

LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

LA-UR--88-604

CONF-88-0681--8

DE88 006457

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under Contract W-7405-ENG-36

TITLE **INFLUENCE OF STRAIN RATE ON THE SUBSTRUCTURE EVOLUTION
AND YIELD BEHAVIOR OF Ti-6Al-4V**

AUTHOR(S) G. T. Gray III and P. S. Follansbee

SUBMITTED TO **Sixth World Conference on Titanium
Cannes, France
June 6-9, 1988**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By accepting this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce it in its current form or in an abridged form in any future U.S. Government publication.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

MASTER
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

INFLUENCE OF STRAIN RATE ON THE SUBSTRUCTURE EVOLUTION AND YIELD BEHAVIOR OF Ti-6Al-4V

G.T. Gray III and P.S. Follansbee
Los Alamos National Laboratory
Los Alamos, New Mexico USA

INTRODUCTION

Systematic dynamic testing experiments, in which microstructural and mechanical property effects are characterized quantitatively, constitute an important tool to investigate the effect of strain rate on mechanical behavior and deformation mechanisms. While extensive experimental data is available for FCC and BCC metals, the strain rate response of HCP metals, particularly alloys, remains poorly investigated. Studies to date¹⁻⁴ of the mechanical response of titanium and titanium alloys to increasing strain rate suggest a marked strain rate sensitivity, although few studies encompassed strain rates $> 10^3 \text{ s}^{-1}$. The influence of a large variation in strain rate on substructure development has not received wide-spread attention, particularly for alloys, except that in HCP metals it has been observed that deformation twinning becomes more prevalent with increasing strain rate⁵.

The purpose of the current study was to investigate the influence of strain rate on the substructure evolution and mechanical response of Ti-6Al-4V (hereafter Ti-6-4). The results of the mechanical properties are analyzed in accordance with the procedure proposed by Kocks and Mecking⁶ and it is shown how this simple model can be extended to the multi-mechanism strengthening in Ti-6-4. The approach of our modeling work is to characterize the deformation kinetics as a function of strain rate, temperature, and strain through the use of the flow stress at 0K (the mechanical threshold stress) which represents the stress required to force a dislocation past the average obstacle without the assistance of thermal activation energy. Substructural characterization on as-received and on samples prestrained as a function of strain and strain rate provides the link required to verify that the assumptions made in the analysis of the mechanical property data are valid. Substructure analysis of the Ti-6-4 as a function of strain rate shows the deformation mechanism changes from solely planar slip during slow strain rate deformation to a mixture of planar slip and {1121} deformation twinning at high strain rates.

EXPERIMENTAL

This investigation was performed on Ti-6-4, predominantly in the as-received hot-worked and partially recrystallized condition (termed the AR condition), applied in the form of 13.8 mm thick plate with composition in (wt. %) : 6.4 Al, 4.0 V, 0.12 Fe, 0.065 C, 0.001 N, 0.18 O, and bal. Ti. The starting microstructure was an equiaxed alpha grain structure, with the alpha grain size nominally 5 microns with beta at the grain boundary triple points. Selected area diffraction (SAD) analysis of transmission electron microscope (TEM) images of the as-received Ti-6-4 material showed diffraction maxima at 1/2 [010] positions. These maxima are indications of either SRO or very small alpha-2 precipitates, both of which can form during slow cooling, and are both known to promote planar slip. The texture of the as-received Ti-6-4 plate, in the plane of the plate, was measured to be a transverse texture with the maxima

nted at approximately 25 degrees from the rolling plane normal and oriented 5, 135, 225, and 315 degrees in the (0002) pole figure relative to the current rolling direction of the as-received plate. This texture suggests the -4 plate may have been cross-rolled rather than solely unidirectional ed which would typically yield only two transverse maxima at 0 and 180 degrees in line with the rolling direction⁷. To compare the influence of the orientation of microstructure on the strain rate sensitivity of Ti-6-4 some experiments were also conducted on Ti-6-4 material following a solution treatment at 1000°C for 1 hour followed by a water quench(termed the ST condition) and a ST condition that was additionally given an aging treatment at 200°C for 8 hours to enhance SRO or alpha-2 contributions(termed the AG condition).

