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FOREWORD

The Shippingport Atomic Power Station located in Shippingport, Pennsylvania was
the first large-scale, central-station nuclear power plant in the United States
and the first plant of such size in the world operated solely to produce electric-
power. This program was started in 1953 to confirm the practical application of
nuclear power for large-scale electric power generation. It has provided much of
the technology being used for design and operation of the commercial, central-
station nuclear powér plants now in use.

Subsequent to development and successful operation of the Pressurized Water
Reactor in the DOE-owned reactor plant at the Shippingport Atomic Power Station,
the Atomic Energy Commission in 1965 undertodk a research and development
program to design and build a Light Water Breeder Reactor core for operation

in the Shippingport Station. :

The objective of the Light Water Breeder Reactor (LWBR) program has been to
develop a technology that would significantly improve the utilization of the
nation's nuclear fuel resources employing the well-established water reactor

technology. To achieve this objective, work has been directed toward analysis,

design, component tests, and fabrication of a water-cooled, thorium oxide fuel

cycle breeder reactor for installation and operation at the Shippingport Station.

The LWBR core started operation in the Shippingport Station in the Fall of 1977
and is expected to be operated for about 3 to 4 years., At the end of this period,
the core will be removed and the spent fuel shipped to the Naval Reactors Expended
Core Facility for a detailed examination to verify core performance including

an evaluation of breeding characteristics.

In 1976, with fabrication of the Shippingport LWBR core nearing completion,

the Energy Research end Development Administration established the Advanced

Water Breeder Applications (AWBA) program to develop and disseminate technical
information which would assist U, S. industry in evaluating the LWBR concept

for commercial-scale applications. The program will explore some of the problems
that would be faced by industry in adapting technology confirmed in the LWBR

program. Information to be developed includes concepts for commercial-scale

prebreeder cores which would produce uranium-233 for light water breeder cores
while producing electric power, improvements for breeder cores based on the
technology developed to fabricate and operate the Shippingport LWBR core, and
other information and technology to aid in evaluating commerc1a1 scale appllcatlon
of the LWBR concept.

All three development programs (Pressurized Water Reactor, Light Water Breeder
Reactor, and Advanced Water Breeder Applications) have been administered by

the Division of Naval Reactors with the goal of developing practical improvements
in the utilization of nuclear fuel resources for generation of electircal energy
using water-cooled nuclear reactors.

Technical information developed under the Shippingport, LWBR, and AWBA programs has
been and will continue to be published in technical memoranda, one of which is
this present report
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Compliance tensor. See Equation (3.11),
Elastic compliance tensor, See Equation (3.4).
Plastic compliance tensor., See Equation (3.8).

Stiffness tensor., See Equation (3.12).
Stiffness tensor. See Equation (3.28).

See Equation (3,30).

"Unit base vector of characteristic axis I. See Equation (3.1).

Permutation symbol. See Equation (2.6) and discussion following,

Body force vector per unit mass, Seé Equation (4:5).
Contravariant component of F. See Equation (4.5).
Nodal force increment. See Equation (5.4).

Nodal force increment due to pressure loads, See Equation (5,5).
Nodal force increment due to boéy force. See Equation (5.5).

Nodal force increment due to plastic and growth strain increments,
See Equation (5.5).

Residual nodal force. See LEyuation (5.6).

vaariant and contravariant base vectorsof 61 coordinate system
at time'to. See Equations (2.3a) and (2.6a).

. . i .
Covariant, contravariant, and mixed metric tensors of 8 coordinate
system at time t,- See Equations (2,4a), (2.7a), and (2.8a).

Determinant of gij

s ' i . '
Covariant and contravariant base vectors of 8  -coordinate system
at time t. See Fauatinns (2.3h) and (2.5b). :

Covariant, contravariant, and mixed metric tensors of 8" coordinate
system at time t. See Equations (2.4b), (2,7b), and (2.8b).

Determinant pf Gij'
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3x3 matrix whose elements are Gij" R

Unit base vector of Cartesian coordinate system Co .

3x3 unif matrix.

Volume ratio. See Equations (2.18) and (2.19).
Finite element stiffness matrix., See Equation (5.3).
Unit vector normal to a surface at time to'

Covariant component of n.

Unit vector normal to a surface at time t.

Covariant component of N.

Isoparametric finite element shape function associated with node a,
See Equation (5.1).

Subscript or superscript used to denote quantity evaluated at time to‘
Pressure

Transformation tensor relating Ei to e.

I See Equation (3.1).

Transformation tensor relating Ei to e.

I° See Equation (3.1).

Ix3 matrix whose elements are QI’ where i io the row index and I
is the column index.

Position vector of a material point at time to and t, respectively,
(See Equation (2,2).

Surface,

Surface over which pressure is applied,

Time,

Time at beginning of a time step,

Traction or stress vector acting on a surface. See Equations
(2,17) and (4.6).

Displacement increment vector., See Equation (2.9). -

Covariant and contravariant components of Mu. See Equation (2.9).
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Du, : ‘Aui at node o, See Equatibn (5.1).

io

v : Velocity vector. See Eqdation (2.10).
vi,v1 : Covariant and contravariant componénts-of.;. See Equation (2.10).
\Y . :  Volume,.
x,,X, ' : Cartesian coordinates of a material point at time £, and t,

e respectively, ' ‘
x, ,X, x, and X, at node &, See Equation (5.1).

ia? i i i

13 Strain rate or deformation rate tensor defined By Equation (2.14).
AYij .t Strain increment from t tot defined by Equation (2.15).

Cav] ¢ 3x%x3 matrix whose elements are AYij.

6; _ : Kronecker delta, See Equation (2.8).

€1y : Strain rate or deformation rate tensor defined by EquatiOn (3.2).
eij : Elastic strain rate. See Equation (3.3).

ng Plastic strain rate, See Equation (3.3).

e%l : Growth strain rate, See Equation (3.3).

AeIJ : Strain increment from to to t defined by Equation (3.24).

Cae] ' : 3x3 malrix whuse elewents are ACIJ.

%

AeIJ : Defined by Equation (3.11).

Ps

AGIJ : Defined by Equation (3.8).

6" o : Curvilinear material coordinate defined in Section 2,

N :  3x3 diagonal matrix of eigenvalues of [G]. See Equation (3;20).
pn,p : Density at time to and t,

1J Stress tensor defined by Equation (3.2).
GIJ : Stress rate tensor, Time derivative of GIJ.

vii
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Stress increment from to to t.

