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ABSTRACT

Karpova has described an absolute method for
measurement of dielectric properties of a
solid in a coaxial reentrant cavity. His
cavity resonance equation yields very accurate
results for dielectric constants. However, he
presented only approximate expressions for the
loss tangent. This report presents more exact
expressions for that quantity and summarizes
some experimental results.
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TOWARD MORE ACCURATE LOSS TANGENT
MEASUREMENTS IN REENTRANT CAVITIES

Introduction

Karpova has described an absolute method for measurement of dielectric proper-
ties of a soiid in a coaxial reentrant cavity.! The usefulness of his technique has
been recognized by another author? and verified at Sandia Laboratories. Some of the
advantages of the technique are

- The solution is “exact” so that a wide range of dielectric constants may be
accommodated.

- No standards are required to calibrate the cavity.

* The technique is convenient for very-high-frequency (VHF) and ultra-high-
frequency (UHF) measurements because the largest dimension of the cavity is
of the order of a quarter wavelength. ‘ '

« The required sample shape. is a simple right circular cylinder whose
diameter-to-length ratio is not critical. For example, a 1:1 ratio is

very convenient when preparing sample specimens from brittle mi;eriais.

. The resonance equation given by Karpoval yields quite.accurate reéults for the
dielectric constant; however, he presented only approximate expressions for loss
tangent. The purpose of this report is to give more exact expressions. A draﬁback
of this measurement technique is the extensive computation required, but, for those
with access to a computer, this drawback becomes rather insignificant. '

Summary of Previous Results and
Formulation of the Problem

For the sake of Eompleteness, the resonance equation derived by Karpova is
repeated in Eq. (1), and its symbolism is defined. With few exceptions, the nota-"
tion of Karpova is retained in this paper, the main exception being that all work
here is in the mks system of units.

The resonance equation is

« A

s 2
lz—R A, Z Rn sin“(wan) -
270 . a2n2

B

R,  + SUM , (1)

s

n=1



where

SUM =

In these equations, a

R A sinz(nan) 2
n 2 2 2
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:E: oy a‘n m
r B 22,2
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the unknown material occupies region B while

(2)

is the ratio of sample length d to cavity length L, as

(3)

region

(a)

(5)

(6)

(7)



In Eqs. (4) through (7)
j =1, _ (8)

Golkor) = Jo(kor)Ny(kor,) ~ Jo(korz)No(kbf) ' (9)

Gy (kor) = J; (KgrINg(kor,) = Jo(korz)nl(kof) , , Qo)
where
kg = wugeg ) (11)

w = radian resonant frequency ,
‘ _ -7
up = 47 X 107" H/m ,

e. = 8.8542 X 10 12 F/m ,

i
and second kind, respectively, of order i,

J. and Ni are Bessel functions of the first

T, and r, are radii defined in Figure 1,

(« P2 = - (kan)z - (= 2 ko2 . (12)
Bon (n"7) = To (n™e) Ko (nra) = ToxaPe2 )R (<) (13)
Dln(KnAr) = Il(KnAr)KO(KnArZ) + IO((nAr2)K1(KnAr)' ‘14,

Ii and Ki are modified Bessel functions of the first

and second kind, respectively, of order i,

€ ur is the relative dielectric constant of the material

in Region B,

k = [e i ko » and 4 (15)

= - (kcmB)z = (%%) - Exrko ‘ (16)

Note that the factor j = /-1 cancels out of Eq. (1) so that it is a purely real

equation. The wave numbers kan and kcmB appear only in Egqs. (12) and (16},

L[}

: . - - . 3 .
However, they are quite frequently encountered in other literature,” so their

A ana KmB, which are used extensively in the

relationships to the quantities n
present report, are given. This completes the definition of all notation in

resonance Eq. (1).
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In the sections which follow, expressions for the fields in the two regions
are needed. These are reproduced in Egs. (17) through (22).

In region A,

t
H
»
1
SE
3
] 8
ot
x| 3
s | A
o
>
a1
—
/]
™
o]
o]
N

el A
H A _ aMOGl(k r) + 3 Cn X Dln(Kn r) cos(
Re Tk TR
¢ "o% ' *o1 " ox® un (¢ Ar))
n n 1

In region B,

where

and

5 _  Jolkr) Z": 14 (x_Pr) m
Fz M0 jBTE;;) + L Mm 10 &mBrl) cos(aLz) '
- B _ . m Il(ﬁnBr) .
B = 4 o1 B M I, ("mBrl) sin(Zfz).
NE_ Jq,(kr)
Ryo =) :; 0 Jz(kr 7t

(rB)

+

Un = ZMO S:I'n('“'an) E ( l)m m Oln(nan) K

m=1 -—

a2

g = 376.73 ohms = characteristic impedance of free space.

My will turn out to be arbitrary and

(17)

(18)

(19)

(20)

(21)

(22)



_— (24)

0 NE = RnA 212 sin?(yan)
L 'Z 22 _ 2.2
n=1 m

(a’n )

2 sin (nan)
™ R
M = n m2
R
m

W, + W P, + P, + P
ranD =|_A Bl _['w C Jl. . (25)
WBQ wa

where

Wy = maximum energy stored in A region of resonator
W, = maximum energy stored in B region of resonator

Q = measured, loaded Q of the resonator with sample

in place

Pw = power dissipated in the conductlng resonator

walls

PC = power dissipated in the external source and:
receiver circuits, and

PJ = power dissipated in the joint between the center
conductor and base plate of the resonator.