les for compression testing were cut from the Ti-6-4 plate stock material with the sample compression axis normal an apparent rolling direction of the plate in the plane of the plate. The compression yield behavior of Ti-6-4 was measured as a function of strain rate over the strain rate range of 0.001 to 2500 s⁻¹. The temperature and strain rate dependence of the yield and flow stress is examined through determination of the mechanical threshold stress using experimental techniques discussed in-depth elsewhere^{8,9}. In brief, samples are prestrained to a prescribed strain, strain rate, and temperature, followed by a reload operation at a strain rate of 0.001 s⁻¹ to probe the rate tendency of dislocation interactions with short-range obstacles. Prestraining at strain rates of 0.001 and 2500 s⁻¹ were done utilizing a standard water-driven mechanical testing machine and in a split Hopkinson bar, respectively.

les for TEM were sectioned from deformed Ti-6-4 specimens, in the AR condition, at strain rates of 0.001 and 5000 s⁻¹ strained to a true strain of 0.04 to allow deformation mechanism comparison with the mechanical behavior of the AR condition. TEM foils were prepared in a solution of 84% methanol, 10% butanol, 6% perchloric acid at -40°C with 10 volts using a Struer's Electropolisher. The foils were examined using a JEOL 2000EX operating at 200 kV equipped with a stage-tilt stage.

RESULTS & DISCUSSION

strain-rate dependence of the yield and flow stress of Ti-6-4 at a true strain of 0.04 is shown in Figure 1. Included with this data are measurements by several previous investigators on Ti-6-4 tested in tension^{2,3} and in compression²⁻⁴ to strain rates as high as 3000 s⁻¹. In general, the current results and those included for comparison show a high strain rate sensitivity of both the yield and flow stresses. The differences in flow stress levels between the various studies are thought to be due to differences in the testing microstructural conditions of the Ti-6-4 studied. The variation of the yield stress in the AR condition with the reload test temperature and strain rate is plotted in Figure 2 using normalized coordinates. The data in Figure 2 shows that the reload yield stress decreases with increasing test temperature for all the prestraining conditions studied. Experiments on the ST and AG conditions showed similar temperature behavior.

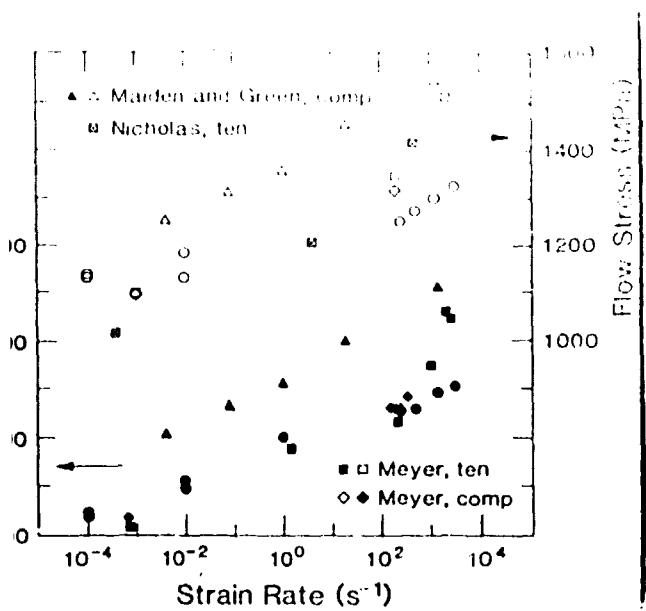


Figure 1: Strain rate dependence of the yield and flow stress at 0.04 in Ti-6-4 and comparison with previous results/6-8/.

solid lines through the data in Figure 2 show fits according to a thermal activation law of the form/10/:

$$\frac{\sigma}{\mu} = \frac{\sigma_0}{\mu} + \alpha(\dot{\epsilon}, T) \frac{\dot{\sigma}}{\mu} \quad [1]$$

$$\alpha = \left[1 - \left(\frac{kT}{\mu b^3} \ln \left(\frac{10^{10}}{\dot{\epsilon}} \right) \right)^{1/9} \right]^{1/p} \quad [2]$$

A least squares fit of the data to Eqs. [1] and [2] gives the mechanical threshold stress and normalized activation free energy. The mechanical threshold stress (given by the intercept at $T=0$) is found to increase with increasing strain for a constant strain rate. Interestingly, the mechanical stress for prestrains at a strain rate of 2500 s^{-1} to a strain of 10% is the same as that for a prestrain of 0.001 s^{-1} to the same strain. This is in contrast to the behavior in FCC metals where the mechanical threshold stress increases with the strain rate of the prestrain.

