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FOREWORD 

The Shippingport Atomic Power Station located in Shippingport, Pennsylvania was 
the first large-scale, central-station nuclear power plant in the United States 
and the first plant of such size.in the world operated solely to produce electric· 
power. This program was started in 1953 to confirm the practical application of 
nuclear power for large-scale electric power generation. It has provided much of 
the technology being used for design and operation of the commercial, central­
station nuclear power plants now in use. 

Subsequent to development and successful operation of the Pressurized Water 
Reactor in the DOE-owned reactor plant at the Shippingport Atomic Power Station, 
the Atomic Energy Commission in 1965 undertook a research and development 
program to design and build a Light Water Breeder Reactor core for operation 
in the ShLppingport Station. 

The objective of the Light Wa~er Breeder Reactor (LWBR) program has been to 
develop a technology that would significantly improve the utilization of the 
nation's nuclear fuel resources employing the well-established water reactor 
technology. To achieve thisobjective, work has been directed toward analy:;3is, 
design, component tests, and fabrication of a water-cooled, thorium oxide fuel 
cycle breeder reactor for installation and operation at the Shippingport Station. 
The LWBR core started operation in the Shippingport Station in the Fall of 1977 
and is expected to be operated for about 3 to 4 years. At the end of this period, 
the core will be removed and the spent fuel shipped to the Naval Reactors Expended 
Core Facility for a detailed examination to verify core performance including 
an evaluation of breeding characteristics. 

In 1976, with fabrication of the Shippingport LWBR core nearing completion, 
the Energy Research End Development Administration established the Advanced 
Water Breeder Applications (AWBA) program to develop and disseminate technical 
information which would assist U. S. industry in evaluating the LWBR concept 
for commercial-scale applications. The program will explore some of the problems 
that would be faced by industry in adapting technology confirmed in the LWBR 
program. Information to be developed includes concepts for commercial-scale 
prebreeder cores which would p~oduce uranium-233 for light water breeder cores 
while producing electric power, improvements for breeder cores based on the 
technology developed to fabricate and operate the Shippingport LWBR core, and 
other information and technology to aid in evaluating commercial-scale application 
of the LWBR concept. 

All three development programs (Pressurized Water Reactor, Light Water Breeder 
Reactor, and Advanced Water Breeder Applications) have been administered by 
the Division of Naval Reactors with the goal of developing practical improvements 
in the utilization of nuclear fuel resources for generation of electircal energy 
using water-cooled nuclear reactors. 

Technical information developed under the Shippingport, LWBR, and AWBA programs has 
been and will continue to be published in technical memoranda, one of which is 
this present report. 

i i i 
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Finite element stiffness matrix. See Equation (5.3). 
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ABSTRACT 

A finite element procedure is presented 
for·finite deformati9n analysis of continuum 
structures with time-depende"nt.anisotropic 
elastic-plastic material behavior. An updated 
Lagrangian formulation is used to describe the 
kinematics of' .deformation. Anisotropic 
constitutive relations are referred, at each 
material point,. to a set of three mutually 
orthogonal axes which rotate as a unit with an 
angular velocity equal to the spin at the point·. 
The time-history of the solution is generated 
by using a linear incremental procedure with 
residual force correction, along with an 
automatic time step control algorithm which 
chooses time step sizes to control ·the accuracy 
and numerical stability· of the solution. 

FINITE DEFORMATION ANALYSIS OF 
CONTINUUM STRUCTURES WITH TIME-DErtNDENT 

ANISOTROPIC ELASTIC-PLASTIC MATERIAL BEHAVIOR 
(LWBR/AWBA Development Program) 

David N. Hutula 

1. INTRODUCTION 

Detailed design evaluation of structural.components which must maintain 

structural integrity over long pP.r:i.ods of time under severe loading and 

environmental conditions requires an analysis method which characterizes the 

act1.1al behAvior hy Accurately modelling the significant behavioral phenomena. 

The three basic ingredients of such an analysis method are accurate modelling 

of the material behavior, accurate modelling of the geometry (including the 

effects ·of finite changes in geometry due to deformation), and an effective 

numerical procedure for s'ol ving. the mathematical equations of the model. 

The analysis method or procedure presented in this document is designed 

to handle problems involving finite deformation of continuum ·structures with 

time-depend~nC anisotropic elastic-plastic material behavior. In order to 

allow its implementation in-a digital computer program, the procedure employs 

1 



WAPD-TM-1384 

the finite element method to establish a spatially discretized form of the 

governing equations. A linear incremental formulation with residual force 

correction and automatic time step control is used to generate the time-history 

of the solution. The kinematics of deformation are described by using an updated 

·Lagrangian formulation in which the configuration at the beginning of each time 

step serves as the Lagrangian frame of reference for that time step. 

A unique feature of the analysis method or procedure is an automatic time step 

control algorithm which chooses time step sizes to control the accuracy and numerical 

stability of the solution. This feature makes the solution of finite deformation 

elastic-plastic problems almost routi~e and allows the structural analyst to 

concentrate on the physical aspects of ? problem without hPi ne ov~rburd!ilned by 

the intricacies of the numerical analysis. 

Another unique feature is the treatment of "characteristic axes" to which 

anisotropic constitutive relations are referred. The characteristic axes in 

the formulation are, at each material point, three mutually orthogonal axes· 

which rotate as a unit as the material in thP. n~;>iehborhood of the point deforms 

and rotates. A procedure is ·derived for keepin·g track of the insta'l'ltaneous 

orientation of the characteristic axes relative to a fix~rl framP nf r~;>f~r~nc!il. 

The analysis procedure has been implemented in the ACCEPT (~nalysis of 

freep-follapse of ~xternally-fressurized !ubes) computer program described in 

Reference 1. The effectiveness of ·the prnf':'Pdur~ ha~ been demonatrotr.n hy 

extensive numerical experimentation with and production usage of the ACCEPT 

program. 

