

TI84 026764

To: J. W. Walton
From: J. R. Smolen

Subject: Activation of Electrical Machinery

RECEIVED
LAWRENCE RADIATION LABORATORY

APR 5 1966

AT(30-1)-2789

CNLM 5326, Suppl. 1
November 15, 1963cc: W. G. Alvang
C. C. Bigelow
E. R. Dytka
G. N. Frazier
H. C. Gray
R. W. Kelly
W. G. Kennedy
H. J. Richings
E. A. Thomas
N. J. Works

NOTICE

PORTIONS OF THIS REPORT ARE UNCLASSIFIED.

It has been reproduced from the best available copy to permit the broadest possible availability.

Unclassified
ClassificationEric V. Landin Jr.
Authorized Classifier11/19/63
Date

The following information is submitted in response to your request for an analysis of the induced radioactivity in SNAP-50/SPUR electrical machinery having a high cobalt content.

Induced radioactivity in the flight vehicle will contribute negligibly to allowable radiation levels. This is especially so due to the low neutron to gamma ratio of assumed radiation damage tolerances to semiconductors. A calculation to estimate the order of magnitude of induced radioactivity in cobalt is attached. The calculation is based on a best guess of the neutron spectrum directly behind a lithium hydride shield. The spectral energy distribution, Table 1 attached, is based on a 16 group DSN calculation which is known to give poor results for deep shield penetrations. The magnitude of the flux spectrum is scaled to a 10,000 hr integrated flux of 7×10^{14} nvt above 17 Kev at 5 ft from the center of the shielded reactor. This corresponds to 1×10^{13} nvt above 17 Kev at 42 ft by inverse square of distance. The resulting low cobalt activity and associated dose rate of about 1 mr/hr at 10 ft from a generator or a motor is insignificant.

Although the above evaluation indicates insignificant levels of induced radioactivity, this conclusion is not applicable to a ground test. Neutron moderation and scattering from a containment vessel and biological shield would greatly perturb the neutron environment behind the flight shield. Post-test handling of all components within the vacuum test chamber will undoubtedly be a problem. However, a realistic evaluation, at an early date, of the magnitude of handling problems is not feasible and is in fact beyond our present manpower and methods capabilities. A two dimensional neutron transport code (TDC) which would be a useful tool for this analysis has in recent evaluations been demonstrated to give erroneous results. This problem with TDC is being evaluated. Aside from the problems of methods development there are several factors which would greatly affect the magnitude of induced radioactivity. Some factors of significant importance are:

1) the physical layout, 2) the composition of materials comprising the containment vessel and biological shield, and 3) structure required to provide

DISTRIBUTION OF THIS DOCUMENT IS LIMITED
TO DOE OFFICES AND DOE CONTRACTORS

MASTER

G

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CHIL-5326, Suppl. 1
To: J. W. Walton

November 15, 1963

the thermal characteristics of space. Notwithstanding the importance of limiting induced radioactivity, other considerations such as economy, cooling and vacuum requirements will largely dictate the final facility design.

In summary, an activation analysis involves the overall facility design and will not be readily resolved. For a 10,000 hr. test the Co^{60} activity may range from 100 curies per lb of cobalt where no shielding is provided to 10^{-3} curies per lb of cobalt where the equivalent of a flight shield is provided.

J. R. Smolen

J. R. Smolen

JRS:jh

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NOTICE

This report contains information of a preliminary nature, and was prepared primarily for internal use at the originating installation. It is subject to revision or correction and therefore does not represent a final report. It is passed to the recipient in confidence and should not be abstracted or further disclosed without the approval of the originating installation or USDOE Technical Information Center, Oak Ridge, TN 37830.

