SANDIA REPORT

SAND88 —0911 « Unlimited Release + UC-13
Printed September 1986

SUPES
A Software Utilities Package

for the Engineering Sciences

Dennis P. Flanagan, William C. Mills-Curran, Lee M. Taylor

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

for the United States Department of Energy
under Contract DE-AC04-76DP00789

DISTRIBUTION OF THIS DOCUMENT IS UNUMITffl

SF2900Q(8-811

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, ex-
press or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government, any agency thereof or any of
their contractors or subcontractors. The views and opinions expressed here-
in do not necessarily state or reflect those of the United States Government,
any agency thereof or any of their contractors or subcontractors.

Printed in the United States of America
Available from

National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

NTIS price codes
Printed copy: A02
Microfiche copy: A01

MASTER

SAND86-0911 Distribution
uc-13

Unlimited Release

Printed September 1986

SUPES
A Software Utilities Package for the Engineering Sciences

Dennis P. Flanagan
William C. Mills-Curran
Lee M. Taylor
Engineering Analysis Department SAND--86-0911
Sandia National Laboratories
Albuquerque, New Mexico 87185 DE86 015749

ABSTRACT

The Software Utilities Package for the Engineering Sciences
(SUPES) is a collection of FORTRAN subprograms which perform
frequentiy used nonnumerical services for the engineering
applications programmer. The three functional categories of SUPES
are: (1) input command parsing, (2) dynamic memory management, and
(3) system dependent utilities. The subprograms in categories one
and two are written in standard FORTRAN-77, while the subprograms
in category three are written to provide a standardized FORTRAN
interface to several system dependent features.

111 4STRIBUTION OF THIS DOCUMENT IS UNLIMITED E

% sk % %k 3k 3k sk gk ok 3k sk %k 3k 3k k 3k sk 3k %k 3k K %k 3k sk %k 3k 9k 3k 2k K 3k 3k sk ok 3k ok 3k ok 3k e 3k e %k %k vk 3k 3k Kk vk 3k 3k ke %k e %k vk 3k Ik 3k Kk 3k %k sk ok 3k 3k vk ok ok ok ok %k

ISSUED BY SANDIA NATIONAL LABORATORIES,
A PRIME CONTRACTOR TO THE
UNITED STATES DEPARTMENT OF ENERGY

¢ %k e K e 3k e ek e ke ke ok ke sk 3k ke Jk ke ke sk de sk gk ok 3k 3k vk ok d ok gk 7k gk sk vk ok ke sk vk ok ke sk ke sk ok vk gk Sk sk dk vk 3k 3k vk 3k ok ke 3k 3k sk 9k ok ok 3k ok %k ok %k %k

THIS CODE WAS PREPARED IN THE COURSE OF WORK SPONSORED BY THE UNITED STATES
GOVERNMENT. NEITHER THE UNITED STATES, NOR THE UNITED STATES DEPARTMENT OF
ENERGY, NOR THE UNITED STATES NUCLEAR REGULATORY COMMISSION, NOR ANY OF
THEIR EMPLOYEES, NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR THEIR
EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL
LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS OR USEFULNESS OF
ANY INFORMATION, APPARATUS, PRODUCT OR PROCESS DISCLOSED, OR REPRESENTS THAT
ITS USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

Fe 3 2k 3k v 3k sk 3k ok vk 5k sk ok 2k sk sk ok ke vk sk vk sk vk ok dk sk ok ke ok %k %k dk ok vk sk 3k 3k 3k 3k 3k Sk 3k vk ok 3k ok ok sk Jk sk ok sk e vk o ok sk ke e ok ok gk ok s 3k 3k ok 3k 9k 9k ok %k %k %k

iv

«

ACKNOWLEDGMENT

The authors would like to acknowledge R. V. Lust of General Motors Research
Laboratories who helped design the structure and logic of the memory
manager.

ABSTRACT

CONTENTS

ACKNOWLEDGEMENT

CHAPTER
CHAPTER

2.1
2.2
2.3
2.4

CHAPTER

3.1
3.2

3.3

3.4

CHAPTER
4.1

4.2

4.3

1 INTRODUCTION
2 FREE FIELD INPUT

KEYWORD/VALUE INPUT SYSTEM
SYNTAX RULES
FREE FIELD INPUT ROUTINE (FREFLD)
2.3.1 Basic Examples
UTILITY ROUTINES
2.4.1 Get Literal Input Line (GETINP)
2.4.2 Strip Leading/Trailing Blanks (STRIPB)

3 MEMORY MANAGER

POINTER SYSTEM
BASIC ROUTINES
Initialize (MDINIT)
Define Dynamic Array (MDRSRV)
Delete Dynamic Array (MDDEL)
Reserve Memory Block (MDGET)
Release Unallocated Memory (MDGIVE)
Obtain Statistics (MDSTAT)
Print Error Summary (MDEROR)
Basic Example
ADVANCED ROUTINES
.1 Rename Dynamic Array (MDNAME)
.2 Adjust Dynamic Array Length (MDLONG)
.3 Locate Dynamic Array (MDFIND)
4 Compress Storage (MDCOMP)
DEVELOPMENT AIDS
1 List Storage Tables (MDLIST)
.2 Print Dynamic Array (MDPRNT)

WWWwwWwwwww
e o o e e e e e
RPN
. L] . L] . - L]
ONO O WN =

Wwww
W W W w

4 FORTRAN EXTENSION LIBRARY

USER INTERFACE ROUTINES
4,1.1 Get Today's Date (EXDATE)
4,1.2 Get Time of Day (EXTIME)
4.1.3 Get Accumulated Processor Time (EXCPUS)
4.1.4 Get Operating Environment Parameters (EXPARM)
4.1.5 Get Unit File Name or Symbol Value (EXNAME)
UTILITY SUPPORT ROUTINES
4,2.1 Convert String to Uppercase (EXUPCS)
4,2.2 Prompt/Read/Echo Input Record (EXREAD)
4.2.3 Evaluate Numeric Location (IXLNUM)
4.,2.4 Get/Release Memory Block (EXMEMY)
SKELETON LIBRARY
4.3.1 Skeleton Routine Specifications

vii

1 1] 1 1]] 1 1 1 1
COOWWONNNOODOOTE D WWN —

I WWWLWWWLWWLWWWWWLWWWWWW
1

www
1
— - =

E-Y
]
—

R ST T R S g N S SN N S N
1
OCONNOOO B WNNDNN

CONTENTS

CHAPTER 5 SUPPORT PROGRAMMER'S GUIDE
5.1 FREE FIELD INPUT
5.1.1 Impiementation Notes on FREFLD
5.1.2 Test Program for FREFLD
5.2 MEMORY MANAGER
5.2.1 Table Architecture and Maintenance
5.2.2 Non-ANSI FORTRAN Assumptions
5.2.3 Standard FORTRAN Implementation
5.2.4 Test Program
5.3 FORTRAN EXTENSION LIBRARY IMPLEMENTATION
5.3.1 Implementation Notes for Modules
5.3.2 Extension Library Test Program
5.4 INSTALLATION DOUMENTATION GUIDELINES
REFERENCES

APPENDIX A: Site Supplements

SNLA SAVO1 VAX 8600
SNLA CRAY-1/S (COS 1.11)
SNLA CRAY X-MP/24 (CTSS/CFTLIB 1.11 or 1.14)

viii

U
()] b
1
— 1+

11 1 LI S R B |
QONOOOUTONWW W+

oo oToTotomtor o
|

[8))
!
-

CHAPTER 1

INTRODUCTION

The Software Utilities Package for the Engineering Sciences (SUPES) is a
collection of FORTRAN subprogrpms which perform frequently used nonnumerical
services for the engineering applications programmer. The three functional
categories of SUPES are: (1) input command parsing, (2) dynamic memory
management, and (3) system dependent utijlities. The subprograms in
categories one and two are written in standard FORTRAN-77, while the
subprograms in category three are written to provide a standardized FORTRAN
interface to several system dependent features.