Defineéd by Equation (3.13).

Stress tensbr defined by Equation (2.17),.

Defined by Equation (3.28).

Defined by Equation (3.28).

3x3 orthogonal matrix of eigenvectors of (G]. see Equation (3.20).
Vorticity or spin vector. See Equation (2.16). »
Derivative of ( ) with respect to time,

Partial derivative of ( ) with respect to 6.

Covariant derivative ( ) with respect. to 8, evaluated using 84

‘metric tensor.

The quantity ( ) evaluated at time t,-

Variation or virtual change in the quantity ( ).

Increment in the quantity ( ) from ro to t, : .
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ABSTRACT

A finite element procedure is presented -
for finite deformation analysis of continuum
structures with time-dependent. anisotropic
.elastic-plastic material behavior. An updated
Lagrangian formulation is used to describe the
kinematics of .deformation. Anisotropic
constitutive relations are referred, at each
material point, to a set of three mutually .
orthogonal axes which rotate as a unit with an
angular velocity equal to the spin at the point,
The time-history of the solution is generated
by using a linear incremental procedure with
residual force correction, along with an
automatic time step control algorithm which
chooses time step sizes to control the accuracy
and numerical stability of the solution, -

FINITE DEFORMATION ANALYSIS OF
CONTINUUM STRUCTURES WITH TIME-DEPENDENT
ANISOTROPIC ELASTIC-PLASTIC MATERIAL BEHAVIOR

(LWBR/AWBA Development Program)

David N, Hutula

1. INTRODUCTION

Detailed design evaluation of structural components which must maintain
structural integrity over long periods of time under severe loading and
environmental conditions requires an analysis method which characte;izes the
actual hehavior by accurately modelling the significant behavioral phenomena.
The three Sasic ingredients of such an analysis method are accufate-modelling
of the material behavior,-accuratg modelling of the geometry (including the
effects of finite éhanges in geometry due to deformation), and an effectiyé
numerical procedure for 501ving'tﬁe matheﬁatical equations of the model.

.The analysis method or procedure présented in this document is designed
to handle problems‘involving finite deformation of continuum structures with

time~dependent anisotropic elastic-plastic matcrial behavior, 1In order to

‘allow its implementation in-a digital computer program, the procedure.employs
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the finite elemept méthod to establish a spatiallyAdiscretized form of the
governing equations. A linear iﬁcréuental formulation with residual force
correction and autqmatic time. step controi is used to generate the time-history
of the solution. The kinematics of defofmation are described by using an updated
"Lagrangian formulation in which the cbnfiguration at the-beginning of'each time
Step serves és.the Lagrangian frame of reference for that time step.

A uniqué feature of the analysis method or procedure is an automatic time ;tep
control aléorithm.which chooses time step sizes to control the accuracy and numerical
stability of the solution. This feature makes the solution of finite deformation
elastic-ﬁlastic problems almost routine and allows the structural analyst to
concengrate §n the physical aspects of a problem without heing overburdened by
the intricacies of the numerical analysis. |

"characteristic axes'' to which

Another unique feature is the treatment of
anisotropic constitutive relations are referred. The characteristic axes in
the formulation are, at each material point, three mutﬁally orthogénal axes’
which rotate as a unit as the material in the neighborhood of the point dcforms
and rotates, A procedure is‘deri&ed for keeping track of the instamtaneous
orientation of the charécteristic axes relative to a fixed frame nf reference,

The analysis procédure.has been implemented in the ACCEPT (énalyéis of
Creep-Collapse of Externally-g;essurized Tubes) computer'program deécribed in
Reference 1, The effectiveness of ‘the pracedure has been demonutratnd hy

extensive numerical eXperimentation with and production usage of the ACCEPT

program,
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2. TFUNDAMENTAL EQUATIONS AND DEFINITIONS

Fundamental concepts invoiving coordinate systems, kinematics of deformation,
and stress are reviewed in this séction. All'yariables and equations are understood
to be associated with a generic material point in a solid continuum, :This point
is identified by its position vector r at some time¥ to and by its position vector
R at.a later time t,

The formﬁlation used here follows that of Green and Zerna (Reference 2),
in which a curvilinear coordinate system ei whose coordinate lines are imbedded
in the material is uéed to describe the motion of the continuum during the time
span from t, to t; In Creen and Zerna's formulation, the curvilinear material
coordinates are related to Cartesian4coordinates‘thr0ugh tfansformations denoted
symbolically as |

J Jal A2 A3 ' .
X X s

(7,87,07)
(2.1a,b)

%3 = x3et, 62, 0%

J J ‘ . . . . '
where x~ and X are the Cartesian coordinates of a material point at

time to and t, respectively.

The position vectors of a material point are expressed in terms of Cartesian

coordinates as**
T = x31,
(2.2a,b)
R.= xIT,
]
~there ;i are the mutually orthogonal unit bascc vectcrs of the Cartesian -
coordinate system.
* t, represents the time at the beginning of a time step in the ‘incremental
solution procedure formulated in this document. :
¥* The Einstein summation convention appliesAthroughout this document. That
3

is, a repeated index implies a summation over the range of the index.
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The covariant base vectors, Ei and Ei’ and metric tensors, gij and Gi" of

the 8 coordinate system at time t and t, respectively, are *

- T L 7
i T T 1 TX ity : (2.3a,b)
G, =R, =X, 1

ij ~ %15y . - ' (2.4a,b)

G,.=6G, .G,
1] 1 J

. —i =i . ij ij
The contravariant base vectors, g° and G, and metric tensors, g J and '3 are

—i _ ijk = _ =
2Vg g =e¢e gj X 8y
. (2.5a,b)
2V G 61 = ele E, x 6
j k
Vee... g8 =8.x8
ijk j k
‘ (2.6a,b)
- = —
\[E ele - Gj x Gk
ij =i =j
g =8 .8
(2.7a,b)

¢ =6, ¢’

where g and G are the determinants of gij and G respectively, and where e’Jk

ij?®
or eijk is the permutation symbol which is equal to zero when any two of the indices

are equal and is equal to +1 (-1) when i,j,k is an even (odd) permutation of .
the numbers 1, 2, 3,
The covariant base vectors are tangent to the a' coordinate lines and the

. i . .
contravariant base vectors are normal to the 6~ coordinate surfaces, as depicted

in two dimensions in Figure 1.