The PJ term did not appear in Karpova's analysis. It is added here because of the

manner in which our resonators were constructed.

To (a) relax the required tolerances on dimension d (see Figure 1) of the
sample, and (b) permit samples of different lengths to be measured, the center con-
ductor post of the cavity can slide in the z direction (see Figure 2). Once the
sample is in place and the cover is attached (at the z = 0 plane), a screw is used
to force intimate contact between the center conductor, the sample, and the cover of
the cavity. This is done to minimize the air gap errors which are particularly
troublesome when measuring samples with a large dielectric constant.. Unfortunately,
small losses occur in the sliding joint; these are accounted for by the P, term. P,
is also computed differently from Karpova; this is described under "Expressions for

Power Losses in the Resonator," later in this report.

11
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All necessary information is now at hand to proceed with the "exact" comph-

ar Wge Py Poo and PJ on the right side of Eq. (25). "“Exact"
is enclosed in quotation marks because the fields given by Eqs. (17) through (22)

were derived under the assumption that the cavity walls were lossless. Neverthe-

tations of the terms W

less, they will be used to calculate the effects of losses which do occur in the

walls.

. Expressions for Stored Energies in the Resonator

Total Energy Stored in Region A

The total energy stored in region A, wA is given by
.
W, =W, +W,_ , ' (26)

where wAz and W are the energies stored in the z and r (radial) E fields,

Ar

respectively. The term W is computed first.

Az

Computation of W z ~

A
.e ] r L .
_ -0 Al 2 (27)
Was '_Tt/l [Ez dz | 2nrdr
1 0
Ey using BEq. (17), Eq. (27) may be rewritten as
T2 F G, (kor) Dy, (%A )
f 0'™o-’ - 01\ "1 Tz
1) = ne r aM, ——¢v——7—, + ¢, ————— cos(——) +
Az 0 . 0 Go(korl) 1 D (KA]:' ) L
24 0 01'71 "1
. (28)

Gh(k,r) D xAr
+ ...:I[aMOGo—(kor—)+Clo—l—(—lA—)——COS("—i)+ «e.|dzdr
okor1 Doy (e r))

Considering first the integration over z, it is seen that each term will be of the
form

where i and j have, independently, any integer value between 0 and ». If i'# j, it
is easily shown that the integral vanishes. 1If i = 3j # 0,

. (29)

nl

L .\ . .

iz niz _
f cos(T) cos( I )dz =
o
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L

jﬂ 1.1 dz=L. : ~(30)
0 _

From these orthogonality results, Eq. (28) may be rewritten as

r ’ © 2
2 2. 2 Goz(kor) L

1 = me r {(a“LM + = (e dr (31)

Az 0 0 2 2 n

G, “(knrq)
0 0"1 _
r n=1
1
Now, rewritc Eq. (31l) as
Yaz = Taoz * Z Tanz * 1 (32)
n=1
Comparing Egs. (31) and (32) and incorporating Eq. (9) gives
2.2 .
1 _ T MM N2 (kr,) P 2 (kor)rdr -
A0z ~ o 2 0o ‘fof2 ./. o ‘%o r
o (¥ory) ry
L2
- 2N0(k0r2)Jo(k0r2) ./' Jo(kor)No(kor)rdr +
1
2 Ty 2
+ 357 (kgry) r/‘ No“(kgrirdr | . - (33)
1

Eq. (33) is now rewritten, using the notation which will be employed throughout the
remainder of thio report:

2 2
. . ﬁEOa LM0

2
A0z lNo (korz)QJJR(rl, t,, O, LY kg) -

o

Go (korl)
- 2“0(}\OLZ)Jo(kOEZ)QdNK(flp t'Z' u, Kor ko) +

4 Joz(korz)QNNR(rl, ry, 0, kg, ko) - (34)

The rationale for this notation is as follows: Throughout this report, integrals
such as those appearing in Egq. (33) appear repeatedly. Each integral can be ex-
pressed in closed form so function subroutines were written to evaluate them in the
FORTRAN program KAR?OVA, which implements this technique. The form of the calls to
three of those function subroutines appears in Eq. (34). For example, the signifi-
cance of the call QJNR(rl, I, 0, kg, ky) is as follows: The last three letters of
the function name indicate that the integrand is the product of a J Bessel function,
an N Bessel function, and the independent vériable r. The first two arguments of
the function specify the range of the integration to be ry £r<r,. The third
argument specifies the order of both Bessel functions to be 0. The fourth function
argument specifies that the argument of the first Bessel function is kgr. The fifth



‘function argument indicates that the argument of the second Bessel function is also
(in this case) kgr. Since one of the purposes of this report is to provide docu-
mentation for the KARPOVA program, the functional notation is used in this report.

Explicit expressions for each definite integral appear in Appendix A.

I1f one compares Egs. (31) and (32) and incorporates Eq. (13), Eq. (35)

results.

\

2
me LC_°
_ "%y 2({ a A _~a
- IAnz = ;I—)—z——T' Ko (Kn rz)QIIR<Z'1: l’zr 0, Kn ’ Kn) -
K I
On n "1 :

A A A A
ZKO (Kn rz) I0 (Kn rz)QK“IR (rl, Yy o, Kn ! Kn) +
2 A ’ A A
I0 (xn rz)QKKR(rl, r,. 0, Ky o0 ) J . (35)

Egs. (32), (34) and (35) may now be combined to determine W,

+

2"

Computation of wAr -

r L
EO 2 A-2
Wop = 3 f /lEr I . dz | 2mrdr (36)
.31 0

By applying Eq. (18) and the orthogonality properties already discussed, Eq. (36)

becomes

3 o 2 r

€T nC 2

=9 S 1 S 2( A

War = 2L Z[ A ( A )] f Din ("n r)‘dr . (37)
n=1 L*n “on \*n "1 r .