An analysis of the data for the ST and AG heat-treatment conditions similarly showed that the mechanical threshold stress increases with increasing strain. In addition the ST condition resulted in a lower threshold stress most probably due to a slightly larger alpha grain size and more recrystallized structure while the AG condition yielded a higher threshold stress probably due to a long-range contribution from either SRO or alpha-2 precipitates. The modeling predictions of Eq. [1] also provided a good fit to the reload response of the

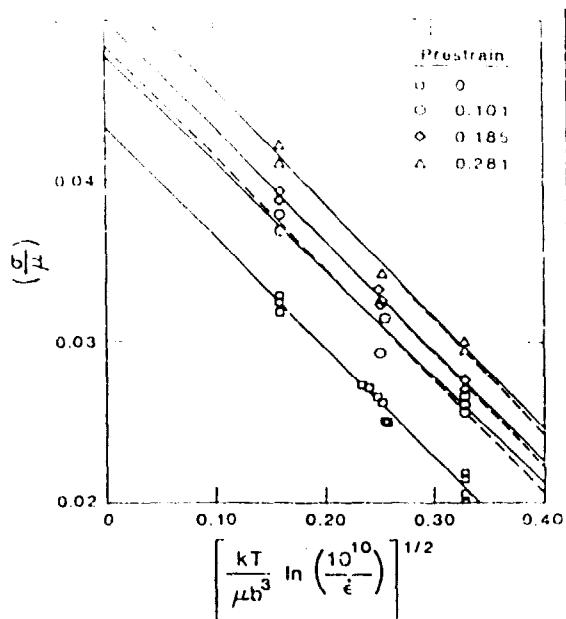


Figure 2: Variation of the reload yield stress with reload temperature and strain rate. Solid line shows fit to Eq. [1].

ST and AG conditions.

To assess a possible means to separate the various strengthening mechanisms that influence the mechanical response of Ti-6-4, the presence of interstitials and solutes on the yield behavior of pure Ti is estimated utilizing the low strain rate yield data for Ti-Al alloys of Paton et. al./11/. For these alloys, Eq. [1] is rewritten in terms of a linear summation of the contributions of interstitial, solute, and dislocation/dislocation interactions.

$$\frac{\sigma}{\mu} = \frac{\sigma_q}{\mu} + \sum A_i \frac{\hat{\sigma}_i}{\mu} \quad [3]$$

$$A_i = \left[1 - \left(\frac{kT}{g_0 \mu b^3} \ln \frac{\sigma_{0,i}}{\epsilon} \right)^{1/q_i} \right]^{1/p_i} \quad [4]$$

The variation of the dislocation/dislocation interaction portion of the threshold stress ($\hat{\sigma}_0$) with strain for quasi-static prestrains is modeled with the fit of the Voce Law/8/ equation to threshold stress data as a function of strain to obtain the structure evolution component, i.e., the influence of strain hardening. Combining these formulations we obtain a form of the Kocks/Mecking model which includes the influences of linear summation of the strengthening mechanisms in Ti-6-4. The applied stress for a specific temperature and strain rate can then be calculated using Eq. [3]. * In-depth presentation of this model and predictions will be found in a paper submitted to Metallurgical Transactions. An example of the prediction of the model is shown in Figure 3 which shows a prestrain at a strain rate of 2500 s^{-1} to a strain of 10% followed by unloading and reloading at a low strain rate of 0.015 s^{-1} . The measured flow stress is seen to be reasonably accurately predicted by our model although the measured dynamic flow stresses are slightly less than predicted. We believe that the lower dynamic yield stress may be related to the onset of deformation twinning at high rates.