Applications programmers face many similar user and system interface prob-
lems during code development. Because ANSI standard FORTRAN does not ad-
dress many of these problems, each programmer solves these problems for
his/her own code. SUPES aids the programmer by:

1. Providing a 1ibrary of useful subprograms.
2. Defining a standard interface format for common utilities.

3. Providing a single point for debugging of common utilities. That
js, SUPES has to be debugged only once and then is ready .for use
by any code.

Use of SUPES by the applications programmer can expand a code's capability,
reduce errors, minimize support effort and reduce development time. Because
SUPES was designed to be reliable and supportable, there are some features
that are not included. (1) It is not extremely sophisticated, rather it is
reliable and maintainable. (2) Except for the extension library (Chapter
4), it is not system dependent. (3) It does not take advantage of extended
system capabilities, since they may not be available on a wide range of
operating systems. (4) It is not written to maximize cpu speed.

1-1

Introduction

It is the intention of the authors to maintain SUPES on all scientific
computer systems commonly used by Engineering Sciences Directorate (1500)
staff. Versions of SUPES for new machines and/or operating systems will be
added as needed. Other Sandia personnel may obtain copies of SUPES from the
authors. SUPES will be available to non-Sandia personnel through the

National Energy Software. Center.

1-2

CHAPTER 2

FREE FIELD INPUT

This chapter describes the free field input system supported in SUPES. This
software was developed because it was recognized that most codes written
within the Engineering Sciences Directorate have very similar command input
reqguirements. The SUPES free field input system consolidates the
development and maintenance of command parsing code into a single set of
reliable software. This utility provides a uniform command syntax across
application codes to the end user, and minimizes the burden of command
parsing on the applications programmer.

The design requirements which are imposed on the SUPES free field input

system are as follows:

1) Input must follow a natural syntax which encourages readability.

2) The system must be applicable to both batch and interactive command
input modes.

3) The software must be written in ANSI FORTRAN.

4) The interface to the applications program must be clear and
flexible.

2.1 KEYWORD/VALUE INPUT SYSTEM

This section describes the basic characteristics of the SUPES free field
input system. SUPES addresses the first two phases of command processing;
it obtains a record from the input stream, and parses the record into
logical components. Interpretation of the data in the final phase of
command processing is left to the applications program.

2-1

Free Field Input

SUPES provides a keyword/value input structure which encourages a verb
oriented command Tanguage. The halimark of this input style is the concept
of "verbs" (or "keywords") which indicate how a command is to be
interpreted. Since keywords allow each command to be self-contained, input
1ines need not follow a rigid order. This results in highly readable input
data. For example, the command "YOUNGS MODULUS = 30.E6" has a very clear
meaning. The verb oriented style can be contrasted with standard FORTRAN
list-directed I/0 which requires the application code to know precisely what
to expect before reading a 1ine of input.

The SUPES free field input system has a very simple, yet versatile syntax.
Input records are broken into "fields". Each field is categorized according
to its contents as: null, character, real, or integer. Note that these four
categories form a hierarchy where each subsequent category is a more
specific subset of the previous one. For example, "5.E3" is a real field
because it can be interpreted as a REAL value as well as a valid CHARACTER
string, but does not constitute a valid INTEGER format.

There are just three syntax markers in SUPES: field separators which delimit
data fields, a comment indicator which allows a comment to be appended to
command l1ines, and a continuation indicator which causes consecutive input
records to be logically joined.

An application program need not heed all of the information returned for
each field. A default value (blank or zero) is returned when a valid value
is not specified for a given field. On the other hand, the application code
can easily detect that the user has not explicitly specified a value so that
a more meaningful default can be assumed, or so that the user can be
prompted to supply more information.

2.2 SYNTAX RULES

The syntax rules for the SUPES free field input structure are listed below.
This syntax describes how input records are parsed into data fields. Both

2-2

’

Free Field Input

the end user and the applications programmer should clearly understand these

few rules.

1)

2)

3)

4)

5)

6)

7)

8)

A data field is any sequence of data characters within an input line. A
data field is broken by (does not include) any nondata character or the
end of the input line. A nondata character is a field separator, a
space, a comment indicator, or a continuation indicator. Any other
character is a data character.

A field separator is a comma (,), an equal sign (=), or a series of one
or more spaces not adjacent to another separator.

A dollar sign ($) indicates a comment. All characters after and
including the comment indicator are ignored.

An asterisk (*) indicates that the next input record will be treated as a
continuation of the current 1ine. Al1 characters after and including the
continuation indicator on the current line are ignored.

A null field does not contain any data characters. A null field can be
defined explicitly only by a field separator (spaces cannot act as a
field separator for an explicit null field). Fields which are not
defined on the input line are implicitly null.

Lowercase letters are converted to uppercase. All other non-ANSI
characters are converted to spaces.

A numeric field is a data field which adheres to an ANSI FORTRAN numeric
format. A numeric field cannot be longer than 32 characters. A numeric
field always defines a REAL (floating point) value; it also defines an
INTEGER (fixed point) value if it adheres to a legal INTEGER format.

The maximum length of an input record is 132 characters.

Some important points which are not obvious from the above rules are noted

below.

2-3

Free Field Input
- Spaces have no significance, except when they act a field separator.

- Only the first occurrence of a comment or continuation character is
significant; subseguent characters are considered part of the comment.

- A blank tine has no data fields.

- If no data characters appear after the last field separator, the field
after that separator will not be counted.

2.3 FREE FIELD INPUT ROUTINE (FREFLD)

The user interface to the SUPES free field input system consists of a single
subroutine FREFLD. 1Input is prompted for, read, and echoed via this routine
using specified I/0 units. FREFLD returns the parsed data field values
defined on the next input record and any continuation records. Al1 I/0 is
accomplished via the utility routine GETINP, which is documented further in

section 2.4.1.
The arguments to FREFLD are prescribed below.

CALL FREFLD(KIN, KOUT, PROMPT, MFIELD, IOSTAT, NFIELD, KVALUE,

o CVALUE, IVALUE, RVALUE)
Argument: KIN

Type: INTEGER

Access: . Read Only

Description: Unit from which to read input. 1If zero, read from the
standard input device (terminal or batch deck) and echo
to the standard output device (terminal or batch log).
If nonzero, the caller is responsible for opening/
closing this unit.

2-4

Argument:

Type:
Access:

Description:

Argument:

Type:
Access:

Description:

Argument:
Type:
Access:

Description:

Argument:

Type:
Access:

Description:

Free Field Input

KouT

INTEGER

Read Only

Unit to which to echo input.
than to the standard output device as described above.

If zero, do not echo other

If nonzero, the caller is responsible for opening/
closing this unit.

PROMPT
CHARACTER*(*)
Read Only
Prompt string. This string will be used to prompt for
data from an interactive terminal and/or will be written

If the string

as a prefix to the input line for echo.

"AUTO' is specified, a prompt of the form n: ',
where "n" is the current input 1ine number (only lines
read under the AUTO feature are counted), will be

generated.

MFIELD

INTEGER

Read Only

Maximum number of data fields to be returned. This
value is the minimum permissible dimension of the output
arrays described below.

IOSTAT

INTEGER

Write Only

ANSI FORTRAN I/0 status:
IOSTAT < 0 - End of File
IOSTAT = 0 - Normal
IOSTAT > 0 - Error

2-5

Argument:

Type:
Access:

Description:

Argument:

Type:
Access:

Description:

Argument:

Type:
Access:

Description:

Free Field Input

NFIELD

INTEGER

Write Only

Number of data fields found.
MFIELD, the excess fields are implicitly defined as null
fields.
data fields are ignored.

IfT this value is less than

If this value is greater than MFIELD, the extra

KVALUE
INTEGER Array
Write Only
Translation states of the data fields. The value of
each element of this array is interpreted as follows:
-1 = This is a null field.
0 = This is a nonnumeric field; only CVALUE
contains a specified value.
1 = This is a REAL numeric field; CVALUE and
RVALUE contain specified values.
2 = This is an INTEGER numeric field; CVALUE,
RVALUE, and IVALUE contain specified values.
The dimension of this array must be at least MFIELD.

