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D r i l l  ing Dbject i  ves 
, 

The HDR geothermal resource i s  derived from a 
~ subsurface region which exhibi ts a re la t i ve l y  high 

geothermal gradient. A t  the Fenton H i l l  s i te,  
g ran i t i c  basement rock i s  encountered a t  a depth o f  
2400 ft (730 m) and exhibi ts a s t a t i c  geothermal 
temperature o f  53OOF (275OC) a t  a t rue  ver t ica l  
depth of 14,500 ft (4.48 km). Hydraulic fractures 
i n  the g ran i t i c  rock ace ver t ica l  and preferen- 
t i a l l y  oriented i n  a northwesterly direction. The 
rock matrix i s  porous (<lX), but i s  essent ia l ly  

permeable (1.0 t o  10 aricrodarcies). 

The method o f  heat extract ion experiments cur- 
n t l y  underway a t  the Fenton H i l l  s i t e  require 

. that  t w o  boreholes, one in jec t i on  and one produc- 
t i o n  well, be d r i l l e d  t o .  a depth exhibi t ing an 
economically a t t rac t i ve  reservoir temperature. I n  
order t o  enhance reservoir production objectives, 
the two wells w i l l  be inc l ined 35* from the ver- 
t i c a l  through the reservoir  region a t  an azimuthal 
d i rect ion normal t o  the preferred fracture orienta- 
t ion.  The wel ls w i l l  be d r i l l e d  ve r t i ca l l y  coplan- 
a r  wi th  a constant separation o f  1200 ft (370 m) 
between the underlying i n jec t i on  w e l l  and the over- 
l y i n g  producer. Figure 1 i l l u s t r a t e s  the above 
descr ibed geometry o f  t h e  EEL2/EE-3 e x t r a c t i o n  
system i n  the 11,000 - 14,500 ft (3.35 - 4.48 km) 
reservoir  region. The sequentially formed in ter -  
connecting f racture system w i l l  be hydraul ical ly 
i n f l a ted  and water c i rculated a t  a t o t a l  f l o w  ra te  

0 gal/min (95 l i ter /sec)  

~ 
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ABSTRACT 

Conventional d i rect ional  d r i l l 1  ng technology 
has been extended and modified t o  d r i l l  the f i r s t  
w e l l  o f  a subsurface geothermal energy extract ion 
s stem a t  the Fenton H i l l ,  New Mexico, Hot Dry Rock 
( iDR) experimental site. Ambitious borehole geo- 
metrles, extremely hard and abrasive grani te rock, 
and high formation temperatures combined t o  provide 
'axhallenging environment f o r  d i rect ional  d r i l l i n g  
too l s  and instrymentation. & 

Completing the f i r s t  o f  a two-wellbore HDR 
system has resul ted i n  the de f i n i t i on  o f  opera- 
t i ona l  l imi ta t ions o f  many conventional d i rect ional  
d r i l l i n g  tools, instrumentation and techniques. 
The sucessful completion of the f i r s t  wellbore, 
Energy Extraction Wel l  No. 2 (EE-2). t o  a measured 
depth o f  15,300 ft (4.7 km) i n  grani te reservoir  
rock wi th  a bottomhole temperature e f  53OOF (275OC) 
required the development af a new high temperature 
downh6le motor and m o d i f i c a t i o n  o f  e x i s t i n g  
wire1 ine-conveyed steering too l  systems. Conven- 
t i ona l  rotary-driven direct ional  assemblies were 
successfully modified t o  accomnodate the very hard 
and abrasive rock encountered while d r i l l i n  
8500 ft (2.6 km) o f  d i rect ional  hole t o  
i nc l l na t i on  o f  35' from the ve r t i ca l  a t  
t r o l l e d  azimuthal orientation. 

Carefully monitored performance o 
onal systems used have indicated s 

where additional equipment developnen 
Additionally, su f f i c i en t  data were collected t o  
allow optimization o f  the d r i l l i n g  procedures and 

sources. 
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The extremely hard and abrasive rock requires 
tha t  a l l  t r icone b i t s  have a tungsten carbide 
cut t ing structure. A l l  d r i l l i n g  tools, bottomhole 
assembly components and the d r i l l s t r i n g  are sub- 
jected t o  severe abrasive wear that  l i m i t s  useful 
l i f e .  

Due t o  the impermeability o f  the rock matrix, 
no f i l t e r  cake develops on the borehole walls which 
resul ts  i n  considerable axial  and torsional drag on 
the d r i l l s t r i n g .  As a result, the use o f  high w a l l  
contact too ls  such as long str ings o f  large diam- 
eter  d r i l l  co l lars  and f ixed blade s tab i l izers  i s  
v i r t u a l l y  prohibited. Also, the d r i l l s t r i n g  must 
be su f f i c i en t l y  strong t o  cope with t h i s  abnormally 
high f r i c t i o n a l  drag. 

The required precision o f  borehole or ientat ion 
and inc l i na t i on  requires that  frequent magnetic 
surveys be conducted a t  temperatures t o  53OOF 
(275°C). ~ Needed azimuthal corrections are per- 
formed wi th  downhole d r i l l i n g  motor assemblies. 
Currently available high temperature motors require 
a wire1 ine conveyed steering too l  t o  insure proper 
orientation. Such tools also must be capable o f  
re1 Sable performance a t  elevated temperatures. 