The substructure evolution of Ti-6-4 in the AR condition was found to depend on both the applied strain rate and the temperature of deformation. The equiaxed alpha exhibited the most evident changes in substructure with deformation history which is consistent with the fact that the alpha grains dominate the mechanical behavior of Ti-6-4 due to the high volume fraction of alpha in this alloy. The beta grains displayed no apparent change in substructure or morphology independent of deformation history. The substructure of Ti-6-4 deformed to a true strain of 0.10 at a strain rate of 0.001 s^{-1} was characterized by planar slip concentrated in bands on basal, prism, and

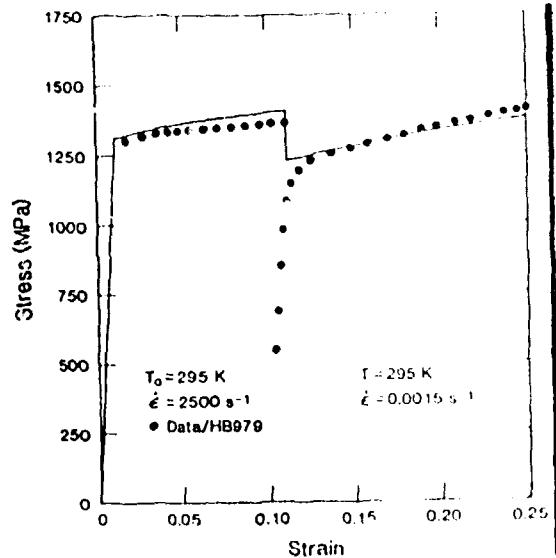


Figure 3: Model prediction and comparison with experimental results for a prestrain at 2500 s^{-1} to $E=0.10$ reloaded at 0.001 s^{-1} .

Figure 4: TEM micrograph of Ti-6-4 deformed at 295K at 0.001 s^{-1} to $E=0.101$ showing planar slip bands.

ramidal planes (Figure 4). These planar dislocation arrays are similar to those known to dominate deformation behavior in Ti-Al alloys containing greater than 4 wt.% Al and demonstrate that cross-slip is difficult in Ti-Al alloys at low temperature and high Al content/11/. The presence in the current Ti-6-4 alloy, in the AR condition, of SRO or fine alpha-2 precipitates further favors concentration of dislocation activity into narrow slip bands/11/.

amples strained an equivalent amount but at a strain rate of 5000 s^{-1} displayed planar slip in the alpha grains, similar to those seen in the quasi-static samples, with the addition of numerous deformation twins. Twins were observed to have formed preferentially in grains whose mean size was larger than the average. The twins were thin and lenticular in morphology with EDS analysis revealing that the twins were (1121) type "tension" twins, i.e. they allow for an expansion along the c-axis. Figure 5 shows TEM bright field / dark field micrographs and associated SAD pattern of (1121) twins in a [1010] alpha zone axis. Grains exhibiting deformation twins were seen to display a reduced amount of planar slip bands which is consistent with the shear strain accommodation accompanying twins in titanium/11/. The observation of only a single twinning type (1121), while not statistically conclusive, is based on EDS analysis of at least 10 grains in at least 4 TEM foils sectioned from different portions of the deformed samples. This TEM examination further showed that similar diffraction conditions existed in numerous grains at a given testing condition suggesting that the sample texture was of importance to the twinning mode. The substructure evolution of Ti-6-4 was also investigated as a function of testing temperature at low strain rate. Increasing the temperature of deformation to 200°C at a strain rate of 0.001 s^{-1} was seen to alter the dislocation morphology from solely that of planar slip bands to that of less dense planar slip interspersed with random dislocation tangles. Deformation

ns were not observed in any samples deformed at 200°C. To investigate if the occurrence of twinning at high strain rates in Ti-6-4 could be correlated with increased flow stress at these rates, a sample of the AR Ti-6-4 was deformed

Figure 5: TEM micrograph of Ti-6-4 deformed at 5000 s^{-1} to $E=0.10$ showing planar slip and twins in a) brightfield

Figure 6: TEM micrograph of twins in Ti-6-4 deformed at 77K.

7K to a true strain of 8% at a strain rate of 0.001 s^{-1} . TEM examination of the sample showed that the substructure was similar to that of the room temperature 5000 s^{-1} specimen being characterized by numerous deformation twins in some grains displaying planar slip bands. The twins in the 77K sample were found to be (1121) type twins as seen in the bright field / SAD photographs in Figure 6.