CVALUE

CHARACTER*(*) Array

Write Only

Character values of the data fields. The data will be
left-justified and either blank-filled or truncated.
The value in this array is set blank for a null field.
The dimension of this array must be at least MFIELD.
The character element size may be any value set by the

caller.

2-6

Argument:

Type:
Access:

Description:

Argument:

Type:
Access:

Description:

Free Field Input

IVALUE

INTEGER Array

Write Only

Integer values of the data fields. The value in this
array is set to zero for a null or non-INTEGER field.
The dimension of this array must be at least MFIELD.

RVALUE

REAL Array

Write Only

Floating-point values of the data fields. The value in
this array is set to zero for a null or non-REAL field.
The dimension of this array must be at least MFIELD.

2.3.1 Basic Examples

The following examples illustrate the operation of the SUPES free field

input

INPUT
verb,
key=5

system.

RECORDS:

1 2. * continue on next line

RESULTS RETURNED FROM FREFLD:

NFIELD = 5
I KVALUE (1) CVALUE(I) RVALUE (1) IVALUE(I)
1 0 "VERB " 0.000E+00 0
2 2 " . 1.00 1
3 1 "2, " 2.00 0
4 0 MKEY " 0.000E+00 0
5 2 vg m 5.00 5

2-7

Free Field Input

INPUT RECORD:
$ this is a comment line

RESULTS RETURNED FROM FREFLD:

NFIELD = O
I KVALUE (1) CVALUE (1) RVALUE(I) IVALUE (1)
1 -1 " " 0.000E+00 0
2 -1 " " 0.000E+00 0
3 -1 " " 0.000E+00 0
4 -1 " n 0.000E+00 0
5 -1 " " 0.000E+00 0

INPUT RECORD:
1099

RESULTS RETURNED FROM FREFLD:

NFIELD = 2
I KVALUE (1) CVALUE(I) RVALUE(I) IVALUE(I)
1 2 "10 " 10.0 10
2 -1 " " 0.000E+00 0
3 -1 " " 0.000E+00 0
4 -1 " " 0.000E+00 0
5 -1 " " 0.000E+00 0

2.4 UTILITY ROUTINES

The two routines described in this section, together with the FORTRAN
extension 1ibrary routines EXREAD and EXUPCS, are the only externals called
by FREFLD. Application programs built on top of FREFLD may find further use
for these routines.

2-8

Free Field Input

2.4.1 Get Literal Input Line (GETINP)

A1l 1/0 for FREFLD is done through this subroutine. This routine was
intentionally separated from FREFLD so that the caller can obtain an
unmodified 1ine of input (such as a problem titie) via the same 1/0 stream.
Applications which require a more complex syntax than SUPES provides (e.g.,
algebrajc operations) may find GETINP advantageous.

There are four modes of operation of GETINP depending upon the specification
of the I/0 units KIN and KOUT. Each of these modes, which are summarized in
the following table, may be useful to various applications.

KIN KOUT Source Echo

0 0 Standard Input Standard Qutput

0 M Standard Input Standard Output and File (M)
N M File (N) File (M)

N 0 File (N) none

The arguments to GETINP are prescribed below.

CALL GETINP(KIN, KOUT, PROMPT, LINE, IOSTAT)

Argument: KIN

Type: INTEGER

Access: Read Only

Description: Unit from which to read input. If zero, read from the

standard input device (terminal or batch deck) and echo
to the standard output device (terminal or batch log).
If nonzero, the caller is responsible for opening/
closing this unit.

Argument: KOUT
Type: INTEGER
Access: Read Only

Description: Unit to which to echo input. If zero, do not echo other
than to the standard output device as described above.

2-9

Argument:

Type:
Access:

Description:

Argument:
Type:
Access:

Description:

Argument:
Type:
Access:

Description:

to other applications as well.
the input string, but simply returns the location of the first and last
nonblank characters.

Free Field Input

If nonzero, the caller is responsible for opening/
closing this unit.

PROMPT
CHARACTER*(*)
Read Only
Prompt string.
data from an interactive terminal and/or will be written
If the string

This string will be used to prompt for

as a prefix to the input line for echo.
'AUTO' is specified, a prompt of the form
where "n" is the current input line number (only lines
read under the AUTO feature are counted), will be

n: -,

generated.

LINE
CHARACTER* (*)
Write Only
Line of input. This string will be blanked-filled or
truncated, if necessary. The length of the string is

set by the caller, but should not exceed 132.

I0STAT

INTEGER

Write Only

ANSI FORTRAN 1/0 status:
IOSTAT < 0 - End of File
JOSTAT = 0 - Normal
10STAT » O - Error

2.4.2 Strip Leading/Trailing Blanks (STRIPB)

This routine is called by FREFLD from several locations. It may be useful

Note that STRIPB does not modify nor copy

If a substring is passed, these locations are relative

2-10

Free Field Input

the beginning of the substring. For example, if the substring STRING(N:) is
passed to STRIPB, STRING(ILEFT+N-1:IRIGHT+N-1) would represent the result.

The arguments to STRIPB are prescribed below.

CALL STRIPB(STRING, ILEFT, IRIGHT)

Argument: STRING
Type: CHARACTER*(*)
Access: Read Only

Description: Any character string.

Argument: ILEFT

Type: INTEGER

Access: Write Only

Description: Relative index of the first nonblank character in
STRING. ILEFT = LEN(STRING) + 1 if STRING = ' ',

Argument: IRIGHT

Type: INTEGER

Access: Write Only

Description: Relative index of the last nonblank character in STRING.

IRIGHT = 0 if STRING = '

2-11, 2-12

CHAPTER 3

MEMORY MANAGER

The purpose of the memory manager utilities is to allow an applications
programmer to write standard, readable FORTRAN-77 code while empioying
dynamic memory management for REAL, INTEGER, and LOGICAL type arrays.

Because the array sizes in most programs are problem dependent, the
program's memory requirements are not known until the program is running.
Since FORTRAN-77 does not provide for dynamic memory allocation, the
programmer has to either predict the maximum memory requirement or use
machine dependent requests for memory. In addition, dynamic memory
allocation is an error prone exercise which tends to make the source code
difficult to read and maintain.

The memory manager utilities are written in standard FORTRAN-77 and provide
an interface which encourages readable coding and efficient use of memory
resources. Machine dependencies are isolated through the use of the FORTRAN
extension library (Chapter 4). A1l memory requests are in terms of numeric
storage units (the amount of memory occupied by an integer, real, or logical
datum [1]).

The memory manager utility is divided into three categories; basic routines,
advanced routines, and development aids. These categories will be discussed
in sections 3.2 through 3.4.

3.1 POINTER SYSTEM
In order to use the memory manager properly, the user must first understand
the concept of a base array with pointers for accessing memory locations.

The memory manager references all memory relative to a user supplied base
array. A reference to memory is made in terms of an index or pointer to

3-1

Memory Manager

this base array. The pointers which the memory manager provides may take on
a wide range of values, including negative numbers.

The base array must comply with the following rules:

1. The array must be of type INTEGER, REAL, or LOGICAL. Modified
word length storage arrays such as INTEGER*2 or REAL*8 will result
in invalid pointers with no error message.

2. The lower bound of the array subscript must be one.

The following FORTRAN statement defines a valid base array:
DIMENSION A(1)
ONLY ONE BASE ARRAY MAY BE USED IN A PROGRAM.
In order to use memory allocated by the memory manager, the user merely
needs to pass the base array with the correct pointer to a subprogram. For
example, for a base array A and a pointer IP, a subroutine call would be:
CALL SUBBIE (A(IP))
Although the programmer is not restricted to using the allocated memory in
subprograms only, the recommended usage for the memory manager is to

allocate dynamic arrays in the main program and then pass them to

subroutines.

3.2 BASIC ROUTINES

The basic-memory manager routines are those which are most commonly used and
require little understanding of the internal workings of the utility.

Memory Manager

:3.2.1 Initialize (MDINIT)
The memory manager must be jnitialized with a call to MDINIT before any
memory can be allocated. The main purpose of the initialization is to

determine the location of the base array in memory.