Finally, by using Eq. (14) and the integ;al notation, the expression for Wp., becomes

2

eon3 nC

W, = SN, L— ]
Ar = 2L - A A
n=1 Kn DOn Kn r1

2 A A A
+ IO (Kn rz)QKKR (rl, r2, 1'. Kn ' Kn ) . (38)
W, is now determined by Egs. (26), (32), (34), (35), and (38).

A

Total Energy Stored in Region B

The total energy stored in region B, Wy, is given by

15
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Wg = Wpp + Wy : (39)

where W z and W are the energies stored in the z and r directed E fields,

B Br
respectively.

Computation of.wR -

Z
E.E rl ¢ ’
_ 0 xx | BIZ
Wy, = _T‘/ / E, dz|2nrdr (40)
, 0 o .

By using Eq. (20) and the orthogonality relations and recalling that 4 = aL, one

obtains

2
€ne M “nd
W, =-0X£0 " 539R(0, £y, 0, k, k) +
Bz 2 1
J. " (kr,)
n ]
2 w 2 . . : R Ry -
. , R ‘
Lot yplg  Me m QLLK(U, ¥y, U, KOSk
. . ) . (41)

m=1 0 Ioz(Kml'arl)

Computation of WBr - _
EnE r1 d ’
_ “0%xr B|2
Wy = —E f [f ‘Er l dz]andr _ (42)
. 0 0 ;

Employing‘Eq. (21) and the orthogonality relations yields

L

_ 2y .2
_ 2 4 im m
War = Mg eoexr"’ﬁz (" D) (W)

m=1 '2L%pm
B B
. QIIR(O, ré’ 1' Km ! Kﬂ_) B (43)
B
I0 (Km rl)

Equations (39), (4l), and (43) are combined to yield Vig.

Expressions for Power Losses in the Resonator

Power Losses in the Walls of the Resonator

The total power dissipated in the resonator walls, Py is broken out into six

components, i.e.,

PW=PCD+P;A+POC+Pb+PiC+Pe, C(44)

where

PcB is the power dissipated in reqion B of the

cover (at z = 0)



PcA is the power dissipated in region A of the

cover

Poc is the power dissipated in the outer conductor

of the resonator at r = r

Py is the power dissipated in the base plate
at z = L

P, is the power dissipated on the periphery
of the inner conductor at r = ry

P is the power dissipated on the end of the
center conductor at z = d.

Computation of P.g~~ BY referring to Figure 3, it is readily seen that the

B

power chB dissipated in an incremental annular area on the cover plate is given by

2
|Irms| Rse
cB 21r

dr .

dap . : (45)

In Eq. (45), Ins is the total rms current which flows radially across the annular

region bounded by r and r + dr. (Note: Since the only H fields present are
¢-directed, the only currents which can flow in the cover are radially directed.)

R is the surface resistivity of the cover and is given by3

SC
RSC = ’nfulpl ’ ’ (46)

where f is the loaded cavity fesonant frequency in Hz, p, is the permeability of the
. cover material, and p; is its bulk resistivity. ‘ ‘ )

I is related to the H field as
rms
|H¢BI :
JIrmSI = 2nr -, . - (47)

N2

so that Eq. (45) becomes

B|2 :
Py = R, \H¢ l rdr . (48)

17
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Figure 3. Incremental Annular Area

From Eq. (22),

u,B|2 Cxr . 2 [le(kr’
"o

= —_— +
? Jg (kry)
. s 13 2 (Mm) 3, (k)1 (e Br)s)
J,(kr M,
olkry) m1 Mo Io(xBry)x B
® B B
M\ /M. I,(x;x)Iy(x, r)s
2 i\ 1% ¥1h 2
o 30 2 () =2 Al e

B
i=l j=1 kg %y Tobeg 1)Tolxy ry)
whé:e Sl = 1 = cos{0) for this case where z = 0. Also, in this case, 52 = 1=
cos(0) - cos(0).

To find the total value (P Egy. (48) is integrated from r = 0 to r = ry.

cB)*
To keep the algebra to manageable proportions, this integral is broken out into

three parts, as shown in Eq. (50),
_ D|2 i . ,
Pp = } TR_ |H¢ l rdr = aR__(Q, + Qg + Qg) . (50)
0

Here, Q4, QS’ and Q. represent the definite integrals of r times the first, second,
and third terms, respectively, of Eq. (49); therefore, ’

.Moze
Q, = ——*L _~ QJIR(0, r,, 1, k, k) , (51)
47 T 02 1
\.0 rl no
M %e kS~ M\ QIJR(0, ry, 1, x B, k}S
0. = 0 “xr ( m) U SO W 1 (52)
R o B BT ' :
Jolkry)ny“ &=4 "0 kLo (Km r,)
2 . o [ B B
M exrkz Mi\(My OITR(0, Ty, 14 x;"0 X, )s,
9, = — 3% == . (53)
6 ) M /\My /| T B B

B B
i Kj IO(Ki rl)IO(Kj rl)



P.p is therefore given by Egs. (50), (51), (52), and (53).

Computation of PC -- The computation of Pc is quite similar to that of PéB

A
so that Eq. (54) follows immediately.

