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ABSTRACT 

A Rayleigh s c a t t e r i n g  and l a s e r  Doppler ve1oc.imetry system has 

been developed f o r  s tudy lng  the  i n t e r a c t i o n  between the  vo r tex  s t r e e t  . 

behind a c y l  i n d e r  .and a two dimensional p lane flame f r o n t .  Measurements 

on an open j e t  methane/air  f lame s t a b i l i z e d  on a heated 0.25 mm p la t i num 

w i r e  showed apprec iab le  i n s t a b i l i t i e s  i n  the  f lame 'due t o  t h e  t u r b u l e n t  

eddies i n  t he  m ix ing  reg ion  of t he  j e t .  By enc los ing  the  f l o w  i n  a 

square channel f lame s t a b i l i t y  was increased. A 3.2 mm diameter '  c y l i n d e r ,  

w i t h  Ud/v = 90 and fd/U = 0.16, was used t o  generate a Kdrman vo r tex  

s t r e e t  a't a  frequency o f  22 Hz. Measurements i n d i c a t e d  t h a t  t h e  f lame 

motion i n  t he  wake i s  small compared t o  , the  sca le  o,f v o r t i c e s  shed by 

the  c y l i n d e r ,  b u t  t he  rms f l u c t u a t i o n s  i n  v e l o c i t y  i n  the  wake o f  the  

c y l i n d e r  were comparable t o  t he  rms f l u c t u a t i o n s  i n  Rayle igh s c a t t e r i n g  

through the  f lame. Furthermore, the  f lame upstream o f  the wake reg ion  

a l s o  f l u c t u a t e d  which would i n d i c a t e  t h a t  as a p o r t j o n  o f  t he  f lame 

f l u c t u a t e s ,  i t  pe r tu rbs  the  e n t i  r e  f l o w  f i e l d  upstream. 



INTRODUCTION 
. . 

The i n t e r a c t i o n  between f l u i d  mechanical t u rbu le r~ce  and the  combus- 

t i o n  process has long been recognized as impor tan t  t o  the understanding 

of combustor performance(1 ) . Numerous t u r b u l e n t  flame speed models have 

'been proposed; b u t  as ye t .  no complete theory e x i s t s  which s a t i s f a c t o r i l y  

accounts f o r  the  observed phenomenon(2). This  1  ack o f  understanding i s  

read i  l y  apparent i n  numeri c a l  'model i ng o.f t u r b u l e n t  combus ti on. For 

example, several  recent  s tud ies  aimed a t  p r e d i c t i n g  p o l  1  u t a n t  format ion 

i n  t u r b u l e n t  r e a c t i n g  flows us ing  t ime averaged approaches and simp1 i f i e d  

turbulence models have met wi. th on l y  f a i r  success, and t h e  p r i n c i p a l  

r e s u l t  f rom these s tud ies  i s  a r e c o g n i t i o n  o f  the need f o r  more r e a l i s t i c  

mode 1  s  (3,4) 

This s i t u a t i o n  i s  l a r g e l y  due t o  the l ack  o f  r e l i a b l e  experimental  

data. However, the recent  development o f  Rayleigh s c a t t e r i n g  and l a s e r  

Doppler ve loc imetry f o r  l o c a l  i zed densi ty and v e l o c i t y  measurements 

should make poss ib le  the  necessary t ime and space r e s o l u t i o n  requ i red  f o r  

a  more p rec i se  d e s c r i p t i o n  o f  turbulence and combustion i n t e r a c t i o n s .  

Fu.rthermore, t he  recent  r e c o g n i t i o n  o f  1  arge coherent s t r u c t u r e s  i n  many 

t u r b u l e n t  f l ows (5 )  r e q u i r e  t h e i r  cons idera t ion  i n  the t u r b u l e n t  model i n g .  

I t  was decided t o  use a  s i m p l i f i e d  experimental  model o f  . t h i s  s o r t  o f  

turbulence by s tudy ing  the  i n te ' rac t i on  o f  a  Kdrman v o r t e x s t r e e t  w i t h  a  

f 1  ame . 
The n v e r a l l  ob jec t i ves  o f  t he  i n v e s t i g a t i o n  are  t o  determine , 

the general c h a r a c t e r i s t i c s  of flame f r o n t  propagat ion i n  a  t u r b u l e n t  

premixed f l ow  and t o  develop an unders'tanding of the  var ious i n t e r a c t i o n s  

which occur between f l u i d  mechantcal turbulence and the  heat  re lease due 
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t o  t h e  combustion process. Th i s  r e p o r t  presents  the  r e s u l t s  o f  p r e l i m i n a r y  

measurements on a f ree  s tand ing  flame f r o n t  s t a b i l i z e d  on a h o t  w i r e  o r  

a smal l  c y l i n d e r .  ,The o b j e c t i v e s  were t o  determine (a )  the  s t a b i l i t y  of  

t h e  r e s u l t i n g  f lame f r o n t  under l am ina r  f l o w  c o n d i t i o n s  and t he  source o f  

any i n s t a b i l i t i e s  i f  they do e x i s t ,  (b) the  a b i l i t y  o f  Ray le igh  s c a t t e r i n g  

and l a s e r  Doppler v e l o c i m e t r y  t o  p rov ide  accura te  d e n s i t y  and v e l o c i t y  

measurements i n  a f lame system, and ( c )  t o  i n v e s t i g a t e  t he  f l u c t u a t i o n s  

i n  t h e  f lame f r o n t  caused by t he  Kdrman v o r t e x  s t r e e t  shed by a c y l i n d e r .  

Two s e t s  of  measurements a r e  descr ibed  i n  t he  f o l l o w i n g .  The f i r s t  

were c a r r i e d  o u t  i n  a 5 cm d iameter  open j e t  w i t h  t he  f lame s t a b i l i z e d  

on a heated p la t inum,  w i r e  and measurements of  t h e  average f lame p r o f i l e s  

and f l u c t u a t i o n s  due t o  t h e  f low systenl a r e  repor ted .  The second s e t  

o f  measurements were made i n  a 5 cm square channel w i t h  t h e  f lame s t a b i -  

l i z e d  i n  t he  wake o f  a smal l  rod.  The f l u c t u a t i o n s  due t o  t h e  f low 

system were much s m a l l e r  and measurements o f  the  flame p r o f i l e  and 

f l u c t u a t i o n s  i n  the  wake o f  a second r o d  were. c a r r i e d  o u t .  