CALL MDINIT (BASE)

Argument: BASE
Type: INTEGER, LOGICAL or REAL Array
Access: Read Only

Description: This array is used as a base reference to all
dynamically allocated memory.

3.2.2 Define Dynamic Array (MDRSRV)
MDRSRV declares a new dynamic array. The user supplies the space reguired,
and a pointer to the new space is returned. Note that the contents of the

new storage are undefined.

CALL MDRSRV (NAME, NEWPNT, NEWLEN)

Argument: NAME
Type: CHARACTER*(*)
Access: Read Only

Description: This is the name of the new dynamic array. The memory
manager will add this name to its internal dictionary;
each array must have a unique name. The first eight
characters are used for comparison, and leading and
embedded blanks are significant.

3-3

Argument:

Type:
Access:

Description:

Argument:
Type:
Access:
Description:

Memory Manager

NEWPNT

INTEGER

Write Only

This is the pointer to storage allocated to this dynamic
array relative to the base array.

NEWLEN

INTEGER

Read Only

This is the length to be reserved for the new array.

Any nonnegative number is acceptable. A zero length
does not cause any storage to be allocated and returns a

pointer equal to one.

3.2.3 Delete Dynamic Array (MDDEL)

MDDEL releases the memory that is allocated to a dynamic array.

CALL MDDEL (NAME)

Argument:
Type:
Access:
Description:

NAME

CHARACTER* (*)

Read Only

This is the name of the dynamic array which is to be
deleted. The array name must match an existing name in
the dictionary. The first eight characters are used for
comparison, and leading and embedded blanks are

significant.

3.2.4 Reserve Memory Block (MDGET)

MDGET reserves a contiguous block of memory without associating the block of

memory with an array. MDGET should be called prior to a series of calls to

3-4

Memory Manager

' ' MDRSRV to improve efficiency and to reduce memory fragmentation. Further
discussion of the operation of MDGET is found in section 6.2.1.

CALL MDGET (MNGET)

Argument: MNGET
Type: INTEGER
Access: Read only

Description: This specifies the desired contiguous block size.

3.2.5 Release Unallocated Memory (MDGIVE)

MDGIVE causes the memory manager to return unused storage to the operating

system, if possible.

CALL MDGIVE ()

3.2.6 Obtain Statistics (MDSTAT)

MDSTAT returns memory manager statistics. MDSTAT provides the only method
for error checking, and thus should be used after other calls to the memory

manager to assure no errors have occurred.

CALL MDSTAT (MNERRS, MNUSED)

Argument: MNERRS
Type: INTEGER
Access: Write Only

Description: This is the total number of errors detected by the
memory manager during the current executijon.

3-5

Argument:

Type:
Access:

Memory Manager

MNUSED
INTEGER
Write Only

Description: This is the total number of words that are currently

allocated to dynamic arrays.

3.2.7 Print Error Summary (MDEROR)

MDEROR prints a summary of all errors detected by the memory manager. The
return status of the last memory manager routine called is also printed.
MDEROR should be called any time an error is detected by a call to MDSTAT.

CALL MDEROR (IUNIT)

Argument: TIUNIT

Type: INTEGER

Access: Read Only

Description: This is the unit number of the output device.

Error Codes

O O N OO O W N -

o Y S
W N = O

SUCCESSFUL COMPLETION

UNABLE TO GET REQUESTED STORAGE FROM SYSTEM
DATA MANAGER NOT INITIALIZED

DATA MANAGER WAS PREVIOUSLY INITIALIZED
NAME NOT FOUND IN DICTIONARY

NAME ALREADY EXISTS IN DICTIONARY

ILLEGAL LENGTH REQUEST

UNKNOWN DATA TYPE

DICTIONARY IS FULL

VOID TABLE IS FULL

MEMORY BLOCK TABLE IS FULL

OVERLAPPING VOIDS - INTERNAL ERROR
OVERLAPPING MEMORY BLOCKS - INTERNAL ERROR
INVALID MEMORY BLOCK - EXTENSION LIBRARY ERROR

3-6

Memory Manager

, 3.2.8 Basic Example

DIMENSION BASE(1)
CALL MDINIT (BASE)
CALL MDGET (30)
CALL MDRSRV ('FIRST', I1, 10)
CALL MDRSRV ('SECOND', 12, 10)
CALL MDRSRV (' THIRD', I3, 10)
CALL MDSTAT (MNERRS, MNUSED)
IF (MNERRS .NE. 0) THEN

CALL MDEROR (6)

STOP
END IF
CALL MDDEL (' THIRD')
CALL MDGIVE ()

3.3 ADVANCED ROUTINES

The advanced routines are supplied to give added capability to the user who

is interested in more sophisticated manipulation of memory. These routines

are never necessary, but may be very desirabie.

3.3.1 Rename Dynamic Array (MDNAME)

MONAME renames a dynamic array from NAMEl to NAMEZ2. The location of the
array is not changed, nor is its length.

CALL MDNAME (NAME1, NAME2)

Argument: NAME1
Type CHARACTER* (*)
Access: Read Only

Description: This is the old name of the array. The first eight
characters are used for comparison.

3-7

Argument:

Type:
Access:

Description:

Memory Manager

NAME?2

CHARACTER*(*)

Read Only

This is the new name of the array. The first eight

characters are used.

3.3.2 Adjust Dynamic Array Length (MDLONG)

MDLONG changes the length of a dynamic array. The memory manager will
relocate the array and move its data if storage cannot be extended at the
array's current location. The user should assume that MDLONG invalidates

the previous pointer to this array if the array is extended.

CALL MDLONG (NAME, NEWPNT, NEWLEN)

Argument:
Type:
Access:
Description:

Argument:
Type:
Access:

Description:

Argument:
Type:
Access:
Description:

NAME

CHARACTER* (*)

Read Only

This is the name of the dynamic array which the user
wishes to extend or shorten.

NEWPNT

INTEGER

Write Only

This is the new pointer to the dynamic array.

NEWLEN

INTEGER

Read Only

This is the new length for the dynamic array.

3-8

Memory Manager

3.3.3 Locate Dynamic Array (MDFIND)

MDFIND returns the pointer and length of storage allocated to a dynamic
array. This routine would be used if the pointer from an earlier call to

MDRSRV was not passed to a different subprogram.

CALL MDFIND (NAME, NEWPNT, NEWLEN)

Argument: NAME
Type: CHARACTER*(*)
Access: Read Only

Description:

This is the name of the dynamic array to be located.

Argument: NEWPNT
Type: INTEGER
Access: Write Only

Description:

This is the pointer to the dynamic array relative to the
user's reference array.

Argument: NEWLEN
Type: INTEGER
Access: Write Only

Description:

This is the length of the dynamic array.

3.3.4 Compress Storage (MDCOMP)

Note that this may
It is important to realize that

MDCOMP causes fragmented memory to be consolidated.
cause array storage locations to change.
all pointers must be recaiculated by calting MDFIND after a compress

A call to MDCOMP prior to MDGIVE will result in the return of
the maximum memory to the system.

operation.

CALL MDCOMP ()

3-9

Memory Manager

3.4 DEVELOPMENT AIDS

The routines in this section are designed to aid the programmer during
development of a program, and probably would not be used during execution of

a mature program.

3.4.1 List Storage Tables (MDLIST)

MDLIST prints the contents of the memory manager's internal tables. Section
5.2.1 describes these tables.

CALL MDLIST (IUNIT)

Argument:
Type:
Access:
Description:

IUNIT

INTEGER

Read Only

This is the unit number of the output device.

3.4.2 Print Dynamic Array (MDPRNT)

MDPRNT prints the contents of an individual array.

CALL MDPRNT (NAME, IUNIT, NTYPE)

Argument:
Type:
Access:
Description:

Argument:
Type:
Access:
Description:

NAME

CHARACTER* (*)

Read Only

This is the name of the array to be printed.

TUNIT

INTEGER

Read Only

This is the unit number of the output device.