2 
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2. FUNDAMENTAL EQUATIONS AND DEFINITIONS 

Fundamental concepts involving coordinate systems, kinematics of deformation, 

and stress are reviewed in this section. All variables and equations are ,understood 

to be associated with a generic material point in a solid continuum. ·This point 

is identified by its position vector r at some time-lc t and by its position vector 
0 . 

R at.a later time t. 

The formulation used here follows that of Green and Zerna (Reference 2), 

in which a curvilinear coordinate system ei whose coordinate lines are imbedded 

in the material is used to describe the motion of the continuum .during the time 

span from t to t. In Green and Zerna's formulation, the curvilinear material 
0 

coordinates are related to Cartesian coordinates through transformations denoted 

symbolically as 

xjce1 ,e2 ,e3 ) 

xj xjce1 ,e2 ,e3) 

where xj and Xj are the Cartesian coordinates of a material point at 

time t and t, respectively. 
0 

(2.la,b) 

The position vectors of a material point are expressed in terms of Cartesian 

coordinates as** 

r = xj'i 
j 

R = xli 
j 

•.rhere i. 11re thlil mutually orthogonal unit booc vcctcr!l ~f t~c Ct~rtesisn 
J 

coordinate system. 

* t
0 

represents the time at the beginning of a time step in the incremental 

solution procedure formulated in this document. 

** The Einstein swnmation convention applies throughout this document. That 

is, a repeated index implies a swnmation over the range of the index. 

(2.2a,b) 



4 

WAPD-TM-1384 

The covariant base vectors, gi and Gi, and metric. tensors, gij and Gij' of 

the ei coordinate system at time t and t, respectively, are * 
0 

gi r :::: xj. i. 
,i , ~ J (2.3a,b) 

Gi R 
, i 

xj i. ,i J 

gij gi gj 
(2.4a,b) 

G .. =G. G. 
~] ~ J 

The contravariant base vectors, gi and Gi, and metric tensors, gij and Gij are 

2Vs gi = 
ijk -

X gk e g. 
J 

(2·.sa,b) 

z-Yc Gi ijk 
G. X Gk = e 

J 

vgeijk g1- gj X gk 

(2.6a,b) 

-{G ~. "k 2- - 0. X 0 
~J J k 

ij -i -j 
g - g g 

(2.7a,b) 
Gij ? -j 

G 

. "k 
where g and G are the determinants of g .. and Gi., respectively, and where e

1
J 

~] J 

or e. "k is the permutation symbol which is equal to zero when any two of the indices 
lJ 

are equal and is equal to +1 ( -1) when i ,j, k is an even (odd) permutation of. 

the numbers 1 , ?. , .3. 

The covariant base vectors are tangent to the Ai coordinate lines and the 

contravariant base vectors are normal to the 9i coordinate surfaces, as depicted 

in two dimensions in Figure 1. 

*Throughout this document, a comma preceding a subscript index i denotes 

a partial derivative with respect to 9i. A semicolon denotes a covariant 

derivative with respect to. ei evaluated using the g .. metric tensor. 
~J 

.. 

,. 
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Figure 1: Two-Dimensional Representation of 
fosition Vectors, Incremental 
Displacement Vector, and Base Vectors. 
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The contravariant metric tensors are the inverses of the corresponding 

covariant metric tensors and the contravariant and covariant base vectors 

satisfy orthogonality relations such that 

kj 
= g1i g. 

-j e) gikg ]. 
g 

]. 
(2.8a,b) 

G Gkj G~ G. 
-j oj = = G 

ik ]. ]. ]. 

where 5~, the Kronecker delta, is equal to one if i=j and is equal to zero if ifj. 
]. . 

The increment in the displacement vector from t to t and the velocity 
0 

vector are given by 

~u=R-r 

i- -i 
= ~u g. "' ~u.g 

]. ]. 

v = R 

The partial derivatives of ~u and v with respect to ej are 

/':,u G - gj ,j j 

i - -i 
= ~u ; jgi ~ui; j g 

.:.. 
v = G. 
'j J 

i -i 
= v .g. = v. ,g 

; J ]. l.;J 

(2. 9a-c) 

(2 .lOa-c) 

(2 .lla-c) 

(2.12<'1-c) 

Equations (2.11), (2.5), and (2.6) can be used to derive the following which 

relate g. and gi to G. and ? through the displacement gradient increments: 
]. ]. 

(2.13a,b) 

6 
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The strain rate or deformation rate tensor Y .. is defined by 
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:ij = ~Gij 

=~(G .. G.+ G .. G.) 
1 J 1 J 
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; .) 
(2 .14a-d) 

=~(v i• G. +G. 
• J 1 • J 

The increment in'the strain tensor from t tot is 
0 

t 

b.Y .. = J Y .. dt 
1] t 1] 

0 

k =H b.u. . + b.u. . + b.u . b.uk . ) 
1;] ];1 . ;1 ;] 

The vorticity or spin vector w is defined to be one-half the curl of the 

velocity vector field, as follows: 

X V . 
,1 

where 'iJ = <?· ~91 is the .vector gradient operator. 

The stress tensor Tij is defined as follows in terms of the traction or 

(2.15a-c) 

(2.16a-c) 

stress vector T acting on an arbitrary infinitesimal surface element whose unit 

-=1. normal vector is N.= N.G: 

T TjG 
j 

- TijN.G. 
1 J 

1 

Tij is the contravariant Cauchy or true stress tensor with components referred 

(2.17a,b) 

to the G. base· vectors. Tij and Y .. are conjugate in the sense that Tij~ .. is the 
1 . 1] 1] 

internal work rate per unit volume. 