A

_ . A2
dP_, = "R, |H¢ | rdr ' (54)

From Eg. (19),

: 2
‘H A‘ 2 _ 1 | ]aMp6) (kor)
¢ -2

ng Go(*oT1)
w , a
+ 2 Z an o1te™) o Ko Pinl*n ¥) *
- 0 G (kK.ty) n _ & A 1
n=1 0'70"1 n DOn(Kn rl) .
) A A .
ko Pusln™e) ko Pujlsyte)
+ C, — % X Cy 5 Sap - (55)
i=1 j=1 6" Doz (xi"ry) 5 Doj ("j T
Once again, from Eq. (54), let
BN A|2
P, = rf "R ’H¢ ’ rdr = AR _(Q) + Q, + 0;) , (56)
1

where, as before, Qr 9y Q3 represent the definite integrals of r times the first,

second, and third terms, respectively, on the right side of Eq. (55). Now, by using

Egqs. (55), (56), and (10), the value of Ql is found to be

2
a2 M0
2

Q= 2., _ .
G0 (korl)

2
1 N0 (korz)QJJR(rl, Loy 1, ko, ko) -

"o
- 2N0(k0r2)J0(k0r2)QJNR(rl, Ty 1, kOC.kO) +
2 . .
f J0 (korz)QNNR(rl, Ty 1, ko, ko) . (57)
Taking the product of Egs. (10) and (14) shows that
6. (ke)D. (ePr)e [3) (korIN (K )
1(kgr)Dyp (k) F)= [ 1(KoT N (koTy
- 3y (kgr N (ko) | 1, (k Pe) Ry (« B, ) +
. 0*70-271"0 1\'n 0'"'n "2

. A A
o [Jl(kor)no(korz) - Jo(korz)Nl(kor)] Iy (e, ry)Ky(x Br) o (58)

Therefore, substituting Eq. (58) into Eq. (55) and using Eq. (56) gives

19
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0. = 2 2Mo*o nS1 .
2

2 - A A
g Golkory) n=l{ x Dy (xtry )

. k

A
[No(korz)Ko(Kn r,)QIIR(ry, ry, 1,

3o (kx5 K (k0 £5)QINR(£)s Tos 1, « By okg) +

-+

Nolkory) T (x Pry)QKIR (), 1ty 1, x Py kg) -

A A
Jolkory)Ig(k "r,)OKNR (r,, ry, 1, k") ko)J . (59)

From Eq. (14), it is found that

Dli(Kf’r)Dlj.(szr) =

[TI(K: }')Kn("i]\r?) + Iq (< o) ¥ ("iA")] I1("jA £)Kg (kg egp)

[l Pe)rg (xPeg) + 1g (kg )y (k7)) To(x{ Eg) Ky (<5 )« (60)
Substituting Eq. (60) into Eg. (55) yields

2 o @

Ky Z C5,C; '
2 :E: A A

"o

A A
i=1 5ol %1 %g Poilxy F1) Doy (i ry)

03

[KO(Kf\rz)Ko(x;&rz)QIIR(rl, ry, 1, KiA, K A)

A A . A
* Ig(xg rz)Ko'(nJ. r JOKIR(ry, xor 1o k570 xg")

+

+

A & 7 A A ; s A
Ko (i t2)To(xq ta)ORIR(ry, rpr 1o wy™y xy )

1
A A A A
+ Ig (ki Ty)Tg(xy To)ORKR(T s Tpr 1y ky7s Ky )] . (61)

Then P_, is calculated from Egs. (56), (57), (59), and (61).

Computation of Poc -~ Since the only H fields in the resonator are those

directed in the ¢ direction, the only currents which can flow in the resonator walls
at r = ry and r = ry, are those in the z direction (Figure 4). '

e

Figure 4. 2z-Directed Current Flowing
across an Incremental Band
on a Cylindrical Surface



With reference to Figure 4, it is evident that the incremental .power (dPoc)
dissipated in the incremental band of length dz will be given by

2
ap - IIrms| Rsoc dz 62
oc 21 ° (62)
2
Irms is the total rms current flowing across the incremental band, and Rséc is.the

surface résistivity of the outer conductor at r = ry. R is given by

Rsoc = &/TfuzPy - " . (63)

Values v, and p, are the permeability and bulk resistivity, respectively, of the
outer conductor metal. '

Since

2nr2 ’H&A r
—_— 2 B -
rms’ - vz ’ (64)
Eq. (62) may be rewritten as
_ A2
dPOC'— w |H¢ lrz rstocdz . (65)

so that the total power (P ) is given by

. _ ‘ Al2
Poc N 1”'«ZRsoc f |H¢ l dz . (66)
0 .

By using Eg. (19). and the orthogonality relations, one gets

2 [ A 2
p - 'F2%soct [aMoGl(korz)] . ;.:E: [anobln(‘n rz)] } (67)
oc 2 A A '
"o Golkgry) 2121 L *n Ponl*n r1)
Computation of P, -- The computation of Pb’ the power dissipated in the base

plate of the resonator at z = L, is very similar to that for PcA as described
earlier. In fact,

- r
Pp = TRgp(Q) + 07 + Q7)) : (68)
where Rsb is the surface resistivity of the base plate and is given by
Rsb = /nfu393 . . ' : (69)

Values LY and .py are the permeability and bulk resistivity, respectively, of the
base plate. Qz' is the same as Qé in Eq. (59), provided that
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§, = cos(m) = (-1)" ., (70)
Simiiariy, Q3' is the same as Q3 in Eq. (61) with the provision that

s, = cos(1i) cos(j) = (-1)1*T | (71)
Thus, Py ;; computed using Egs. (68), (69), (57), (59), (70), (61), and (71).