3-10

Memory Manager

Argument: NTYPE
Type: CHARACTER*(*)
Access: Read Only

Description: NTYPE indicates the data type of the data to be printed;
"R" for REAL, or "I" for INTEGER. Note that this is not
necessarily the declared type of the base array.

3-11, 3-12

CHAPTER 4

FORTRAN EXTENSION LIBRARY

The SUPES FORTRAN Extension Library provides a uniform interface to
necessary operating system functions which are not included in the ANSI
FORTRAN standard. This package makes it possible to maintain many codes on
different operating systems with a single point of support for system
dependencies. These routines provide very basic operating system support;
they are not intended to implement clever features of a favorite system, to
make FORTRAN behave 1ike a more elegant language, nor to improve execution
efficiency.

Each module included in the SUPES FORTRAN Extension Library must satisfy the
following criteria:

1) The routine must provide a service which is beneficial to a wide
range of users.

2) This task cannot be accomplished via standard FORTRAN.

3) This capability must be generic to scientific computers. Extension
library routines must be supportable on virtually any system.

4) The routine must be codeable in FORTRAN so that the Extension
Library can be implemented and maintained by FORTRAN programmers.

The SUPES FORTRAN Extension Library routines are designed to minimize the
effort required to impiement this software on a new operating system. Each
interface is simple and straightforward. Operating system dependencies have
been isolated at the lowest possible level.

4-1

FORTRAN Extension Library

4.1 USER INTERFACE ROUTINES

This section prescribes the calling sequence for FORTRAN Extension routines

that are meant to be calied directly from application programs.

4.1.1 Get Today's Date (EXDATE)

CALL EXDATE(STRING)

Argument:

Type:
Access:

Description:

STRING

CHARACTER*8

Write Only

Current date formatted as 'MM/DD/YY' where "MM", "DD",
and "YY" are two digit integers representing the month,
day, and year, respectively. For example, '07/04/86'
would be returned on July 4, 1986.

4.1.2 Get Time of Day (EXTIME)

CALL EXTIME(STRING)

Argument:

Type:
Access:

Description:

STRING

CHARACTER*8

Write Only

Current time formatted as 'HH:MM:SS' where "HH", "MM",
and "SS" are two digit integers representing the hour
(00-24), minute, and second, respectively. For example,
"16:30:00' would be returned at 4:30 PM.

4.1.3 Get Accumulated Processor Time (EXCPUS)

CALL EXCPUS(CPUSEC)

4-2

FORTRAN Extension Library

Argument: CPUSEC
Type: REAL
Access: Write Only

Description: Accumulated CPU time in seconds. The base time is
undefined; only relative times are valid. This is an
unweighted value which measures performance rather than

cost.

4.1.4 Get Operating Environment Parameters (EXPARM)

CALL EXPARM(HARD,SOFT,MODE,KCSU,KNSU,IDAU)

Argument: HARD
Type: CHARACTER*8
Access: Write Only

Description: System Hardware ID. For example, 'CRAY-1/S'.

Argument: SOFT
Type: CHARACTER*8
Access: Write Only

Description: System Software ID. For example, 'COS 1.11'.

Argument: MODE
Type: INTEGER
Access: Write Only

Description: Job mode: 0 = batch, l=interactive. For this purpose,
an interactive environment means that the user can
respond to unanticipated questions.

Argument: KCSU
Type: INTEGER
Access: Write Only

Description: Number of character storage units per base system unit.

4-3

FORTRAN Extension Library

Argument: KNSU
Type: INTEGER
Access: Write Only

Description: Number of numeric storage units per base system unit.

Argument: IDAU

Type: INTEGER

Access: Write Only

Description: Units of storage which define the size of unformatted

direct access 1/0 records: 0 = character, 1 = numeric.

The ANSI FORTRAN standard defines a character storage unit as the amount of
memory required to store one CHARACTER element. A numeric storage unit is
the amount of memory required to store one INTEGER, LOGICAL, or REAL
element. For this routine, a base system unit is defined as the smallest
unit of memory which holds an integral number of both character and numeric

storage units.

The last three parameters above can be used to calculate the proper value
for the RECL specifier on the OPEN statement for a direct access 1/0 unit.
For example, if NUM is the number of numeric values to be contained on a
record and IDAU=0, set RECL = (NUM * KSCU + KNSU-1) / KNSU.

4.1.5 Get Unit File Name or Symbol Value (EXNAME)

CALL EXNAME(IUNIT,NAME,LN)

Argument: IUNIT
Type: INTEGER
Access: Read Onty

Description: Unit number if IUNIT > 0, or symbol ID if IUNIT £ 0.

4-4

FORTRAN Extension Library

Argument: NAME
Type: CHARACTER*(*)
Access: Write Only

Description: File name or symbol value obtained from the operating
system. It is assumed that the unit/file name or
symbol/value linkage will be passed to this routine at
program activation.

Argument: LN -
Type: INTEGER
Access: Write Only

Description: Effective length of the string returned in NAME. Zero
indicates that no name or value was availabie.

This routine provides a standard interface for establishing execution time
unit/file connection on operating systems (such as CTSS) which do not
support preconnection of FORTRAN I/0 units. The returned string is used
with the FILE specifier in an OPEN statement, as in the following example.

CALL EXNAME(10,NAME,LN)
OPEN(10,FILE=NAME(1:LN),...)

The symbol mode of this routine provides a standard path through which to
pass messages at program activation. An example use is identifying the
target graphics device for a code which supports multiple devices.

4.2 UTILITY SUPPORT ROUTINES

The routines prescribed in this section are intended primarily to support
the SUPES free field input and memory manager utilities. While calling
these routines directly will not disturb the internal operation of these
other facilities, the use of EXMEMY (section 4.2.4) in conjunction with the
memory manager is discouraged.

4-5

FORTRAN Extension Library

4.2.1 Convert String to Uppercase (EXUPCS)

CALL EXUPCS(STRING)

Argument: STRING
Type: CHARACTER*(*)
Access: Read and Write

Description: Character string for which lowercase letters will be
translated to uppercase. All other characters which are
not in the ANSI FORTRAN character set are converted to

spaces.

4.2.2 Prompt/Read/Echo Input Record (EXREAD)

CALL EXREAD(PROMPT,INPUT,IOSTAT)

Argument: PROMPT

Type: CHARACTER*(*)
Access: Read Only
Description: Prompt string.
Argument: INPUT

Type: CHARACTER*(*)
Access: Write Only
Description: Input record from standard input device.
Argument: I0STAT

Type: INTEGER
Access: Write Only

Description: ANST FORTRAN I/0 Status:
IOSTAT < 0 - End of File
IOSTAT = 0 - Normal
IOSTAT > 0 - Error

4-6

FORTRAN Extension Library
This routine will prompt for input if the standard input device is
interactive. In any case, the input line will be echoed to the standard
output device with the prompt string as a prefix.

4.2.3 Evaluate Numeric Location (IXLNU})

NUMLOC = IXLNUM(NUMVAR)

Argument: NUMVAR

Type: INTEGER or REAL

Access: Read Only

Description: Any numeric variable.

Argument: NUMLOC

Type: INTEGER

Access: Write Only

Description: Numeric location of NUMVAR. This value is an address

measured in ANSI FORTRAN numeric storage units.

4.2.4 Get/Release Memory Block (EXMEMY)

CALL EXMEMY(MEMREQ,LOCBLK,MEMRTN)

Argument: MEMREQ

Type: INTEGER

Access: Read Only

Description: Number of numeric storage units to allocate if MEMREQ >

0, or release if MEMREQ < 0.

Argument: LOCBLK

Type: INTEGER

Access: Read (release) or Write (allocate)

Description: Numeric location of memory block. This value is an

address measured in ANSI FORTRAN numeric storage units.

4-7

FORTRAN Extension Library

Only memory previously allocated to the caller via
EXMEMY can be released via EXMEMY.

Argument: MEMRTN
Type: INTEGER
Access: Write Only

Description: Size of memory block returned in numeric storage units.