Many other d r i l l i n g  related too ls  and inst ru-  
mentation are affected adversely as temperatures 
exceed 400°F (200°C). Reduction i n  y i e l d  strength 
o f  carbon steels, d i f f e ren t i a l  dimensional changes 
between components exhib i t ing d iss imi lar  thermal 
expansion properties and the f a i l u r e  o f  elastomeric 
compounds are the most prevalent problems. 

Solutions t o  D r i  11 i ng Problems 

Many o f  the direct ional  d r i l l i n g  and related 
problems were solved by the application o f  con- 
ventional techniques using available equipment and 
instrumentation. As the rigorous demands placed on 
these tools and techniques increased however, i t  
was necessary i n  most cases t o  make modifications. 
I n  some instances new too ls  and procedures were 
required. 

The moderate temperature <400"F (200°C) por t ion 
o f  the EE-2 wellbore was d r i l l e d  wi th  available 
sealed f r i c t i o n  and r o l l e r  bearing b i t s  wi th  tung- 
sten carbide cut t ing structures. B i t  l i f e  was 
severely reduced i n  a l l  cases due pr imari ly t o  
gauge wear. Considerable at tent ion was given t o  
obtaining minimum cost per foot  performance by 
proper selection o f  b i t  type and d r i l l i n g  param- 
eters. Magnetic and inc l i na t i on  surveying was 
performed wi th  conventional single-shot too ls  w i t )  
a l l  data evaluated using the radius o f  curvature 
calculat ion technique. Directional d r i l l i n g  using 
motor-driven assemblies was successfully accom- 
plished through t h i s  in terva l  u t i l i z i n g  pos i t ive 
displacement motors provided by Dyna-Dr i l l  
(Division o f  S i i )  -and Baker Service Tools. Many 
conventional d r i l l s t r i n g  Components such as d r i l l -  
pipe f l oa ts  and mechanical d r i l l i n g  j a r s  performed 
adequately during the d r i l l i n g  o f  t h i s  port ion o f  
the EE-2 w e l l  t o  a depth o f  approximately 10.000 ft 
(3.1 km). 

However, several modifications were required t o  
conventional d i rect ional  d r i l l i n g  techniques and 
e u i  ent, especially as d r i l l i n g  proceeded below 
l&D& ft (3.1 km), temperatures exceeded 400°F 
(200OC) and borehole i nc l i na t i on  approached 35' 

a 

from the vert ical .  Motor-driven and rotary assem- 
b l i e s  required the use o f  tungsten carbide i nse r t  
b i t s  appropriately modified t o  increase the  l i f e  o f  
the gauge cut t ing structure and protect the b i t  
s h i r t t a i l .  The g r a n i t e  sec t i on  i n  w e l l  EE-2 
required tha t  rotary-driven direct ional  assemblies 
be s tab i l ized wi th  r o l l e r  reamers versus the more 
commonly used fixed-blade s tab i l izers  due t o  the 
s ign i f icant  tors ional  drag and excessive' abrasive 
blade wear observed while d r i l l i n g  wi th  the la t ter .  

Directional surveying techniques and equipment 
also required modification t o  allow measurements t o  
be performed a t  temperatures t o  53OOF (275°C). 
Hi  re1 i ne conveyed s i  ngl e shot, s teer i  ng and ml ti- 
shot equipment had t o  be encased i n  heat shields 
and special techniques applied t o  obtain surveys. 
Mul t iconductor  w i r e l i n e  used w i t h  t h e  s tee r ing  
too ls  required high temperature rated materials t o  
protect i t  from the invasion o f  wellbore f l u i d s  and 
insulat ion degradation. 

As d r i l l i n g  progressed i n t o  the 35' s lant  por- 
t i o n  o f  the hole i t  was necessary t o  fur ther  reduce 
the magnitude o f  ax ia l  and torsional  drag between 
the d r i  11 s t r i ng  and the borehole. Essentially a1 1 
o f  t h e  d r i l l  c o l l a r  s t r i n g  was replaced w i t h  
smaller outside diameter HEVI-UATE (Dri lco Div. o f  
S i i )  d r i l l p i p e  t o  reduce contact  area. This  
reduced the drag substantially. Af ter  considerable 
p i l o t  testing, a l i q u i d  lubr icant was selected and 
successfully used t o  addi t ional ly  reduce the magni- 
tude o f  d r i l l s t r i n g  drag. Even wi th  these remedial 
measures, i t  was necessary t o  replace a port ion o f  
the d r i l l s t r i n g  wi th  high y i e l d  strength tubulars. 

. Several new equi pment developments were 
requi red t o  complete t h e  d i r e c t i o n a l  d r i l l i n g  
operations. Foremost wis the design and fab r i -  
cat ion o f  a high temperature, a l l  metal, turbine 
which was used f o r  motor-driven corrections a t  
borehole temperatures above 400°F (200OC). To 
optimize the operation o f  t h i s  turbine, a speed o r  

. RPM indicator was developed and operated. Addi- 

. t i ona l  ly, high temperature shock absorbers were 
developed t o  reduce v i b r a t i o n  and shock loads 
transmitted from the b i t  t o  the turbine t o  prolong 
the l i f e  o f  the motor bearings. Final ly,  a high 
temperature, a x i a l l y  responsive hydraulic d r i l l i n g  
j a r  was developed and used durlng d r i l l i n g  and 
f i s h i n g  operations. Although h i g h  temperature 
rated (500"F, 260°C) mechanical j a r s  were readi ly  
available, the magnitude o f  downhole tors ional  drag 
made t h e  manipulat ion o f  such t o o l s  v i r t u a l l y  
impossible. 

