rupture με		10% Fail με		1T* Min.		1T με	
			10 με	30 με	10 με	30 με	Fail με	Time to Fail (min.)	Fail με	Time to Rupture (min.)	Fail με	10% Fail με	Min.	1T με
**3	120	60	4,140	5,770	9,480	93.5	168.0	13,790	4,080	40.12	68.24	.1640	33.7	6,000
10	120	75	6,880	12,200	11,900	29.0	40.0	14,200	4,600	47.05	73.14	.1632	8.1	6,360
1	120	75	8,710	16,620	12,450	19.7	34.4	16,620	5,140	48.48	70.23	.1676	6.8	7,580
2	120	73	7,440	12,620	12,600	29.9	44.3	15,800	5,100	48.48	70.23	.1676	7.8	6,800
MEAN		74.3	7,677	13,813	12,317	26.2	39.6	15,540	4,947	45.22	70.54	.1649	7.6	6,913
SD		938	2,440	369	5.6	5.0	1,231	301	4.47	2.46	.0023	.7	618	
12	70	200	-	-	6,020	2.06	6.03	21,800	2,500	8.07	19.73	.1528	0.82	3,915
7	70	200	-	-	6,745	2.42	6.57	24,350	2,640	7.42	23.15	.1445	0.99	4,360
9	70	200	-	-	6,160	2.08	5.22	14,400	2,510	7.33	21.14	.1432	0.79	3,925
MEAN		200	-	-	6,308	2.19	5.94	20,183	2,550	7.61	21.34	.1468	0.87	4,067
SD		0	-	-	385	.20	0.68	5,168	78	.40	1.72	.0052	.11	254
PC #			T°F		E ₀ , 10 ⁶ psi		Rupture S, psi		Time to Rupture με		Time to Rupture			
8			-35	-35	1.68	1.64	1,264	1,216	852	822	-	10.2	9.5	9.7
5			-35	-35	-	-	1,278	-	-	-	-	-	-	-
4			-35	-35	-	-	-	-	-	-	-	-	-	-
MEAN					1.66		1,253		837					9.8
SD							32							.4

*First Transition Point

**Note: included in MEAN and standard Deviation

Table II

PC #	T°F	Stress psi	Min.		Min. 30 με		Fail με		Time to Fail (min)		90% Rupture με		10% Rupture με		IT* Min.		IT με	
			10	70	11,400	11,400	108.7	188.6	15,750	5,200	62.53	60.60	.1586	42.3	7,610	7,610	13.6	8,380
**12	120	60	4,920	6,770	11,400	11,400	27.6	44.4	15,700	4,920	41.30	70.77	.1490	13.6	8,380	8,380	13.6	8,380
7	120	75	7,440	12,440	11,800	11,800	44.7	66.3	10,820	3,590	30.50	48.48	.1534	16.8	5,540	5,540	16.8	5,540
3	120	75	4,600	7,100	8,800	8,800	50.0	63.0	10,640	3,930	36.21	48.54	.1669	13.1	5,290	5,290	13.1	5,290
4	120	75	3,930	7,840	9,710	9,710												
MEAN		75	5,323	9,127	10,103	40.8	57.9	12,387	4,147	36.00	55.93	.1564	14.5	6,403	6,403	14.5	6,403	
SD			1,863	2,893	1,538	11.7	11.8	2,871	691	5.03	12.85	.0093	2.0	1,716	1,716	2.0	1,716	
11	70	200			5,560	2.80	7.34	15,800	2,290	7.22	17.62	.1508	1.17	3,620	3,620	1.17	3,620	
10	70	200			5,580	2.36	6.26	14,200	2,440	7.20	18.44	.1353	1.10	3,980	3,980	1.10	3,980	
1	70	200			4,940	2.52	6.98	12,560	2,220	7.34	15.18	.1458	1.07	3,410	3,410	1.07	3,410	
MEAN		200			5,360	2.56	6.86	14,187	2,317	7.25	17.08	.1440	1.11	3,337	3,337	1.11	3,337	
SD					364	0.22	.55	1,620	112	.08	1.70	.0079	.05	326	326	.05	326	
<u>Tensile @ .005"/Min</u>																		