’

Computation of Pic =~ The computation of Pic’ the power dissipated on the

periphery of the inner conductor, is somewhat similar to that for Poe SO that, from
Eq. (66),

L A 2
Pi. = "R ;. ;{ |Hq> £ dz A (72)
can be aerived. Here, R_; . 1is the surface resistivity of the inner conductor and is

- given by
Reic = W"fugpy - - . _ (73)
Values u, and o, are the permeability and bulk rcsistivity of the imner conductor.

2 .
Using Eq. (19) to express the value of ‘H¢A\r and looking forward a little,
1

it becomes apparent that the values of two definite trigonametric integrals will be
required. These will now be evaluated in advance.

L .
z=
f cos (—'l;—z)dz - —ﬁ" [sin(niﬁ)J . (74)
a =d

sO

L .
. nvz L . _{nnd
= - = . 5
/ cos( T )dz o~ s:.n( T ) . (75)
a :

The second integral is

L
[ cos("%) cos(lgﬁ) dz
d
L
L ' ) . ‘(i + j)dz
T T(L * 3y _-/[°°S g+ J’ZHHI—L—J——] *
: d
L
+ IT(TL-_j')',[ [cos%(i - j)z”%(i - j)dz] . (76)
4



Therefore, if i # j

3

cos(l%z) cos(ﬂ%z)dz

N

I1f, however, i = j, then

L
f cos("—%‘i) cos(lgﬁ)dz =
d

PO | P . i
s:.ni(l + j)d

L
Zn J - 1

[sin%(i - 3)d )

J + 1

A Al
Hl Pl
] Q\..\
»- E] [
o R
(¢}
[¢]
/7]
N
—
=S
3 [
N
~—
[ S
fr———
=2
-
Q
N
A

|

2
=
e
=1
+
4]
P
=]
N
£
[S——

So, if i = j, then
L
niz njz dz = L [ni _ =id 1
cos (Tg=) cos(iF)dz = 3|77 - "¢
d .
Now, define
s M, - . PR | AP .
L 51nE(1 - 3j)d _ 51an1 +'j)d if
2n j -1 J +1
H. =

)=

ij © . ‘
L mi d\
461

From Egs. (72), (19), (75),

sinEE%Q] if 1=

and (80),

o
I

ic

2

2Lk

aMoG1 (korl)

2
7Y, R aMnaG, (kgry)
_ lsic[Ol 1] (L - &) -

A
Cal1n Q‘n r1)

0

“C.C.
J

! o A A
nGo(korl) n=1 %n DOn (Kn r

A
Dliﬁ‘i rl)Dlj(

. (2nid
- I s:.n(—L—)] .

i+

+
~
L)
[+

i
A

A
LKL
1]

H.. .
A A, 1j
DOi(Ki rl)DOj(Kj rl)

| .

(77)

(78)

(79)

(80)

(81)
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Computation of P, -~ The computation of Py, the power dissipated on the end of

the center conductor, is essentially the same as that described for P.p* Therefore,
- ’ ’
Pe = TRgic(Qy + Q5" + Q¢ ).' (82)

Rgjc and Q, are given by Egs. (73) and (51), respectively. ;' is given by Eq.
(52), provided that ,

§, = cos(mn) = (-1)7, | . (83)
and Qs’ is the same as Q6 in Eq. (53), provided that

8, = cos(ni) cos(mj) = (-1)1*3 | (84)
All wall losses have now been computed.

Computation or Pn

P

The resonator is excited by driving a small loop {of area F) which is located
in the base (at z = L) at a radius of r, = (r1 + r2)/2 . The plane of the loop is
in the radial direction. The response of the resonator is sensed by a second iden-
tical loop which is diametrically opposite to the first one. Both the exciting
source and the sensing receiver present a 50~-ohm impedance to their respective
loops. The rms voltage (Vrms) induced in each loop is given by

v = By F ~ (85)
Vrems T YYo N .

Here, H; is the magnetic field at the loop and normal to it. Therefore, the power
coupled from each loop to the external 50-ohm load is given by

22 |, |2 .2
_ % ¥ lHL‘ F _ (86)
ex = (2} (50) ) _

ex’

P

Since there are two identical loops, the total power (PC) coupled out of the reso-
nator is :

2 2 2 .2
. 2w ¥o \HLl F
Cc ex (2} (50) )

(87)

Using Eq. (19), lHL\z is found to be

2 2
IH lz - ‘H Al oL [aM‘Gl(korL) +
L ¢ Iry nuz 08, (kor 7.
-
. 2aM.x Gy (kory) ¢, Drp (%) . +
““o%o GOIkOrlz K A D (K Ar ) 1
=1 n Oni\n "1



2 CiDli(‘iArL) chlj(‘jArL)

(88)
0" ADOj ("jArl)

S

+ k 2 [

b =5 =51 & Do (¢, ) %5

where S, and S2 are given by Egs. (70) and (71), respectively. P is computed
directly from Eq. (87) in place of the technique proposed by Karpova. Discussion of
this last sentence and the means for determining the value of F2 appear at the end

of the section which follows.