DIRECTIONAL DRILLING APPLIED TO THE CONSTRUCTION OF s 
HDR Geometrical Considerations 

The construction o f  an HDR geothermal energy 
extract ion system a t  Fenton H i l l  fm a geometrical 
standpoint i s  rather straightforward. It requires 
tha t  two  slant-type wel ls be d r i l l e d  t o  intersect 
the resource region wi th  the two  wellbores i n  the 
same ver t ica l  plane, a plane that  i s  approximately 
noma1 t o  the f racture planes. In  the case where 
the fractures are vert ical ,  as a t  Fenton H i l l ,  a 
l i m i t  i s  placed upon the  angle o f  Inc l inat ion by 
the maximum pract ical  values fm vert ica l  that  can 
be achieved wi th  modern d r i l l i n g  technology. The 
length o f  the inc l ined o r  s lant  section o f  hole and 
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the ver t ica l  separation o f  the t w o  boreholes are 
based upon the fracture spacing, the power output 
and reservoir longevity required, and the we1 lbore 
spacing over which a high probabi l i ty  o f  f racture 
interconnection can be realized. The Fenton H i l l  
system geometry i s  based upon a spacing o f  10 - 15 
ver t ica l  fractures having a holjizonta 

capacity o f  some 35 - 50 MW(t) w i th  a reservoir 
drawdown o f  202 i n  10 producing years should be 
realized. Based upon resul ts  achieved i n  the 
current ly operating shallower HOR system a t  Fenton 
H i l l ,  a wellbore spacing o f  1200 ft (370 m) w i l l  be 
attempted. 

O f  120 - 180 ft (37 - 55 m), ' A 

Di rect ion Control 

O f  the several mechanical methods o f  a l t e r i ng  
the azimuthal course o f  a wellbore, the downhole 
motor coupled w i t h  a d e f l e c t i n g  o r  bent sub- 
assembly, i s  the most pos i t ive and economic f o r  
application i n  the deep, hot granite boreholes 
d r i l l e d  a t  Fenton H i l l .  Based upon the number o f  
course al terat ions performed during the d r i l l i n g  o f  
well EE-2 and the  economics and mechanics o f  mult i -  
p le  whipstock settings, motor and bent subassembly 
i s  the only feasible alternative. 

To insure t h a t  the motor and bent subassembly 
i s  p roper l y  o r i e n t e d  t o  prov ide t h e  des i red 
d i rect ion o f  deflection, a direct ional  survey must 
be conducted. Depending upon the depth o f  opera- 
t ion,  the tors ional  drag present and the degree o f  
confidence i n  predict ing the react ive torque o f  the 
d r i l l  motor, e i ther  a single-shot survey i s  per- 
formed wi th  the motor stat ic,  o r  an e lec t r i c  l i n e  
conveyed steerwg too l  i s  used t o  prqride a con- 
tinuous measurement o f  t oo l  or ientat ion while the 
motor i s  d r i l l i n g .  

a rotary-driven assembly can be used t o  increase 
the magnitude o f  borehole incl inat ion.  A sequence 
o f  proper1 pos i t i oned  w a l l  contact  t o o l s  
(stabi l izersf  included i n  the bottomhole assembly 
j u s t  above the b i t  i s  used t o  provide l a te ra l  force 
a t  the b i t ,  and resul ts  i n  an increase i n  borehole 
inclfnatfon. The r a t e  o f  inc l inat ton b u i l d  i s  
dependent upon a m u l t i t u d e  o f  v a r i a  
include borehole and tubular geometries, 
placement, ax ia l  loading, etc. 

and azlmuth orientation, a rotary-driven assembly 
wi th  s tab i l izers  I s  used t o  maintain the wellbore 
t ra jectory  a t  i t s  current a t t i t ude  and direction. 
Hatural d r i f t  of the w e l l  course, due t o  rock 
heterogeneities and d r i l  lstring-borehole i n te r -  
action, may exceed tolerance level  
additional d i rect ional  corrections. 

DESCRIPTION OF EQUIPMENT AND PROCEDURES 

Once the desired course d i rect ion i s  a t t  

Upon at ta in ing the desired borehole i 

F i  w e  2 i l l u s t r a t e s  the 
tatson used i n  the EE-2 mo ven corrections 

o f  borehole azimuth. The two key elements o f  t h i s  
direct ional  d r i l l i n g  system are the downhole motor 
and t h e  s tee r ing  too l .  The EE-2 d i r e c t i o n a l  
d r i l l i n g  operations used three d i f f e ren t  types o f  
motors and three separate steering tools, c s  pre- 
sented i n  Table 1. The downhole t u r b o d r i l l  was an 

equi p e n t  development project  supported by the  HDR 
program; a l l  other too ls  are services available 
commercially. The f l u i d - d r i v e n  motor provides 
d r i l l i n g  power without ro tat ion o f  the d r i l l p ipe .  
This allows the desired or ientat ion o f  the deflec- 
t i o n  subassembly t o  be preset and maintained as 
d r i l l i n g  pFoceeds. For application a t  Fenton H i l l ,  
the motor Should be capable o f  high torgue output 
and low rotat ional  speed t o  enhance the performance 
o f  the r o l l e r  bearing, tungsten carbide i nse r t  b i t s  
used i n  the granite. For use i n  the deeper, hot ter  
portions o f  the wellbore, an all-metal too l  rated 
substantially above 400°F (2OOOC) , i s  necessary. 