*Throughout this documént, a comma preceding a subscript index i denotes
. . . . i . .
a partial derivative with respect to 8, A semicolon denotes a covariant

] . . St . .
derivative with respect to 8 evaluated using the gij metric tensor.
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22 72

Figure 1: Two-Dimensional Repfesentation of
Position Vectors, Incremental
Displacement Vector, and Base Vectors.
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The contravariant metric tensors are the inverses of the corresponding
covariant metric tensors and the contravariant and covariant base vectors

satisfy orthogonality relations such that

ki _ s .
(2.8a,b)
¢, -¢l-3 .@& -
ik i i i

where 6%, the Kronecker delta, is equal to one if i=j and is equal to zero if i#j.

The increment in the displacement vector from t,tot and the velocity

vector are given by

- X

]|

Au =
(2.9a-c)
i— -
= Au gi = Au.g
v =R
_ vi_ .y - (2.10a=-c)
The partial derivatives of M and v with respect to o7 are
Mo, =G, - g,
.3 j J » . (2.11a-c)
= g, = Mg
3171 13]
v,-=6,
)3 j A
(2.12a-c)
_vigav gi
3301 i3

Equations (2.11),‘(2.5), and (2.6) can be used to derive the following which

relate Ei and El to Ei and G through the displacement gradient increments:

(g7 + M), )e. A
31777 - (2.13a,b)

cu;

L (8 _1ijk r r s s Tt
2‘/;_e erst(gj + Au;j)(gk + Au;k)g
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The strain rate or deformation rate tensor Yij is defined by

N =k
Y1y T %

- _ _ (2.14a-d)
G. +G, . v )

.

] 1 »J
k , k k k

=L

The increment in the strain tensor from to to t is
. .
av, . = [ v, .4t
ij ¢ 1]

(2.15a-c)

Sy(hu, .+ bu, .+ S B )

i3] jsio ik

The vorticity or spin vector w is defined to be one-half the curl of the

velocity vector field, as follows:

X9 x v

w
%El XV, (2.16a-c)
, 1

Ql

=i
= LGt x
2 i

= - 0 . .
where ¥ = G SET is the vector gradient operator.

ij . . ' . .
The stress tensor T J is defined as follows in terms of the traction or

stress vector T acting on an arbitrary infihitesimal surface element whose unit
normal vector is N.= Nialz
T = TJES .

15 = : ‘ (2.17a,b)
T°'N.G, ' '
1]

] is the contravariant Cauchy or true stress tensor with componénts referred
- o ij y U ijs .
~ to the Gi base vectors, T J and Yij are conjugate in the sense that T JYij is the

internal work rate per unit volume,
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The transformation relating an infinitesimal material volume element dVé
at time to to the corresponding elément dV at time t can be derived as follows:
Consider the three infinitesimal vectors delgi, dezgz, and d63§3 which emanate from .
a material point in the continuum at time tof These vectors form three inter§ecting

edges of an infinitesimal parallelepiped whose volume is

av_ = [(a0'g)) x (a0%g)] . (4878, |

| =y = pealia2.03
_[(§1 X 8,) . g3Jd9 de“de

=Yg d91d92d63
" where Equations (2.5a) and (2,8a) were used to derive the final result. At time
, the three vectors described above become deléi, deZEZ, and dOBES and

the corresponding volume is
av =Y ¢ d91d92d63

Also, because of conservation of mass, PodV, = pdV. Therefore, the volume

t

transformation relation can be written as

5 gy
g o}

av

) EE dVo (2,18a-c)
> .

= JdV
o

Equations (2.8) and (2.13) can be used to derive an expression for the

volume ratio J =,g in terms of the displacement gradient increments as follows:
g

r
i

eljke (g

I = rst

(oY Faad

r ] S t t
+Au.i)(gj + Au;j)(gk + Au.k)

1+ Aut, + %Aul.AuJ. -%Aul.AuJ.
31 s 3] 3] 51

1ike  puT . au® aut , (2.19a,b) .
;i 53 sk

+
rst

e

[eaY o
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The transformation relating an infinitesimal material surface element at

time t, to the corresponding surface element at time t can be derived as

follows: = Consider two arbitrary but distinct infinitesimal vectors'dz& = gidgzl)
and'dz2 = gjdeiz) emanating from a material point in the continuum at time to.”

These vectors form two edges of an infinitesimal parallelogram whose area de

4 . - -
~and unit normal vector n = n,g can be expressed as

- —k
ndSo (ndeo)g

d%l X d&z

8; * 8529901)%%2)

i ] =k
(ﬁ e; 1199(1,9872))8

1]

Therefore:

o i
m S, =g e 1:981y9902)

, - i _ ]
At time t, the two vectors described above become dL, = Gide(l) and sz = doe(z).

The corresponding infinitesimal parallelogram has an area dS and a unit normal

ka such that

-G i 4ed.
N, ds Ve e k9811982

vector ﬁ = N

This expression along with the previous one results in the following

surface transformation relation:

G -
N dS = [S n dS -
k' s koo (2.20a,b)

= Jn, dS
k™ o
The fundamental equations and definitions given in this section will
be used in the sections which follow to develop the incremental solution procedure,

In all developments which follow, the 6' coordinate system will be redefined

at the beginning of each time step such that the Ei base vectors coincide



WAPD-TM-1384

' - ' ij ‘
with the Cartesian ii base vectors, Thus, gij and g J are each to be

interpreted as the unit tensor, the covariant derivatives such as Au,
. . ?

are to be interpreted as partial derivatives with respect to xJ, This
formulation, wherein a new Lagrangian frame of reflerence is defined at the

beginning of each time. step, is known as an updated Lagrangian formulation.

A consequence of redefining the Gi cbordinate system at the begiﬁning
of each time step should be‘noted regarding the interpretation qf AYii' The
increments AYij, as defined by Equation (2.15), cannot be.accumulated from
time step to time step to produce a meaningful definition of strain because the
base vectors to which the components of Avij are réferred are redefiged for each
time step. fhus, AYij should be interpreted within each time step as a strain
incrgment measured relative to the configuration at the beginning of the time
step and referred to the base vectors used in the time step, with the understanding
that these increments are not.be be accumulated from time step.to time step.

The displacement increments Aui, on the other hand, can be accumulated
from time step to time step to produce the tbtal displacements uy measured
relative to the configuratiop at the start of the problem, The gradients of the
total displacement can be used to compute any desired strain measure, 'The strain
measure that will be used in the constitutive relations is defined in the next

section,

i0
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3. MATERIAL BEHAVIOR -- CONSTITUTIVE RELATIONS

The theory developed herein is intended to be applicable to materials
which exhibit. anisotropic elastic-plastic behavior and are subjected to finite
deformations. A specific material model is not developed here, but the general
nature of the model to be used in the formulation is indicated and the procedure
for applying the model is developed.