Calculation:

Table 1

Neutron Flux Spectrum and Cobalt Activation
Cross Sections

Op	Energy Range	nv/gp (neutrons/cm ² -sec)	$\bar{\sigma}_{n,\gamma}$ (barns)	nv x σ
1	3 - 00 Mev	4×10^6	1.0×10^{-2}	0.4×10^5
2	1.4 - 3	6	0.5	0.3
3	0.9 - 1.4	2	0.5	0.1
4	0.4 - 0.9	3	0.5	0.15
5	0.1 - 0.4	2	0.8	0.16
6	17 - 100 Kev	2	1.0	0.2
7	3 - 17	1	4.0	0.4
8	0.55 - 3	1	1.0	0.1
9	100 - 550 ev	1	38×10^0	380.
10	30 - 100	7×10^5	0.7	4.9
11	10 - 30	5	1.3	6.5
12	3 - 10	4	2.3	9.2
13	1 - 3	2	4.0	8.0
14	0.4 - 1	1	6.7	6.7
15	0.1 - 0.4	6×10^4	11.8	7.1
16	Thermal (0.025 ev)	1×10^4	33.5	3.4
				$428. \times 10^0$

^{60}Co activity following 10,000 hrs of irradiation:

$$\begin{aligned}
 A &= \frac{N_0 \, nv \, \sigma \, (1 - e^{-\lambda T})}{59 \times 3.7 \times 10^{10}} \quad \approx \quad \frac{N_0 \, nv \, \sigma \, \lambda \, T}{59 \times 3.7 \times 10^{10}} \\
 &= \frac{0.602 \times 4.28 \times 10^7}{59 \times 3.7 \times 10^{10}} \quad \times \quad \frac{0.693 \times 10^4}{5.3 \times 365 \times 24} \\
 &= 1.8 \times 10^{-6} \quad \text{curies/gm of cobalt} \\
 &= 8 \times 10^{-4} \quad \text{curies/lb of cobalt}
 \end{aligned}$$

November 15, 1963

Dose rate at 10 ft per lb of irradiated cobalt - an overestimate by neglecting self absorption by the source:

$$\begin{aligned} D(10 \text{ ft}) &= \frac{6 \text{ C E}}{10^2} \\ &= \frac{6 \times 8 \times 10^{-4} (1.17 + 1.33)}{10^2} \\ &= 1.2 \times 10^{-4} \text{ r/hr per lb of cobalt} \end{aligned}$$

Dose rate from 115 lbs of Hypero (27 wt % cobalt) in one generator:

$$\begin{aligned} D(\text{generator}) &= 1.2 \times 10^{-4} \times 115 \times 0.27 \\ &= 4 \times 10^{-3} \text{ r/hr at 10 ft} \end{aligned}$$

Dose rate from 9 lbs of MIVCO 10 (73.5 wt % cobalt) in one rotor:

$$\begin{aligned} D(\text{rotor}) &= 1.2 \times 10^{-4} \times 9 \times 0.74 \\ &= 0.8 \times 10^{-3} \text{ r hr at 10 ft} \end{aligned}$$

To: J. W. Walton

AT(30-1)-2789
CNLM-5326, Suppl. 1
November 15, 1963

From: J. R. Smolen

cc: W. G. Alwang
C. C. Bigelow
E. R. Dytka
G. N. Frazier
H. C. Gray
R. W. Kelly
W. G. Kennedy
H. J. Richings
E. A. Thomas
N. J. Works

Subject: Activation of Electrical
Machinery

Unclassified
Classification

Eric V. Sandin A.
Authorized Classifier

11/19/63
Date

The following information is submitted in response to your request for an analysis of the induced radioactivity in SNAP-50/SPUR electrical machinery having a high cobalt content.

Induced radioactivity in the flight vehicle will contribute negligibly to allowable radiation levels. This is especially so due to the low neutron to gamma ratio of assumed radiation damage tolerances to semiconductors. A calculation to estimate the order of magnitude of induced radioactivity in cobalt is attached. The calculation is based on a best guess of the neutron spectrum directly behind a lithium hydride shield. The spectral energy distribution, Table 1 attached, is based on a 16 group DSN calculation which is known to give poor results for deep shield penetrations. The magnitude of the flux spectrum is scaled to a 10,000 hr integrated flux of 7×10^{14} nvt above 17 Kev at 5 ft from the center of the shielded reactor. This corresponds to 1×10^{13} nvt above 17 Kev at 42 ft by inverse square of distance. The resulting low cobalt activity and associated dose rate of about 1 mr/hr at 10 ft from a generator or a motor is insignificant.