In allocate mode, MEMRTN < MEMREQ indicates that a sufficient amount of
storage could not be obtained from the operating system. MEMRTN > MEMREQ
indicates that the operating system rounded up the storage request.

In release mode, memory will always be released from the high end of the
block downward. MEMRTN = 0 indicates that the entire block was returned to

the operating system.

4.3 SKELETON LIBRARY

The Skeleton Library is an integral part of the SUPES Extension Library
architecture. Each library module has a skeleton version which is written
in fully standard FORTRAN. These routines are operational, but not fully
functional. The skeleton routines serve as templates for implementing full
support for the Extension Library on a new system. They also provide
interim support during the development period so that the functional version
of each module can be developed individually.

Application codes which call SUPES Extension Library routines should be
structured to work with the Skeleton Library, albeit at a reduced level,
whenever possible., This provides a consistent migration path for supporting
these codes on a new system. The consequences of skeletal support for the
Extension. Library on higher level SUPES utilities is clearly documented in
this report.

4-8

FORTRAN Extension Library

4.3.1 Skeleton Routine Specifications

The results produced by each Skeleton Library module are prescribed below.

1) EXDATE returns the string '00/00/00'.

2) EXTIME returns the string '00:00:00'.

3) EXCPUS returns zero.

4) EXPARM returns blank strings for hardware and software IDs, a zero which
indicates batch mode, and unity for the three storage parameters.

5) EXNAME returns a null string; the result string is undefined and the
length returned is zero.

6) EXUPCS converts all non-ANSI characters to spaces.

7) EXREAD simply reads from the standard input device.

8) IXLNUM returns unity.

9) EXMEMY allocates memory from the named COMMON block /EXTLIB/. The size

of this static pool defaults to 1024, but can be changed by modifying a
PARAMETER statement.

4-9, 4-10

CHAPTER 5

SUPPORT PROGRAMMER'S GUIDE

This chapter documents the internal architecture for SUPES. It is intended
to guide the maintenance of SUPES and support of SUPES on new operating
systems. The consequences of using the Skeleton FORTRAN extension library
on the internal operation of SUPES is fully discussed.

5.1 FREE FIELD INPUT

The SUPES free field input system consists of three subroutines: FREFLD
(section 2.3), GETINP (section 2.4.1), and STRIPB (section 2.4.2). A1l of
these routines are written in fully standard ANSI FORTRAN.

FREFLD calls the FORTRAN extension library routine EXUPCS (section 4.3.1).
If only the skeleton version of EXUPCS is available, case insensitivity of
input data (rule 6 of section 2.2) can not be guaranteed.

GETINP calls the FORTRAN extension library routine EXREAD (section 4.3.2).
If only the skeleton version of EXREAD is available, GETINP will not prompt
nor guarantee echo when reading from the standard input device (KIN = 0).
5.1.1 Implementation Notes on FREFLD

This section contains a basic outline of the internal operation of the free
field input system and other supplemental information. More compliete
documentation is contained within the code itself.

FREFLD is organized into five phases:

1) Al1 the output arrays are initialized to their default values.

5-1

Support Programmer's Guide

2) The next input record is obtained via GETINP. Processing of a

continuation line begins with this phase.

3) The effective portion of the input line is jsolated by stripping any
comment and leading/trailing blanks. A flag is set if a
continuation 1ine is to follow this record.

4) A1l field separators are made uniform. This phase streamlines the

main processing loop which follows.

5) Successive fields are extracted, translated, and categorized until
the input line is exhausted. After the maximum number of fields is
reached, fields are counted but not processed further.

Upon leaving the main translation loop, the routine is restarted at phase 2

if the continuation flag is set.
The only errors returned by FREFLD are any returned from GETINP.

A data field is teft-justified to define a CHARACTER value, but must be
right-justified to obtain a numeric value. An internal READ is used to
decode a numeric value from a data field. FREFLD relies upon the IOSTAT
specifier to determine if the field represents a valid numeric format; this
presents the possibility that some nonstandard numeric strings may be
interpreted inconsistently by various operating systems. Default numeric
values are overwritten if and only if IOSTAT indicates a valid translation.

CHARACTER data manipulation tends to be the area of lowest reliability for
FORTRAN compilers, especially with supercomputers. An attempt was made in
coding FREFLD to minimize the risk of triggering compiler bugs by
manipulating pointers rather than shifting CHARACTER strings.

5-2

Support Programmer's Guide

5.1.2 Test Program for FREFLD

A simple test program which calls FREFLD is included with the SUPES free
field input system. FREFLD is instructed to digest data entered via the
standard input device (e.g., keyboard), then the results are dumped to the
standard output device (e.g., screen). This program should always be run to
verify proper operation of FREFLD on a new operating system or compiler.
Application programmers are encouraged to experiment with this program to
learn what to expect from FREFLD.

5.2 MEMORY MANAGER

This section includes details of the internal operations of the memory
manager, assumptions used in the memory manager, and details on the
impiementation of the memory manager on systems which do not support the
extension library.

5.2.1 Table Architecture and Maintenance

The bookkeeping for the memory manager is accompliished with three tables; a
memory block table, a void area tabie, and a dictionary.

The memory block table maintains a record of contiguous blocks of memory

that have been received from the operating system. If a series of requests
causes separate blocks to become contiguous, these blocks are joined. The
beginning location and length of each memory block is recorded, and the
table is sorted in location order.

Within each memory block, sections of memory that are not currently
allocated to arrays are recorded in the void area table. As in the case of

the memory block table, contiguous voids are joined and this table is sorted

in location order.

5-3

Support Programmer's Guide

The dictionary relates storage locations with eight character array names.
The dictionary is sorted via the default FORTRAN collating sequence. All
characters (including blanks) are significant. A1l names are blank filled
or truncated to eight characters. In addition to the array name, the
dictionary stores the location and length of each dynamic array.

Any call for memory (MDGET or MDRSRV) will be satisfied in one of two ways:

1.

A reqguest

1'

A call to

If a void of sufficient size is available, then this void will be
used for the new array (MDRSRV). In the case of MDGET, no further

action is taken.

An extension library call (EXMEMY) is made to get more memory from

the system.

to extend an array (MDLONG) is satisfied in one of three ways:

If a void of sufficient size exists at the end of the array, then

this space is allocated to the array.

If a void large enough for the extended array exists elsewhere in
memory, the array is moved to this location. Note that the data
is actually shifted and the pointer is updated.

An extension library call (EXMEMY) is made to get more memory from
the system.

MDCOMP will cause all arrays within each memory bliock to be moved

to the lower addresses (pointers) within that memory block. Thus, all voids
in the block will be joined at the end of the block.

A call to

MDGIVE will attempt to return memory to the system. Only voids at

the end of a memory block are subject to this attempt, and the system may
accept only portions of these. Thus a call to MDCOMP followed by MDGIVE
will release the maximum memory to the system.

5-4

Support Programmer's Guide
'5.2.2 Non-ANSI FORTRAN Assumptions

Although the memory manager is written in standard FORTRAN-77, it does
depend on some assumptions which are not part of the ANSI standard. These

assumptions are:

1. The contents of a word are not checked nor altered by an INTEGER
assignment. Data is moved by MDLONG or MDCOMP as INTEGER

variables.

2. Strong typing is not enforced between dummy and actual arguments.
This allows the same base array to pass storage to any INTEGER,
REAL, or LOGICAL array.

3. Array bounds are not enforced. Thus, any value is a valid
subscript for the base array.

4, A1l dynamically allocated memory must remain fixed in relation to

the base array.

5.2.3 Standard FORTRAN Impiementation

If an installation does not yet support the extension library, it is still
possible and advantageous to use the memory manager. In this case, the
memory manager will act as a dynamic allocator of static (already
dimensioned) memory. Codes which employ the memory manager therefore do not
need to be rewritten, and codes under development can anticipate the

implementation of the extension library.