A prominent characteristic of the general material model assumed in the
formulation is time-dependent plastic behavior in which the plaetic.strain
rate depends on stress, a number of history-dependent "internal variables"
which characterize the state of the material, and a number of prescribed .
environmeetal parameters such as temperature and neutron flux. Several models
of this type, based on.experimental data, have been proposed, such as the ones
by Hart (Reference 3) and Miller (Reference 4).

Another prominent characteristic of the assumed general model is
anisotropy of the material, Certain technologically important materials,
Zircaloy for example, exhibit anisotropy which is sufficiently significant to.
require modelling of its effects to achieve an accurate representation of the
defermation behavior.

Since anisotropic'materials behave differently in different directions,
cohstitutive-relations for these materials must be expressed in terms of
a definite set of directions or axes, referred to herein as the characteristic
axes., In a finite deformation formulation, the effects of rotation of the
characteristic axes relative to a fixed frame of reference mest be accounted

. for as the material moves and deforms, In a rigid bddy motion ofAthe material,

the characteristic axes, obviously, remain fixed relative to the material and

11
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rotéte relative to the fixed.frame of reference Qith»an angular velocity

equal to that of the body. An ‘appropriate geﬁeralization of this for arbitrary
motions is to allow the characteristic axes at each material point to rotate
with an angular velocity equal to the spin* at that point. Thus, at a material
point, the characteristic axes to whicﬁ the constitutive relations are referred
remain fixed in orientation relative to each other but rotate as a unit as the
mqterial moves and defofms.

In formulating constitutive relations, any conveniént set of three independent
characteristic axes can be used, Most commonly, a set of three mutually |
orthogonal axes are used since this simplifies the intéfprefation of stress
and strain rate components., Thus, in the formulation discussed'below, the
characteristic axes are thought of as being mutually orthogonal, ®*,

The unit base vectors e_ of the characteristic axes are defined in terms

I

of the éi and 8; base vectors by the following transformations:

ey = Q G
i_.
= d; 8; (3.1a-c)

.1 i, -]
.+ 4w,
ng ,J) QI

it

where q;

* Spin is a field quality derived from velqcity gradients. The spin at a material
point can be interpreted as the local angular velocity of the material
surrounding the point (Reference 5).

*% The mathematical developments are not restricted to the orthogonal case,
but the interpretation of the stress and strain rate components will differ

from those given here if non-orthogonal characteristic axes are used,

12
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1J . . . . .
The stress tensor < and strain rate tensor € used in the constitutive

J

relations are related to T'J and Yij by

Tij _ Ql cIJ Qj

1 3 .
(3.2a,b)

. _ i L] JlA

‘w4 Y3 G

GIJ is the Cauchy stress tensor, with components referred to the (rotating)

characteristic axes, These stress components are the so-called true stresses
which are interpreted as force per unit of current area, The ordinary time "

piuapd 1J , ~ : 1 R ' .
derivative of 0™ is the stress rate tensor o which corresponds to the Jaumann stress
rate tensor (Reference 6) with components referred to the characteristic axes,

The strain rate tensor €

17 corresponds to the deformation rate tensor with

components referred to the characteristic axes., These strain rate components
are the so-called true strain rates which are interpreted as follows:

A normal component € (I=J) is the rate of change of length per unit current

J
length of a material line segment instantaneously coinciding with the I
characteristic axis. A shear component éIJ (I#J) is one-half the rate of decfease
of the angle between two material line segments instantaneously coinciding with
the (orthogonal) I and J characteristic axes, respectively,

'The total strain rate is assumed to be composed of a sum of strain rates
from different mechanisms, as follows:

= e+ eP_ 4+ &8

€ . .
J IJ 1J 1J : (3.3)
where eiJ is the elastic strain rate, ng is the plastic strain rate,
and €B_ is the slress-independent growth strain rate., The

1J

plastic strain rate may, itself, be composed of contributions from different
plastic strain mechanisms, such as thermal creep, neutron flux induced creep,
and so forth, The growth strain rate may also be composed of contributions

from different mechanisms such as thermal expansion and irradiation growth,

13
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The elastic strain rate,- in genefal, depends on stress and-stress rate
along with the environmental variables, suqh as température. The specific
form of the elastic behavior is not of prime importance aé far as the mathematical
formulation of the solution procedure is concerned., For definiteness,
hypoelastic behavior‘ﬁill be assumed here, in which the elastic strain

rate is linearly related to stress rate as follows:

‘e e *KL '

€1y = CIJKL o] (3.4)
wheré.CiJKL_is the elastic compliance tensor which may be temperature
dependent. The incremental form of this relation, resulting from integration
over a time step, can be approximated as follows:

KL : : '
A © ~~ © g ' :
15 ~ S B (3.5)

where the elastic compliance tensor is understood to be evaluated at the
average temperature of the time step. |

The plastic strain rate depends on stress, history-dependent 'internal
variables'" which characterize the state of the material, and environmental
variables such as temperature‘and neutron flux. In the incremental solution
procedure deﬁeloped here, it is necessary to obtain an appropriate expression
which 1inear1yAre1ates the plastic strain increments to the stress increments.
This can be done by first expanding the plastic strain rate in a Taylor

J

series about the known stress state o, at the beginning of a time step,

The linear part of this Taylor series expansion is

o.Po

€

‘P __.P IJ KL _ KL

€13 ~,613 + o:KL (c Aco ) 4 | (3.6)
.b

o . . .
- and the partial derivatives are evaluated at

In the above, expression, €13

. KL .
constant stress OEJ . Now, letting ¢ be the average stress of a time

14
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, { KL : L .
step (i.e., o =0 ~+ % Ao™") and integrating the above expression

.0

over a time Step results in

p P
P o 0 KL
AeIJ N,AeIJ + CIJKL Ao
where ; ¢ ,
by
be ] [ e, dt
t
o
'p
, t )
Cpo _ I 'OGIJ de
CUIIKL T ¢ KL
do
t
(o]
P

o . aps A ~ .
In the above,_AeIJ is the plastic strain increment that would occur if the

Po

stress was held constant at the value GOIJ throughout the time step. CIJKL

is called the plastic compliance tensor,

The growth strain rate‘depends on the environmental variables and not

on stress, The increment in growth strain is

t.