It was necessary t o  run a steering too l  i n  a l l  
stances where t h e  t u r b o d r i l l  was used. A 

dewar-type heat protection shield was required a t  
the higher temperatures. 

I n  order t o  rea l ize any s ign i f icant  performance 
while d r i l l i n g  i n  the hard, abrasive grani te wi th  
downhole motors it was necessary t o  use tricone, 
r o l l e r  bearing, tungsten carbide inser t  bits. The 
major i ty o f  the runs was made e i ther  wi th  an IADC 
code 835 b i t  o r  an improved geothermal b i t .  The 
geothermal b i t  featured a nonsealed r o l l e r  bearing 
and a tungsten carbide inser t  cut t ing structure 
s imi lar  t o  the I A D C  835 designation wi th  high 
abrasion resistant inserts on the b i t  gauge. 

A turbine tachometer was developed t o  provide 
a surface i n d i c a t i o n  o f  downhole motor speed. 
Operation o f  the u n i t  was based upon a pressure 
pulse produced during each revolut ion o f  the tu r -  
bine shaft by a perturbation i n  the blading o f  the 
motor. The pulse was transmitted through the f l u i d  
cDlumn i n  the d r i l l s t r i n g  t o  the surface where it 
was detected and processed. Nitrogen-operated 
pressure-pul se dampeners were assembled and placed 
i n  series i n  the mudline a t  the ou t l e t  o f  the 
t r i p l e x  r i g  pumps. These dampeners were required 
t o  improve the performance o f  the tu rbodr i l l  tach- 
ometer. 

During i n i t i a l  laboratory d r i l l i n g  tests  using 
the t u r b o d r i l l  i t  became apparent t ha t  a method o f  
dampening the vibrat ion and shock transmitted from 
the b i t  t o  the motor was necessary. Two hfgh tern- 
pe ra tu rp  r a t e d  shock absorber t o o l s  were con- 

cted based upon laboratory derived parameters. 

A bent subassembly ( 1 / 2 O  t o  2-1/2O) containing 
a muleshoe or ient ing sleeve was included i n  the  
assembly j u s t  above the motor. The function o f  
h i s  too1 i s  t o  provide a directed side thrust  t o  
he b i t  that  resul ts  from the intent ional  1/2O t o  
-1/2O misalignment o f  the axis o f  the rotary  

shouldered connections on e l ther  end o f  the sub- 
assembly. The plane o f  t h i s  misalignment i s  f i xed  
wi th  reference t o  the muleshoe assembly thus pro- 
v id ing a method o f  re la t i ng  too l  face or ientat ion 
t o  the measured azimuth. 

A nonmagnetic d r i l l  c o l l a r  (lilonel) i s  included 
d i r e c t l y  above the bent subassembly t o  eliminate 
magnetic disturbance t o  the steering too l  magne- 
tometer by the mass o f  steel contained i n  the 
assembly above and below the tool. A typ ica l  EE-2 
d r i l l  motor assembly i s  shown i n  Table 2. 

5 
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Uotor-Driven System -- Procedure 

The controlled change i n  azimuthal or ientat ion 
o f  the wellbore d i rect ion i s  the more 
d r i l l i n g  operation and requires cont in 
tor ing o f  the bottomhole assembly (BHA) orienta- 
tion. This i s  necessary because var iat ions i n  b i t  
reactive torque are experienced by the d r i l l  motor 
as a x i a l  and subsequently l a t e r a l  l oad  
applied, or as interactions a t  the bit-rock 
face change. These variable reactive torques cause 
v a r i a b l e  t w i s t  i n  t h e  d r i l l s t r i n g ,  r e s u l t  ~ i n  
a l t e r a t i o n  o f  t o o l  o r i e n t a t i o n ,  and must be 
detected and compensated for, It i s  also important 
t o  monitor and r e s t r i c t  the sharpness o f  angular 
changes o f  the borehole (dogleg severity). Usual 
practice holds the t o t a l  dogle severity t o  less 
than 2' - 4' per 100 f t  (30 my o f  d r i l l e d  hole. 
The azimuthal angle changes were performed wi th  the 
typ ica l  BHA shown i n  Table 2. The general direc- 
t lonal  d r i l l i n g  procedure followed wi th  the turbo- 
d r i l l  was: 

a Run d r i l l  motor assembly t o  bottom. 
0 Using rotary swivel, check motor rotation. 
a Make up a 62 ft (19 m), two jo in t ,  length o f  

d r i l l  pipe. 
0 Add the double j o i n t  stand t o  the d r i l l s t r i n g  

and assemble the gooseneck head wi th  a wirel ine 
pack-off. 

a Run the steering too l  t o  bottom and land i t  i n  
the or ient ing (bent) subassembly. 