EXPERIMENTAL APPARATUS AND PROCEDURE 

Flow System 

A schematic diagram o f  t he  exper imenta l  apparatus i s  shown i n  F i g .  1. A 

m i x t u r e  o f  metered gases ( a i r  and methane i n  any combinat ion)  a re  b rought  i n t o  

a s t a g n a t i o n  chamber o f  20 cm d iameter  equipped w i t h  w i r e  screens t o  damp 

o u t  f l o w  tu rbu lence .  From t h i s  chamber t h e  flow. passes e i t h e r  through a 

5 cm d iameter  nozz le  t o  an open j e t  (Fig. 21 o r  th rough a 5 cm square nozz le  



i n t o  a square channel w i t h  Pyrex w a l l s ,  shown i n  F ig .  3 .  The s tagna t i on  

chamber i s  mounted on an X-Y-Z t r a v e r s e  mechanism so t h a t  t h e  o p t i c a l  
L 

system c a n  remain s t a t i o n a r y .  A1 1 gases a r e  metered i n d i v i d u a l  l y  us ing  

ro tameters .  The g a s  m i x t u r e  can a l s o  be seeded w i t h  A1203 p a r t i c l e s  f o r ,  

. -1 ase r  ariemometry measurements. To. p r o v i d e  a p a r t i c l e  f r e e '  f low f o r  

Ray le igh  s c a t t e r i n g  measurements i t  was necessary ' t o  i n s t a l  1 an o i l / w a t e r  

removal f i l t e r  and a 1 pm p a r t i c l e  f i l t e r  i n  t h e  house a i r  system. A 

30 cm long., 7.5 cm d iameter  m i x i n g  chamber f i l l e d  w i t h  5 mm g lass  beads 

assures thorough p rem ix i ng  o f  gases-. 

Flame S t a b i l i z a t i o n  

A v a r i e t y  o f  f lame s t a b i  1 i z e r s  have been used b y  prev' ious i n v e s t i  - 
ga to r s  (2 '6) .  These i n c l u d e s i n g l e  and m u l t i p l e  rods,  w i r e s ,  d isks ,  w a l l  

recesses, vee g u t t e r s ,  and f l a t  p l a t e s .  Two i m p o r t a n t  cons ide ra t i dns  i n  

t h e  s e l e c t i o n  . o f  a s u i t a b l e  s t a b i l i z e r  a r e  t h e  r e s u l t i n g  s'tab,i li ty 
8 I 

c h a r a c t e r i s t i c s  and t u r b u l e n t  d is tu rbances  generated by t h e  f l  ame ho lde r  

i t s e l  f. Flame s t a b i  1 i ty  i s  enhanced by a large.  s t r o n g l y  r e c i  r c u l  a t i n g  

wake r e g i o n  downstream o f  t h e  f lame h o l d e r ( 6 ) .  It i s  necessary t o  m i n i - ,  

mize t h i s  l a t t e r  e f f e c t  i f  tu rbu lence  l e v e l s  a r e  t o  be e f f e c t i v e l y  

c o n t r o l  1 ed. 

Several  s t a b i  1 i z e r s  were ' t r i e d .  d u r i n g  t h e  course o f  t h i s  s tudy .  

I n  t h e  open j e t  measurements a 0.25 mm d iameter  e l e c t r i c a l l y  heated 

p l a t i n u m  w i r e  was used as shown i n  F ig .  2. The sma l l  .d iameter o f  t he  

w i r e  min imizes t h e  e f f e c t  of body generated t u rbu lence  on t h e  f lame f r o n t ,  

.and by h e a t i n g  the  w i r e  s t a b f  1 i z a t i o n  was p o s s i b l e  over ,  a reasonable 

range o f  f l o w  c o n d i t i o n s .  The. two p l a t e s  shown i n  F i g .  2 . funct ioned as a 



chimney and reduced somewhat t he  t u r b u l e n t  f l u c t u a t i o n s  i n  the mix ing 

regions o f  the  j e t  and the ambient a i r ,  which i n  t u r n  reduced the  f l u c t u -  

a t i ons  i n  the flame. 

I n  the '  c losed channel experimentals the  wake o f  a 1.6 mm diameter 

rod  was used t o  s t a b i l i z e  the flame, as some. d i f f i c u l t i e s  were encountered 

w i t h  the smal l  p la t inum wi.res. There d i d  n o t  appear  t o  be any f l u c t u a -  

t i o n s  i n  the  f lame f r o n t  due t o  the  wake o f  t h i s  rod. 

Rayle i  gh Sca t te r i ng  and LDV Sys terns 

A schematic of the Rayleigh- and LDV o p t i c s  system i s  shown i n  ~ i ~ .  4. 

I n  bo th  cases a 4 w a t t  argon i o n  l a s e r  ope ra t i ng  a t  488 nm was used. 

For the LDV measurements, beam s p l i t t i n g  i s  accomplished w i t h  a-back t o  

back pr ism arrangement which makes i t  poss ib le  t o  a d j u s t  t he  beam i n t e r -  

sec t i on  t o  the  desi red p o i n t  and thus minimize the measurement volume 

s i z e  and .achieve a more uniform f r i nge  spacing. Seeding o f  t he  f l ow  i s  

accomplished w i t h  a p a r t i c l e  generator  where choked a i r  j e t s  (0.4 ,mm d ia . )  

skim the  sur face o f  a suspension o f  3 pm nominal. diameter A1203 p a r t i c l e s  

i n  water.  This  p a r t i c l e  generator  i s  capable o f  p r o v i d i n g  a r e l a t i v e l y  

constant  p a r t i e l e  seeding r a t e  o f  up t o  2000 p a r t i c l e s / s e c  over  a pe r iod  

o f  several  hours. P a r t i c l e  s i z i n g  was done us ing  an impactor p l a t e  

separator  developed a t  LBL. The r e s u l t i n g  mass r a t i o  o f  p a r t i c l e s  less  

than 2.4 pm t o  those g rea te r '  than 2.4 pm was found t o  be approximately 

8.0. Frequency demodulation of the Doppler s i g n a l  i s  done by a commercial 

TSI 1090 LDV t racke r .  

Measurements of  gas d e n s i t y  from Rayle,igh s c a t t e r i n g  are c a r r i e d  

ou t  us ing  P/1.2 c o l l e c t i o n  o p t i c s  and an F/6 0.3 m McPherson spectro-  
. . 

meter. A n  uncooled RCA 1P28 photornul t ipl i e r  tube i s  'used a s  the de tec tor  



w i t h  the o u t p u t  read direct ly  on an electrometer. The laser  beam i s  

focused by a 100 -m focal length lens t o  a 70 pm waist diameter. Laser 

l igh t  scattered a t  a 90' angle i s  then'colli.mated by an F/1.2 collection 

lens and refocused on the entrance s l  i t  of the spectrometer. The 

resulting measurement volume i s  a cylinder 1.0 mm i n  length by 70 pm in 

diameter (Fig. 2 ) .  References (71, (8), and (9)  give a more complete 

discussion of the theory behind Rayleigh and LDV scat ter ing.  The proba- 

b i l i t y  density and spectrum of the tracker output a re  obtained using a 

Federal Sc ient i f ic  correlator  and spectrum analyzer. 