g _r. ‘g
AeIJ = f eIJ dt
-

(o]

The numerical ‘method used to evaluate the integrals in Equations

(3.8) and (3.9) will not be specified here, since its design depends on the

3.7

(3.8a,b)

(3.9)

specific material model used. For some relatively simple models it is possible

to evaluate the integrals analytically, for other more complex models it is

necessary to evaluate the integrals numerically,

Combining equations (3.3), (3.5), (3.7), and (3.9) results in an approximate

incremental constitutive relation in the following form:

15
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* KL ‘ : ‘
AeIJ A,AeIJ + CIJKL Ao : N | (3.10)
where
pe¥ = 860 4 neB
17 7 %15 T %1
(3.11a,b)
. . p . :
_ e o
Cure = Sk * Cur
The inverse relation is
1J TJKL S & |
Ac™ =D be -,A Oy (3.12)
IJKL . ' . .
where D , the stiffness tensor, is the inverse of CIJKL’ and
1J IJKL %
Boy, =D berr, : . (3.13)

The stress and strain increments'appearing in the above incremental
constitutive relations have components referred to the rotating characteristic
axes, In order to apply these constitutive relations in an incremehtai solution
procedure,'it is necessary to derive a procedure for keeping,crack of the
rotating characccristic axes and to cerivc expressicns which relate AYij to AGIJ
and AYij to ATij.

To derive the procedure for keeping track of the rotating characteristic
axes, it islrecalled that the E& base vectors do not change in magnitude
but they rotate with an angular velocity 5, given by Equation (2.16).. Therefore,
the time derivativc of Ei is

eI =X eI (3.14)

which, along with Equation (3.la) results in

‘i = i
Q 6, +Q G, =Q (wxG (3.15)

Taking the dot product of both sides of the above equation with Ej gives

an equation which, when simplified, results in

+ 5 Q6. =0 (3.16)

ij ij

16
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This equation can be written in matrix form as

lellel + 5 ([cl@) =0 | ~ (3.17)

the solut1on of which is

[G] [Q] = constant = [Go]%[Qo] = [Qo]
(el = [G]f%LQo] R | . (3.18)
where [G]%, the "square root'" of [G], is the 3x3 symmetric matrix such that
[c] = [61%(c)* ~ | (3.19)

[_:G]}5 can be computed by finding the eigenvalues and eigenvectors of [G];
i.e., Sy finding the orthogonal matrix C¢] and the diagonal matrix [Kj whose . .
diagonal elements aré the eigenvalues, such that -

(9] l61e] = [A]
o8k
(1 L)

el '  (3.20a-¢)
(1]

Then
(6] = [11A1%([])"
le]™% E¢][A] T2 )T

where [l]z is the diagonal matrlx whose diagonal elements are the square

(3.21a,b)

roots of the corresponding elements of [A].
[G]-% can also be computed from the following series expansion:
[617% = [[1] + [ac]]°%
= 1) +2 [AY]]-%

Cov) + 37 (vl - 322 1ov2® + B2 Gan)® - RS

1

= [1]

17
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To derive the expression relgting AYij to AeIJ’ it is noted that by
using Equation‘(3.18), Equation (3.2b) can be written in matrix form as
(6] - TVl
= 301" 61(a) |
-5fo_1"[e]7*(6)e] (o, | | G2

The above equation can be integrated to give
lae] = %[0 1" inlely (o, ) | - (3.26)
where the natural log of [G] is defined by A . .
(1al6]) = [9](1nlAD) ()" sy
and (ln[X]) is the diagonal mgtrix whése diagonal elements are the natural.logs
of the corresponding elements of [A], |
(1n{G]) can also be .computed from the following series expansion

(inlch- @anll1) + [261D)

(1n[[1] + 2[Av]])

20avy) - =— EAY]7 EA‘Y] | (3 26)

By using Equations (3.2), (3;12), (3.18), (3.22), (3.24), and (3.26), and
neglecting second order terms'involving AYii’ the following approximate expression
relating 4Y, , to AT can be derived:

ATij z:[Dijkl-%(Tilgjk 1] 1k+T1k J1+TkJ 11)]AYk1-ATlJ (3.27)°

where -

%* o
(3.28a-c)
ij i J ]
AT* Qo QoJ
I
ijkl_ Q i Q_j DIJKL Q k Q 1
o, 0 o o
I °J K

18
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By combining the‘tevrms in square brackets and denoting the result by D:.;Jkl,_
Equation (3.27) can be written as
ij  ijkl gl S
AT D, A‘Ykl A'f* (3.29)
where A ‘
ijkl ijkl il jk 1j ik ik jl kj il
D*J = o™ -5(T, gl + T*Jg + Ty gJ_ + vT*Jg ) (3.30)

19
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4, VIRTUAL WORK EQUATION

Let &v denote an arbitrary virtual change or variation of the velocity
field such that the appropriate components of §v vanish on the part of the

surface where displacements are prescribed,

v = 6v'g, = bv.g (4.1a,b)
T 1 ;
The corresponding variation of the strain rate fiéld is
6. 1ot i i i
Yoo 2[(gm + Au;m)évi;n +. (g + Au;n)évi;m] %.2)
The Prihciple of Virtual Work, which is a statement of equilibrium, is
expressed by the following virtual work equation:
J ™y av - [T ,svas - [oF.8vav = 0 (4.3)
v mi S v : '

The integrals in this equation are evaluated at time t,.

Ln order to apply the'virtual work equation to férmulate the finite element
equilibrium equation, it is necessary to transform the integrals so they can
be evaluated in the.known configuration of thé‘body at time tu' The volume integrals
can be transformed by using the volume transformation relations given by
Equation (2.18), which, along with Equatibn (4.2) "allows the intermnal virtual
work term to be written as |

T gy = [ 7T
J™ey__av I’J 8Y__dv_ | | .