Although the above evaluation indicates insignificant levels of induced radioactivity, this conclusion is not applicable to a ground test. Neutron moderation and scattering from a containment vessel and biological shield would greatly perturb the neutron environment behind the flight shield. Post-test handling of all components within the vacuum test chamber will undoubtedly be a problem. However, a realistic evaluation, at an early date, of the magnitude of handling problems is not feasible and is in fact beyond our present manpower and methods capabilities. A two dimensional neutron transport code (TDC) which would be a useful tool for this analysis has in recent evaluations been demonstrated to give erroneous results. This problem with TDC is being evaluated. Aside from the problems of methods development there are several factors which would greatly affect the magnitude of induced radioactivity. Some factors of significant importance are:

1) the physical layout, 2) the composition of materials comprising the containment vessel and biological shield, and 3) structure required to provide

CHM-5326, Suppl. 1
To: J. W. Walton

November 15, 1963

the thermal characteristics of space. Notwithstanding the importance of limiting induced radioactivity, other considerations such as economy, cooling and vacuum requirements will largely dictate the final facility design.

In summary, an activation analysis involves the overall facility design and will not be readily resolved. For a 10,000 hr. test the Co^{60} activity may range from 100 curies per lb of cobalt where no shielding is provided to 10^{-3} curies per lb of cobalt where the equivalent of a flight shield is provided.

J. R. Smolen

J. R. Smolen

JRS:jh

Calculation:

Table 1

Neutron Flux Spectrum and Cobalt Activation
 Cross Sections

Gp	Energy Range	nv/gp (neutrons/cm ² -sec)	$\sigma_{n,y}$ (barns)	nv x σ
1	3 - 00 Mev	4×10^6	1.0×10^{-2}	0.4×10^5
2	1.4 - 3	6	0.5	0.3
3	0.9 - 1.4	2	0.5	0.1
4	0.4 - 0.9	3	0.5	0.15
5	0.1 - 0.4	2	0.8	0.16
6	17 - 100 Kev	2	1.0	0.2
7	3 - 17	1	4.0	0.4
8	0.55 - 3	1	1.0	0.1
9	100 - 550 ev	1	38×10^0	380.
10	30 - 100	7×10^5	0.7	4.9
11	10 - 30	5	1.3	6.5
12	3 - 10	4	2.3	9.2
13	1 - 3	2	4.0	8.0
14	0.4 - 1	1	6.7	6.7
15	0.1 - 0.4	6×10^4	11.8	7.1
16	Thermal (0.025 ev)	1×10^4	33.5	3.4
				$428. \times 10^5$

Co^{60} activity following 10,000 hrs of irradiation:

$$\begin{aligned}
 A &= \frac{N_0 \text{ nv } \sigma (1 - e^{-\lambda T})}{59 \times 3.7 \times 10^{10}} \approx \frac{N_0 \text{ nv } \sigma \lambda T}{59 \times 3.7 \times 10^{10}} \\
 &= \frac{0.602 \times 4.28 \times 10^7}{59 \times 3.7 \times 10^{10}} \times \frac{0.693 \times 10^4}{5.3 \times 365 \times 24} \\
 &= 1.8 \times 10^{-6} \text{ curies/gm of cobalt} \\
 &= 8 \times 10^{-4} \text{ curies/lb of cobalt}
 \end{aligned}$$

November 15, 1963

Dose rate at 10 ft per lb of irradiated cobalt - an overestimate
by neglecting self absorption by the source:

$$\begin{aligned} D(10 \text{ ft}) &= \frac{6 \text{ C E}}{10^2} \\ &= \frac{6 \times 8 \times 10^{-4} (1.17 + 1.33)}{10^2} \\ &= 1.2 \times 10^{-4} \text{ r/hr per lb of cobalt} \end{aligned}$$

Dose rate from 115 lbs of Hyper^c (27 wt % cobalt) in one generator:

$$\begin{aligned} D(\text{generator}) &= 1.2 \times 10^{-4} \times 115 \times 0.27 \\ &= 4 \times 10^{-3} \text{ r/hr at 10 ft} \end{aligned}$$

Dose rate from 9 lbs of NIVCO 10 (73.5 wt % cobalt) in one rotor:

$$\begin{aligned} D(\text{rotor}) &= 1.2 \times 10^{-4} \times 9 \times 0.74 \\ &= 0.8 \times 10^{-3} \text{ r/hr at 10 ft} \end{aligned}$$