0 Rotate the d r i l l s t r i n g  t o  obtain the proper 
too l  face or ientat ion (allow f o r  subsequent 
counterclockwise rotat ion o f  the assembly when 
motor i s  started and a r e a c t i v t  torque i s  
applied). a 

a Star t  motor and d r i l l  ahead monitoring t h e  BHA 
o r i e n t a t i o n  and making co r rec t i ons  as 
necessary. 

a After  d r i l l i n g  down the two-joint stand o f  
d r i l l p i p e ,  withdraw t h e  s tee r ing  t o o l  
and repeat the procedure as d r i l l i n g  conditions 
and angle changes indicate. 

Rotary-Driven Bui ld  Assembly 

Rotary-driven angle (or inc l inat ion)  bu i ld ing 
assemblies were used t o  increase hole angle t o  35' 
from vertical. Af ter  experimentation wi th  lncreas- 
i n g l y  s t rong bui ld-up assemblies, s a t i s f a c t o r y  
performance was f i n a l l y  derived from the mul t i -  
s tab i l  izer/reamer assembly described i n  Table 2. 
Rol ler  reamers were used as wall contact too ls  
fnstead o f  the more c m o n  blade or pad type 
s tab i l izers  due t o  the extreme torsional  drag and 
rapid abrasive wear tha t  occurred when d r i l l i n g  
wi th  the la t ter .  

Operation o f  the buildup assemblies was pri-  
mari ly one o f  determining the proper weight on b i t  
and rotary speed which provided the desired ra te  o f  
i nc l i na t i on  build, penetration rate and walk rate. 
Calculations were performed, and l a t e r  ve r i f i ed  
operationally, t o  determine the maximum b i t  weight 
t o  be applied without creating a po int  o f  tangency 
between the f i r s t  and second reamer. Considerable 
experimentation was also performed t o  define a 
relat ionship between rotary speed and the d i rect ion 
and ra te  of hole walk. Essentially no predictable 
relat ionship was determined, therefore the rotary  
speed f o r  minimum cost per foot  d r i l l i n g  was used. 

Rotary-Drl ven Hold Assembly 

Rotary-driven hold or lock- in assembl ies were 
used t o  maintain a desired borehole i nc l i na t i on  and 
azimuth orientation. Their primary application 
occurred i n  the ve r t i ca l  section o f  hole from the 
bottom o f  the 13-3/8 in. (34 cm) casing a t  2463 ft 
(770 m) t o  the k ick-of f  po int  (KOP) a t  approxi- 
mately 7000 ft (2.2 km) and through the '35" s lant  
p o r t i o n  o f  t h e  h o l e  11,600 f t  (3.6 km) 
measured depth t o  t o t a  h a t  15,292 ft (4.7 
h). A typ ica l  hold as i s  detai led i n  Table 
2, Operation o f  the bold assembly was directed 
pr imar i ly  a t  minimum cost per foot  parameters. 

D r i l l s t r i n g  and Accessories 

The 12-1/4 in. (31 an) intermediate borehole 
from 2463 ft (770 m) t o  t h e  angle b u i l t  point  o f  
11,600 ft (3.6 km) measured depth was d r i l l e d  wi th  
a s t r i ng  o f  8 in. (20 an) OD d r i l l  co l l a rs  u n t i l  
t h e  t o r s i o n a l  drag (measured a t  t h e  surface) 
approached the make-up torque o f  the 5 in. (13 cm) 
OD NC50 connections on the d r i l l p i p e  and the axial  
drag approached the tens i l e  strength o f  the 5 in. 
(13 cm) OD d r i l l p i p e  s t r i  fAP1 premium used). A t  
t h i s  point, essential1 1 d r i l l  co l l a rs  were 
replaced w i t h  a s t r i  f 5 in .  (13 cm) OD 
HEVI-MATE d r i l l  pipe. The same HEVI-HATE d r i l l p i p e  
s t r i n g  was used f o r  b i t  loading f o r  the d r i l l i n g  of 
the 8-3/4 in. (22 cm) s lant port ion o f  the hole; a 
30% reduction i n  axial  and torsional  drag was 
real  i zed. 

I n  addition, t o  fur ther  reduce the magnitude of 
axial  and torsional  drag between the d r i l l s t r i n g  
and the borehole, a procedure was developed t o  
a l lev ia te the problem wi th  a lubr icant added t o  the 
d r i l l i n g  f lu id .  A m i x t k e  o f  a modified t r i g l y -  
ceride i n  alcohol (Baroid Div. o f  NL Ind., TORQ 
TRIM 11) was added t o  the d r i l l i n g  f l u i d  (water) a t  
a concentration o f  2.0 lb/bbl and the mixture was 
in jected i n t o  the borehole i n  50 bbl  p i l l s .  A 50% 
reduction i n  drag was achieved. 

As the tors ional  drag approached 5 - 10 revolu- 
t ions o f  d r i l l s t r i n g  twist ,  the capabi l i ty  t o  suc- 
cess fu l  l y  manipulate t o r s i o n a l l y  responsive 
mechanical d r i l l i n g  j a r s  rap id ly  degraded. The 
mechanical j a r s  were therefore replaced wi th  a set 
o f  a x i a l l y  responsive h y d r a u l i c  d r i l l i n g  j a r s  
(suppl ied by Houston Engineer ing Div., Wilson 
Industries), t ha t  incorporated several high tem- 
perature features which allowed t h e i r  use f o r  the 
remainder o f  the d r i l l i n g  operations. 