\
o

5 3™ (g, + b Ybv, . AV (4.4)

(o}
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The body force term can be writfen as
[oF.6vav = [ p F.g 6v.dv
v v o i o
o

éf poflévidvo . (4.5)
v ) , ,

o
The treatment of the surface traction term depends on the nature of the
prescribed surface traction, For a pressure load, the most common type of
surface traction, the traction vector is of the form
T = -pN
P (4.6)

—
= -kaG

where p is the pressure and N is the unit vector normal to the surface. Letting
Sp denote the part of the surface over which pressure loads are prescribed,

the contribution from Sp to the surface traction term becomes

[ T.6vas = - pN.svds
5

P Sp 4
Kk — . i

=-f PN, (G .g;)bv'dS
S 1
P

_ ko= . i
[on, 3 @ 5povias, | . 4.7
s -

where the surface transformation relation given by Equation (2,20) has been
used. A representation of J(ak.gi) in terms of displacement gradients can

be derived as follows:

“k - kmn = = | = :
L
J (G -gi) Ze (Gmxcn)ogi/ﬁ

kmn, r r s s - .-\ =
ke gy + M) (g + bl ) (g %8 ) B VR

kmn

=ke e .(
TSi

r Y s 3
B + Au;m)(gn + Au;n)

k i k kmn r [ .
=g, (1 T = bdu, L .
84 1+ Au;J) vy + Le ~ersiAu;mAu;n | (4.8)

21



WAPD-TM-1384

Therefore,Equation (4.7) can be written as

T ATae k3 _ ,k L kﬁn r , s i
f T.&vdS = -fop[ni + 0, (giAu;j Au.i + %e ersiAu;mAu;n)]év dSo 4.9)

S
p P |
Substituting Equations (4.4), 4.5), and (4.9) into (4.3) results, in

the following virtual work equation for the case when the prescribed tractions

are pressure loads:.

[ 3™+ sl yov, av - [ i
m sm”iint o gop £ 5V1dVo

v )
o o
k, j k L kmn r , S i _ '
+I p[ni + rxk(giAu;j Au;i + %e ersiAu;méu;n)]év dSo =0 (4.10)
s° o
P

By substituting Equations (2.15), (2.19), (3.28), and (3.29) into the above

and neglecting all second and higher order terms involving the displacement gradient

increments, the following approximate form of the virtual work equation can be

derived:
injk |, q7kn ij , qin_jk '
J Dy =+ g+ 8 )Auj;ksvi;ndvo
Yo

i jk_j ik
+ I p(ng’ -n’g )Auj;kévidS;}

g©
P
. - i : Tiﬂ ' : i :
{g poAf 6vidVo + é AT, 6vi;ndV° JoApn 6vidS{}
o o S
P
[ qone _ oLl _ i, . .
|{i$ o vy dV £ pEodv,dv, 4 jopon uvidSé} ~ 0 (4.11)
o o’ Sp

The following relations involving the body force and pressure were used

in deriving the above equation:
i -1 i : ,
£f° = fo + Af (4.12a,b)

p,+ bp

o
1l
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5. FINITE ELEMENT EQHILIBRIUﬁ EQUATION

The virtual work equation derived in the previous section forms the foundation
from which thé'finite element equilibrium gquatién is derived. A three-
‘dimensional isoparametric finite element formulation will 5e used here, in which
the coordinates at time ty and t, the displacement increments, and the displacemgnt
gradient increments are approximated as follows:

B

X =~ N X,
j B

B p

X, = = = .
xj + Auj N (ij + Aujﬁ) N XJB

B, | | 5
Auj ~ N AujB o 4 ' : (5,1a-d)

Auj i~ = N?kAujB
.where ij and Au,B are.the'coordinat§s~and displacement increments at node B
of the élement .and'NB is the isoparametriq shape function which assumes é unit
valuye at node B and a zero yalue at all other nodes of the element,
Likewise, tﬁe velocity variations and their gradients~are approximated by

bv, szév. . : . .
1 1o : (5.2a,b)

Substitution of Equations (5.1) and (5.2) into Equation (4.11) results in
" the finite element fomm of the approximate virtual work equation. This equation,
after élimination of the arBitrafy-Sva from all terms, becomes the foliowing

approximate finite element equilibrium equation:

iajh _aele o : . :
K bu g~ BE T = £7 | (5.3)
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The terms appearing in this equation are defined and discussed below:
Af'¥ is the increment in nodal force which contains contributions from

different sources, as follows:

i io - io i
Af = Afp + AfB + Af* _ . (5.4)
where
Afia - _I ApnlNadS
P 0 o
S
P
Af;a - [ pUAleaan (5. 5a-c)
¥ v .
o

et cin o
AL [ AT avy
o}

~ io | . . in
In the above, Af is the increment in nodal force due to pressure increments,
P

Af;a is due to body force increments, and,Af;é is due to plastic and growth

strain increments.

Lo

fR in Equation (5.3) is the residual or unequilibrated nodal force defined by
ie_ ¢ cino _ i i
fp = ) onN;ndVo [ pE NGV, + [ p n N dS_ (5.6)
\Y Vv : o
o o Sp

The residual force results from the last group of.terms enclosed by braces

in Equation (4.11)., This group of terms is actuaily the virtual work equation
for the solution state at the beginning of the time step, Therefore, if the -
stress state Tij was in equilibrium with the prescribed body forqe fi and surface
pressure Pys the sum of these teims wéuld be zero, However, since second order
terms were neglected in developing Equation (4.11), this equation is not an
exact statement of eqﬁilibrium, which results in a computed solufion whicﬁ does
not éXactly satisfy equilibrium. The negative of the residual nodal force, as it
abpears in Equation (5.3), is the nodal force which would be required

ij . . . . s
to cause the stress state TOJ to change into one which is, in the finite element
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sense, in equilibrium with the applied loads. The residual force term, then,.
acts as a correction which tends to increase the nuﬁericallstability.and'accuracy
of the approximate solution process. The technique of using residual force

correction was apparently first feported.in the open literature by Hofmeiéter,

Greenbaum, and Evensen in Reference (7).

The "stiffness matrix" KmlJB in Equation (5.3) can be decomposed-into the’

sum of several contributions, as follows:

iejB  _iajB

iojf _ _iejB . _iwjB . _iajB |
K = gl + K2 + K3 o+ K4 + KS. , (5.7~
. where _ o
L [ pindky® N av
1 v ;n 3k o
)
i ' kn ij ij kn ik n nj ik: B
K, iB _ £ - 5(T g+ g TS I g To ig )N NdVs
o]
K;QJB + 1IB_ popindlg® B gy
2 v % ;n 3k o ; . . .
o B 7 (5.8a-g)
iajB _ kn ij B
Ky " = é L N,nN,k
o
iy TR i ik aj k, &
K; jB N K;GJB _ f %(TingiJ _ Tijgkn _ Ti gt TnJ i )N NBde
A

[o}

)

iejB _ in Jk o
A -2 A
VO
kE0P o [ palgd® - nlgton® NB LR
5 40

The K, contribution to the stiffness matrix corresponds to the usual stiffness

1
matrix whicéh resulcrs from an influltesiwmal Jdeformation formulation: The K2
through K5 contributions, which do not appear in an infinitesimal deformation

formulation, are the result of taking finite deformations into account.
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The K1 + K2 contribution is identical in form to the K1 contribution; i.e.,

it can be computed in the same way'aer1 by using D, in place of D.