EXPERIMENTAL RESULTS AND DISCUSS I ON 

Open J e t  Measurements and Discuss ions 

I t  i s  well known that  laser  beam deflection and broadening can 

. L  

( 9 )  resul t  due to  gradients i n ,  the index of refraction in the flame . 
Since loss of spa t ia l  resolution can r e su l t ,  t h i s  e f fec t  was investigated 

by imaging the measuring volume onto a screen while a t  the same time 

traversing the flame with the laser  beam parallel  to  the flame front .  

A maximum deflection in the beam of one beam diameter (70 urn) was 

observed i n  a direction normal to  the flame. f ront .  Several traverses 

were repeated with the laser  beam inclined a t  a small angle t o t h e  flame 

front .  This in e f fec t  reduced the length o f ,  beam subjected to  large 

density gradfents. Negligible improvement i n  the beam deflection was 

noted a t  angles up t o  5'. Angles, greater than 5' would resul t  in a loss 

of spa t ia l '  resol.,ution greater than tha t  due . to  beam deflection. . .. 

Experimental measurements of f 1 ame densi t y  prof i 1 es were carr i  ed 
I 



ou t  f o r  a  methane a i r  f lame a t  an equ iva lence  r a t i o  of  0.755 and a nozz le  

e x i t  v e l o c i t y  o f  1  .15 m/s . The corresponding Reynolds ' number based on 

w i r e  d iameter  was 19.6. The r e s u l t s  a r e  shown i n  F igs .  5, 6, and 7 where 

norma l i zed  Rayle igh s c a t t e r i n g  i n t e n s i t y  and rms f l u c t u a t i o n  a re  p l o t t e d  

a g a i n s t  d i s t ance  from t h e  j e t  c e n t e r l i n e .  The Ray le igh  s c a t t e r i n g  

i n t e n s i t y  i s  r e l a t e d '  t o  t h e  gas d e n s i t y  , th rough  t h e  f o l l o w i n g  equat ion  ( 7 )  

where IR i s  t h e  i n t e n s i t y  o f  Rayle igh s c a t t e r e d  l i g h t ,  C i s  a  c a l i b r a t i o n  

cons tan t  o f  t h e  o p t i c s ,  I, i s  t h e  i n c i d e n t  l a s e r  l i g h t  i n t e n s i t y ,  N i s  t he  

t o t a l  mo lecu la r  number dens i t y ,  Xi i s  the  mole f r a c t i o n  o f  t h e  spec ies,  

and uRi i s  t h e  Ray le igh  cross sec t i on .  URi i s  r e l a t e d  t o  t h e  index  o f  

r e f r a c t i o n  ni by t h e  express ion  : 

As w i l l  be d iscussed l a t e r ,  t h e  Ray le igh  s c a t t e r i n g  i n t e n s i t y  i s  d i r e c t l y  , . 

p r o p o r t i o n a l  t o  d e n s i t y  and found t o  be independent o f  t he  changes i n  gas 

composi t ion d u r i n g  combustion t o  w i t h i n  3% accuracy f o r  t h e  p resen t  system. 

Traverses were taken across t h e  f lame normal t o  t h e  f r e e  s t ream f low 

d i r e c t i o n  ( n o t  normal t o  t he  f lame f r o n t )  a t  d is tances  o f  3 mm, 6  mm, and 

12 mm downstream o f  t he  w i r e .  

F l u c t u a t i o n s  i n  t h e  flame f r o n t  l o c a t i o n  were r e a d i l y  apparent.  Twu 

forms o f  i n s t a b i l i t y  were p resen t .  The f i r s t  was a low frequency (% 1  cps) 

v i s i b l y  observable random flame f r o n t  movement. Th is  i s  represen ted  by 

t he  e r r o r  bars  shown i n  t h e  da ta  and represen ts  an average u n c e r t a i n t y  i n  



. . 

flame front position of 0.1 mm, 0..25 mrn, and 1.0 mm for  the three cases 

respectively. T h i s  e f fec t  could be due to  several sources. Velocity 

profiles were measured using the LW system above the nozzle t o  determine 

flow uniformity in the absence o f  combustion. These are shown in Fig. 8 

along with rms values of velocl'ty fluctuations.  Data are presented a t  

distances of 3, 6 ,  and 12 mm above the nozzle ex i t .  and i t  can be seen 

that  the velocity profi les  are uniform over the en t i r e  region in which 

Rayleigh measurements were taken. RMS velocity fluctuation values of 

approximately 2% were measured a t  the nozzle centerline and these increased 

t o  a maximum of 10% a t  a distance of 24 mrn from the centerline. A t  7 mm 

from the center1 i ne (corresponding t o  the maximum distance over whi ch 

Ray1 ei  gh measurements were taken) the fluctuations have increased t o  

approximately 4%. 

The most l ikely source of the disturbance i s  the turbulent mixing of 

the j e t  with the ambient a i r ,  and the resulting interaction with the flame 

, front as i t  penetrates th i s  'turbulent region. Wh&n th i s  turbulent mixing 

zone was greatly minimized i n  the channel experiments discussed 1 a t e r ,  

the en t i r e  flame region could be made qui te  steady. Apparently these 

disturbances must propagate back upstream.and along the flame front .  The 

presence of the two walls shown i n  ~ l g .  3 a lso reduced the flame fluctu- 

a t ions  somewhat. 
. . .. .. . I ... _.._._._________.________l,__,___ - .  _ - .  - . ..<' 

In addition t o  the random fluctuations discussed above,, flame front  

. . 
osci l la t ions were found t o  ex i s t  a t  well defined frequenci.es of 88 and 

135 cps . A typical osci 11 oscope trace'  of these 'fluctuations , as we1 1 as the 
. ' 

corresponding spectrum analysis of th i s  s,ignal , :are shown in Fig. 9.  RMS 
. , 

values forc these oscll  latlons nomallzed by the local scat ter ing intensi ty  

are shown i n  Figs. 5, 6, and 7. For both the 3 rnm and 6 m cases, a 



maximum normal ized rms f l u c t u a t i o n  of approximately 0.30 was observed .: . . .  

I n  the 12 mm case, t he  maximum rose sharp ly  t o  0.62, i n d i c a t i n g  increased 

f l  uc tua t ions  as one moves f a r t h e r  downstream. 