7 
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The transformation relating an infinitesimal material volume element dV 
0 

at time t to the corresponding element dV at time t can be derived as follows: 
0 

Consider the three infinitesimal vectors d9
1g1 , d92g2 , and d93g3 which emanate from 

a material point in the continuum at time t • These vectors form three inter~ecting 
0. 

edges of an infinitesimal parallelepiped whose volume is 

[ 1- 2- 3-
dVO = (d9 gl) X (d9 g2)] • (d9 g3) 

[ r;:: - . - J -1 2 3 = \8l X g2 ) • g3 d9 d9 d9 

¥sde
1

de
2
de

3 

where Equations (2.Sa) and (2.8a) were used to derive the final result. At time 

t, the three vectors described above become d9
1G1 , d9 2c

2
, and d93G

3 
and 

the corresponding volume is 

Also, because of conservation of mass, p dV 
0 0 

transformation relation 

If dV = dV 

JdV 
0 

0 

can be written as 

pdV. Therefore, the volume 

Equations (2.8) and (2.13) can be used to derive an expression for the 

(2 .18a-c) 

volume ratio J ~in terms of the displacement gradient increments as follows: 

J 
1 ij k r A r s s t t 6 e erst(gi +uu;i)(gj + D.u;j)(gk + D.u;k) 

(2.19a,b). 

-8 
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The transformation relating an infinitesimal material surface element at 

time t to the corresponding surface element at time t can be derived as 
0 

follows: T - i 
Consider two arbitrary but distinc_t infinitesimal vectors d'\ = gid~(l) 

and d:E2 = gjde{2) emanating from a material point in the continuum at time t
0

, · 

These vectors form two edges of an infinitesimal parallelogram whose area dS 
0 

-k 
and unit normal vector n = nkg can be expressed as 

ndS 
0 

Therefore: 

- i j 
(gi X gj)d9(l)d9(Z) 

= <\{; eijkd9~l)de{2))gk 

At time t, the two vectors described above become d11 

i 

Gid9(l) and c1L2 

The corresponding infinitesimal parallelogram has an area dS and a unit normal 

vector 
- -k 
N = NkG such that 

NkdS =yG·ei.ikde~1 )de{ 2 ) 

This expression along with the previous one results in the following 

surface transformation relation: 

NkdS = /Qn dS ... jg I k 0 

= Jn
1

dS 
{ 0 

The fundamental equations and definitions given in this section will 

(2.20a,b) 

be used in the sections which follow to deyelop the incremental solution procedure. 

In all developments which follow, the ei coordinate system will be redefined 

-beginning of each step such that the base vectors coincide at the time g. 
l. 

9 
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with the Cartesian i. base vectors. 
l. 

ij 
Thus, g .. and g are each to be 

. l.J 

interpreted as the unit tensor, the covariant derivatives such as 6u .. 
1.;] 

are to be interpreted as partial derivatives with respect to xj. This 

formulation, wherein a new Lagrangian frame of reference is defined at the 

beginning of each time~step, is known as an updated Lagrangian formulation~ 

A consequence of redefining the 9
1 

coordinate system at the beginning 

of e·ach time step should be noted regarding the interpretation of 6Y... The 
. ~, 

increments 6Y .. , as defined by Equation (2.15), cannot be accumulated from 
l.J 

time step to time step to produce a meaningful definition of strain because the 

base vectors to which the components of 6Y .. are referred are redefined for each 
l.J 

time step. Thus, 6Y .. should be interpreted within each time step as a strain 
l.J . 

increment measured relative to the configuration at the beginning of the time 

step and referred to the base vectors used in the time step, with the understanding 

that these increments are not. be be accumulated from time step to time step. 

The displacement increments 6u., on the other hand, ca·n be accumulated 
. 1. 

from time step to time step to produce the total displacements u. measured 
l. 

relative to the configuration at the start of the ~roblem. The gradients of the 

total dispiacement can be used to compute any desired strain measure. The ~tpti,Q 

measure that will be used in the constitutive relations is defined in the next 

section. 

10 
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3. MATERIAL BEHAVIOR --. CONSTITUTIVE RELATIONS 

The theory developed herein is intended to be applicable to materials 

which exhibit.anisotropic elastic-plastic behavior and are subjected to finite 

deformations. A specific material model is not developed here, but the general 

nature of the model to be used in the formulation is· indicated and the procedure 

f.or applying the model is developed. 

A prominent characteristic of the general material model assumed in the 

formulation is time-dependent plastic behavior in which the plastic strain 

rate depends on stress, a number of history-dependent "internal variables" 

which characterize the state of the material, and a number of prescribed 

environmental parameters such as temperature and neutron flux. Several models 

of this type, based on.exper1mental data, have been proposed, such as the ones 

by Hart (Reference 3) and Miller (Reference 4). 

Another prominent characteristic of the assumed general.model is 

anisotropy of the material. Certain technologically important materials, 

Zircaloy for example, exhibit anisotropy which is sufficiently significant to. 

require modelling of its effects to achieve an accurate representation of the 

deformation behavior. 

Since anisotropic materials behave differently in different directions, 

constitutive -relations for these materials must be expressed in terms of 

a definite set of directions or axes, referred to herein as the characteristic 

axes. In a finite deformation formulation, the effects of rotation of the 

characteristic axes relative to a fixed frame of reference must be accounted 

for as the material moves and deforms. In a rigid body motion of the material, 

the characteristic axes, obviously, remain fixed relative to the material and 

11 
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rotate relative i:o the fixed frame of reference with -an angular velocity 

equal to that of the body. An appropriate generalization of this for arbitrary 

motions is to allow the characteristic axes at each material point to rotate 

with an angular velocity equal to the spin* at that point. Thus, at a material 

point, the characteristic axes to which the constitutive relations are referred 

remain fixed in orientation relative to eac;:h 9ther but rotate as a unit as the 

material moves and deforms. 

In formulating constitutive relations, any convenient set of three independent 

characteristic axes can be used. Most commonly, a set of three mutually 

orthogonal axes are used since this simplifies the interpretation of stre!'ls 

and strain rate components. Thus, in the formulation discussed below, the 

characteristic axes are thought of as being mutually orthogonal.**. 