When the subprograms IXLNUM or EXMEMY of the extension library are not
available, the following steps must be taken before using the memory

manager:

1. Install the skeleton version of the extension library (Section
4.3.1).

5-5

Support Programmer's Guide

2. Alter the memory manager subroutine MDINIT as follows:

ORIGINAL

DIMENSION MYV(1)

ALTERED

PARAMETER (MAXSIZ=1024)
COMMON /EXTLIB/ MYV(MAXSIZ)

3. Put the base vector in the user's program in the COMMON block
EXTLIB and dimension it consistently with the COMMON blocks in
EXMEMY and MDINIT.

4, If more than 1024 numeric storage units are required, change the
parameter statement in MDINIT, EXMEMY and the user's program.

5.2.4 Test Program

In order to aid the installation of the memory manager at a new site, an
interactive test program has been written which allows the user to exercise
each of the features of the memory manager and insure that it is operating

properly.

5.3 FORTRAN EXTENSION LIBRARY IMPLEMENTATION

Implementing the SUPES FORTRAN extension library on a new operating system
requires a firm understanding of that system, but should not require a great
deal of programming. Since the package is by definition system dependent,
it is impossible to predict the exact procedure which will be required to
implement these routines on a given operating system. This section provides
some general guidelines and hints compiled from experience in implementing

the package on several very different systems.

5-6

Support Programmer's Guide

The FORTRAN extension library routines should be coded in FORTRAN whenever
possible so that the package can be maintained on a given system in the
absence of the original implementor. The code should be extensively
commented and references to appropriate system manuals should be included.

It is generally best to start with the skeleton library routines and
gradually add system dependent code to provide full capability. Concepts
should be drawn from extension library versions from other systems before
outlining a plan of attack for the new system.

It is suggested that extension library modules be implemented in the

following order:
1) EXUPCS. The skeleton version should be sufficient.

2) EXTIME, EXDATE, EXCPUS, IXLNUM, and EXPARM. These routines are
generally straightforward and can be accomplished simply with the
aid of the FORTRAN manual for the particular operating system.

3) EXREAD, EXNAME, and EXMEMY. These routines require a more intimate
knowledge of the operating system. A substantial set of system
documentation may be reguired to accomplish these tasks.

5.3.1 Implementation Notes for Modules

The format of the date for EXDATE must be strictly observed. Many systems
supply a date service routine which formats the date in a different style.
Conversion to the SUPES format should be straightforward.

Most systems provide a time of day service routine which formats the time in
the desired style. Some systems also return fractional seconds Which can
easily be trimmed off. In any case, the format specified by EXTIME must be
strictly observed.

5-7

Support Programmer's Guide

EXCPUS is intended to measure performance rather than cost. The quantity
returned by EXCPUS should be raw CPU seconds; any weighting for memory use
or priority should be removed. I/0 time should be included only if it is

performed by the CPU.

The hardware ID string for EXPARM should reflect both the manufacturer and
model of the processor. For example, 'VAX 8600' rather than just 'VAX'
allows the user to make sense of the CPU time returned by EXCPUS.

The software ID string should reflect the release of the operating system in
use, such as 'COS 1.11'. It is not a trivial exercise to provide all
pertinent information in eight characters for ad hoc systems 1like CTSS which
vary widely between installations. For example, the string 'CFTLIB14' has
been used to indicate a variation of the SUPES package for CTSS using CFTLIB
and the CFT 1.14 compiler.

On most systems KCSU will give the number of characters per numeric word and
KNSU will be unity. For a hypothetical 36-bit processor which allows 8-bit
characters to cross word boundaries, KCSU=9 and KNSU=2 would define the

storage relationship.

The proper value for IDAU should always be indicated in the reference manual
for the compiler where it discusses Unformatted Direct Access files.

The unit/file mode of EXNAME should follow as closely as possible to
whatever convention the particular operating system uses for connecting a
FORTRAN I/0 unit to a file at execution time. This feature should be easy
to implement on systems which support preconnection. Support for units 1-99
should be sufficient.

The symbol mode feature of EXNAME should be designed to obtain messages from
the system level procedure which activates the program. Eight characters
per symbol is a reasonable 1imit. Support for symbols 0-7 should be
adequate.

5-8

Support Programmer's Guide

. Support for EXNAME not only requires coding the routine itself, but also
designing the system procedure level interface. This interface should
always be designed before coding EXNAME. It should fit as cleanly as
possible into normal techniques for writing procedures for the system.

The skeleton version of EXUPCS is designed to work on any system which
supports lowercase letters. This routine will rarely require any change.

EXREAD must provide a prompt for an interactive device and guarantee that
input is echoed. This requires a careful determination of the current
execution environment. For example, EXREAD must be able to handle input
from a script file as well as from a terminal. Any automatic echo service
provided by the operating system should be employed wherever possible, as
long as the user supplied prompt appears along with the input data echo.

Most systems provide a FORTRAN callable service routine which returns an
address for IXLNUM. In some cases it may be necessary to convert the
address to numeric units. For example, addresses on VMS must be multiplied
by four to convert from bytes to numeric storage units.

EXMEMY is the most crucial routine in the FORTRAN extension library. It
therefore requires a great deal of attention. Care should be taken to
ensure that both memory block locations and sizes are measured in numeric
storage units. Most systems will round up memory requests to a system
defined block boundary; EXMEMY should determine the precise amount of memory
allocatec. It is generally unnecessary to keep track of memory blocks
allocated via EXMEMY; the memory manager can be counted on to perform this
task. Release of memory should not be attempted until a great amount of
confidence in the implementation of EXMEMY is gained since this affects the
cost of memory management, but not performance.

5.3.2 Extension Library Test Program

A short program which exercises all features of the SUPES FORTRAN extension
library is available. This program should be considered a starting point

5-9

Support Programmer's Guide

for testing a new implementation. Other tests which more extensively
exercise complex modules, such as EXMEMY, should be developed as needed.

5.4 INSTALLATION DOCUMENTATION GUIDELINES

A supplement to this document should be written for each operating system on
which SUPES is installed. As a minimum, this supplement should include:

1) How to access the SUPES 1ibrary and 1ink it to an applications
program. Individual copies of SUPES should never be propagated as

this reduces the quality assurance level of SUPES.

2) How to interface from the operating system to EXNAME for both unit/

file mode and symbol mode.

3) How to interface to EXREAD via an interactive device. Information
such as how to signal an end of file should be specified.

4) Any known bugs or idiosyncrasies.

The installation supplements for several operating systems are included in

Appendix A.

REFERENCES

1. American National Standard Programming Language FORTRAN, American
National Standards Institute, Inc., ANSI X3.9-1978, New York, 1978.

R-1, R-2

APPENDIX A

This appendix contains a supplement for each site at which SUPES is
currently installed. Changes to the current systems and the addition of new
sites will require that this appendix be amended; the information contained
here should be considered just a starting point.

A1l system independent source code for SUPES is stored on the SNLA Central
File System under the root directory "/SUPES" in SNLA Standard Text Format.

The table below documents the files stored in this directory.

Node Contents

FRE_FLD.STX Free field reader source code

MEM_MGR.STX Memory manager source code

EXT_LIB.STX Skeleton FORTRAN extension library source code
FRR_TEST.STX Free field reader test program source code
MEM_TEST.STX Memory manager test program source code
EXT_TEST.STX FORTRAN extension library test program source code

These files may be retrieved via the MASS utility and converted to Native
Text Format via the NTEXT utility. Sandia personnel may consult the
Computer Consulting and Training Division (2614) for details on these

utilities.

A-1, A-2

Appendix

SITE SUPPLEMENT FOR 1500 VAX CLUSTER (VAX/VMS 4.3)

Linking:

The SUPES package is accessed on the 1500 VAX CLUSTER (SAVO1l 8600, SAVO3
8650, and SAV08 11/785) as an object library located via a system logical

name. SUPES routines are linked to an application program as follows:

$ LINK your_program,SUPES/LIB,etc.