I n  an e f f o r t  t o  reduce the ef fect  o f  abrasive 
wear o f  the d r i l l s t r i n g  by the  granite borehole, a 
rigorous program o f  wear monitoring and repet i t ive 
application o f  s a c r i f i c i a l  tungsten carbide hard- 
facing was inst i tuted. 

Direct ional  Surveys 

During rotary d r i l l i n g  operations single-shot 
d i r e c t i o n a l  surveys were conducted a t  r e g u l a r  
intervals. A t  shallow depths and moderate tempera- 
tures, a conventional single-shot t oo l  was run 
e i ther  on a 0.092 in. (0.23 an) s l i c k l i n e  or 
dropped i n  go-devil fashion p r i o r  t o  t r i pp ing  the  
d r i l l s  ring. As temperatures increased t o  above 
250'F f121 C) , however, i t  was necessary t o  ut i1 i z e  

8 
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a smaller diameter single-shot t oo l  inherently more 
heat resistant and encase i t  i n  a dewar-type heat 
shield.  Add i t i ona l l y ,  as borehole i n c l i n a t i o n  
increased t o  35" i t  was necessary t o  subst i tute a 
5/8 in. (1.6 cm) braided wirel ine t o  e f fec t i ve l y  
handle the increased drag on the whi le 
re t r i ev ing  the survey tool. A t  tern above 
400°F (2OO0C), it was necessary t o  i n s t i t u t e  
various operational techniques designed t o  cope 
wi th  the elevated temperatures. For example, pre- 
cautions were taken t o  exclude water vapor from 
both inside and outside the dewar flask. 

DIRECTIONAL TECHNOLOGY APPLICATION 

Well EE-2 was d r i l l e d  from sur face t o  an 
approximate k ick o f f  point (KOP) o f  7000 ft (2.1 
km) t rue  ver t ica l  depth (TVD). Figure 3 i s  a plan 
view o f  t h e  EE-2 wel lbore p ro jec ted  i n t o  t h e  
horizontal plane. Wellbore deviation and direc- 
t i ona l  walk maintained a stable trend o f  less than 
2' a t  NWW u n t i l  the w e l l  was unintent ional ly side- 
tracked i n  a SWW d i rect ion a t  a depth o f  about 2500 
ft (770 m). Inclinaton subsequently increased t o  
4" t o  go, pr imari ly due t o  the running o f  weak 
bu i l d  assemblies. 

A series o f  motor-driven def lect ion runs were 
performed below 7000 ft (2.1 km) t o  br ing the w e l l -  
bore course t o  a northeasterly direction. Fol- 
lowing the successful azimuth alteration, attempts 
were made wi th  various rotary-driven weak- and 
moderate-build assemblies t o  increase the wellbore 
def lect ion from vertical. These attempts were 
hampered by moderate-to-severe l e f t  walk tendencies 
which necessitated periodic motor-drilen correc- 
t ions t o  maintab a northeast w e l l  course. U t i l i -  
zing strong rotary-driven bu i l d  assemblies, the 
des i red i n c l i n a t i o n  o f  34' from v e r t i c a l  was 
achieved a t  approximately 11,300 ft (3.48 km) TVD. 

Af ter  reducing hole size, the EE-2 i nc l i na t i on  
was locked i n  a t  very near 34" i nc l i na t i on  using 
strong t o  moderate packed hole assemblies, Table 2. 
The hole course exhibited s l  ight-to-moderate l e f t  
walk t o  11,800 ft (3.63 km) TVD. BPlow t h i s  depth 
the walk tendency reversed t o  the r i g h t  a t  a s l i g h t  
ra te  and continued t o  the f i n a l  t o t a l  TVD o f  14,750 
ft (4.48 km), o r  15,292 ft (4.66 km) measured 
depth. 

DIRECTIONAL SYSTEM RESULTS AND EVALUATION 

The t h i r t y  motor-driven direct ional  d r i l l i n g  
runs used i n  the EE-2 well are tabulated i n  Table 
3. O f  the three d i f ferent  types o f  motors used, 
only one, the Maurer Turbodril l , demonstrated the 
c a p a b i l i t y  t o  operate successfu l ly  above 400°F 
(200°C). Both o f  the pos i t ive displacement motors 
suffered thermal degradation o f  the stator. The 
t u r b o d r i l l  (run unsealed) however, d i d  suf fer  con- 
s lderable r a d i a l  bear ing wear caused by h i g h  
l a te ra l  b i t  loads aggravated by the  additional 
length o f  the shock absorber below the motor and by 
the use o f  bent subs greater than 1-1/2". As 
evidenced i n  Table 4, a l l  motors rovided accept- 
able penetration rates. Downhole f f f e  was l im i ted  
by severe b i t  gauge wear t o  only two t o  three 
operating hours however. Several instances of high 
dogleg severity and out-of-gauge hole created by a 
motor run  requ i red  subsequent borehole reaming 
before d r i l l i n g  could proceed. 