The unit base vectors ei of the characteristic axes are defined in terms 

of the Gi and gi base vectors by the following transformations: 

ei -:- Qi c. I l. 

i 
= qi gi 

where i . i 6 i. Qj ql - tg. + u •. ) 
J 'J I 

(3.la-c) 

* Spin is a field quality derived from velocity gradients. The spin at a material 

point can be interpreted as the local angular velocity of the material 

surrounding the point (Reference 5). 

**The mathematical developments are not restricted to the orthogonal case, 

but the interpretation of the stress and strain rate components will differ 

from those given here if non-orthogonal characteristic axes are used. 

12 
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IJ The stress tensor cr and strain rate tensor € used in the constitutive 
IJ 

relations are related to Tij and y b ij y 

Tij = Qi IJ Qj 
I cr J 

Qi y. Qj. 
eiJ I ij J 

(3.2a,b) 

IJ · h C h . h f d h ( . ) cr 1s t e auc y stress tensor, w1t components re erre to t e rotat1ng. 

characteristic axes. These. stress components are the so-called true stresses 

which are interpreted as force .per unit of current area. The ordinary time 

IJ · · "IJ 
derivative of cr · is the stress rate tensor cr which corresponds to the Jatimann stress 

rate tensor (Reference 6) with components referred t~ the characteristic axes. 

The strain rate tensor eiJ corresponds to the deformation rate tensor with 

components referred to the characteristic axes. These strain' rate components 

are the so-called true strain rates which are interpreted as follows: 

A normal component €IJ (I=J) is the rate of change of length per·unit current 

length of a material line segment instantaneously coinciding with the I . 
characteristic axis. A shear component eij (I~J) is one-half the rate of decrease 

of the angle between two material line segments instantaneously coinciding with 

the (orthogonal) I and J characteristic axes, respectively. 

The total s·train rate is assumed to be composed of a sum· of strain rates 

from different mechanisms, as follows: 

ee + ~p + ~g u· IJ IJ 

where ~~J is the elastic strain rate, ~iJ is the plastic strain rate,. 

c:tfuJ iiJ l:s the ::; Lr~::;::;-iu~~p~ndent growth ::; train rate. The 

plastic strain rate may, itself, be composed of contributions from different 

(3.3) 

plastic strain mechanisms, such as thermal creep, neutron flux induced creep, 

and so forth. The growth strain rate may also be composed of contributions 

from different mechanisms such as thermal expansion and irradiation growth. 

13 
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The elastic strain rate,· in general, depends on stress and·stress rate 

along with the environmental variables, such as temperature. The specific 

form of the elastic behavior is not of prime importance as far as the mathematical 

formulation of the solution procedure is concerned. For definiteness, 

hypoelastic behavior will be assumed here, in which the elastic strain 

rate is linearly related to stress rate as follows: 

·e e ·KL 
€IJ = CIJKL a (3.4) 

. e 
where CIJFJ. is the elastic compliance tensor which may be temperature 

dependent. The incremental form of this relation, resulting from integration 

over a time step, can be approximated as follows: 

(3.5) 

where the elastic compliance tensor is understood tq be evaluated at the 

average temperature of the time step. 

The plastic strain rate depends on stress, history-dependent "internal 

variables" which characte·rize the· state of the material, and environmental 

variables such as temperature and neutron flux. In the incremental solution 

procedure developed here, it is necessary to obtain an appropriate expression 

which linearly relates the plastic strain increments to the stress increments. 

This can be done by first expanding the plastic strain rate in a Taylor 

series about the known stress state aiJ at the beginning of a time step. 
0 

The linear part of this Taylor 
.Po 

•p ·p OE:IJ KL 
" ~ € o +- 1a '"'IJ KL \; IJ 'tJ;J 

series expansion is 

KL -a ) 
0 

• Po 
In the above, expression, E:IJ and the partial derivatives are evaluated at 

const-ant stress a13 
0 

14 

Now, letting aKL be the average stress of a time 

(3.6) 
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KL KL KL 
step (i.e., a = a 

0 
+ ~ 6 a ) and integr;:~ting the above expression 

·over a time step results in 

where 
t 

I 
.Po 

dt €IJ 

t 
0 

t .Po 

~ J 
. oeiJ 

dt 
KL 

t o a 
0 

Po 
In the above, t.e

13 
is the pl"astic strain increment that would occur if the 

stress was held constant at the value a IJ throughout the time step. 
0 

is called the ~lastic compliance tensor. 

Po 
CIJKL 

The groWth strain rate. depends on the environmental variables and not 

on stress. The increment in growth strain is 

t 

6ei3 = J ~iJ dt 
t 

0 

The numerical 'method used to evaluate the integrals in Equations 

(3.8) and (3.9) will not be specified here, since its design depends on the 

(3.7) 

(3.8a,b) 

(3. 9) 

specific material model used. For some relatively simple models it is possible 

to evaluate the integrals analytically, ·for ·other more complex· models it is 

necessary to evaluate the integrals numerically. 

Combining equations (3.3), (3.5), (3.7), and (3.9) results in an approximate 

incremental constitutive relation .in the following form: 

15 
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(3.10) 

where 

(3.lla,b) 

The inverse relation is 

t. IJ 0IJKL t. . t. IJ 
cr R:: eKT, - cr * (3 .12) 

where DIJKL , the stiffness tensor, is the inverse of CIJKL' and 

(3 .13) 

The stress and strain increments appearing in the above incremental 

constitutive relations have components referred to the rotating characteristic 

axes. In order to apply these constitutive relations in an increme.ntai solution 

procedure, it is necessary to derive a procedu~e for keeping track of the 

rotating characteristic axes and to derive expressions which relate t.Yij to t.eiJ 

and t,y. . to t.,.ij • 
1J 

To derive the procedure for keeping track of the rotating characteristic 

axes, it is recalled that the ei base vectors do not change in magnitude 

but they rotate with an angular velocity w~ given by Equation (2.16) •. Therefore, 

the time derivative of e
1 

is 

which, along with Equation (3.la) results in 

Qi (w x G ) 
I i 

Taking the dot product of both sides of the ab.ove equation with G. gives 
J 

an equation which, when simplified, results in 

16 

Qi G + 
I ij 

0 

c~, 14) 

(3.15.) 