A comparison between exper imenta l l y  measured and ca l cu la ted  values o f  

the Rayleigh i n t e n s i t y  r a t i o  across the  flame was.' made. The c a l c u l a t e d  

value, based on . t h e  assumption ' o f  a d i a b a t i c  combustion w i t h  equi 1 i b r i  um 

products, was found t o  be 0.153. ' .The corresponding experimental  value 

" ( f rom Eq. 1 )  was 0.155 t 0 . 0 1 ,  i n d i c a t i n g . g o o d  agreement. .The above, 
. . 

c a l c u l a t i o n  was repeated assuming 100% N2 a t  the ad iaba t i c  f lame temper- 

a t u r e  t o  i n v e s t i g a t e  t h e  e f f e c t  o f  m ix tu re  composit ion on t h e  Rayleigh 

s i g n a l .  Agreement was w i t h i n  31of  the  value assuming e q u i l i b r i u m  

products. T h i s  i n d i c a t e s  t h a t  the  sca t te red  i n t e n s i t y  i s  approximately 

independent o f . t h e  degree o f  reac t ion .  and i n v e r s e l y  p r o p o r t i o n a l  t o  the  

dens i ty  f o r  t he  cond i t ions  o f  t h i s  experi'ment. 

For an i d e a l i z e d  one dimensional f lame fro.nt i n c l i n e d  a t  'an angle 

0 t o  the incoming gas ' f low,  the  burn ing  v e l o c i t y  Ub i s  r e l a t e d  t o  the  

(6) incoming v e l o c i t y  Ui by the  expression 

Ub = Ui s i n  0 

I n  ac tua l  f lame systems the  f l o w  upstream o f  the  flame f r o n t  diverges so 

t h a t  Eq. (2)  does n o t  ho ld  unless the  r i g h t  hand s i d e  i s  replaced by the  com- 
I 

ponent of f l o w  v e l o c i t y  normal t o  a p a r t i c u l a r  f lame f r o n t  i,sotherm. 

Based on measurements taken . a t  3 mrn and 6 mm p o i n t s ,  t h e '  f lame i n c l i n a t i o n  

angle was found t o  be. 22.3'.   or an incoming ve l 'oc i ty  of  1 .:15 m/s , E q _  ' ( 2 )  

gives a b u r n i n g  v e l o c i t y  o f  0.43 m/s. This  compares w i t h  a laminar  flame 

speed of 0.26 m/s ('O) f o r  a c ~ ~ / a i i  f lame a t  t he  same c o n d i  !ions. 



Smith 'and Gouldin have noted i n  a s i m i l a r  study us ing  LDV and 

h o t  w i  r e  'anemometr~ t h a t  cons idera t ion  o f  f low d i  vergence upstream of the  

f lame f r o n t  cou ld  r e s u l t  i n  flame speeds lower by up t o  50% over  those 

determined by the  d i r e c t  angle method ( E q .  (2 ) )  and probably w i  11 l a r g e l y  

account f o r  t he  d i f f e r e n c e  i n  flame speeds. 

A comparison of f lame f r o n t  th ickness was made w i t h  values pub l ished 

i n  t he  l i t e r a t u r e .  The apparent flame ' f r o n t  th ickness.  was determined 

from the  experimental  .Rayleigh i n t e n s i t y  p r o f i l e s ,  Figs. 5 through 7. 

A convent ional  d e f i n i t i o n  f o r  flame f r o n t  th ickness was used which i s  

g iven by (12) 

where p .  i s '  the  gas dens i ty  and the  subsc r ip t s  b and u r e f e r  t o  burned and 

unburned gases respec t i  ve ly  . (dpldz),,, i s the  maximum densi t y  g rad ien t  

i n  the f lame zone. Values c a l c u l a t e d  from E ~ .  (3 )  f o r  the th ree  cases 

of the  present  i n v e s t i g a t i o n  are  shown i n  Table I. These can be compared 

(12) w i t h  a value o f  0.96' mm from the  l i t e r a t u r e  . 

TABLE I - Flame Front  Thickness 

Distance above Flame Front  - 
Flame ~ o l d e r ,  mm I h i  ckness , 111111  



The est imated e r r o r  l i m i t s  on the ca l cu la ted  values o f  t h i s  i nves t i ' ga t i on  

are  based on unce r ta in t y  i n  the f lame f r o n t  l o c a t i o n  due t o  the  random 

f l u c t u a t i o n s  noted e a r l i e r .  I t  can be seen t h a t  t he .va lues  a t  3 mm and 
. . 

6 mm f rom the  flame ho lde r  a re  comparable w i t h  the  pub l ished value. As 

one moves downstream, however, the,  averaged flame f r o n t  th ickness increases 

s i g n i f i c a n t l y .  This  i n c r e a s e  i s  probably due t o  f l uc tua t i ons  i n  flame 

' f r o n t  p o s i t i o n .  Under cond i t ions  o f  t u r b u l e n t  upstream f l ow  Smith and 

~ o u l d i n " '  ) a l s o  noted a  s i m i l a r  i n c r e a s e  i n  f lame f r o n t  th ickness.  

The r e s u l t s  of LDV measurements across the  flame a re  shown i n  Fig. 10 

f o r  t he  v e l o c i t y  component p a r a l l e l  t o  t he  j e t  ax i s .  A t  d is tances of 

. . 
3 and ' 6  mm above t h e  w i r e  a  r e l a t i v e l y  w e l l  de f ined v e l o c i t y  increase o f  

10% i n d i c a t e s  the  l o c a t i o n  of the f lame f r o n t  w h i l e  a t  12 mm downstream 

t h e  v e l o c i t y  - p r o f i l e  has become , q u i t e  spread out  and i t  i s  d i f f i c u l t  t o  

determine a  f lame f r o n t  l o c a t i o n .  Flame f r o n t  p o s i t i o n s  determined from 
, . 

F ig .  l o a r e  i n  general agreement w i t h  those determined from the  Rayleigh 

r e s u l t s .  The flame spread angle and flame speed were c a l c u l a t e d  based on 

the  p o i n t  a t  which the v e l o c i t y  had increased by 2%' from the  f ree stream 

value. .  The r e s u l t i n g  f lame speed was 0.48 m/sec, compared w i t h  a  value 

o f  0.43 m/s c a l c u l a t e d  from Rayleigh s c a t t e r i n g  measurements. Considering 

d i f f i c u l t i e s  i n  d e f i n i n g  a  f lame f r o n t  l o c a t i o n  f o r  the  two sets o f  

measurements such agreement i s  reasonable. 

-RMS values f o r  v e l o c i t y  f l u c t u a t i o n s  were measured and found t o  be 

. . i n  the  same range as those shown i n  F ig.  8  f o r  f l ow  above the  nozzle w i t h o u t  

combustion. No o s c i l l a t i o n s  were,.observed a t  88 and 135 cps as was' found 

du r ing  t h e '  ~ a ~ l  e i  gh measurements.   ow ever , based on flame f r o n t  f l  uctu-  

a t i ons  i n d i c a t e d  by t h e  Ray1 eigh. measurements, maximum. v e l o c i t y  f1,uctu- 

a t i o n s  on the  order  of 3% would be expected due t o ' t h e  r e l a t i v e l y  smal l  

changes i n  v e l o c i t y  across the fiame. No t ing  t h a t  the  minimum s e n s i t i v i t y  



o f  the present  LDY system .appears t o  be 2 t o  3%, i t  . i s  poss ib le  t h a t  the 

f l u c t u a t i o n s  cou ld  be present bu t ,be low  measureable l i m i t s .  