Contributions similar to K and K4 have been identified previously

20 K3
by other authors who call various combinations of these terms the '"initial
stress stiffneés métrix.” The difference between the present and previous
fofmulations is that‘Tij = Tij - ATij abpears in the present formulation where
TzJ appears in previous formulations, It is necessary to include the ATij-
term if thermal or irradiation gfowth strain increments are present or if an
estimate of the plastic strain increment is available as it is in the present
formulation. The initial stress contributions to the stiffness matrix were
apparently first defined unambiéuously by Martin in Referepce 8 and.used in an
elastic-plastic formulation by Hibbitt, Marcal, and Rice in Reference 9,

The K4 ¢ont¥ibution can be associated with volume change which takes

place during the time step. K4 would not be present if the appfoximation J =1

had been used during the time step instead of J = 1 + Au%i. Also, K4 would
; :

not be present if the volume change term was imbedded in the definitioﬁ

of stress used in the constitutive relations, That is, if a stress tensor

51 had been used in the constitutive relations instead of GIJ, where

1J _p_ . 13 . . e L

S = "ref ¢, with p being the density in the current configuration and
p

pref being the density in a reference configuration,
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The KS contribution accounts for the change in area and orientation of

the surface over which pressure is applied. This contribution was apparentiy
first defined explicitly in Réference 9 by Hibbitt,'Marcal, and Rice, who call
it the "initial load stiffness_métrix.”

The K through K, contributions satisfy symmetry relations of the form

1 3

iajB _ jBiw
K = K . K4 and KS’

Thereforé, an unsymmetric equation solver is necessary if K4 and K5 are

however, do not satisfy these symmetry relations.

included in the formulation. The solution of uns&mmetric equations requires
more computer time andAstoragé over that reqﬁifed by syﬁmetric-equations,
which leads to the cogjecture that it méy be more éfficientbto néglect the K4
arlxd‘K5 contributions (along with the second order terms already neglected),
use smaller time'steps, and rely on the residual force to correct the errors
caused by the neglected terms.'AThis gpp?oach, where K4 and K5 are neglected,

has been taken in the ACCEPT program (Reference 1), where the theory developed

herein has been implemented.
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6. INCREMENTAL SOLUTION PROCEDURE AND TIME STEP CONTROL

The equations which govern the incremenfs in stress, strain, and
displacement which occur dﬁring a time step wefe derived in the preceding
sections, The procedure for implementing thgse eqﬁations in a computer program
is summarized in this section and a time step control algofithm is given for
computing appropriate timé step sizes, based on the progress of the solution,
The time step control algorithm pfesumes that the very first time step size
is pres;ribed and, upon completion of any time step, determines whether the
time step size is acceptabler(sufficiently small) and determines the time
step size fo be used in the next time step,

The first} major task which must be per_formed at the bheginning of a time
step is to compute'thg finite element stiffnegs matrix and nodal force-vegtor
for each element, To accomplish this for a particular element, calculations
involving tﬁe constitutive -equations must be performed at each integration

*
or Gauss point of the element, This involves first calculating A¢ and C of

1J IJKL
. . J IJKL . .
Equation (3.10), then calculating Ao ” and D of Equation (3.12), and finally

calealating atid, 713

Jki

and UjJ"" of Equations (3.28) and (3.29).

The element stiffness matrix and force vectors of'Equation (5.3) are then

. computed, using Equations (5.4) - (5.8). 1t should be notéd that the
C 1J TJKL , , .
calculated quantities Ao, and D appearing in Equation (3.,12) can be saved

for use later on in calculating stress increments, to avoid the necessity of
re-cvaluating thcac quantities,

The next major task is to solve thefinite
element equilibrium or stiffness equations for thé nodal displacement increments,

This is accomplished by using the bandwidth, wavefront, or iterative equation
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solver available in any general-purpose finite eiement'program._
Having galculated the ﬁodal disélacement incremenfs, the next major
task is to calculate increments in the various field qﬁantities, cénsistent
with the calculated displacement increments. This is accomplished by following
the sequence of calculations described below for each integration or Gauss point
of each finite element:
1, Calcﬁlate the displacement gradient-increments Aui;j using Equation (5;1d).
2. Calculate the metric tensor Gij using Equations (2.4)and (2,13), Calculate the
eigenvalues and eigenvectors of Gij" (See Equation (3.20)).
3. Calculate Q% usiﬁé Equations (3.18) and (3.21b). "Calculate qi using
Equation (B.LE). Note that q; corresponds to the'initigl value of the transformation
matrix Q; for the next time step because the 6{ base vectors are always redefined
to coincide with the Ei base vectors at the beginning‘of.a time step,

4, Calculate the strain increments AeI using Equations (3.24) and (3.25),

J
5, Calculate the stress increments A UIJ by applying two iterations of the
"Newton=-Raphson method to solve the following nonlinear equation for A GIJ:
AeIJ'= AeiJ + Aeia + AG%J, ' : (6.1)
where Ae?; is the plastic strain increment eValuated at the average stress
A caIJ = GOIJ + XA UIJ of the time‘steP.‘ |
The stress.increment A‘GIIJ of the first iterétion is palculated using

Equation (3.12) and the stress increment A GIJ of the second iteration is

calculated by solving the following linear equation:
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. APl g8 _ opl . KL
AeIJ N,AeIJ +<A€IJ CIJKLA 01
+ (g * CII)}IKL)A o (6.2)
pl pl ' Iy _ 13, 1J
where AeIJ and CIJKL are evaluated at the s tress 01 = co + %A 01 .

The stress increment A GIJ re;ulting from the second iteration is taken to
be the stress increment of the time step. In order for this to be an accurate
approximation, it is necessary to require the ''stress error".ciir defined by

ol =™ - aof ‘_ - (6.3)
to be sufficiently small, Tﬁis requirement is enforced by the time step
control algorithm described below,

The next major task is to determine whether the time stép size used in the
current time step is sufficiently small and to determine the time step size
. _to be used in the next time step. Thelfour basic points discussed below must be
considered in making these determinationé.