(3 .16) 
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This equation can be written in matrix form as 

[G][Q] + ~ (c][Q] = o (3 .1 7) 

the solution of which is 
~ 

[G] [Q] = constant 
k 

[G J 2 [Q J = [Q J 
0 0 0 

[Q] = [Gr~CQ ] 
0 

(3.18) 

k 
where [G] 2

, the "square root" of [G], is the 3x3 symmetric matrix such that 

[G] = [G]~[G]~ (3.19) 

[G]~ can be computed by finding the eigenvalues and eigenvectors of [G]; 

i.e., by finding the orthogonal matrix (cp] and the diagonal matrix (A.] whose,. 

diagonal elements are the eigenvalues, such that 

r [cp]T[G][cp] = [A.] 

[cp][A][cp]T = [G] (3.20a-c) 

[cp]T[cp] = [I] 

Then 

],. 
[cp] [A.]J.:i[cp]T [G] 2 = 

(3.2la,b) 

CGr~= [cp] [A f~ [cp]T 

!, 
where [A] 2 is the diagonal matrix whose diagonal elements are the square 

roots of the corresponding elements of LA]. 

[Gr~ can also be computed from the following series exp.ansion: 

[[I] + [6G]r~ 

= [[I] + 2 [6y]J-~ 

[I] _ [t.y] + ~!· [t.y]2 _ ;7s [Ay]3 + 3~~x7 [AY]4 (3.22) 

17 
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To derive the expression relating AY .. tq A€IJ' it is noted that by 
. 1J 

using Equation (3.18), Equation (3.2b) can be written in matrix form as 

[~] [Q]T[y] (Q] 

~[Q]T[G] [Q] 

=~(Qn]T(G]-~Cc][G]-~[Q0 ] 

The above equation can be integrated to give 

[6€] = ~[Q l(ln[G])[Q ] 
0 0 

where the natural log of [G] is defined by 

(ln[G]) = [~](ln[A])[~JT 

(3.23) 

(3.24) 

(3.25) 

and (ln[A]) is the diagonal matrix whose diagonal elements are the natural logs 

of the corresponding elements of [A]. 

(ln[G]) can also be .computed from the following series expansion 

(ln[C])., (ln[[I] + [b.C]]) 

= (ln[[I] + 2[6y]]) 

= 2[LW] - ·/ [6y]? + 
23 

[6Y]) -
2 -3 

By using Equations (3.2), (3.12), (3.18), (3.22), (3.24), and (3.26), and 

0 £b) 

neglecting second order terms involving AY .. , the following approximate expression 
1.1 

relating A'Y .. to 6Tij can be derived: 
1J 

ATij ~ [Dijkl_~(Til jk Tlj ik Tik jl+Tkj il)]Ay _ATij 
~ 2 * g + * g + * g * g u kl u * 

where 

. 18 

(3.27). 

(3.28a-c) 
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D
ijkl 

By combining the terms in square brackets and denoting the result by * , 
Equation (3.27) can be written as 

where 

(3.29) 

(3.30) 

19 
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4. VIRTUAL WORK EQUATION 

Let 6V denote an arbitrary virtual change or variation of the velocity 

field such that the appropriate components of o; vanish on the part of the 

surface where displacements are prescribed. 

- i-ov = ~:v g u • 
l. 

-i. ov.g 
l. 

The corresponding variation of the strain rate field is 

+ ( g i + b.u i ) ov. ] 
n ;n ~;m 

The Principle of Virtual Work, which is a statement of equilibrium, is 

expressed by the following virtual work equation: 

J -rmf'ov dV - J 'T • o-;ds - J pF. o;dv = o 
V mn S V 

The integrals in this equation are evaluated at time t. 

(4.la,b) 

(4.2) 

(4.3) 

ln order to apply the virtual work equation to formulate the finite elenent 

equilibrium equation, it is necessary to transform the integrals so they can 

be evaluated in the known configuration of the body at time t • The volume integral R 
u 

can be· transformed by using the volume transformation relations given by 

Equation (2.18), which, along with Equation (4.2) ·allows·the internal virtual 

work term to be written as 

J-rmno~ dV = J J~noy dV 
mn V· mn o 

0 

= J J'fmn(gi + b.ui ) ov. dV 
V m ;m ~;n o 

(4.4) 

0 

20 



The body force term can be written as 

fp'F.o-;dv = f.p 'F.?ov.dV 
V .V o ~ o 

=S 
v 

0 

0 

i p f ov .dV 
0 ~ 0 

WAPD-TM-1384 

The treatment of the surface traction term depends on the nature of the 

prescribed surface traction. For a pressure load, the most common type of 

surface traction, the traction vector is of the form 

T = -pN 

. -k 
= -pN G 

k 

(4.5) 

(4.6) 

where p is the pressure and N is the unit vector normal to the surface. Letting 

Sp denote the part of the surface over which pressure loads are prescribed, 

the contribution from Sp to the surface traction term becomes 

=-J pn k so 
p 

where the surface transformation relation given by Equation (2.20) has been 

used. A representation of 
-=k-

J(G .g.) in terms of displacement gradients can 
~ 

be derived as follows: 

J 
kmn- - - yg 

~e (G xG ).g./ g m n ~ 

= ~ekmn(gr + b,ur ) (gs + Au s ) (g xg ) .g./' r:-. 
m ;m n ;n r s ~ ye. 

kmn r r s s 
d;e e . (g + 6u ) (g + 6u ) 

~ r::n. m ;m n ;n 

(4.7) 

(4.8) 
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Therefore, Equation (4. 7) can be written as 

J 'T. o;;ds 
s 

p 

-J p[n. 
l. 

so 
p 

Substituting Equations (4.4), (4.5), and (4.9) into (4.3) results .. in 

(4.9) 

the following virtual work equation for the case when the prescribed tractions 

are pressure loads:. 