Substructure evolution of Ti-6-4 is observed to depend on the strain rate, temperature of deformation as well as the starting texture. The incidence of (1121) deformation twins with increasing strain rate and decreasing temperature correlates with the known dependency of twin mode on texture and starting texture in the Ti-6-4 plate in this study. Studies on the tensile deformation of polycrystalline Zr by Reed-Hill¹⁵ showed that while (1121) type twins occur infrequently at room temperature and slow strain rates(0.010 s^{-1}), raising the strain rate to 16 s^{-1} greatly increased the number of observed (1121) twins. In addition to higher strain rate deformation, high rate deformation in Zr at 77K was observed to further favor (1121) twinning. During deformation at 77K twins in Zr were also observed to occur on planes with the least orientation factor, irrespective of the mode of twinning, implying that the critical resolved shear stresses for all the twinning modes apparently reached the same value. Applied stress orientation studies on Zr/10% furthered that (1121) twinning is favored in the orientation range where the

axis makes an angle between 20 and 60 degrees with the basal pole where incidently the orientation factors for prism slip and {1012} twinning are. In the present study the starting transverse texture of the Ti-6-4 casting plate orients the sample compression axis approximately 65° off the basal pole. The observation of {1121} type twinning is therefore consistent with the previous work on Zr due to texture considerations and the influence of strain rate and temperature on deformation twinning. The increased incidence of deformation twins at high strain rates and low temperature, which are both associated with high flow stresses, suggest that twin nucleation is strongly stress dependent. Conversely, increasingly random slip with increasing temperature at low strain rates has been linked to the convergence of the resolved shear stresses for prism, pyramidal, and basal slip in Ti-Al alloys at higher temperatures⁹. The tendency towards random dislocation arrangements suggests that with increasing temperature the stress for dislocation motion on basal slip planes becomes comparable, permitting more cross slip which results in more random arrangements of dislocations.

CONCLUSIONS

Based upon a study of the influence of strain rate on the substructure evolution and mechanical response of Ti-6-4 the following conclusions can be drawn: 1) The deformation substructure of Ti-6-4 is observed to depend on both temperature and strain rate. Deformation at quasi-static strain rates at 293K is characterized by planar slip bands in the alpha grains while the deformation substructure at high strain rates (e.g., 5000 s⁻¹) and at quasi-static rates at 773K consists of numerous deformation twins, {1121} type believed to be related to the starting texture and strain rate effects. 2) The constitutive equations based on the Kocks/Mecking model have been successfully applied to predict the deformation response of Ti-6-4 to loading path changes involving a relatively slow regime in strain rate and temperature. Changes in slip character or in deformation mechanism (e.g., deformation twinning) have been observed to correlate with changes in the expected flow behavior, although these results are beyond the current modeling procedures outlined in this paper.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the technical assistance of M.F. Lopez and W.J. Miltz in performing the tests described herein. The authors wish to thank A.D. Mecking for performing the texture measurements. We also acknowledge helpful discussions with J.C. Williams. This work was supported by the U.S. Department of Energy and the Office of Basic Energy Sciences, Division of Materials Science.

REFERENCES

- Conrad, H., *Prog. Matls. Sci.* 26 (1981)123.
- Meyer, L.W., in *Titanium Science and Technology*, eds, G. Luetjering, U. Zwicker, and W. Bunk (Deutsche Gesellschaft fur Metallkunde) (1984)1851.
- Nicholas, T., *Exp. Mech.* 38 (1981)177.
- Maiden, C.J., and Green, S.J., *J. Appl. Mech.* 33 (1966)496.
- Reed-Hill, R.E., in *Deformation Twinning*, eds. R.E. Reed-Hill, J.P. Hirth, and H.C. Rogers (New York, Gordon and Breach) (1964)295.

Mecking, H. and Kocks, U.F., *Acta Metall.* 29 (1981) 1865.

Peters, M. and Luetjering, G., in *Titanium '80*, eds. H. Kimura and O. Izumi (Warrendale, PA, AIME) (1980) 925.

Follansbee, P.S., in *Metallurgical Applications of Shock-Waves and High Strain-Rate-Phenomena*, eds., L.E. Murr, K.P. Staudhammer, and M.A. Meyers (New York, Marcel Dekker) (1986) 451.

Follansbee, P.S. and Kocks, U.F., *Acta Metall.* 36 (1988) 81.

/ Kocks, U.F., Argon, A.S., and Ashby, M.F., *Prog. Matls. Sci.* 19 (1975) 139.

/ Paton, N.E., Williams, J.C., and Rauscher, G.P., in *Titanium Science and Technology*, eds. R.I. Jaffee and H.M. Burte (New York, Plenum Press) (1973) 1049.