5 
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D f  the three d i f f e ren t  types o f  steering too ls  
used on EE-2, only one, the Sc ien t i f i c  D r i l l i n g  
Controls steering too l  (run without a heat shield) 
displayed the capabi l i ty  t o  perform r e l i a b l y  a t  
temperatures above 400°F (200°C). Much o f  the 
steering t ure however can be at t r ibuted t o  
cab1 e head e l ine problems. Motor runs which 
were perfo hout the shock absorber subjected 
the steering too ls  t o  intense vibrat ion and shock 
resul t ing i n  extensive damage t o  too l  components. 

Both shock absorber too l s  developed f o r  use 
below the downhole motor experienced seal  f a i l u res  
as operating temperatures approached 380°F (193°C). 

The pressure pulse t u r b i n e  speed i n d i c a t o r  
performed sa t i s fac to r i l y  t o  the maximum depth t o  
which it was run, approximately 10,000 ft (3.1 km). 

Tricone tungsten carbide f nsert b i t  performance 
while d r i l l i n g  wi th  a downhole motor was predict- 
able, although disappointing. Severe gauge wear a t  
t h e  h igher  r o t a t i o n a l  speeds (350 - 500 rpm) 
great ly res t r i c ted  the useful 1 f f e  o f  motor-driven 
assemblies. For comparison, minimum cost per foo t  
ro tary  d r i l l i n g  was obtained by operating I A D C  code 
635 b i t s  a t  high energy levels. Typical operating 
parameters o f  5500 - 6500 l b s  b i t  wt/in. o f  b i t  
diameter, 65 - 72 rpm rotary speed and 4.5 - 5.5 
hydraulic hp/in. o f  b i t  area resulted Jn pene- 
t r a t i o n  rates o f  22 - 24 f t / h  and maximum b i t  l i f e  

Rol ler  reamers were used as w a l l  contact too ls  
f o r  a1 1 s t a b i l i z e d  8SSembl i e s  a f t e r  e a r l i e r  
attempts t o  use f ixed blade and pad type s t a b i l i -  
zers gave very poor wear performance. The reamers 
s ign i f i can t l y  reduced torsional  drag and exhibited 
increased ef fect ive BHA l i f e .  Although the r o l l e r  
reamers provided less wall contact area than the 
stabi l izers,  satisfactory direct ional  control was 
rea l  ired. 

I n  consideration o f  the hos t i l e  environment t o  
which it was exposed, d r i l l s t r i n g  performance was 
remarkably good. The most s ign i f icant  factor  was 
t h e  r a p i d  abras ive wear o f  t h e  d r i l l s t r i n g .  
Although no downhole fa i l u res  were at t r ibuted t o  
t h i s  abnormal wear, some 4000 f t  (1.2 km) o f  
d r i l l p i  e had t o  be discarded o r  downgraded due t o  
externa P wear. Repeated application o f  tungsten 
carbide hardbanding on the too l  j o i n t s  was used t o  
r e t a r d  t h e  wear rate.  Two downhole f a t i g u e  
fa i l u res  o f  the d r i l l s t r i n g  occurred. Both o f  
these fa i l u res  were at t r ibuted t o  fat igue crack 
growth from deeply penetrating, sharp, corrosion 
p i ts .  This low incidence o f  fat igue f a i l u r e  i n  
consideration o f  the length of d i rect ional  hole and 
the magnitude o f  ax ia l  and torsional  loading cycles 
applied t o  the d r i l l s t r i n g ,  i s  due i n  par t  t o  the 
careful a t tent ion paid t o  the avoidance o f  high 
dogleg severity i n  the u er  hole and t o  the use o f  
low y i e l d  strength (75& ps i )  d r i l l p i p e  f o r  a l l  

the upper 3500 ft o f  the string. 

Performance o f  commercially ava i l ab le  h igh  
temperature d r i l l p i  e f l oa ts  was poor a t  tempera- 
tures above 350'F 877OC). The elastomeric seals 
became b r i t t l e  and f a i l e d  a f t e r  only minutes of 
exposure. These f a i l u r e s  r e s u l t e d  i n  several  
instances o f  plugged b i t  j e t  nozzles and downhole 

of 30 - 40 h. 
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Figures 4 through 6 i l l u s t r a t e  the performance 
o f  various rotary and motor-driven assembl fes f o r  
changing or maintaining azimuth and inc l i na t i on  I n  
the E€-2 granite borehole. The import 
be derived from these data are: 

0 Motor-driven bent subassembli 
e f f e c t i v e  means o f  changing 
azimuth. 

0 A very strong bu i l d  assembly 
t o  ob ta in  even a reasonable r a t e  o f  
i nc l i na t i on  increase using rotary  methods. 

0 Moderate packed ho le  assemblies were 
e f fec t i ve  a t  maintaining inclination. 

0 Higher bu i ldup r a t e s  were r e a l i z e d  as 
i nc l i na t i on  from vert ica l  increased. 

0 Walk ra te was d i f f i c u l t  t o  control while 
us ing ro ta ry -d r i ven  angle b u i l d f n g  
assemblies. 

0 The ef fect  o f  azimuth or ientat ion on the 
buildup rate i n  w e l l  EE-2 was minor. 

e The tendency o f  the EE-2 borehole t o  walk 
o r  change azimuth i s  reduced a t  higher 
incl inat ions f o r  both buildup and 
assemblies. 
The d i rect ion and rate o f  walk appears t o  
be a function o f  both depth and azimuth 
orientation. 