J

Computation of P
As described earlier, the resonator was constructed so that the center conduc-

tor can slide in the base block to accommodate unknown samples of various lengths.
The resistance in the joint (Ry) is of the order of 1 m® which becomes significant
when measuring samples with very small loss tangents. Since all interior surfaces
of the cavity are either copper- or silver-plated, the power dissipated in the joint
(PJ) must be accounted for.

I1f Iins is the rms current flowing across the joint, then
= 2 : .
Py = lIrmsl Ry + ‘ - (89) - -
where
B A
Irms = 2"tl _L (90)
Ji-rl,L
so, using Eqs. (19), (89), and (90),
2n2r12RJ' Gl(kori) 2
’ Ps = ‘ Mo T A
J ny” o (KT )
G, (knr,)
1'7M01
+
+ 2aM0k0 PN sl
) 0(¥o™1) e
@ o A . A
2 ¢;Dy; (x;ry) Cj“1j(‘j ry)
+ k s . (91)
0 K AD (K Ar ) K AD (K Ar ) 2
1=1 j=1 "i "0iVi "1 j 03V T1

At this point, expressions for all gquantities needed to compute TAND from Eq.
(25) are available. It remains only to discuss an accurate means for determining '
the squared area (Fz) in Eq. (87). Since the loops are small and usually of
irregulaf shape, it is difficult to perform an accurate physical measurement of F.
It is, however, easy to determine the effective value of F? empirically. Once F2
has been determined, it does not change so long as the coupling loops are not
physically changed or moved; hence, after F2 is once determined, there is no further'
need to make empty resonator measurements. (With Karpova's technique, this would be
necessary every time the'sample length (d) is changed.)
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The determination of the effective value of F2 proceeds as follows:

1. The empty cavity resonant frequency (Fo) and Q0 are measured for an
arbitrary but known (nonzero) value of d.

2. An estimate of the joint resistance (R;) is obtained from dc measurements.

3. Various values of F2 are substituted into Eg. (25) (along with the values
of FO’ QO' énd RJ which were obtained in‘stéps 1 and 2) until a value for.
"TAND which is as close to 0.0 as desired results.

Thus, the effective value of F2 may be first determined as accurately as
desired. That value will, of course, be valid for measurements on any subsequeht
dielectric sample of any length d. The effective value of F2 thus derived will be
quite consistent with an estimate based on physical measurement.

Finally, it may be noted that the valuc of Mo, which appears in numerous
equations, is arbitrary, so it can conveniently be assigned a value of unity. This
is true because each of the W and P terms in the expression for TAND, Eg. (25), is
proportional to M02; therefore, M0 cancels out since TAND involves the P gnd W terms
only in ratios of one to the other. (To verify the asserted proportionality of each
of the P and W terms to Mg, it is necessary to note from Eg. (23).that C, is
proportional to MO.)

Experimental Results

A reentrant cavity of the type suggested by the sketch in Figure 2 has been
constructed for use in the VHF regioﬁ. Three different barrels of different
lengths were constructed to permit measurements at three different frequencies. As
mentioned earlier there is a snug, sliding fit between the center conductor and the
base block, thereby allowing the measurement of samples of different lengths. The
compression screw forces intimate contact between the dielectric sample and the
center conductor and cover of the cavity. The‘results of measurements made on
Teflon, polystyrene, nylon, and fused silica are shown in Table 1. 1In addition,
results from Reference 4 are given to provide a baseline by which the results may be
judged. It is apparent that there is still work to be done--particularly in the
loss tangent results. It is believed that most of the problems are caused by the
variability of the resistance (RJ) between the center conductor and base block of
the cavity. Variations of 0.1 mfl produce dramatic shifts when measuring low-loss
materials such as fused silica, etc. Work to eliminate this variability is con-
tinuing.

A word about the number of terms used to approximéte the several infinite
series is in order. A careful study of the trade-offs between accuracy and number
of terms has not been conducted, so it is quite probable that more terms were used
to obtain the results in Table 1 than were necessary. Two different approximations

were used. Nine terms were used in all summations over m. Nine terms were also



used in all summations over n with one exception: 1In solving the resonance equa-

tion, Eg. (1), more than nine terms were used in the summations over n. Each sum-
mation over n was terminated at a value n = ny when the following two conditions
were met:

1. The magnitude of sin(nanl) had to exceed 0.9.
2. The nlth term of the series had to have a magnitude of less than 0.01% of
.the (n; - 1)th partial sum. ’

The value of n; varies with the length of the cavity barrel and the properties of
the dielectric sample being measured.
TABLE 1

Results of Dielectric Properties Measurements

Frequency Dielectric Constant - Loss Tangent
Material (MHz) Measured von Hippel Measured von Hippel
Teflon 226 2,08 2,04 0.00029 0.00015
Teflon 368 2.07 2,04 0.00040 -0.00015
Teflon 490 - 2.08 2.04 0.0013 0.00015
Polystyreﬁe . 224 2.54 2,55 0.00027 0.0002
Polystyrene 361 2.54 2.55 0.00032 0.0002
Polystyrene 477 2.55 - 2,55 0.00041 0.0002
Nylon 220 3.09 . 3.10 0.016 0.015
Nylon 353 3.08 3.10 0.014 0.015
Nylon 463 3.09 3.10 0.014 0.015
Fused silica 216 - 3.75 3.78 0.00008 0.00004
Fused silica 342 3.80 3.78 0.00033 0.00004.
Fused silica 445 o 3.80 3.78 .0.000032 0.00004
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APPENDIX A

Tabulation of Closed-Form Expressions

This appendix tabulates closed-form expressions for the definite iritegrals
involving Bessel functions which appear in this report.' ‘Most of the expressions
were obtained from Reference 5; however, Egs. (A-9) and (A-10) were derived as
discussed in Appendix B.