J J,-mn(gmi + 6ui ) &v. dV 
V ;m 1.;n o 

0 

+J p[n. 
l. 

= 0 (4.10) 

so 
p 

By substituting Equations (2.15), {2.19), (3.28), and (3.29) into the above 

and neglecting all second and higher order terms involving the displacement gradient 

increments, the following approximate form of the virtual work equation can be 

derived: 

I { f ,-mn ·~•V uV 
V o m;n o 

0 

+Jpni~v.dS~ 
0 l. 0 

so 
R:O 

p 

The following relations involving the body force and pressure were used 

in deriving the above equation: 

fi = £i + Mi 

p 

22 

0 

p + /),p 
0 

{4.11) 

(4.12a,b) 
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5. FINITE ELEMENT EQ.UU.IBRIUM EQUATION 

The virtual work equation derived in the previous section forms the foundation 

from which the finite element equilibrium equation is derived. A three-

dimensional isoparametric finite element formulation will be used here, in which 

the coordinates at time t and t, the displacement increments, and the displacem~nt 
0 . 

gradient increments are approximated as follows: 

X. 
J 

. f3 
xj + b.uj ~ N (xjf3 + 6ujf3) 

b.u ~ Nf3 b.u . 13 
j J 

where xjf3 and 6ujf3 are. the coordinates· and displacement increments at node f3 

of the element and Nf3 is the isoparametric shape function which assumes a uni~ 

val1.,1e at node f3 and a zero value at all other nodes of the element. 

Likewise, the velocity variations and their gradients are approximated by 

a . 
ov. ~ N 6v. 

~ l.a 

. Ot 
6v·. ~ N 6v. 

1.; n ; n 1.01 

Substitution of Equations (5.1) and (5.2) into Equation (4.11) results in 

(5.la-d) 

(5.2a,b) 

the finite element fOJr:m of the approximate virtual work equation. This equation,· 

after elimination of· the arbi.tra.ry &v jl3 from all terms, becomes the following 

approximate finite element equilibrium equation: 

·(5.3) 

23 
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The terms appearing in this equation are defined and discussed below: 

6fi~ is the increment in nodal force which contains contributions from 

different sources, as follows: 

(5.4) 

where 

J i ~ 
- bpn N dS 

0 0 s 
p 

b.i~ s MiNadV 
fB pu 

v (J 

0 

Mi~ = f bTi~a uV 
* * ;n o v 

0 

In the above, ~fia is the increment in nodal force due to pressure increments, 
p 

~f~~ is due to body force increments, and bf~~ is due to plastic and growth 

strain increments. 

(5.5a-c) 

f
let R in Equation (5.3) is the residual or unequilibrated nodal force defined by 

fi~= f -ri~~ dV 
R o ·n o v , 

0 

- f 
v 

0 

The residual force results from the last group of terms enclosed by braces 

in Equation (4.11). This group of terms is actually the virtual work equation 

(5.6) 

for the solution state at the beginning of the time step. Therefore, if the · 

stress state Tij was in equilibrium with the prescribed body force fi and surface 
0 0 

pressure p
0

, the sum of these tei:ms would be zero. However, since second order 

terms were neglected in developing Equation (4.11), this equation is not an 

exact statement of equilibrium, which results in a computed solution which does 

not exactly satisfy equilibrium. The negative of the residual nodal force, as it 

appears in Equation (5.3), is the nodal force which would be required 

24 to cause the stress state Tij to change into one which is, in the finite element 
0 
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sense, in equilibriumwith the applied loads. The ·residual force term, then, 

acts as a correction which tends to increase the numerical stability and accuracy 

of the approximate solution proce~s. The technique of 4sing residual force 

correction was apparently first reported in the open literature by Ho.fmeister, 

Greenbaum, and Evensen in Reference (7). 

The "stiffness matrix" Kiaj~ in Equation (5.3) can be decomposed into the· · 

sum of several contributions, as follows: 

where 

J Dinj~CY N~ dV 
V ;n ;k o 

0 

J - k(Tkn ij + Tij kn + rik nj + .. Tnj ik)NCl' N~ dV 
2 * g * g * g * g ·n ·k o v 

0 

I k( kn ij _ Tijgkn _ Tik nj 
zr,.,g *· *g 

v 
0 

, , 

Tnj ik)NCl' Nf' dV * g ·n ·k o ' , 

(5.7 

(5.8a-g) 

The Kl contribution to the stiffness matrix corresponds to the usual stiffness 

matrix which results from an iuflull~::.imal ucformation formulation. Tho v.2 

through K
5 

contributions, which do not appear in an infinitesimal deformation 

formulation, are the result of taking finite deformations into account. 

25 
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The K
1 

+ K
2 

contribution is identical in form to the K
1 

contribution; i.e., 

it can be computed in the same way as .~ by using D* in place of D. 

Contributions similar to K
2

, K
3

, and K
4 

have been identified previously 

by other authors who call various combinations of these terms the "initial 

stress stiffness matrix." The difference between the present and previous 

formulations is that T~j = T!j - ~T~j appears in the present formulation where 

TiJ appears in previous formulations. It is necessary to include the ~T~j 
0 

term if thermal or irradiation growth strain increments are present or if an 

estimate of the plastic strain increment is available ·as it is in the present 

formulation. The initial stress contributions to the stiffness matrix were 

apparently first defined unambiguously by Martin in Reference 8 and.used in an 

elastic-plastic formulation by Hibbitt, Marcal, and Rice in Reference 9. 