*First transition point
**Not included in MEAN and SD

Fig. 1

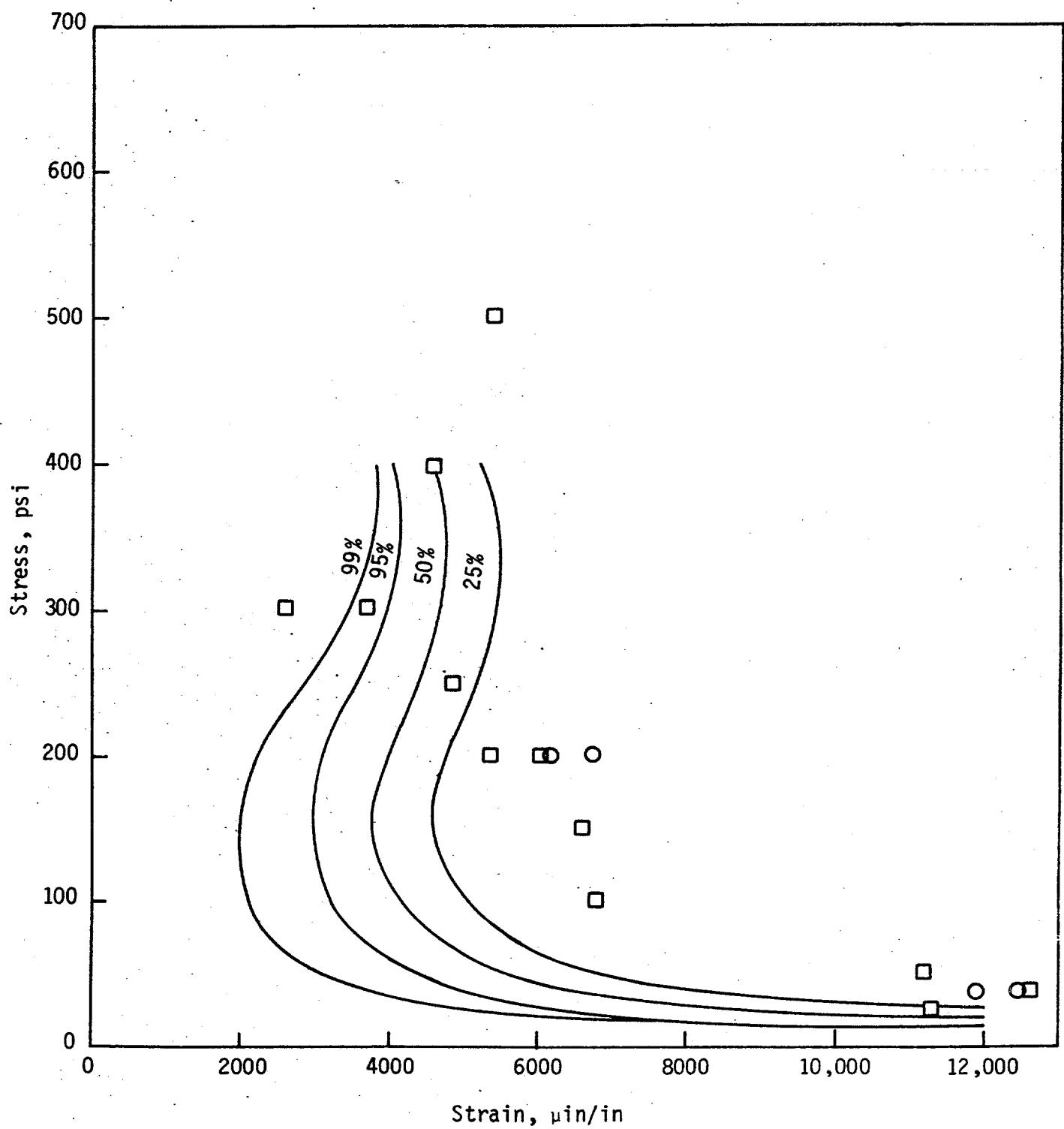
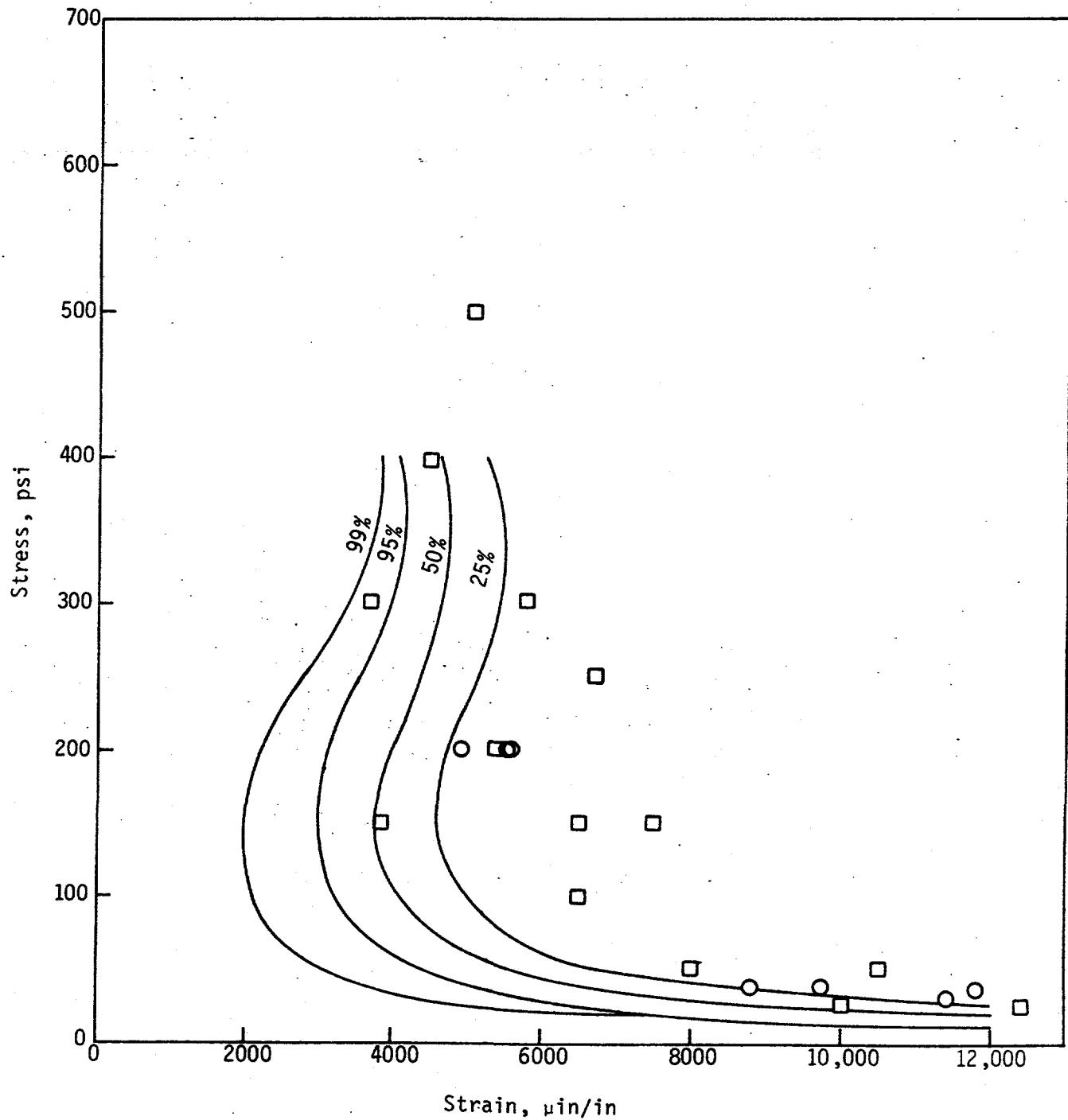