Defining unit/file or symbol/value for EXNAME:

A file name is connected to a unit number via a logical name of the form
FORnnn, where "nnn" is a three digit integer indicating the FORTRAN unit
number. For example:
$ ASSIGN CARDS.INP FOROO7
causes the following FORTRAN statements to open 'CARDS.INP' on unit 7.
CALL EXNAME(7, NAME, LN)
OPEN(7, FILE=NAME(1:LN))
EXNAME looks for a DCL symbol of the form EXTnn, where "nn" is a two digit
integer which defines a symbol number. For example:
$ EXTO1 = "HELLO"

will cause the following call to return NAME='HELLO' and LN=b.

CALL EXNAME(-1, NAME, LN)

A-3

Appendix

Interface to EXREAD:

EXREAD will read from SYS$INPUT and automatically echo to SYS$OUTPUT.
EXREAD supports all the VMS command line editing features (e.g., CTRL/U,
<up-arrow>, etc.). An end-of-file from the terminal keyboard is indicated
by CTRL/Z.

Source code:

The source code for the FORTRAN extension library for the VAX/VMS obérating
system is stored in the SNLA Central File System under node
"/SUPES/VMS/EXT_LIB.STX" in SNLA Standard Text format.

A-4

Appendix

SITE SUPPLEMENT FOR SNLA CRAY-1/S (COS 1.11)

Linking:

The SUPES package is accessed on the SNLA CRAY-1/S as an object library.
The permanent dataset containing SUPES is accessed as follows:

ACCESS,DN=SUPES,ID=ACCLIB.

SUPES routines are then linked to an application program as follows:

LDR,other_options,LIB=SUPES:other_libraries.

Defining unit/file or symbol/value for EXNAME:

A file name is connected to a unit number via an alias of the form FTnn,
where "nn" is a two digit integer indicating the FORTRAN unit number. For

example:
ASSIGN,DN=CARDS,A=FT07.
causes the following FORTRAN statements to open 'CARDS' on unit 7.

CALL EXNAME(7, NAME, LN)
OPEN(7, FILE=NAME(1:LN))

If no file has been assigned the alias for a particular unit, EXNAME will

return a file name of the form TAPEnn, where "nn" is a one (if less than
ten) or two digit integer indicating the FORTRAN unit number.

EXNAME 1ooks for a JCL symbol of the form Jn, where "n" is a one digit
integer which defines a symbol number. For example:

A-5

Appendix

SET(J1="HELLO")

will cause the following call to return NAME='HELLO' and LN=5.

CALL EXNAME(-1, NAME, LN)

Interface to EXREAD:

EXREAD will read from $IN and automatically echo to $0UT. COS at SNLA has

no interactive capability.

Known problems:

The CFT 1.11 support routines contain a bug which may cause FREFLD to
function improperly. FREFLD was modified for this installation such that
application programs which call FREFLD should not notice any problem.

The problem js that the CFT 1.11 support routines do not return an error in
the I0STAT argument for invalid real formats; a zero value and a zero
(success) status are returned in such a case. The symptom observed from
FREFLD is that KVALUE will indicate that a valid REAL value was specified
for a data field which contains an invalid REAL format; the value returned
in RVALUE for this field will be set correctly to zero. To work around this
problem FREFLD was modified to downgrade KVALUE from one (valid REAL value)
to zero (invalid REAL value) under the following conditions:

1) The field does not contain a valid INTEGER value.

2) The REAL value translated for the field is zero.
3) The field does not begin with '0.' nor '.0'.

A-6

Appendix

Source code:

The source code for the FORTRAN extension library for the COS 1.11 operating
system is stored in the SNLA Central File System under node
"/SUPES/COS/EXT_LIB.STX" in SNLA Standard Text format. The source code for
the modified version of FREFLD described above is stored under node
"/SUPES/COS/FRE_BUG.STX" in SNLA Standard Text format.

A-7, A-8

Appendix

SITE SUPPLEMENT FOR SNLA CRAY X-MP/24 (CTSS/CFTLIB 1.11 or 1.14)

Linking:

The SUPES package is accessed on the SNLA CRAY X-MP/24 as an object library
which is stored in a public library file. Two versions of this object
library exists: one for the CFT 1.11 compiler, and one for the CFT 1.14
compiler. The CFT 1.11 object library is obtained interactively as follows:

1ib acclib

ok. x supesll

ok. end

switch supesll supes

Either compiler version can alsc be obtained within a CCL procedure. For
example, the CFT 1.14 object library can be extracted by:

1ib acclib
-x supesld
-end
switch supesld4 supes
The SUPES routines are then linked to an application program as follows:

1dr other_options,lib=(supes,other_libraries)

Note that CFTLIB is a dependent library of SUPES, so there is no need to
specify cftlib in the above 1lib list.

Defining unit/file or symbol/value for EXNAME:

A file name is connected to a unit number via a name of the form tapenn,
nn" is a one (if less than ten) or two digit integer indicating the

L1

where

A-9

T

Appendix

FORTRAN unit number. This name can be replaced via the execution line as

shown in the following example:

myprog tape7=cards

The above command would cause the following FORTRAN statements within

‘myprog’ to open ‘cards' on unit 7:

CALL EXNAME(7, NAME, LN)
OPEN(7, FILE=NAME(1:LN))

EXNAME 1looks for a symbol on the execution line of the form extn, where "n

is a one digit integer which defines a symbol number. For example:

myprog ext1=HELLO

will cause the following call within 'myprog' to return NAME='HELLO' and
LN=5.

CALL EXNAME(-1, NAME, LN)

Interface to EXREAD:

EXREAD will read from "input" and automatically echo to "output”. By
default, EXREAD connects both "input" and "output” to "tty". CTSS defines
“tty" as the next higher level controller, which is normally the terminal
keyboard / screen for an interactive job, or the JCI / log files for a batch
job. An end-of-file from the terminal keyboard is indicated by a null

response (just a carriage return).

The default connections for either "input” or "output" can be overridden on

the execution line as follows:

myprog input=deck output=1ist

A-10

Appendix

Known problems:

Contrary to the ANSI FORTRAN standard, CTSS does not automatically open the
standard input and output devices. This causes reading from or writing to
UNIT=* to fail unless you add some CTSS-specific code, such as a PROGRAM
statement argument list. EXNAME and EXPARM, as well as EXREAD, explicitly
open the standard input and output devices according to the rules described
above. This is an advantage to the applications programmer since it avoids
nonstandard code, but it places the following restrictions on any program
which calls EXNAME, EXPARM, or EXREAD under CTSS:

1) Do not use a PROGRAM statement argument 1list.
2) Do not read from nor write to UNIT=* before a call to either EXNAME,

EXPARM, or EXREAD.

Source code:

The source code for the FORTRAN extension library for the CTSS/CFTLIB/SNLA
operating system is stored in the SNLA Central File System under nodes
“/SUPES/VMS/EXT_111.STX" and "/SUPES/VMS/EXT_114.STX" in SNLA Standard Text
format for the CFT 1.11 and 1.14 compilers, respectively.

A-11

. Distribution:

1265
1510
1511
1511
1520
1521
1521
1522
1522
1522
1523
1523
1523
1523
1523
1523
1524
1524
1530
1531
1540
1636
2614
2640
2641
2644
2645
3141-1
3151
3154-1
8024

J.

J.
G.
D.
D.
R.
D.
R.
c.
T.
J.
Z.
D.
A.
J.
L.
A.
W.
L.
S.
W.
W.
A.
E.
M.
R.
W.
S.
W
C.
P.

P.
W.
G.
K.
J.
D.
S.
c.
R.
D.
H.
E.
P.
P.
R.
M.
K.
c.
W.
L.
cC.
L.
R.
J.
R.
E.
Feo
A.
L.
H.
W.

Quintenz
Nunziato
Weigand (5)
Gartling (5)
McCloskey
Krieg

Preece
Reuter, Jdr.
Adams

Blacker
Biffle
Beisinger
Flanagan (10)
Gilkey
Koteras
Taylor (10)
Miller
Mills-Curran (30)
Davison
Thompson

Luth
Oberkampf
Tacoletti
Theriot

Scott

Jones

Mason
Landenberger (5)
Garner (3)
Dalin (28--for DOE/OSTI)
Dean

D-1