1. All second and higher order terms involving displacement gradient
increments were neglected to develop the approximate virtual work equation.

In order for this to be an accurate approximation, it is necessary to require
the displacement gradient increments to be sufficiently small,

2. The appfoximate incremental constitutive relation of Equation (3.10)
was also used to develép the approximate virtual work equation, In order for
this to be an accurate approximation, it is necessary to require the stress
error defined by Equation (6.3) to be sufficiently.small. Also, it is necessary
to limit the size of the temperature increment if the elastic compliance is
temperature-dependent (see Equation (3.5)), or if an average-temperature

approximation is used in evaluating the integrals of Equation (3.8).
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3. The total coﬁpliance tensor as defined in Equation (3.11b) is

e
IJKL

PO

kL the

and a plastic compliance C

latter of which increases monotonically as the time step size increases.

CP.O-

1IKL is singular (does not possess an inverse) if the material is,'as usually

assumed, plastically-incompressible, If the time step size is sufficiently

large to cause ‘the plastic compliance to be large relative to the elastic

' compliance, then the total compliance tensor will be'nearly singular., Since a

nearly singulaf compliance‘leéds to éﬁ ill-conditioned sét of finite element"
equilibrium equations which is difficult to solve accurately, it is necessary
to limit the time step size such that the'pléétic compliance is ﬂot too larée
compared to the elastic compliance,

4, The finite element stiffness matrix contains' contributions due to the

stress quantity T;J = T:J- ATiJ., The quantity AT;;J depends on the plastic

“and growth strain increments as defined by Equations (3.1la), (3.13), and (3.28b).

If the contributions to the stiffness matrix due to AT;J are allowed to be too

large, this, like a nearly-singular compliance tensor,.can lead to an ill-

‘conditioned set of finite element equations, Therefore, it is necessary to limit
" the magnitude of the AT;J contributions, This can be accomplished in effect

by limiting the plastic strain increménts ‘and the temperature increments,

The four major points discussed above are accounted for in the time step
control algorithm déscribed below, The following definitions are necessary

in order to completely describe the algorithm:
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ETA, ETD, ETM
EPA, EPD, EPM
SEA, SED, SEM

CRD

CRM

The

whether or not the time step size Ato

- WAPD-TM-1384

Preséribed maximum allowable displacement gradiept incremen;.
(Recomménded to be in the range 0,001 to 0.05.)

Prescribed maximum désired displacement gradient increment, (Recommended
to be approximately equal to DGA/5, but not larger than DGA/é).

Actual maximum displacement gradient increment occurring during the

current time step,

Same .as above but for total strain increments.

Saﬁe as above but for plastic étfain increments,

Same as above but for ''stress errors'" as defined in Equation (6,3).
(SEA rccommcended to be 1 to 5 percent of the expected maxiuwum stress,)
Prescribed méximum desired ratio of plastic compliance to elastic
compliance, (Recommended to be 10 to.20.)

Maximum ratio‘of plastic compliance to elastic compliance computed

during the current time step. The plastic compliance is defined in

t P . :
this sense to be f %Egdt, where eP and 0 are generalized plastic
t - ’ .

3 ) . . . : .
strain rate and stress measures. The elastic compliance is defined

to be 1,/E, where E is a representative elastic modulus of the material,

first task performed by the time step control algorithm is to decide

1d of the current time step is sufficiently

small, This decision is based on whether or not the following inequalities are

satisfied:
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DGM S DGA
ETM < ETA
EPM < EPA

SEM s SEA
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If any of the inequalities i8 not satisfied, Ato is too larée and the

1d

time step must be redone using a new time step size Ath <A

ow told,_as determined

below, If all of the inequalities are satisfied, Ato is sufficieﬁtly small

14
and it is permissible to go on to the next time step, using the time step size
At determined below,
new :
The next task performed by the time step control algorithm is to choose
the new time step size, The algorithm chooses Atnew to be the smallest of

a number of candidates Ati which are defined as follows:

At1

1]

(DGD/DGM)Atold

At2 = (ETD/ETM)Atold

At3 = (EPD/EPM)AtOld

3
At, = (SED/SEM)ZAto (See footnote 1)

4 14
At5 = (CRD/CRM)Atold
At6 = time step size which would result in a temperature increment

not exceeding a prescribed allowable value.

old’
. the range 2 to 10.

At = (M)At where M is a prescribed number recommended to be in

At, = prescribed maximum allowable time step size.

1., The square root of SED/SEM is used because the '"stress error' is

approximately proportional to Atz.
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If the current time step 1s defermined to be acceptable, it is necessary,
be fore beginﬁing the next time step, to update the values of the "essential
variables'" which are needed to perform each time step, The essential variables
are the nodal coordinates Xia’ and tﬁe integration or Gauss point stressas cIJ,
transformatiop matrices Q%, and any internal variables used in the material model.
Also, any other variables which are desired to be output from the program (such

as total displacements, total strains, plastic strains, etc.) must be kept track

of and updated before each time step,
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7. CONCLbSIONS

A finite element procedure has been developed for finite deformation
analysis of continuum stfuctures with time-dependent anisotropic elastic-
plastic material behavior. The kinematics of deformation are described by
'using an updated Lagrangianrformulation in which the configuration at the
beginning of each time step serves as the Lagrangian frame of reference for
that time step. The time-history of the solhtion is generated by using a linear
incremental procedure with residual fprce correction and automatic time step
;ontrol.

As part of the overall procedure, a sub-procedure has been developed
for keeping track, at each material point, of a set of three mutually orthogonal
axes which rotate with the material with an angularAvelocity equal to the spin rate
at the material point. These orthogonal rotating axes are associated with
characteristic directions in the material and serve as the frame of reference to
which the anisotropic constitutive relations érevreferred.

Another important part of the overall procedure is an automatic time step
contfol algorithm which monitors the progress of the solution and chooses time
step sizes to control the accuracy and numeriéal stability of the solution. This
time step control algorithm is an essent;al part of the procedure, because it |
is virtually impossible for an analyst to make a good a priori choice of time
step sizes without having a good a priori knowledge of the solution.

The analysis procedure describedlin this document has been implemented in
the‘ACCEPT computer program described in Reference 1. 'The effectivehess of
the procedure has been demonstrated by extensive numerical experimentation
with and proddction usage of the ACCEPT program. Experience in using ACCEPT
hés shown that the proceduré makes the solution of finite deformation elaspic-
plastic probiems almost as routine as the solution of infinitesimal deformation

linear elastic problems.
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