Closed 'Channel Measurements 'and ' DisCQSSion 

I n  o rder  t o  reduce the  f l u c t u a t i o n s  i n  . the  f lame f r o n t  the. f l ow  

sys tem was changed t o  5  cm square channel' w i t h  pyrex wa l l s ,  a s  shown i n  
. . 

F ig.  3, .and the  fl,ame was s t a b i l i z e d  i n  the  wake o f  a  1.6 rnm diameter 

rod.. Stephenson 3, has found t h a t  flame moveme,nt along a  w a l l  can be 

minimized by i n j e c t i n g  a  t h i n  l a y e r  o f  N2 aiong the  w a l l  t o  e f f e c t i v e l y  

quench the  flame i n  the  region.  This was done through 100 pm porous 
d 

mate r ia l ,  3 . 2  m m  t h i c k  a t  t h e  base o f  each o f  t h e  pyrex w a l l s .  The 

- n i t r o g e n  a l s o  helped keep the  flame f r o m . f l a s h i n g  back a long the  corners 

o f  t he  nozzle where the  v e l o c i t y  g rad ien ts  a re-  r e l a t i  ve l y  smal l  .. The 

, f l o w  f i e l d  w i t h o u t .  combustion was mapped w i t h  a  h o t  f i l m  anemometer and 

found t o  be uniform.. Turbulence l e v e l s  were o f  the o rde r  of 1.5%.'and 

loweb. lo he v$ ib t i t y  a t  the  channel. entrance was 0.'424 m/s and the equi -  

valence r a t i o  o f  the  methanela i r  f lame was '0.77. 

Rayleigh s c a t t e r i n g  p r o f i l e s  were  taken o f t h e  und is tu rbed  flame a t  

d i i t a n c e i  o f  5, 7.5, 10, and 12.5 mm downstream o f  the  f lame ho lder .  A 

t y p i c a l  p r o f i l e  i s  shown i n  Fig. 11.. The s c a t t e r i n g  o f  l a s e r  l i g h t  from 

the  pyre,x windows o f  the  channel i n t o  t h e  de tec t i on  o p t i c s  was a  s u b s t a n t i a l  

f r a c t i o n  of t h e ' s i g n a l  , ,ranging from 20% t o  100% o f  t h e  Rayleigh s igna l  

from room temperature a i r .  This  background s c a t t e r i n g  was s t r o n g l y  

dependent on the d i r t  and imperfect ions i n  t h e  pyrex g lass w a l l  where the  

l a s e r  beam entered and e x i t e d  the  channel, and thus would vary s t r o n g l y  

from measurement p o i n t  t o  measurement p o i n t .  A c o r r e c t i o n  Tor the back- 

ground s c a t t e r i n g  was made f o r  every measurement by moving the  image of 



t he  spectrometer s l i t  t o  p o s i t i o n s  j u s t  above and below the  l a s e r  beam, 

where t h e r e  i's no Raylei'gh scatter i 'ng s i g n a l  b u t  where the  ,background 

s c a t t e r i n g  i s  approximately t he  same. These i n t e n s i t i e s  were averaged 

( they were n o t  equal, i n  general) and subt rac ted  from t h e  Rayleigh p lus  

background measurement t o  .ob ta in  the  Rayleigh s c a t t e r i n g .  Even t h i s  

' c o r r e c t i o n  procedure had considerable inaccuracy,. a'nd i s  probably 

respons ib le  f o r  much of the  e r r o r  i n  th.e data t o  be presented. By 

comparisons, t he  background s c a t t e r i n g  'was negl i g i  b l e  i n  t he  open j e t  

f l  ame p r o f i  l e  measurements descr ibed p rev ious l y .  

I t  was a l so  found t h a t  t h e  Rayleigh s igna l  i n  the  reg ion  o f  the  flame 

f r o n t  o s c i l l a t e d  slow1y.an.d somewhat i r r e g u l a r l y  a t  a r a t e  o f  about one 

cyc le  every two minutes. Apparent ly the  f lame p o s i t i o n  was vary ing  by as 

much as 1 mm, even though the  flow r a t e  remained steady. We have con jec tured 

t h a t  t h i s  wandering may be due t o  some thermal e f f e c t  associated w i t h  the  

channel w a l l s .  I n  any event the  o r i g i n  has n o t  been determined and i t  

was a source o f  considerable e r r o r .  

No i n d i c a t i o n s  of  f l u c t u a t i o n s  i n  the  Rayleigh s c a t t e r i n g  s igna l  i n  

t he  reg ion  o f  t he  flame f r o n t  ( o r  a t  any p o s i t i o n )  were found, f o r  

frequencies up t o  approximately 100 Hz. There i s ,  o f  colrrze, t he  shot  

no ise  generated by t h e  photoe lec t ron  - c o l l e c t i o n  i n  the p h o t o m u l t i p l i e r .  

This  no ise  i s  independent ' o f  frequency and was subt rac ted  from the  

measured, rms f l u c t u a t i o n s .  The ac tua l  s e n s i t i v i t y  o f  t he  o v e r a l l  system 

t o  f l u c t u a t i o n s  i n  dens i ty  was about 1% f o r  frequencies up t o  1000 Hz. 

The e f f e c t  of f l uc tua t fons  i n  . the f low f i e l d  on t h e  flame f r o n t  was 

i n v e s t i g a t e d  by a1 lowing the Kdrman vo r tex  s t r e e t  behind a c y l i n d e r  t o  

i n t e r a c t  w i t h  the  f1ame"front.  .As shown . i n  F ig ;  3, a 3.2 mrn diameter r o d  

was p laced i n  the  same a x i a l  l o c a t i o n  as the  flame ho lder ,  w i t h  8 mm t ransverse 



separa t ion .  Accord ing t o  ~ o v d s z n a ~ " ~ ) ,  t h e r e  i s a  unique r e l a t i o n  

between t h e  c y l i n d e r  Reynolds number and t h e  S t rouha l  number, S t  = fd/U, 

wh'er'e f i s  , the  frequency o f  v o r t e x  sheddfngs, d  i s  t h e  r o d  diameter,  and 

U i s  t h e  f r e e  s t ream f l o w  v e l o c i t y .  There i s  a l s o  a  c r i t i c a l  Reynolds 

number o f  40 below which t h e r e  i s  no Kdrman v o r t e x  s t r e e t .  The Reynolds 

number of  t he  3.2 mrn r o d  was 90, corresponding t o  a  S t rouha l  number of  

0.16 and v o r t e x  sheddi'ng a t  21.2 Hz. 