Expressions are given for definite integrals of the form

z .
[va(kr)Zv( fr)rdr , ' : ' (a-1)
b4

where v=0, 1, 2, 3,s+¢s and Y and Z represent any of the Bessel functions J, N, I,
or K; k and & represent real, positive constants. Two expressions are given for
each integral; the first is in terms of Bessel functions of order v and v + 1; the
second is in terms of Bessel functions of order v and v - 1. Each integral is given
in two notations: The first is the standard notation of expression (A-1), the )

second is the functional notation used in the body of this report, e.qg.,

. .
fll(kr).:’l(zr)rdr = QIJR(y, z, 1, k, %) .
Integral . Expressions
[ zz‘Jzk) %(k”‘(k_);‘]z(kﬂ or
tI“ (kr)rdr . 3 v( Z) = gl REIY z wl ‘ZJ,
0
22 [ 2 2v . 20 ] ’
QJJR(O, z, Vv, k, k) = {Jv (xz) - k—i\l\,(kz)Jv_l(kz) + Ju_l(kz) . (A-2)
z .
f Jv(kr)Jv( er)rdr ;2—:"-—;7 [ka‘ 22)J \,, (k2z) - ZJ\,(kZ_)J\H_l(Ez)I or
0
. z ' _
QJJR(0, z, v, k, 2) " R— [0, ,022)0 (k2) - kT, (kz)J (12)] (A-3)
k # %
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Integral

Expressions

z

/ Jv(kr)Nv(kr)rdr
0 A

M

[Muxe)a e) = g5 fay,, (ezdn (ka) + 3 k2N, (k)] +

+ N (k2)T L (k2) |

or

QJINR(O, 2z, v, k, k) ;— [N\’(kz)Jv(kz) - E\,E {N\,_l(kz)Jv(kz) + Nv(kz)Jv_l(kz)‘ +

+ N (k2)T ) (xa) ] (A-4)
V4 . .

z .
/ Jv(kr)Nv( fr)rdr k2 2 [kNv( 2z)Jv+1(kz) - R.Jv(kz)Nw_l(R.z)] or
0
QINR(0, 2, v, R 8 | Ry AN (R2)3 (he) = kT, (k)N (22)| (A-5)

¥ ¥ L KT o- g ’
z . .
/ Iv(kr)Jv( 2r) rdr P——j—l—z- [ka( lz)le(};z) + !;Iv(kz)Jw_l(iLz)] or
v - .
QIJR(0, 2z, V. k. 2) kz—izf [kJ\,( 22)1,_, (kz) ~ QIV(kz)Jv_l(lz)} (A-6)
j'Kv(kr)Jv( ¢r)rdr T, 2 ;[mv(kz)a w1 22) - k3 (22)K ., (kz) Jz -
Yy . ’
- y[aK (ky) T (2y) - kI (4y)K,,, (ky) ]} or
QKIR(y, z, g, k, %) 2 i 22 [[kJ\,( xy)K,_) (ky) + IR lky)o ,_, Uly) ly -
y > :
- 2 [T (f2)K ,(k2) + &K (k2)T,_,(22) ][ (A-7)
VA 2 '
[ N‘,z(k;)rd_r -;— [Nv(kg) - i—;’NV(kz)Nwl(kz) + Nwlz(kz)] or
o
2 o " :

ONNR(V, =z, Vv, k, k) ;— [Nv'“(kz) - ;—z‘-’uv(kz)mv_l(kz) + 13“_12(1“-.)] (a-8)
j I“(kr‘)N“( 2r)rdr k-zi—;i “kN\;( 22)I .4 (kz) + R.Iv(kz)Nwl(Ez)]z -

4

-y [RN ()T (ky) - ZIv(ky)Nwl(ly)]f or



Integral Expressions
QINR(y, z, v, k. £) s (kN (22)T ) (k2) - 21 (kz)N _ (12) ]z -
v >0 k% + 2
- vy (o) T (ky) - 21,(kyIN,_ () )] - (A-9)
2 o
f K (kr)N (4&r)rdr 2 L 5 %[!.Kv(kz)Nwl(lz) - kN ( zz)le(kz)]z -
+ 2 v
Y : .
- y [ (ky)N ) Cay) - kN (8y)K, (ky) ]} or =
QKNR(y, 2z, Vv, k, %) ﬁ “KNV( Ey)Kv_l(ky) + EKv(ky)Nv_l(!,y) Jy -
y >0 ‘ _
-z [k (f2)K,_) (kz) + K (k2)N,_ (22) ] (a-10)
P - N 2 » '
f I\,z(kr)rdr %— lIvz(kz) - %—: I, (kz)1 ,(kz) - lez(kz)] or
0
2 I
QIIR(0, z, v, ks k) | 5 [T 2(kz) + 23T (kz)T | (kz) - 1, 2(kz)] (a-11)
z . 2 -
!Kv(lr)Iv( sr)rdr > {Iv( 22)K (42) - 5z [K,(22)T,, (22) -
- K, (e2)1 2z) ] + Ky (22)1  (e2) -
¥ v
- ,Iv(.ly,)Kv( ) - 5 K1, () -
- Ky (8y)T (2y) ]+ Ko ()T, ( 1y); _or
Z2 \4
OKIR{y, z, v, 2, #%) 5 {Iv(lz)Kv( 2z) + o7 (K (22)T ) (22) -
y> 0
- K, ,{(1=)1 (28)] + Kv_l(zz)lv_l(m); -
2 ) : '
- 12’— [1\,( y)K (2y) + %}; [Kv( R.y)Iv_lr( ry) -
= Ky, (8)T (2y) ] + Kv_l(ly)Iv_l(ly); (A-12)
zZ .
f K,(kr)1 (4&r)rdr k—2—17 “klv( zy)KvH(ky) + K, (ky)I (%) ly -
- z[kI (#2)K ,, (kz) + IK (kz)I,, (%2) ][ or
QKIR(y, z, v, k, 2) Fl—z-z. ;I[ka_l(ky)Iv( 2y) + 21, (2y)K (ky) ly -
XK * & - . ]
y» o - zlkk,_y (ka)T (12) + %1, (%2)K,(k2) )] (A-13)
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Integral