Although t h e  above observations are f o r  a 
single well a t  t h i s  point, they are data which w i l l  
be used during the planning and d r i l l i n g  o f  subse- 
quent wells a t  the Fenton H i l l  Site. 

0 

CONCLUSIONS 

1: 

2. 

3. 

Conventionql d i rect ional  d r i l l i n g  motors, wire- 
l i n e  steering tools, shock absorbers, b i ts ,  
stabi l izers,  surveying tools, d r i l l i n g  jars, 
d r i l l p i p e  f l o a t s  and many o the r  associated 
equipment items are not d i rec t l y  applicable t o  
such h o s t i l e  downhole environments i n  deep 
wells a t  the Fenton H i l l  site. 

Equipment capable o f  successful performance i n  
such a d r i l l i n g  environment has been developed 
and tested. 

Additional d i rect ional  d r i l l i n g  sytem develop- 
ments are requi red t o  increase operat ional  
ef f ic iency and reduce costs o f  HDR d r i l l i ng .  

4. Considerable 'state-of-the-art' knowledge has 
been developed concerning direct ional  d r i l l i n g  
planning , equi p e n t  and procedures i n  hot , hard 
abrasive rock. 

ACKNOWLEDGMENT AND DISCLAIMER 

The authors wish t o  thank the many firms and 
indiv iduals tha t  supported t h e  EE-2 direct ional  
d r i l l i n g  operat ions wi th  t h e i r  equipment, 
instruments, services, and expertise. However, 
reference t o  a canpany, product name, service, t oo l  
o r  equipment i t e m  does n o t  imply approval o r  
recomnendation of the product, service, o r  t oo l  by 
the  University o f  Cal i fornia (LASL) o r  the U.S. 
Department o f  Energy t o  the  exclusion o f  others 
tha t  may be suitable. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

Uill iams, R. E., Rowley, J. C.,.Neudecker, J. 
U., and Brittenham, T. L.: Equipment f o r  
D r i l l i n g  and Fracturing Hot Granite Wells," SPE 
Paper No. 8268, presented a t  the SPE 54th 
Annual Technical Conference and Exhibit, Las 
Vegas, NV, September 23-26, 1979. 

Ui 1 son, 6. J. : "An Improved ,,Method f o r  Com- 
p u t i n g  D i r e c t i o n a l  Surveys, Transactions, 

Cuninings, R. G., e t  al.: "Mining Earth's Heat: 
Hot Dry Rock Geothermal Energy," Technology 
Review, Vol. 81, No. 4 (February 1979) 2-19. 

Haurer, W. C., Nixon, J. D., Matson, L. W., and 
Rowley, J. C., 'New Turbodr i l l  f o r  Geothermal 
Dr i l l ing,"  12th Intersociety -Energy Conversion 
Engineering Conference Proceedings , Washington, 

AIME, 243, 871-876 (1968). 

DC, Vole 1, pp. 204-211 (1977). 

McDonald, U. J., e t  al.: "Development o f  
Turbodr i l l  Tachometer," Geothermal Resources 
Counci 1 Transactions , Vol. 4 (September 1980). 

TBLE 1 

DRILL Rim-  

Type 

Positive 
D i  spl a c q n t  

Positive 
Displacement 

Turbine 

OalU (1otoRS AI0 mtRlffi TWL SERVICES 
USED lNFc.-2 DIRECTIOKU DRILLING 

Dim. laperature 
In. Rating Suppl i e r  )(CY - - 

BPDn 6-3/4 -17S.C (350'F)a Baker Service 
Tool s 
(Houston, TX) 

7-3/4 =155'C (310*FIa Dyna-Drill International 5mith DDPM 

(fwine, U) 

7-3/4 -275.C (530.F) Waurer Eng.. Inc. MEIT 
(Houston, TX) 

STEERING TWL 

Tanperature Service 
Sensor Type Rating bmpany 

kgnetaneter 275*Cb (527Y) Eastman-Uhipstock DOT 
ui th lnclinrmeter (nouston. TX) 

kgmtmKtcr  SST 
u i th  lnclinometer 

nagmtanetcr l f i c  Dri l l ing W E  
u i th  Inclinometer control s 

(Imine. CAI 

' Limited by elastomers #sed I n  mor e l r e  system. 
Requlres heat shield. 
Run without heat shield. 
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Fig. 1 - HDR D r i l l i n g  Plan for EE-2/EE-3 Heat 
Extraction Reservoir. 
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- 
Fig. 2 - Directional D r i l l i n g  System. 
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TABLE 4 

MOTOR ASSEHBLY PERFORMANCE SUMT44RY 

Number Average Average Average 
Hours Footage ROP per  of b t o r  

Type Runs per Run p e r  Run Run (Fph) 

59.0 21.6 

54.7 12.3 

48.8 6.2 

21 2.0 

ODPDH 6 4.5 

4 7.0 

HEIT 

BPDH 
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Fig .  4 - EE-2 I n c l i n a t i o n  and D i r e c t i o n  vs. Depth. 
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Fig. 5 - Build-up Rate and Walk Rate vs. Depth. 
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Fig.  6 - Walk Rate vs. I n c l i n a t i o n ,  I n f l u e n c e  o f  BHA. 