The K
4 

contribution can b'e associated with volume change which takes 

place during the time step. K4 would not be present if the approximation J ~ 1 

had been used during the time step instead of J ~ 1 + ~u ~ i. Also, K4 would , 
not be present if the volume change term was imbedded in the definition 

of stress used in the constitutive relations. That is, if a stress tensor 

s1J had been used in the constitutive relations instead of cr1J where , 

s1J = fJref 
p 

IJ . h b . h d . . h f cr , w1t p e1ng t e ens1ty 1n t e current con iguration and 

p f being the density in a reference configuration. re 

26 
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The KS contribution accounts for the change in area and orientation of 

the surface over whfch pressure is applied. This c-ontribution was apparently 

first defined explicitly in Reference 9 by Hibbitt, Marcal, and Rice, who call 

·it the "initial load stiffness matrix.'' · 

The K
1 

through K
3 

contributions satisfy symmetry relations of the form 

Kiaja ~ Kjaia. K
4 

and K
5

, however, do not satisfy these symmetry relations. 

Therefore, an.unsymmetric equation solver is necessary if K
4 

and K
5 

are 

included in the formulation. The solution of unsymmetric equations requires 

more computer time and storage over that required py symmetric equations, 

which· leads to the conjecture that it may be more efficient to neglect the K
4 

and K
5 

contributions (along with the second order terms already neglected), 

use smaller time steps, and rely on the residual force to correct the errors 

caused py the neglected terms. This approach, where K
4 

and K
5 

are neglected, 

has been taken in the ACCEPT program (Reference 1), where the theory developed 

herein has been implemented. 
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6. INCREMENTAL SOLUTION PROCEDURE AND TIME STEP CONTROL 

The equations which govern the increments in stress, strain, and 

displacement which occur during a time step were derived in the preceding 

sections. The procedure for implementing these equations in a computer program 

is summarized in this section and a time step control algorithm is given for 

computing appropriate time step sizes, based on the progress of the solution. 

The time step control algorithm presumes that the very first time step size 

is prescribed and, upon completion of any time step, nQtP.r.m:i.nes whether the 

time step size· is acceptable (sufficiently small) and determines the time 

step size to be used in the next time step. 

The first maior task which must be performed at the hP.ginnine nf ~ time 

step is to compute the finite element stiffness matrix and nodal force vector 

for each element. To accomplish this for a particular element, calculations 

involving the constitutive equations must be performed at each integration 

* or Gauss point of the element. This. involves first calculating MIJ and CIJKL of 

. IJ IJKL 
Equation (3.10), then calculat1ng 6 a* and D of Equation (3.12), anrl fin~lly 

1j .. 
~al~~laling 6T T

1 J * , * , and u!jkl of ~quations (J.L~) and (::l.:l!J). 

The element stiffness matrix and force vectors of .Equation (5.3) are then 

computed 1 using Equations (5.4) - (5.8). It should be noted that the 

lJ" IJKL 
calculated quantities 6 cr* and D appearing in Equation (3.12) can be saved 

for use later on in calculating stress increments, to avoid the necessity of 

re-cvQluating thc3c quantities. 

The _next major task is to solve the finite 

element equilibrium or stiffness ·equations for the nodal displacement increments. 

This is accomplished by using the bandwidth, wavefront, or iterative equation 

28 
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solver available in any general-purpose finite element program. 

Having calculated the nodal displacement increments, the next major 

task is to calculate increments in the various field quantities, consistent 

with the calculated displacement increments. This is accomplished by following 

the sequence of calculations described below for each integration or Gauss point 

of each finite element: 

1. Calculate the displacement gradient increments t:m. . using Equation (5~ ld) ~ 
1.;] 

2. · Calculate the metric tensor G .. using Equations (2~4) and (2.13), Calculate the 
l.J 

eigenvalues and eigenvectors of G. . • (See Equation (3. 20)). 
l.J 

3. Calculate Qi using Equations (3.18) and (3.2lb). Calculate qi using 

Equation (3.lc). Note that qi ~orresponds to the.init{al value of the transformation 

matrix Qi for the next time step because the Gi base vectors are always redefined 

to coincide with the g. base vectors at the beginning of a time step. 
1. 

4. Calculate the strain increments ~€IJ using Equations (3.24) and (3.25). 

5. Calculate the stress increments ~ a 13 by applying two iterations of the 

·Newton-Raphson method to solve the following nonlinear equation for ~ cr13 : 

where ~€i~ is the plastic strain increment evaluated at the average stress 

a IJ = cr IJ + ~~ cr13 of the time step. 
a o 

The stress increment ~ cr
1

13 of the first iteration is calculated using 

Equation (3.12) arid the stress increment ~ cr 13 of the second iteration is 

calculated by solving the following 1 inear equation: 

(6.1) 

29 
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pl g pl KL 
/1eiJ ~ t,.eiJ + . /1€IJ - CIJKL /1 cr 1 

e pl KL 
+ (CIJKL + CIJKL) /1 cr (6.2) 

pl pl IJ . IJ , A IJ 
where /1€IJ and CIJKL are evaluated at the stress cr 1 = cr

0 
+ ~u cr1 • 

The stress increment 11 criJ resulting from the second iteration is taken to 

be the stress increment of the time s.tep. In order for this to be an accurate 

IJ approximation, it is necessary to require the 11stress errorucr defined by err 
11 criJ 11 . IJ - (jl (6.3) 

to be sufficiently small. This requirement is enforced by the time step 

control algorithm described below. 

The next major task is to determine whether the time step size used in the 

current time step is sufficiently small and to determine the time step size 

to be used in the next time step. The four basic points discussed below must be 

considered in making these determinations. 

1. All second and higher order terms involving displacement gradient 

increments were neglected to develop the approximate virtual work equation. 

In order for this to be an accurate approximation, it is necessary to require 

the displacement sradient increments to be sufficiently small. 