LX-04-1 Lot No. 92-14

Fig. 2

LX-04-1 Lot No. 92-15

A number of miscellaneous lots of HE have been run through the standard series of mechanical properties tests and the results are tabulated in Table III. One additional lot, 94-8, of LX-09-0 has been evaluated and it is listed along with all other lots of LX-09-0. The results show lot 94-8 to be typical, not differing significantly from the average value in any property.

Tabulated results for the other HE lots, LX-07-2, are included in Table IV and not much can be said about them because not enough LX-07-2 has been tested to really establish "norms".

Table III
LX-09-0 Lot Summary

Table IV
LX-07-2 Lot Summary

<u>-35° F Tensile</u>		<u>70° F Creep</u>						<u>120° F Creep</u>						<u>Compression Creep @ 120° F, 100 psi</u>					
<u>Lot No.</u>	<u>Initial Modulus 106 psi</u>	<u>90% Rupture</u>			<u>10 Min Strain</u>			<u>10 Min Strain</u>			<u>10 Min Strain</u>			<u>10 Min Strain</u>			<u>10 Min Strain</u>		
		<u>Ultimate Stress psi</u>	<u>Strain μin/in</u>	<u>Fail psi</u>	<u>Strain μin/in</u>	<u>Strain μin/in</u>	<u>Strain μin/in</u>	<u>Strain μin/in</u>	<u>Strain μin/in</u>	<u>Strain μin/in</u>									
901-1	Avg	1.78	1338	884	1472	2786	3162	180	1850	5392	5648	75	1488	1761	1855	618			
	σ	.11	108	90	60	230	264	-	395	388	573	-	258	308	307	205			
902-1	Avg	1.68	1185	848	1350	3318	3792	140	2358	5500	5800	75	1602	1890	2372	740			
	σ	.26	70	63	264	332	630	-	555	314	581	-	360	412	584	265			
90B	Avg	2.10	1120	760	1315	2382	2307	200	2767	3753	3617	20	1950	2300	2438	1094			
	σ	.61	106	112	297	534	526	-	111	817	751	-	78	135	115	173			

FUTURE WORK; COMMENTS; CONCLUSIONS

For the first time values for the material constants are being reported that fit the power law equation:

$$J - J_0 = At^m \quad (1)$$

In order to impart maximum usefulness to equation (1) by extending it all the way to failure, the upper datum was selected to be the failure point. Next the lowest datum point was chosen to be 10% of failure, then the "rational method" of determining material constants was followed. It is a bit early to predict accuracy in all cases, but a single comparison is shown for LX-09-0 Lot 94-8 (Piece No. 76434E2401-12):

Time Hour	Calculated Strain μin/in	Experimental Strain μin/in	Percent Error
.05	1027	958	7.20
.10	1265	1250	1.20
.50	2331	2374	-1.81
1.06	3254	3272	-0.55

The error shown here is far less than the piece-to-piece variation.

Whenever requested by LRL, other lots of HE will be evaluated. In the meantime further investigation and tabulation of the "rational" material constants will be made.