P r o f i l e s  o f  t h e  mean Rayle igh s c a t t e r i n g  s i g n a l  and t h e  rms f l u c t u -  

a t i o n s ,  were taken i n  t h e  r e g i o n  of t h e  f lame a t  a  s e r i e s  o f  a x i a l ' p o s i t i o n s .  
b .  

. , S p e c t r a l  a n a l y s i s  o f  t h e '  f l u c t u a t i o n s ,  i n d i c a t e d  a, peak a t  22 Hz, wh ich  

compares we1 1  w i t h  t h e  p r e d i c t e d  va lue  o f  21.2 Hz. There was a l s o  an 

a d d i t i o n a l  peak a t  10.5 Hz w i t h  about h a l f  t he  amp1 i t u d e ,  which i s  as 

y e t  unaccounted f o r .  Fo r  t h e  measurements t o  be r e p o r t e d  t h e  rms va lue  

o f  t h e  f l u c t u a t i o n s ,  ove r  a  bandpass o f  approx imate ly  5  Hz t o  1000 Hz, 

was measured w i t h  an rms meter  w h i l e  t h e  average values were e i t h e r  read 

f rom t h e  e l ec t rome te r  o r  f rom a  d i g i t a l  vo l tme te r .  

A t y p i c a l  p r o f i l e  o f  t h e  mean Rayle igh s i g n a l  where t he  f lame i s  i n  

t h e  wake o f  t h e  r o d  i s  shown i n  F ig .  12. The two f lame p r o f i l e s  sketched 

i n d i c a t e  t h e  apparent maximum excurs ions  o f  t h e  slow 0.5 c y c l e  p e r  minute 

f l u c t u a t i o n  i n  f lame p o s i t i o n .  One shou ld  n o t e  t h a t  t h e  accuracy o f  these 

measurements i s  l i m i t e d ,  due t o  t h e  u n c e r t a i n  background s c a t t e r i n g  

si.gna1, and t h a t  t h e  t r u e  f lame d e n s i t y  p r o f i l e  c o u l d  have a  somewhat 

d i f f e r e n t  shape. I n  genera l ,  a l l  t h e  f lame p r o f i l e s  were s i m i l a r  t o  F ig .  12, 

b u t  w i t h  d i f f e r e n t  c e n t e r  p o s i t i o n s  and w id ths .  

A '  t y p i c a l  p r o f i l e  of t he  rms f l u c t u a t i o n  i n  t h e  R a y l e i g h ' s i g n a l  i s  

shown i n  F ig .  13 f o r  a  p o s i t i o n  6 mm downstream from t h e  f lame ho lde r .  

The f l u c t u a t i o n s  decrease t o  zero  o u t s i d e  t h e  f lame zone, as expected. 



The other f l uc tua t i on  p ro f i  l es  ,are f a t  r l y  s imi  1 ar .  

The cor re la t ion  of the center of the f l m e  densi.ty p r o f i l e s  w i t h  

the center of the flame f luc tua t ion  p ro f i l e s  7s shown I n  Fig. 14. This cor- 

r e l a t i o n  i s  qui'te, good, and i.t appears t ha t  the two centers coincide qu i t e  

we l l .  The correlatl 'on of the wl'dthr.of the flame density p ro f i l e s  w i t h  

, t h e  wid th  o f  the flame f l uc tua t i on  p r o f  les ,  shown i n  Fig. 15, i s  no t  so 

good.. The flame wid th  was taken as defined by Eq. 3 and the h a l f  peak 

\ 
. . i n t e n s i t y  w id th  was used f o r  the wid th  of the flame f luc tua ' t i on  p ro f i l e .  

' . We be l ieve t h a t  the sca t t e r  i s  due t o  the previously discussed er rors  i n  

the data, which are exaggerated by. the d i f ferenc ing requi  red t o  obtaln 

the widths. With in these er rors ,  the two widths appear comparable. 

The pos i t i on  o f  the flame f r o n t  as determined by a ser ies of trans- 

verse p r o f i l e  measurements a t  various ax ia l  locat ions i s  shown i n  Fig. 16. 

The mean loca t ion  i s  taken from the center o f  the f l uc tua t i on  p r o f i l e s ,  

and. the "e r ro r  bars" ind ica te  the ha l f - in tens i  t y  width o f  the f l uc tua t i on  
. . 

. . , 
p ro f i l es . '  ~ l s o  shown o n  eke f i g u r e  i s  the l oca t i on  o f  the flame i n  the 

absence o f  the wake generating rod. ,The flame moves subs tan t i a l l y  c loser  

t o  the rod, as would be expected due t o  the decreased ve loc i t y  i n  the 

wake region. There may a lso be an increase i n  the flame propagation 

ve loc i t y  due t o  the increased mixing i n  the wake vort ices;  however, 

. de ta i led  ve loc i t y  measurements would 'be necessary t o  determine t h i s  ef fect . '  

Measurements of the mean and rms ve loc i t i es  i n  the wake o f  the rod , , 

were made using a. hot  f i l m  anemometer probe, i n  the absence of the flame. 

The p ro f i l es  agreed w i t h  the measurements o f  ~ o v h s z n a y ' ~ ~ ) ,  and the width 

o f  the f l uc tua t ion  region, based on the 5% normallzed rms l eve l ,  i s  shown 

i n  Fig. 16. The maximum ms f l uc tua t ions  were about 12%. I t i s  immediately 

obvious ' tha t  the wid th  of the f1&ne region i s  much less than the widtk o f  
. . 



the  wake. However, the  rms f l u c t u a t i o n s  i n  v e l o c i t y  i n  the  wake of the  

c y l  inders  were comparable t o  the rms f l u c t u a t i o n s  i n  Rayleigh s c a t t e r i n g  

through the flame. Fur ther ,  there  a re  f l u c t u a t i o n s  i n  the flame l o c a t i o n  

c lose  t o  the  f lame ho lder  where there  i s  no d is turbance o f  the  f l ow  by the . . ' 

wake, a t  l e a s t  i n  the  case where the  flame i s  absent. 

. . 
I n  the p resenceo f  the  flame the  s t reaml ines  upstream o f  the flame are 

curved outward: from the  center  o f  the channel, due t o  the p a r t i a l  b lock i9g  o f  

the f l ow  by the dens i ty  'decrease associated w i t h  the  flame. As a  r e s u l t  the  

wake o f  t he  rod w i l l  a l so  be curved outward. Since the  presence of the  

f lame f r o n t  a f f e c t s .  the e n t i r e  f l ow  f i e l d  i n  the reg ion  upstream of the 
. , 

f r o n t ,  i t  i s  reasonable t h a t  the f l u c t u a t i n g  f lame w i l l  cause a  f1,uctuat ing 

per tu ' rbat ion o f  the  f l ow  f i e l d .  This  cou ld  be responsib le f o r  t he  f l u c t u -  

a t i ons  i n  the f lame f r o n t  i n  the  reg ion  c lose  t o  the  flame ho lder  where 

' t t ie f low i s  n o t  d i r e c t l y  a f f e c t e d  by the wake o f  the  cy l inder , .  