2. The approximate incremental constitutive relation of Equation (3.10) 

was also used to develop the approximate virtualwork equation. In order for 

this to be an accur~te approximation, it is necessary to require the stress 

error defined by Equation (6.3) to be sufficiently small. Also, it is necessary 

to 1 imit the size of the temperature increment if the elastic compliance is 

temperature-dependent (see Equation (3.5)), or if an average-temperature 

approximation is used in evaluating the integrals of Equation (3.8). 
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3. The total compliance tensor as defined in Equation (3.llb) is 

. composed of an elastic' compfiance c~JKL and a plastic compliance ci~· the 

latter of which increases monotonically as the time step size increases. 

cP.O· is singular (does not possess an inverse) if the material is, as usually 
IJKL 

assumed, plastically-incompressible. If the time. step size is sufficiently 

large to cause ·the plastic compliance to be large relative to the elastic 

compliance, then the total compliance tensor will be nearly singular. Since a 

' 
nearly singular compliance· leads to an ill-conditioned set of finite element· 

equilibrium equations which is difficult to solve accurately, it is. necessary 

to limit the ~ime step size such. that the plastic compliance is not too large 

compared to the elastic compliance. 

4. The finite element stiffness matrix contains··contributions due to the 

The quantity ~T!j depends on the plastic 

·and growth strain increments as defined by Equations (3.lla)', (3.13), and (3.28b). 

If the contributions to the stiffness· matrix due· to ti.T!j are allowed to be too 

large, this·, like a nearly-singular compliance tensor,. can lead to an ill-

·conditioned set of finite eleme.nt equations. Therefore; it is necessary to limit 

·the magnitude of the ~T!j contributions. This can be accomplished in effect 

·by limiting the plastic strain increments ·and the temperature increments. 

The four major points discussed above are accounted for in the time step 

control algorithm described below. The following definitions are neces·sary 

in order to completely describe the al.gorithm: 
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DGA Prescribed maximum allowable displacement gradie~t increment. 

(Recommended to be iri the range 0.001 to 0.05.) 

DGD Prescribed maximum desired displacement gradient incremenL (Recommended 

to be approximately equal to DGA/5, but not larger than DGA/2). 

DGM Actual maximum displacement gradient increment occurring during the 

current time step. 

ETA. ETD. ETM Same .as above bt,~t f91; tQt;~1 strain increments. 

EPA, EPD, EPM Same as above but for plastic strain increments. 

SEA, SED, SEM = Same as above but for "stress errors" as defined in Equation (6.3). 

(SEA recommended to be 1 to 5 pereent of the expected maxiuiullt s tn~:ss.) 

CRD Prescribed maximum desired ratio of plastic compliance to elastic 

compliance. (Recommended to be 10 to.20.) 

CRM = Maximum ratio of plastic compliance to elastic compliance computed 

during the current 

this sense 
t 

to be J 
t 

n 

time step. 
•p 

The plastic compliance. is defined in 

be 
~t~ where 

·r 
€ and cr are generalized plastic 

strain rate and stress measures. The elastic compliance is defined 

to be 1./E, where E is a representative elastic modulus of the material. 

The first task performed by the time step control algorithm is to decide 

whether or not the time step size b.told of the current time step is sufficiently 

small. This decision is based on whether or not the following inequalities are 

satisfied: 

DGM S: DGA 

ETM s: ETA 

EPM S: EPA 

SEM s: SEA 
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If any of the inequalities is not satisfied, ~told is too ~arge and the 

time step must be redone us·!ng a _new tinie step siz.e ~t < ~t ld' as determined new o -

below. If all of the inequalities are satisfied, ~told is sufficiently small 

and it is permissible to go on to the next time step, using the time step size 

~t determined below. new 

The next task performed by the time s~ep control algorithm is. to choose 

the new time ste·p size. The algorithm chooses ~t to be the $mallest of 
new 

a number of candidates ~t. which are defined as follows: 
1 

1. 

~tl = (DGD/DGM)~told 

~t3 = (EPD/EPM)~told 

!,. 
(SED/SEM) 2 ~told (See footnqte 1) 

~t6 time step size which would result in a temperature increment 

not exceeding a prescribed allowable value. 

~t 7 (M)~told' where M is a prescribed number recommended to be in 

the range 2 to 10. 

~t8 =prescribed maximum allowable time step size. 

The square root of SED/SEM is used because the "stress error" is 

2 
approximately proportional to ~t • 
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If the current time step is determined to be acceptable, it is necessary, 

before beginning the next. time step, to update the values of the "essential 

variables" which are needed to perform each time step. The essential variables 

are the nodal coordinates X. , and the integration or Gauss point stresses a 11 , 
l.Ct' 

transformation matrices Q~, and any internal variables used in the material model. 

Also, any other variables which are desired to be output from the program (such 

as total displacements, total strains,plastic strains, etc.) must be kept track 

of and updated before each time step. 
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7. CONCLUSIONS 

A finite element procedure has been developed for finite deformation 

analysis of continuum structures with time-dependent anisotropic elastic­

plastic material behavior. The kinematics of deformation are described by 

using an updated Lagrangian formulation in which the configuration at the 

beginning of each time step serves as the Lagrangian frame of reference for 

that time step. The time-history of the solution is generated by using a linear 

incremental procedure with residual force correction and automatic time step 

control. 

As part of the.overall procedure, a sub-procedure has been developed 

for keeping track, at each material point, of a set of three mutually orthogonal 

axes which rotate with the material with an angular velocity equal to the spin rate 

at the material point. Thes~ orthogonal rotating axes are associated with 

characteristic directions in the material and serve as the frame of reference to 

which the anisotropic constitutive relations are referred. 

Another important part of the overall procedure is an automatic time step 

control algorithm which monitors the progress of the solution and chooses time 

step sizes to control the accuracy and numerical stability of the solution. This 

time step control algorithm is an essent~al part of the procedure, because it 

is virtually impossible for an analyst to make a good a priori choice of time 

step sizes without having a good a priori knowledge of the solution. 

The analysis procedure described in this document has been implemented in 

the ACCEPT computer program described in Reference l. The effectiveness of 

the procedure has been demonstrated by extensive numerical experimentation 

with and production usage of the ACCEPT program. Experience in using ACCEPT 

has shown that the procedure makes the solution of finite deformation elastic­

plasti~ prohlP.ms almost as routine as the solution of infinitesimal deformation 

linear elastic problems~ 
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