- Expressions

/ sz(kr)rdr

z

22

T [Run P e2) - B2 K (k2K (k2) - K 2(ka)| or

2 .

QKR(z, =, vo koK) | 3= [k, P(ka) + ¥ (Ka)K ) (k) - K P(kz)] (A-14)
z >0

/Kv(kr)Kv( Lr)rdr ﬁ {kK\,(.ILz)K\H_l(kz) - QK\,(kz)le(lz)f or

: ,

OKKR(z, ®, v K, 1) | —Ees Pi ) (kadx (22) = ax ) (120K (ke | (a-15)
'k # 2 ’
z? 0




APPENDIX B
Dérivation of Equations
This appendix gives the derivation of Egs. (A-9) and (A-10), which appear in
Appendix A. The author is grateful to D. E. Amos of the Numerical Mathematics

Division 5642 £Or outlining this derivation.

From Eq. (2) on page 190 of Reference 5, the differential equation

Yy’ 2
vy (22 - “—2)y1 =0 (B-1)
. z v
haé a solution
Y = a'Jv( 2z) + va( Lz) . (B-2)

Also, from Eq. (4) on page 190 of Reference 5, the differential equation

y'2' 2‘ vz
e —_— - —_— = -
Ytz (k + =)y, =0 (B-3)
z
has a solution
Yy = cIv(kz) + de(kz) .o . ' (B-4)

In these equations, a, b, c, and d are arbitrary constants. Multiplication of Eq.
(B-1) by zzy2 and Eq. (B-3) by zzy1 yields

Y2Y1"zz oy v, + (222 - iy, = 0 (8-5)
ylyz"z2 + zy2'y1 - (kzz2 +.Jz)y2yl =0 . ) (B-6)
-Subtract Eq. (B-5) from Eq. (B-6) to get
z( e _ ) 4 ('., - ' ) = 'y z(kz + £2)' . (3-7)‘
Y1Y3 YY1 Y ¥y T Yy Y2 Yi¥2

Observe that

d ’ e ' ’
S5 (20 yy - vy'vp)] = =lyyyy"t - vy Y'Yy Ty, - (B78)

Substituting Eq. (B-8) into Eg. (B-7) gives
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a
az lzlyy'y, - Y'Yyl = ylyzz(k2 + 22, (B-9)

alzly,'v, - y;'v,) ]

2 71 1 72

Y Y,2zdz = . (B-10)
172 ’ k2 + 22 .

Integrating from zl to z2,‘where 0 <« zy < 2y ¢ @ yields

zZ z

2 2
z N ' ’ )
/ Y1524z = 5——=—(y,"y, - vy, Yz)] . » (B-11)
kKT + 2 2 . .
2 1
(Actually, if b =d = 0 in Egs. (B-2) and (B-4), zy = 0 is permissible; also, if
c = 0, then z2y = is permissible.)

Choooing a = d = 0 in Eqs, (B-2) and (B-4) and substituting the resulting
expressions intd Eg. (B-11) resulls in

Z
2
d
f I,(kz)N (%z)zdz = [Fﬁ ]N\,( 22) -1 (kz) -
z .
1.‘
z
a 2
- I,(kz2)zzN (2z) ] . . (B-12)
, "

Similarly, choosing a = ¢ = 0 in Eqs. (B-2) and (B-4) and substituting the results
into Eq. (R-11) yields ' :

%2 | ' ?. d
f K“(kz)[\]“(lz)zdz =[—2—2 N, (22)F7K (k) -
k™ + &
“1
. . . z2
- K,(kz)gmn Lz)}] . (B-13)
%1

From Egs. 3.27(14a), 3.27(14b), 3.27(9), 3.27(10), 3.27(15a), and 3.27(15b) of
Peference 3, one obtains

%Elv(kz) = %’Iv(kz) + kI, (kz2) : (B-14)
or

g -2 (B-15)

azl,(xz) = I (kz) + kI ,(kz) . .

g'ENv( 22) = oN (22) - o (h2) ' (8—16).



or

%Nv( 2z) = -%’N\,( 2z) + znv_l(zz)' . (B-17)

d K (kz) = ~K.(kz) - KK...(kz) (B-18)

dz v zZv vl -
or

FaK (x2) = T2K (kz) = kK ) (kz) . (B-19)

Substituting Egs. (B-14), (B-15), (B-16), and (B-17) into Eq. (B-12) yields
Eq. (A-9). Similarly, substituting Egs. (B-18), (B-19), (B-16), and (B-17) into Eq.
(B-13) yields Eq. (A-10). ’
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