The w id th  o f  the  f l u c t u a t i n g  f lame reg ion ,  i n d i c a t e d  by the bars i n  

F ig .  16, i s  shown i n  F ig .  17 p l o t t e d  aga ins t  the  t ransverse flame p o s i t i o n s .  

There appears t o  be near ly  l i n e a r  increase i n  w id th  i n  t he  reg ion  near 

the f lame holder ,  a  l e v e l i n g  o f f  d i r e c t l y  above the  rod, fo l lowed by a  

sharp increase t o  about 1.5 mm, a f t e r  which i t  remained f a i r l y  constant.  

A study o f  plane o s c i l l a t i n g  f lame f r o n t s  has p rev ious l y  been 

repor ted  by Peterson and ~ r n m , o n s ( ~ ~ ) ,  where a  f lame ho lder  was osc i  1 l a t e d  . ' 

t ransverse t o  the  f l o w  and the  shape o f  the  f lame f r o n t  was recorded. A t  

low frequencies the  o s c i l l a t i o n s  grow sl.owly i n  ampl i tude as one 

progresses along' t h e  f lame f r o n t ,  away f r o m  the  o r i g i n ,  whi l e  a t  h ighe r  

frequencies the  osc i  1  l a t i o n s  a rc  damped. T h e i r  measurements are  i n  

(16) reasonable agreement w i t h  a  t h e o r e t i c a l  d e s c r i p t i o n  due t o  Markste in . 
These r e s u l t s  p r e d i c t  a  very moderate decay of the  22 Hz o s c i l l a t i o n s  

found i n  the  present  measurements. I t  i s  n o t  c l e a r  what bear ing  t h i s  has 

on the' present experiment, except i n  t h e  reg ion  f u r t h e s t  from t h e  flame ho lder  



where t h e  f low p e r t u r b a t i o n  due t o  t he  wake shou ld  be sma l l .  In ,  t h i s  

r e g i o n  . the o s c i  11 a t i o n s  a r e  pro'bably, generated upstream i n  t h e  s t r o n g e r  
. . 

wake r e g i o n  and t h e  flame s t r u c t u r e  shou ld  have an o s c i l l a t i n g  shape. 

However, i n  t he  r e g i o n  near  t h e  flame h o l d e r  t h e  o s c i l l a t i o n s  shou ld  be 

o f  d i f f e r e n t  charac te r ,  perhaps due t o  p e r t u r b a t i o n s  i n  t h e  f l o w  v e l o c i t y  

as d iscussed e a r l i e r .  The wake reg. ion i t s e l f  has a  s t r o n g  v o r t e x  . . 

s t r u c t u r e  w h i c h  w i i  1  d i r e c t l y  a f f e c t  t h e  f lame propagat ion .  

SUMMARY' 

An exper imenta l  apparatus and technique f o r  s t udy ing  t h e  . e f f e c t  of 

f l o w  f l u c t u a t i o n s  and tu rbu lence  on p lane  f lame f r o n t s  has been developed. 

The d i a g n o s t i c  techniques. c o n s i s t  o f  Rayle igh ' s c a t t e r i n g  f o r  t ime  reso l ved  
.- 

d e n s i t y  measurements and l a s e r  Doppler ve loc ime t r y  f o r  v e l o c i t y  measure- 

.. ments. I 

When a  p lane  f lame f r o n t ,  o r i g i n a t i n g  a t  a  smal l  w i r e  o r  rod,  i s  

c rea ted  i n  an open methane/a i r  j e t ,  t h e r e  a re  app rec iab le  f l u c t u a t i o n s  

i n  t h e  f lame f r o n t  d e n s i t i e s  a t  a l l  p o s i t i o n s  a long  t h e  f lame even though, 

1fl t he  absence o f  t h e  flame f r o n t ,  t h e  t l o w  i s  q u i t e  steady i n  t h e  c e n t r a l  

co re .  The l a r g e  s c a l e  t u r b u l e n t  eddies i n  t h e  m ix i ng  r e g i o n  o f  t h e  j e t  

and t he  ambient a i r  cause t h e  f lame t o f l u c t u a t e  cons iderab ly  i n  t h i s  

r e g i o n  and i t  appears as though these f l u c t u a t i o n s  a r e  a b l e  t o  p e r t u r b  

t he  f lame f r o n t  upstream i n  t h e  c e n t r a l  co re .  

By e n c l o s i n g  t h e  f l o w  i n  a square channel with Pyrex g lass  wal l 's ,  a 

steady p l ane  flame f r o n t  c o u l d  be generated. A p r e l i m i n a r y  s tudy  o f  t h e  

. i n t e r a c t i o n s  ' o f  t he  f lame f . ront w i t h  t he  v o r t i c e s  shed -from a  c y l i n d e r '  
. . .  



was c a r r i e d  out .  F luc tua t i ons  i n  the f lame f r o n t  were found bo th  upstrean1 

and downstream o f  the  . . wake reg ion  o f  the  c y l i n d e r .  I n  the  wake regions,  

t he  w i d t h  o f  the  f l u c t u a t i n g  f l a m e f r o n t  was smal l  *compared t o  t h e  sca le  

o f  the  v o r t i c e s  generated by t h e  c y l i n d e r ,  a l though the  kms values o f  wake 

v e l o c i t y  f l u c t u a t i o n s  and flame dens i t y  f l u c t u a t i o n s  were  comparable. 

A S  i n  t he  open j e t  measurements, i t  appeared as . . thaugh the  f lame f r o n t  

f l u c t u a t i o n s  i n  t he  wake reg ion  were ab le  t o  p e r t u r b  t h e  flame. f r o n t  up'- 

stream i n  t h e  f low reg ion  which was undisturbe.d by the  wake (&  l e a s t  i n  

I the  -absence o f  a  flame). 
. . . . 

I t  appears' t h a t  motion o f  t h e  f lame f r o n t  w i l l  p e r t u r b  t he  e n t i r e  

f l ow  f i e l d ,  so t h a t  t he  f lame and the  d i r e c t i o n  and v e l o c i t y  

o f  t he  f l o w  before t h e  f lame f r o n t  are coupled. ' I n  f a c t ,  i t  . i s  we1 1 

known t h a t  t h e  1.aminar sheet f lame f r o n t s  s tab. i , l ized on a  r o d  c rea te  a  

,. wedge-type . f low around t h e  flame, cons iderab ly  p e r t u r b i n g  t h e  . f low 

upstream.of  t he  f lame. It then fo l l ows  t h a t  i f  a  reg ion  o f  t h e ' f l a m e  

f r o n t  i s ' - f l  uc tua t i ng ,  then i t  w i l l  cause f l u c t u a t i o n s  i n  the  upstream 

f low.  Th is  may be a  mechanism which i s  capab1.e o f  e x p l a i n i n g  t h e  upstream 

flame f l u c t u a t i o n s  observed bo th  i n  t h e  open j e t  . f l ow  and i n  t h e  channel 

f l o w '  perturbed by the  wake o f  d cyl inder.  



REFERENCES 

1 . -  ld i l l i ams,  F. A . ;  ' C o m b u S t i o ~ ' T h ~ o r y ,  Addison-Wesley, London, 1965. 

2. Beer, 3 .  M. and Ch ig ie r ,  N,. A., CombUStion ~ e r o d ~ n a m i  cs , Hals ted  
Press,'New York, 1972,' p. 60. 

3. ' ~ c h e f e r ,  R. A .  And Sawyer, R. F . ,  s i x t e e n t h  Symposium ( ~ n t e r n a t i o n i l )  ' . ., 

on Combustion, The'Combustion I n s t i t u t e ,  ( t o  be pub l i shed) .  

4 .  'P ra t t ,  D-. T., F i f t e e n t h  Symposium ( I n t e r n a t i o n a l  ) on Combustion, 
'1.339, The Combustion I n s t i t u t e ,  1975. 

5. Laufer ,  J. , Annual Review of F l u i d  ~ e c h a n i c s  , 7, 1'975, pp. 307-326. 

6 .  Lewis, B. and von ' ~ l b e ,  G., Combustion, Flames, and ~ x p l o s i o n s  i n  
Gases. Academic Press. New York, 1961. . . 

7. Robben, F., "Comparison o f  dens i ty  and Temperature Measurement Using 
Raman S c a t t e r i n g  and Rayle igh Scatte'r ing,"'pres-ented a t  Work- 
shop on Combustion Measurements i n  J e t  Propu ls ion  Systems, 
La faye t te ,  Ind., May 22-23, 1975. 

8.. Ch ig ie r ,  N..,A., "Combustion D iagnos t ics  by Laser ~ e l o c i m e t r y  ," 14th  
Aerospace Sciences Meeting, paper. 76-32, Jan. 1976, 
Washington, D.C. . . 

9. ' Rudd., ,M. J. , J . o f  Physics , - 2., 1'969. 

' , 10. ~ n d r e w s ,  G. E. and Bradley, D., Comb. Flame, - 19, 275, 1972. 

Smith, K. 0. and G o u l d i n ,  F. C . ,  "Experimental ~ n v e s t i ~ a t i o n  o f  Flow 
Turbulence, E f f e c t s  on :Premixed Methane-ai r Flames ," AIAA 15th 
Aerospace Sciences ' meet i  ng ; paper 77-1 83, Los Angel es , C A  ,. 

; Jan. 24-26, 1977. 

Fr is t rom,  R. M. and Westenberg, A. A., Flame S t ruc tu re ,  McGraw-Hill, : 

New York, 1965. 

Stephenson, D. A:, p r i v a t e  communication, G. M. - Corp. Labora tor ies ,  
Warren, M i  c'h. 

Kova'sznay , L. S. G; ,  roc. Roy. Soc ., A. - 198, 174-1 90, 1949. 

Peterson,.R. E;, Emmons, H. W. ,  phys. of F l u i d s ,  4,  no. 4, p .  456, 
1961. . 

. . 

Markste in,  G. H.' ed., "Non-Steady Flame Propagat ion ," Macmi 1 l a n  Co. 
'New Y o rk  , 1 964. , ' . . 



screens 

X B L  577-956 

FIGURE 1 ; Experimental .Apparatus 
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FIGURE 2..  Wire Stabilized Flaine 
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~ i ~ u r e  3 .  Top view of ' . square channel 





Distance from center line ( mm ). 

. ' XBL 577-958 

FIGURE I Variation of normalized Rayleigh scattering 
intensity and MIS fluctuations with distance 
from centerline. Traverse at 3 mm above wire. 
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FIGURE 6 .  V?riation of normalized Rayleigh scattering 
intensity and' RMS fluctuatio'ns with distance 

. from centerline. Traverse at 6 mm above. wire. 
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FIGURE ' 7 ,  V a r i a t i o n  o f  normal ized Ray l e i g h  s c a t t e r i n g  i n t e n -  
. s i t y  and RVS f l u c t u a t i o n s  w i t h  d i s t a n c e  from c e n t e r -  
l i n e .  T r a v e r s e  a t  12 mm above w i r e .  
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F I G U R E 8 .  Velocity profiles and rms fluctuations above 
the nozzle without combustion. Mean velocity: 
0 -  z = 3 m m , E -  z =  6 m m , O -  z = 1 2 m m ;  
N1S fluctuations: V - z * =  3 m m , A -  z = 6 mm, v- z = 12 mm. 



Oscilloscope trace of Rayleigh 
signal-6 mrn from nozzle exit and 
3.5 mm from centerline (5 ms/cm 
sweep rate). 

' Spectrum of Rayleigh signal. 
(200 Hz fill 1 scale). 

Figure 9 
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. . .. -. 
FIGURE 10.. variation of velocity with distance from centerline" 

~raverses at 3 mm; 6 mm and 12 mm downstream from. 
nozzle exit. 

. . 



Figure 11. Variationofnormallzed Rayleigh scattering intensity with distance from centerllne 
at 5 mm above flameholder for undisturbed flame. 



DISTANCE FROM AXIS,  (mm) 

Figure 12. Variation. of normalized Rayleigh scattering intensity with distance from c&nt&line-at 
12.5 mm above flameholder for flame disturbed by the .wake behind cylinder. 



DISTANCE FRCM A X I S ,  ( rnm ) 
F i g u r e  13. RMS f l u c t u a t i o n s  w i t h  d i s t a n c e  from c e ~ l t e r l i n e  a t  6 mm above 

f l ameholder .  
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DISTANCE I ,  FROM CENTER~F,FLAMETOAXIS,,(mm) 
Figure 14.. Correlation of flame location w i t h  location of maximum RMS fluctuation. 



.WIDTH OF FLUCTUATION REGION, w (mm) 
~ i ~ ~ r e  15. Coirelaiion of flame thickness with width of RMS fluctuations. 

. . 



DISTANCEFROM AXIS . ( m m )  

Figure 16. Flame location 
- for undisturbed flame 
- for flame disturbed by the wake , 

behind a' cylinder .o - boundary o f  the wake of the cylinder 
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' .  Figure 17. Width of. RMS fluctuations' with distance from centerline. . . ,+ . . 




